EP2581914B1 - Verfahren und Anlage für die Herstellung eines Radioisotops - Google Patents

Verfahren und Anlage für die Herstellung eines Radioisotops Download PDF

Info

Publication number
EP2581914B1
EP2581914B1 EP11184551.7A EP11184551A EP2581914B1 EP 2581914 B1 EP2581914 B1 EP 2581914B1 EP 11184551 A EP11184551 A EP 11184551A EP 2581914 B1 EP2581914 B1 EP 2581914B1
Authority
EP
European Patent Office
Prior art keywords
internal pressure
pressure
given
hermetic cell
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11184551.7A
Other languages
English (en)
French (fr)
Other versions
EP2581914A1 (de
Inventor
Eric Kral
Xavier Wilputte
Michel Ghyoot
Jean-Michel Geets
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Priority to EP11184551.7A priority Critical patent/EP2581914B1/de
Priority to CA2851126A priority patent/CA2851126C/fr
Priority to JP2014535039A priority patent/JP6301254B2/ja
Priority to CN201280058343.2A priority patent/CN104011803A/zh
Priority to US14/350,524 priority patent/US9941027B2/en
Priority to PCT/EP2012/070013 priority patent/WO2013064342A1/fr
Publication of EP2581914A1 publication Critical patent/EP2581914A1/de
Application granted granted Critical
Publication of EP2581914B1 publication Critical patent/EP2581914B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles

Definitions

  • the present invention relates to a method for producing a radioisotope and an installation for carrying out this method.
  • positron emission tomography is an imaging technique that requires positron-emitting radioisotopes or molecules labeled with these same radioisotopes.
  • the 18 F radioisotope is one of the most commonly used radioisotopes. Other radioisotopes commonly used are: 13 N; 15 O; and 11 C.
  • the 18 F radioisotope has a half-life of 109.6 min and can thus be transported to other sites than its production site.
  • a device for producing radioisotopes comprises a proton accelerator and a target cooled by a cooling device. This target comprises a cavity sealed by an irradiation window to form a hermetic cell inside which is included a radioisotope precursor in liquid or gaseous form.
  • the energy of the proton beam directed on the target is of the order of a few MeV to about twenty MeV.
  • Such a beam energy causes a heating of the target and a vaporization of the liquid containing the radioisotope precursor. Since the vapor phase has a lower stopping power, more particles of the irradiation beam pass through the hermetic cell without being absorbed by the radioisotope precursor, which decreases not only the production efficiency of the radioisotope. radioisotopes, but also warms the target further. This well-known phenomenon is commonly called tunneling effect.
  • the document JP2009103611 discloses a device for producing radioisotopes comprising a system for pressurizing the hermetic cell capable of maintaining a constant internal pressure inside the hermetic cell.
  • the document JP 2009103611 proposes to equip the hermetic cell with a control valve allowing a controlled discharge of radioisotope precursor fluid if the pressure in the hermetic cell exceeds a threshold value.
  • This solution has the particular disadvantage of causing the loss of volume of radioisotope precursor fluid contained in the hermetic cell.
  • some precursor fluids of radioisotopes can be very expensive, so that it is necessary at all costs to avoid untimely discharges.
  • the working pressure in the sealed cell of the target must be substantially less than the discharge pressure.
  • a target for the production of radioisotopes When a target for the production of radioisotopes is irradiated daily by a proton beam for several hours, some areas of the target may become weaker over time. The heating of the irradiation cell can thus damage the seals sealing the cavity closed by the irradiation window, causing leaks. Leaks may also appear at the irradiation window.
  • the irradiation of the target produces secondary radiation that can damage nearby parts, such as ducts, valves or a pressure sensor fitted to the target, which also causes leaks.
  • the aforementioned pressurizing device has the advantage of keeping the radioisotope precursor fluid in a condensed or semi-condensed state, possible leaks in the irradiation cell and / or poor filling of the target of the example to a defective valve, can not be detected in time. Indeed, if the device for monitoring the internal pressure in the hermetic cell records a decrease in this pressure, the pressurizing device will normally inject inert gas into the target to re-increase its internal pressure. It will also be noted that impurities resulting from a washing of the target followed by poor drying may also cause an overpressure, which may be masked by the aforementioned pressurizing device.
  • An object of the present invention is, in the production of radioisotopes, to detect in time the problems of leakage or poor filling of a target and to avoid deterioration of the target either by said tunneling effect or by an increase in excessive pressure.
  • a method according to the invention comprises, in a manner known per se, an irradiation of a volume of radioisotope precursor fluid contained in a hermetic cell of a target, this using a particle beam of a given current, which is produced by a particle accelerator.
  • the target is cooled, and internal pressure is measured in the airtight cell.
  • the internal pressure (P) is allowed to freely establish itself in the hermetic cell during the irradiation, without trying to control it by an injection of a pressurizing gas and / or a depressurization valve.
  • the irradiation is interrupted or its intensity reduced, when the internal pressure (P) in the hermetic cell comes out of a first tolerance interval, which is defined according to different parameters having an influence on the evolution of the internal pressure in the hermetic cell during irradiation.
  • Such parameters include, for a given target and radioisotope precursor fluid, including the degree of filling of the hermetic cell, the cooling power of the target and the beam current (I).
  • This lower limit corresponds to an excessively large deviation from an optimum internal pressure determined for a hermetic cell containing a given volume of radioisotope precursor fluid and irradiated by a given beam current.
  • the irradiation is interrupted or its intensity is reduced so as to also prevent a rupture of the irradiation window due to an excessive increase of the pressure in the hermetic cell.
  • This upper limit can indeed be defined so that it represents a sufficient security with respect to the breaking pressure of the irradiation window.
  • this procedure does not require any injection of a pressurizing gas, which would increase the total pressure in the airtight cell, i.e. the nominal pressure for which the target is to be designed, and would also risk hide leaks. It also does not require depressurization by a discharge causing an expensive radioisotope precursor fluid loss.
  • the particle accelerator acts normally directly on the particle accelerator.
  • This nominal pressure value (Pmax) is supposed to represent the maximum pressure value for which the hermetic cell is guaranteed.
  • the upper limit of internal pressure of the first tolerance interval is advantageously at least 20% lower than the nominal pressure value (Pmax) of the hermetic cell. This normally provides sufficient security against rupture of the irradiation window.
  • a control device advantageously triggers an alarm when the internal pressure (P) in said hermetic cell exits a given second tolerance interval for said given beam current (I), a given volume of radioisotope precursor fluid and a radiating power. given cooling of said target, said second tolerance interval being included in the first tolerance interval. The operator is thus warned that the evolution of the pressure in the hermetic cell may soon cause an interruption of irradiation, and it may possibly still prevent this automatic interruption.
  • the degree of filling of the hermetic cell is advantageously optimized so as to obtain a high radioisotope production yield.
  • the radioisotope precursor is advantageously a precursor of 11 C, 13 N, 15 O or 18 F.
  • This installation comprises a target with a hermetic cell capable of containing a volume of precursor fluid, this hermetic cell being guaranteed to withstand a nominal pressure (Pmax), a particle accelerator capable of producing and directing an accelerated particle beam. a given current (I) on the target, a system for monitoring the internal pressure of the cell hermetic, and a control device programmed to interrupt the particle beam or reduce its intensity when the internal pressure (P) in the hermetic cell comes out of a first tolerance range determined according to different parameters having an influence on the evolution internal pressure in the hermetic cell during irradiation.
  • the control device is advantageously programmed to trigger an alarm when the internal pressure of the hermetic cell is outside a second interval in said first tolerance range.
  • the control device may also be advantageously programmed to cause a decrease in the intensity of the beam current when the internal pressure (P) in said airtight cell exceeds an upper limit of internal pressure.
  • FIG. Fig. 1 A non-limiting embodiment of a radioisotope production installation 10 according to the present invention is illustrated on the basis of the diagram of FIG. Fig. 1 .
  • This installation 10 comprises a target, globally identified by the reference sign 12.
  • This target 12 comprises a hermetic cell 14 enclosing a volume of radioisotope precursor fluid. It is equipped, in known manner, with a cooling circuit 16.
  • the plant 10 further comprises a particle accelerator 18 capable of producing an accelerated particle beam 20 which is directed at the target 12 to irradiate the radioisotope precursor in the airtight cell 14.
  • the beam 20 enters the airtight cell 14 by an irradiation window 22 having a thickness of the order of a few tens of micrometers.
  • the maximum internal pressure that the target 12 can withstand depends in particular on the thickness of this irradiation window.
  • the nominal pressure (Pmax) of the target 12 is the maximum internal pressure in the hermetic cell 14 guaranteed by the producer of the target. As long as the internal pressure in the airtight cell 14 remains below the nominal pressure (Pmax), the producer of the target ensures that the irradiation window 22 is pressure-resistant.
  • This nominal pressure (Pmax) is of course a function of the geometry of the hermetic cell 14.
  • the reference sign 24 identifies a schematic representation of a pressure sensor, which measures the internal pressure in the hermetic cell 14. A signal representative of this measured pressure is transmitted, for example through a data bus 26, to a control device 28. On the basis of this pressure signal, the control device 28 monitors the pressure in the hermetic cell 14 in a continuous or quasi-continuous manner.
  • the installation 10 advantageously comprises a multi-way valve 30, which makes it possible to communicate the hermetic cell 14 with different auxiliary equipment.
  • a first port A of this valve 30 is for example connected to a three-way valve 32, itself connected to a reservoir 34 containing the radioisotope precursor and to a pipetting device 36, such as a syringe.
  • a second port B is connected to a first port of the hermetic cell 14 by a conduit 38 for filling and emptying the hermetic cell 14.
  • a third port C is connected to a container 40, intended to receive the irradiated product when the irradiation is complete.
  • a fourth port D is connected to an overflow vessel 42 for collecting the excess fluid introduced into the airtight cell 14.
  • a fifth port E is connected to a second port of the airtight cell 14, via a conduit 44.
  • conduit 44 which serves to evacuate the excess fluid introduced into the hermetic cell 14, respectively to the introduction of a purge gas gas in the hermetic cell 14.
  • This purge gas is contained in a reservoir 46, connected to a sixth port F.
  • the control system 12 controls the various valves 30, 32, the pipetting device 36, the cooling device 16, the flow of the purge gas cylinder 10 and the particle accelerator 18.
  • the valve 30 When filling the hermetic cell 14, the valve 30 connects the port A with port B and port D with port E.
  • the three-way valve 32 connects reservoir 34 containing the radioisotope precursor with pipetting device 36 which draws a quantity of fluid including the radioisotope precursor.
  • the three-way valve 32 then connects the pipetting device 36 to the port A of the valve 30.
  • the pipetting device 36 can now inject the fluid containing the radioisotope precursor into the airtight cell 14, any excess liquid being discharged. to the overflow vessel 42.
  • valve 30 closes all the ports, and the accelerator 18 produces the beam irradiating the target 12.
  • the valve 30 connects the port F with the port E, and the port B with the port C, so that the purge gas is injected into the hermetic cell 14, and the irradiated fluid is removed from the target 12 to be then collected in the irradiated product container 40.
  • the internal pressure (P) is freely allowed to establish in the airtight cell 14. This means that no device for adjusting the pressure is required. internal in the airtight cell 14, on the basis of a pressurization system using a pressurizing gas and a depressurization system using a purge valve.
  • the internal pressure (P) in the airtight cell 14 is measured by the pressure sensor 24 and monitored by the control device 28.
  • the controller 28 interrupts simply irradiating the target 12 or reducing its intensity.
  • this first tolerance interval is defined specifically for the current I of the beam 20, the volume V of the radioisotope precursor fluid contained in the hermetic cell 14 and the cooling power of the target 12. (Normally, the cooling power is kept constant.)
  • the control system 12 is therefore programmed to interrupt the irradiation of the target 12, when the internal pressure (P) in the sealed cell 14 comes out of a first defined tolerance range. It is also advantageously programmed to trigger a prior alarm, and / or reduce the intensity of irradiation, when the internal pressure (P) in the hermetic cell 14 comes out of a second fixed tolerance range, which is included in the first tolerance interval.
  • the beam current was gradually increased by measuring the internal pressure of the target using the pressure sensor 24. These measurements were made until the value of nominal pressure (Pmax) guaranteed for the target 12 for a beam current I of approximately 60 pA. During all the measurements, the coolant flow rate was kept substantially constant, as was the coolant inlet temperature in the target 12.
  • FIG. 2 An example of a second tolerance interval is also shown on the Fig. 2 .
  • a radioisotope production efficiency curve is plotted against the degree of cell filling which in practice shows a constant yield above a critical degree of filling and a large yield drop below that same degree of filling. critical.
  • a degree of filling of the hermetic cell corresponding to this degree of critical filling or a slightly higher degree of filling is established. either experimentally or theoretically the curve of the pressure P as a function of the beam current I for this degree of filling of the hermetic cell.
  • radioisotope production facility 32 three way valve 34 tank containing the radioisotope precursor 12 target 14 hermetic cell 36 pipetting device 16 cooling system 38 pipe 40 container for receiving the irradiated product 18 particle accelerator 20 particle beam 42 overflow container 22 irradiation window 24 Pressure sensor 44 pipe 26 data bus 46 tank with purge gas 28 control device 30 multi-way valve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Claims (13)

  1. Verfahren zur Herstellung eines Radioisotops, das umfasst:
    eine Bestrahlung eines Radioisotop-Vorläuferfluidvolumens in einer hermetischen Zelle eines Ziels mit Hilfe eines Teilchenstrahls eines gegebenen Stroms, der von einem Teilchenbeschleuniger produziert wird,
    eine Abkühlung des Ziels und
    eine Messung des internen Drucks in der hermetischen Zelle,
    dadurch gekennzeichnet, dass
    sich der interne Druck (P) in der hermetischen Zelle während der Bestrahlung frei aufbaut und
    die Bestrahlung unterbrochen oder ihre Stärke reduziert wird, wenn der interne Druck (P) in der hermetischen Zelle ein in Abhängigkeit von verschiedenen Parametern, die einen Einfluss auf die Entwicklung des internen Drucks in der hermetischen Zelle bei der Bestrahlung haben, bestimmtes erstes Toleranzintervall verlässt, wobei die Parameter für ein Ziel einen bestimmten Teilchenstrahl und ein bestimmtes Radioisotop-Vorläuferfluid, den Füllstand der hermetischen Zelle, die Kühlleistung des Ziels und den Strahlstrom (I) umfassen.
  2. Verfahren nach Anspruch 1, wobei:
    eine Kurve P = f(I) bestimmt wird, die den internen Druck (P) der hermetischen Zelle für verschiedene Strahlströme (I) liefert, und zwar für ein gegebenes Radioisotop-Vorläuferfluidvolumen und eine gegebene Kühlleistung des Ziels,
    wobei das erste Toleranzintervall einen unteren Druckgrenzwert und einen oberen Druckgrenzwert darstellt, die für den gegebenen Strahlstrom (I) auf der Basis der Kurve P = f(I) definiert sind,
    wobei der untere interne Druckgrenzwert derart definiert ist, dass er kleiner, vorzugsweise zwischen 5 % bis 20 % kleiner, als der von der Kurve P = f(I) für den gegebenen Strahlstrom (I) abgeleitete Druckwert ist, und
    der obere interne Druckgrenzwert ein Druck ist, der zwischen dem von der Kurve P = f(I) für den gegebenen Strahlstrom abgeleiteten Druckwert und einem nominalen Druckwert (Pmax) der hermetischen Zelle inklusive ist, wobei der nominale Druckwert (Pmax) den maximalen Druckwert darstellt, für den die hermetische Zelle garantiert ist.
  3. Verfahren nach Anspruch 2, wobei der obere interne Druckgrenzwert des ersten Toleranzintervalls im Verhältnis zum nominalen Druckwert (Pmax) der hermetischen Zelle um mindestens 20 % kleiner ist.
  4. Verfahren nach Anspruch 2 oder 3, wobei der obere interne Druckgrenzwert des ersten Toleranzintervalls zwischen 5 und 10 bar höher ist als der aus der Kurve P = f(I) für den gegebenen Strahlstrom (I) abgeleitete Druckwert und auf einen Druckwert (P2) begrenzt ist, der kleiner als der nominale Druckwert (Pmax) der hermetischen Zelle ist.
  5. Verfahren nach einem der vorangehenden Ansprüche, wobei eine Überwachungsvorrichtung einen Alarm auslöst, wenn der interne Druck (P) in der hermetischen Zelle ein zweites Toleranzintervall verlässt, das in Abhängigkeit von verschiedenen Parametern bestimmt wurde, die einen Einfluss auf die Entwicklung des internen Drucks in der hermetischen Zelle bei der Bestrahlung haben, wobei das zweite Toleranzintervall im ersten Toleranzintervall inbegriffen ist.
  6. Verfahren nach Anspruch 5, wobei:
    eine Kurve P = f(I) bestimmt wird, die den internen Druck (P) der hermetischen Zelle für verschiedene Strahlströme (I) liefert, und zwar für ein bestimmtes Radioisotop-Vorläuferfluidvolumen und eine bestimmte Kühlleistung des Ziels,
    wobei das erste Toleranzintervall einen unteren Druckgrenzwert und einen oberen Druckgrenzwert darstellt, die für den gegebenen Strahlstrom (I) auf der Basis der Kurve P = f(I) definiert sind,
    wobei das zweite Toleranzintervall einen unteren Druckgrenzwert und einen oberen Druckgrenzwert darstellt, die auf der Basis der Kurve P = f(I) definiert sind,
    wobei der untere interne Druckgrenzwert des zweiten Toleranzintervalls derart bestimmt ist, dass er kleiner, vorzugsweise um mindestens 2 %, als der von der Kurve P = f(I) für den gegebenen Strahlstrom (I) abgeleitete Druckwert ist, wobei er über dem unteren internen Druckgrenzwert des ersten Toleranzintervalls bleibt, und
    der obere interne Druckgrenzwert des zweiten Toleranzintervalls derart bestimmt ist, dass er größer als der von der Kurve P = f(I) für den gegebenen Strahlstrom (I) abgeleitete Druckwert ist, wobei er unter dem oberen internen Druckgrenzwert des ersten Toleranzintervalls bleibt.
  7. Verfahren nach einem der vorangehenden Ansprüche, wobei, wenn der interne Druck (P) in der hermetischen Zelle einen oberen internen Druckgrenzwert, der im ersten Toleranzintervall festgelegt ist, überschreitet, der Strahlstrom reduziert wird.
  8. Verfahren nach einem der vorangehenden Ansprüche, wobei der Füllstand der hermetischen Zelle für einen Bereich betrachteter Strahlströme experimentell optimiert wird.
  9. Verfahren nach einem der vorangehenden Ansprüche, wobei der Radioisotopvorläufer ein Vorläufer von 11C, 13N, 15O oder 18F ist.
  10. Anlage zur Umsetzung des Verfahrens nach einem der vorangehenden Ansprüche, die umfasst:
    ein Ziel mit einer hermetischen Zelle, die imstande ist, ein Vorläuferfluidvolumen zu enthalten, wobei die hermetische Zelle garantiert ist, um einem nominalen Druck (Pmax) zu widerstehen,
    einen Teilchenbeschleuniger, der imstande ist, einen Strahl beschleunigter Teilchen eines gegebenen Stroms (I) zu produzieren und auf das Ziel zu richten,
    ein Überwachungssystem des internen Drucks in der hermetischen Zelle,
    dadurch gekennzeichnet, dass sie eine Überwachungsvorrichtung umfasst, die programmiert ist, um den Teilchenstrahl zu unterbrechen, wenn der interne Druck (P) in der hermetischen Zelle ein erstes, in Abhängigkeit von verschiedenen Parametern, die einen Einfluss auf die Entwicklung des internen Drucks in der hermetischen Zelle bei der Bestrahlung haben, bestimmtes erstes Toleranzintervall verlässt.
  11. Installation nach Anspruch 10, wobei die Überwachungsvorrichtung programmiert ist, um einen Alarm auszulösen, wenn sich der interne Druck in der hermetischen Zelle außerhalb eines zweiten Intervalls befindet, das im ersten Toleranzintervall inbegriffen ist.
  12. Installation nach Anspruch 10 oder 11, wobei die Überwachungsvorrichtung programmiert ist, um die Stärke des Strahlstroms zu reduzieren, wenn der interne Druck (P) in der hermetischen Zelle einen oberen internen Druckgrenzwert, der in dem zweiten Intervall inbegriffen ist, überschreitet.
  13. Installation nach einem der Ansprüche 10 bis 12, wobei die Überwachungsvorrichtung mit einer Kurve P = f(I) programmiert ist, die den internen Druck (P) der hermetischen Zelle für verschiedene Strahlströme (I) bereitstellt, und zwar für ein gegebenes Radioisotop-Vorläuferfluidvolumen und eine gegebene Kühlleistung des Ziels, wobei die Kurve P = f(I) von der Überwachungsvorrichtung verwendet wird, um das erste Toleranzintervall in Abhängigkeit vom Strahlstrom (I) zu bestimmen.
EP11184551.7A 2011-10-10 2011-10-10 Verfahren und Anlage für die Herstellung eines Radioisotops Active EP2581914B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11184551.7A EP2581914B1 (de) 2011-10-10 2011-10-10 Verfahren und Anlage für die Herstellung eines Radioisotops
CA2851126A CA2851126C (fr) 2011-10-10 2012-10-10 Procede et installation pour la production d'un radioisotope
JP2014535039A JP6301254B2 (ja) 2011-10-10 2012-10-10 放射性同位体を生成するための方法及び装置
CN201280058343.2A CN104011803A (zh) 2011-10-10 2012-10-10 制备放射性同位素的方法和设备
US14/350,524 US9941027B2 (en) 2011-10-10 2012-10-10 Process and installation for producing radioisotopes
PCT/EP2012/070013 WO2013064342A1 (fr) 2011-10-10 2012-10-10 Procédé et installation pour la production d'un radioisotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11184551.7A EP2581914B1 (de) 2011-10-10 2011-10-10 Verfahren und Anlage für die Herstellung eines Radioisotops

Publications (2)

Publication Number Publication Date
EP2581914A1 EP2581914A1 (de) 2013-04-17
EP2581914B1 true EP2581914B1 (de) 2014-12-31

Family

ID=47178581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11184551.7A Active EP2581914B1 (de) 2011-10-10 2011-10-10 Verfahren und Anlage für die Herstellung eines Radioisotops

Country Status (6)

Country Link
US (1) US9941027B2 (de)
EP (1) EP2581914B1 (de)
JP (1) JP6301254B2 (de)
CN (1) CN104011803A (de)
CA (1) CA2851126C (de)
WO (1) WO2013064342A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820403B2 (en) * 2015-01-29 2020-10-27 Framatome Gmbh Irradiation target for radioisotope production, method for preparing and use of the irradiation target
NL2016110A (en) * 2015-03-03 2016-09-30 Asml Netherlands Bv Radioisotope Production.
CN106948810B (zh) * 2017-04-10 2020-05-05 河南省科学院同位素研究所有限责任公司 一种疏水性液态放射性示踪剂的制备方法
WO2019088113A1 (ja) * 2017-10-31 2019-05-09 国立研究開発法人量子科学技術研究開発機構 放射性同位体の製造方法、放射性同位体製造装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055463A (en) * 1975-08-18 1977-10-25 Combustion Engineering, Inc. Automatic motion inhibit system for a nuclear power generating system
US4179100A (en) * 1977-08-01 1979-12-18 University Of Pittsburgh Radiography apparatus
JPS60104300A (ja) * 1983-11-11 1985-06-08 株式会社日本製鋼所 医療用放射性同位元素製造装置の運転システム
DE19500395A1 (de) * 1995-01-09 1996-07-18 Siemens Ag Verfahren und Vorrichtung zum Betrieb eines Reaktors im instabilen Zustand
JP3333465B2 (ja) * 1999-03-05 2002-10-15 住友重機械工業株式会社 放射性物質の製造方法及び装置
EP1216715A1 (de) * 2000-12-22 2002-06-26 Ion Beam Applications S.A. Synthetisierungsvorrichtung von Radiopharmaca
US6567492B2 (en) * 2001-06-11 2003-05-20 Eastern Isotopes, Inc. Process and apparatus for production of F-18 fluoride
EP1412951A2 (de) * 2001-06-13 2004-04-28 The Uni. Of Alberta, the Uni. of British Columbia, Carleton Uni., Simon Fraser Uni., the Uni. of Victoria, d.b.a. TRIUMF Apparat und prozedur zur erzeugung von 18f-fluoriden durch ionenstrahlen
JP2003098295A (ja) * 2002-06-24 2003-04-03 Sumitomo Heavy Ind Ltd 放射性物質の製造装置及び放射性物質の製造方法
EP1429345A1 (de) * 2002-12-10 2004-06-16 Ion Beam Applications S.A. Radioisotopen Herstellungsverfahren und -vorrichtung
ATE468589T1 (de) * 2004-09-28 2010-06-15 Soreq Nuclear Res Ct Israel At Verfahren und system zur herstellung von radioisotopen
US20070040115A1 (en) * 2005-08-05 2007-02-22 Publicover Julia G Method for calibrating particle beam energy
WO2008070693A1 (en) * 2006-12-06 2008-06-12 Hammersmith Imanet Limited Non-aqueous extraction of [18f] fluoride from cyclotron targets
CN101681689B (zh) * 2007-06-08 2012-07-04 住友重机械工业株式会社 放射性同位素制造装置及放射性同位素的制造方法
JP5179142B2 (ja) 2007-10-24 2013-04-10 行政院原子能委員会核能研究所 ターゲット物質コンベヤシステム
EP2146555A1 (de) * 2008-07-18 2010-01-20 Ion Beam Applications S.A. Zielgerät zur Herstellung von Radioisotopen

Also Published As

Publication number Publication date
CA2851126C (fr) 2019-07-09
JP2014529089A (ja) 2014-10-30
JP6301254B2 (ja) 2018-03-28
WO2013064342A1 (fr) 2013-05-10
US9941027B2 (en) 2018-04-10
CA2851126A1 (fr) 2013-05-10
US20140376677A1 (en) 2014-12-25
EP2581914A1 (de) 2013-04-17
CN104011803A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2581914B1 (de) Verfahren und Anlage für die Herstellung eines Radioisotops
EP1674812B1 (de) Vorrichtung und Verfahren zur Steuerung des Entwässerungvorgangs während einer Gefriertrocknungsbehandlung.
EP2179236B1 (de) Verfahren zur behandlung eines transportträgers für die atmosphärische lagerung und beförderung von halbleitersubstraten
TW201430219A (zh) 用於排空腔室的真空泵系統及用於控制真空泵系統的方法
EP0654635A1 (de) Wiederaufladbarer Dampferzeuger
US9986647B2 (en) Apparatus for manufacturing electronic devices
EP2636041B1 (de) Verfahren zum füllen von wasser in einen primärkühlkreislauf eines kernreaktors
EP3234949B1 (de) Verfahren zur verwaltung einer unterbrechung eines druckwasserkernreaktors
FR3061549A1 (fr) Detecteur de rayonnement electromagnetique et notamment de rayonnement infrarouge et procede pour sa realisation
FR2871925A1 (fr) Technique de rechargement en oxygene 180[02] dans la production de fluor 18f[f2]
CA2997996C (fr) Dispositif de conversion d'un liquide en vapeur
WO2019053386A1 (fr) Refroidissement de secours de presse isostatique a chaud
FR3041545B1 (fr) Dispositif de conversion d'un liquide en vapeur et procede de regulation d'une puissance de chauffage associe
FR2936374A1 (fr) Dispositif laser de forte energie a milieu a gain a gradient de dopage
EP2682695B1 (de) Vorrichtung und Verfahren zur Extrusion eines Festkörpers
Kasahara et al. Progress of high-performance steady-state plasma and critical PWI issue in the LHD
FR2753346A1 (fr) Procede et installation de cuisson d'aliments sous vide pour cuisine centrale et industrie agro-alimentaire
FR3002295A1 (fr) Pompe comprenant un ecran de protection de la roue de pompe contre un ecoulement d'un fluide de refroidissement le long du moyeu de la roue
WO2016038176A1 (fr) Dispositif de régulation de la température d'un module de pilotage d'un composant électronique
CN104427828B (zh) 致冷片的控制方法及其适用的散热模块
Przedmojski et al. X-ray diffraction investigation of oleic acid under high pressure
EP3381077A1 (de) Brennstoffzelle mit heizplatten und anlage mit solch einer zelle
KR0133792Y1 (ko) 진공판 배기장치
EP4019745A1 (de) Verfahren zum speichern von energie in einem dampfakkumulator
WO2017089679A1 (fr) Systeme de generation d'energie destine a etre monte dans un aeronef.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140127

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140327

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140722

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 704816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011012651

Country of ref document: DE

Effective date: 20150219

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150331

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141231

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 704816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011012651

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231027

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231027

Year of fee payment: 13

Ref country code: FR

Payment date: 20231025

Year of fee payment: 13

Ref country code: DE

Payment date: 20231027

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231027

Year of fee payment: 13