EP2580808A1 - Aktive täuschkörper gegen radarquellen sowie verfahren zum schutz von objekten mit hilfe derartiger täuschkörper - Google Patents

Aktive täuschkörper gegen radarquellen sowie verfahren zum schutz von objekten mit hilfe derartiger täuschkörper

Info

Publication number
EP2580808A1
EP2580808A1 EP11721722.4A EP11721722A EP2580808A1 EP 2580808 A1 EP2580808 A1 EP 2580808A1 EP 11721722 A EP11721722 A EP 11721722A EP 2580808 A1 EP2580808 A1 EP 2580808A1
Authority
EP
European Patent Office
Prior art keywords
decoys
radar
signal
antenna
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP11721722.4A
Other languages
English (en)
French (fr)
Inventor
Jürgen Schmitz
Michael Camp
Markus Jung
Alexander Graf
Ellen Dudek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Waffe Munition GmbH
Original Assignee
Rheinmetall Waffe Munition GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Waffe Munition GmbH filed Critical Rheinmetall Waffe Munition GmbH
Publication of EP2580808A1 publication Critical patent/EP2580808A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J2/00Reflecting targets, e.g. radar-reflector targets; Active targets transmitting electromagnetic or acoustic waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J2/00Reflecting targets, e.g. radar-reflector targets; Active targets transmitting electromagnetic or acoustic waves
    • F41J2/02Active targets transmitting infrared radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/56Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies
    • F42B12/70Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies for dispensing radar chaff or infrared material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/767Responders; Transponders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/38Jamming means, e.g. producing false echoes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/281Nose antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the invention is concerned with active decoys (chaff etc.), in particular miniaturized, which deflect an approaching radar-based system, projectile, such as rockets, etc., and other search missiles from an object to be protected and deceive it.
  • active decoys chloraff etc.
  • Such decoys can preferably be carried out without ammunition and therefore also be used in the civil sector.
  • a first countermeasure is, for example, the ejection of so-called chaffs made of metallic fibers, such as Staniol, and the formation of a cloud, which have a larger radar cross section than the original target (US Pat. No. 6,876,320 A, US2008 / 0198060 A, US 2009/02511353 A).
  • Another variant is the launching of missiles that record the incoming radar signal, analyze and send a deception signal (US 5,388,783 A, US 6,628,239 A, US 2009/0189799 A).
  • missiles are deployed which radiate an incoming signal retrodirectively, for example as Radarcorner or Van Atta array (US Pat. No. 3,496,570 A, US Pat. Nos. 3,731,313 A, 3,938,151 A).
  • Direct measures are also known, such as the firing of such search missiles by means of weapon systems, such as machine guns, and the emission of missiles - Skyshield - against such threats.
  • weapon systems such as machine guns
  • the incoming radar signal is recorded and analyzed. Thereafter, a deceptive signal is transmitted (US 3,258,771 A; US 3,896,438 A; US 3,958,241 A; US 4,126,862 A; US 4,646,098 A).
  • absorbent materials are applied to the surfaces, in particular of the mobile objects, in thick-film or composite technology.
  • Isotropic media and dielectrics of extruded / foamed plastics, graphites, etc. US Pat. No. 4,606,848 A
  • magnetic absorbers and anisotropic media ferrites
  • bianisotropic, chiral absorbers US Pat. No. 4,606,848, etc.
  • the invention has as its object to show an active decoy, which is effected in a simple form an efficient effect with respect to the flying object.
  • the invention is based on the idea to form a corresponding cloud with active decoys, each of which has an antenna and a so-called system on chip (SoC), system in package (SiP) or application specific integrated circuit (ASIC) with integrated transmitter - / Receiving unit preferably imprint.
  • SoC system on chip
  • SiP system in package
  • ASIC application specific integrated circuit
  • the structure is comparable to an RFID (Radio Frequency Identification) with dimensions of about one chip card.
  • a suitable power supply based on foils or similar. integrated become.
  • the antenna itself should preferably be an ultra wideband antenna.
  • Such a miniaturized structure allows hundreds of these active decoys to be ejected or used as a payload of a carrier.
  • decoys with different radar cross sections can be embedded in a cloud, so that a more variable and larger spectrum can be taken and achieved as a protective measure. Due to the small-sized nature and the associated amount of individual decoy, even a corresponding silhouette of the object to be protected can be generated. In addition, a flat application in front of the object to be protected is possible.
  • the incoming missile now sends a radar signal to navigate and control its trajectory.
  • Each of the decoys in the cloud discharged in this context receives this signal, evaluates it in the SoC, SiP or ASIC and sends a corresponding, possibly modified, partially amplified, deceptive signal (back).
  • a generation of Doppler frequencies in fast relative movements or other modulated signal forms are feasible by the SoC, SiP or ASIC. By modification, for example, a speed can be simulated.
  • the transmitted signals are received by the radar of the missile and considered to be an attractive signal (larger radar cross-section due to the appearance of the cloud).
  • the impulsive ejection and the accelerations of the active decoys can take place, among other things, through the firing of shells, ammunition, missiles or active bodies, which eject the active decoys in a defined manner.
  • the ejection of the decoys can also be realized with the help of cached compressed gas or by permanent ejection with blowers, pumps, compressors, etc.
  • Spring forces - catapults, bows etc. - or railguns can also be used to distribute the decoys. Combinations of the aforementioned variants are possible.
  • FIG. 4a-c representations of the cloud in its application for the protection of various objects.
  • FIG. 2 shows a receiver, 3 a signal processing (amplifier -V), 4 a transmitter and 5 a diplexer.
  • An input signal R of a radar source - here radar seeker 10 (FIG. 4) - is received by the receiver 2 via an antenna 6 and given to the signal processor 3.
  • the signal processing 3 analyzes this signal and, depending on the type of deception, sends a specific signal R 'to the transmitter 4. This is then sent back to the radar source 10 via the antenna 7. Preference is given to a common antenna 7, which is switched by a diplexer 8 of the respective unit 2, 4. A structure with two or more separate antennas is also conceivable.
  • a first possibility is the enlargement of the radar cross section with CW and impulse radar.
  • the input signal R is amplified linearly and without distortion.
  • the second possibility is the delay of the radar signal, wherein the input signal R is sent back delayed to the source 10, so that the reflex arrives later at this radar source 10. The destination seems far away.
  • the third possibility is the generation of a Doppler frequency in Doppler radar. Due to the input signal and the speeds of the radar transmitter 10 and a Target 11, the Doppler frequency is detected in the signal processing 3 and sent. (This method requires conditioning the deception system (not shown) with the required data.)
  • Fig. 2 shows schematically the preferred integration of the Radarspoofers 1 on a support substrate 1 ', such as paper / plastic film.
  • the antenna 7 is applied in the form of a dipole on the substrate (s) 1 '.
  • All electronic assemblies of the decoy 1 are powered by a power source 8.
  • the power source 8 may be a battery, chemical, solar technology or the like.
  • FIG. 3 illustrates a forming cloud 12 that is being built up by the decoys / radar spoons 1.
  • FIGS. 4 a - c some protection variants are shown symbolically.
  • a deception signal R ' is created by creating a cloud 12 behind a ship 11.1.
  • a vehicle 11.2 and Fig. (C) an aircraft 11.3 is protected. Not shown in detail is the protection of a non-mobile object / building, but are included in the applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Vorgeschlagen wird, zur Ausbildung einer entsprechenden Wolke mit aktiven Täuschkörpern (1), jedem dieser eine Antenne (7) sowie ein so genanntes,System on Chip' (SoC) etc. mit integrierter Sende- /Empfangseinheit (2, 3) bevorzugt aufzudrucken. Der Aufbau ist vergleichbar mit einem RFID (radio frequenzy Identification) bei Abmessungen von etwa einer Chipkarte. Bei der Antenne (7) selbst sollte es sich bevorzugt um eine ultrabreitbandige Antenne handeln.

Description

BESCHREIBUNG
Aktive Täuschkörper gegen Radarquellen sowie Verfahren zum Schutz von Objekten mit Hilfe derartiger Täuschkörper
Die Erfindung beschäftigt sich mit aktiven Täuschkörpern (Düppel etc.), insbesondere miniaturisierte, die ein herannahendes Radar gestütztes System, Geschoss, wie Raketen etc. und andere Suchflugkörper von einem zu schützenden Objekt weglenken und dieses dazu täuschen sollen. Derartige Täuschkörper können bevorzugt munitionsfrei ausgeführt werden und daher auch im zivilen Bereich eingesetzt werden.
Zum Schutz von Objekten, wie Schiffen, Flugzeugen und Fahrzeugen sowie nicht mobilen Objekten sind verschiedene Gegenmaßnahmen bekannt.
Eine erste Gegenmaßnahme ist beispielswiese das Ausstoßen so genannter Düppel aus metallischen Fasern, wie Staniol, und Ausbildung einer Wolke, die einen größeren Radarquerschnitt haben, als das ursprüngliche Ziel (US 6,876,320 A; US 2008/0198060 A; US 2009/02511353 A).
Eine weitere Variante ist der Abschuss von Flugkörpern, die das ankommende Radarsignal aufnehmen, analysieren und ein Täuschsignal senden (US 5,388,783 A; US 6,628,239 A; US 2009/0189799 A).
Des Weiteren werden Flugkörper ausgebracht, die ein ankommendes Signal retrodirektiv abstrahlen, beispielsweise als Radarcorner oder Van-Atta-Array (US 3,496,570 A; US 3,731 ,313 A; US 3,938,151 A).
Auch direkte Maßnahmen sind bekannt, wie beispielsweise das Abschießen derartiger Suchflugkörper mittels Waffensystemen, wie Maschinenkanonen, und das Aussenden von Flugkörpern - Skyshield - gegen derartige Bedrohungen. Beim Einsatz eines Stand off Jammers wird das ankommende Radarsignal aufgenommen und analysiert. Danach wird ein Täuschsignal gesendet (US 3,258,771 A; US 3,896,438 A; US 3,958,241 A; US 4,126,862 A; US 4,646,098 A).
Eine weitere Möglichkeit besteht durch die Anwendung der Tarnkappentechnologie. Hierbei werden auf den Oberflächen insbesondere der mobilen Objekte absorbierende Materialien in Dickschicht -oder Komposittechnologie aufgebracht. Bekannt sind dabei isotrope Medien und Dielektrika aus extrudierten / geschäumten Kunststoffen, Graphiten etc. (US 4,606,848 A), magnetischen Absorbern und anisotropen Medien (Ferrite) (US 3,662,387 A) oder bianisotrope, chirale Absorber (US 4,606,848), etc.
Nachteilig ist, dass bekannte aktive Täuschkörper in der Regel aus einer einzelnen Empfangs- und Sendeeinheit als Payload bestehen und eine Energieversorgung benötigen.
Aus der DE 103 46 001 B4 ist ein Schiffsschutzsystem bekannt, das für das Ausbringen derartiger Wirkkörper oder Düppel verantwortlich zeigt.
Aus der DE 10 2006 017 107 A ist eine Variante bekannt, bei der derartige Wirkkörper über ein Objekt ausgestoßen und vom Objekt eigenen oder einem weiteren Radar angestrahlt werden. Dadurch wird eine für den Suchkopf höhere Rückstrahlfrequenz bildende Wolke erzeugt, sodass sich dieser auf diese Wolke aufschaltet. Derartige Düppel werden als aktive Täuschkörper bezeichnet.
Die Erfindung stellt sich die Aufgabe, einen aktiven Täuschkörper aufzuzeigen, mit dem in einfacher Form eine effiziente Wirkung in Bezug auf das Flugobjekt bewirkt wird.
Gelöst wird die Aufgabe durch die Merkmale des Patentanspruchs 1 sowie des Patentanspruchs 6. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen aufgezeigt.
Der Erfindung liegt die Idee zugrunde, zur Ausbildung einer entsprechenden Wolke mit aktiven Täuschkörpern, jedem dieser eine Antenne sowie ein so genanntes .System on Chip' (SoC), System in Package (SiP) oder Application Specific Integrated Circuit (ASIC) mit integrierter Sende- /Empfangseinheit bevorzugt aufzudrucken. Der Aufbau ist vergleichbar mit einem RFID (radio frequency Identification) bei Abmessungen von etwa einer Chipkarte. Gegebenenfalls kann eine passende Energieversorgung auf Basis von Folien o.ä. integriert werden. Bei der Antenne selbst sollte es sich bevorzugt um eine ultrabreitbandige Antenne handeln.
Ein derartiger miniaturisierter Aufbau erlaubt es, hunderte dieser aktiven Täuschkörper auszustoßen oder als Payload eines Trägers zu verwenden.
Ein weiterer Vorteil ist, dass Täuschkörper mit unterschiedlichen Radarquerschnitten in eine Wolke eingebettet werden können, sodass ein variableres und größeres Spektrum als Schutzmaßnahme ergriffen und erzielt werden kann. Durch die kleinbauende Art und damit verbunden der vorliegenden Menge der Einzeltäuschkörper kann sogar eine entsprechende Silhouette des zu schützenden Objekts erzeugt werden. Zudem ist eine flache Ausbringung vor dem zu schützenden Objekt möglich.
Der ankommende Flugkörper sendet nun ein Radarsignal zur Navigation und Steuerung seiner Flugbahn. Jeder der in diesem Zusammenhang ausgebrachten Täuschkörper in der Wolke empfängt dieses Signal, wertet dieses im SoC, SiP oder ASIC aus und sendet ein entsprechendes, ggf. modifiziertes zum Teil verstärktes, Täuschsignal (zurück). Auch eine Erzeugung von Dopplerfrequenzen bei schnellen Relativbewegungen oder auch andere modulierte Signalformen sind durch das SoC, SiP bzw. ASIC machbar. Durch Modifikation kann beispielsweise eine Geschwindigkeit vorgetäuscht werden. Die gesendeten Signale werden vom Radar des Flugkörpers empfangen und als ein attraktives Signal eingeschätzt (größerer Radarquerschnitt durch das Auftreten der Wolke).
Der impulsartige Ausstoß und die Beschleunigungen der aktiven Täuschkörper können unter anderem durch den Abschuss von Granaten, Munition, Flugkörpern bzw. Wirkkörpern erfolgen, die die aktiven Täuschkörper definiert ausstoßen. Das Ausstoßen der Täuschkörper kann aber auch mit Hilfe von zwischengespeichertem komprimiertem Gas oder durch dauerhaftes Ausstoßen mit Gebläsen, Pumpen, Kompressoren etc. realisiert werden. Auch Federkräfte - Katapulte, Bogen etc. -oder Railguns (schlagartige elektromagnetische Umformung gespeicherter elektrischer Energie), können genutzt werden, um die Täuschkörper zu verteilen. Kombinationen der vorgenannten Varianten sind möglich.
Der Vorteil liegt somit darin, dass diese Täuschkörper einen flexibleren Einsatz gegenüber Radarerkennung aufweisen, die Möglichkeit besteht, die zu schützenden Objekte in einfacher Art und Weise nachrüsten zu können bzw. die vorhandenen Ausstoßmechanismen ohne wesentliche und kostenintensive Um- /Einbauten zu nutzen. „
- 4 -
Anhand eines Ausführungsbeispiels mit Zeichnung soll die Erfindung näher erläutert werden. Es zeigt:
Fig. 1 das Prinzip eines aktiven Täuschkörpers (Radarspoofers),
Fig. 2 eine schematische Darstellung eines aktiven Täuschkörpers,
Fig. 3 eine Darstellung einer Wolke aus mehreren aktiven Täuschkörpern,
Fig. 4a-c Darstellungen der Wolke in ihrer Anwendung zum Schutz verschiedener Objekte.
Fig. 1 zeigt den Prinzipschaltkreis eines so genannten Radarspoofers 1. Mit 2 ist ein Empfänger, mit 3 eine Signalverarbeitung (Verstärker -V), mit 4 ein Sender und mit 5 ein Diplexer gekennzeichnet.
Ein Eingangssignal R einer Radarquelle - hier Radarsuchkopf 10 (Fig. 4) - wird über eine Antenne 6 vom Empfänger 2 empfangen und an die Signalverarbeitung 3 gegeben. Die Signalverarbeitung 3 analysiert dieses Signal und liefert je nach Art der Täuschung ein spezifisches Signal R' an den Sender 4. Dieses wird dann über die Antenne 7 wieder zur Radarquelle 10 zurück gesendet. Bevorzugt wird eine gemeinsame Antenne 7, die durch einen Diplexer 8 der jeweiligen Einheit 2, 4 zugeschaltet wird. Ein Aufbau mit zwei oder mehreren getrennten Antennen ist ebenfalls denkbar.
Es bestehen dabei mehrere Möglichkeiten der Signalbe- bzw. -Verarbeitung. Exemplarisch seien hier vier genannt.
Eine erste Möglichkeit ist die Vergrößerung des Radarquerschnitts bei CW- und Impuls- Radar. Hierbei wird das Eingangssignal R linear und verzerrungsfrei verstärkt.
Die zweite Möglichkeit ist die Verzögerung des Radarsignals, wobei das Eingangssignal R verzögert wieder an die Quelle 10 zurück gesendet wird, sodass der Reflex später bei dieser Radarquelle 10 eintrifft. Das Ziel erscheint somit weit entfernt.
Als dritte Möglichkeit stellt sich die Erzeugung einer Dopplerfrequenz bei Doppler- Radar. Aufgrund des Eingangssignals und der Geschwindigkeiten des Radarsenders 10 und eines Ziels 11 wird die Dopplerfrequenz in der Signalverarbeitung 3 ermittelt und gesendet. (Dieses Verfahren setzt ein Konditionieren des Täuschsystems (nicht näher dargestellt) mit den erforderlichen Daten voraus.)
Eine alternative vierte Möglichkeit sind Kombinationen der vorgenannten Möglichkeiten.
Fig. 2 zeigt schematisch die bevorzugte Einbindung der Radarspoofers 1 auf einem Trägersubstrat 1', wie Papier-/ Kunststofffolie. Die Antenne 7 ist in Form eines Dipols auf dem(n) Substrat (s) 1 ' aufgebracht. Alle elektronischen Baugruppen des Täuschkörpers 1 werden durch eine Energiequelle 8 versorgt. Die Energiequelle 8 kann eine Batterie, chemisch, solartechnisch oder dergleichen sein.
Die Fig. 3 stellt eine sich bildende Wolke 12 dar, die durch die Täuschkörper / Radarspoofer 1 aufgebaut wird.
In den Fig. 4 a - c sind symbolhaft einige Schutzvarianten aufgezeigt. In Fig. (a) wird ein Täuschsignal R' durch Erzeugen einer Wolke 12 hinter einem Schiff 11.1 geschaffen. In Fig. (b) wird ein Fahrzeug 11.2 und Fig. (c) wird ein Flugzeug 11.3 geschützt. Nicht näher dargestellt ist der Schutz eines nicht mobilen Objektes / Gebäudes, der aber von den Anwendungen mit umfasst sind.

Claims

PATENTANSPRÜCHE
1. Aktive Täuschkörper (1) gegen Radarquellen (10), dadurch gekennzeichnet, dass wenigstens eine Antenne (6, 7), ein Empfänger (2), eine Signalverarbeitung (3) und ein Sender (4) sowie eine Energieversorgung (8) eingebunden sind.
2. Täuschkörper nach Anspruch 1 , dadurch gekennzeichnet, dass der Empfänger (2) sowie der Sender (4) in ein System on Chip, System in Package oder Application Specific Integrated Circuit etc. integriert sind, das aufgedruckt werden kann.
3. Täuschkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Antenne (7) als Dipol ausgebildet ist, der als Empfängerantenne oder Sendeantenne geschaltet werden kann.
4. Täuschkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dieser wenigstens einen, bevorzugt mehreren Einzel- oder Trägersubstrate (1 ) aus beispielsweise Papier-/Kunststofffolie umfasst.
5. Täuschkörper nach einem der Ansprüche I bis 4, dadurch gekennzeichnet, dass Täuschkörper (1) mit unterschiedlichen Radarquerschnitten in die Wolke (9) eingebettet sind.
6. Verfahren zum Täuschen einer Radarquelle (10) zum Schutz eines Objektes (11) mit den Täuschkörpern (1) nach einem der Ansprüche 1 bis 5, gekennzeichnet durch folgende Schritte:
• Ausstoßen der Täuschkörper (1),
• Aufbauen einer Wolke (12),
• Auftreffen eines Eingangssignals (R), gesendet von der Radarquelle (10) auf die Täuschkörper (1),
• Verarbeiten des Signals (R) in der Signalverarbeitung (3),
• Senden eines entsprechenden Signals (R1) zur Radarquelle (10) zurück.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Eingangssignal (R) linear und verzerrungsfrei verstärkt als Signal (R') zurück gesendet wird, wodurch eine Vergrößerung des Radarquerschnitts bei CW- und Impuls- Radar (10) erfolgt.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass das Eingangssignal (R) verzögert wieder an die Quelle (10) zurück gesendet wird, sodass der Reflex später bei dieser Radarquelle (10) eintrifft und das Ziel (11) somit weit entfernt scheint.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass eine Dopplerfrequenz in der Signalverarbeitung (3) ermittelt und gesendet wird.
10. Verfahren nach einem der Ansprüche 6 bis 8, gekennzeichnet durch die Nutzung weiterer Modulationsformen wie FM, PM, AM etc., die ermittel und gesendet werden.
EP11721722.4A 2010-06-11 2011-05-26 Aktive täuschkörper gegen radarquellen sowie verfahren zum schutz von objekten mit hilfe derartiger täuschkörper Ceased EP2580808A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010023426 2010-06-11
DE102010032458A DE102010032458A1 (de) 2010-06-11 2010-07-28 Aktive Täuschkörper gegen Radarquellen sowie Verfahren zum Schutz von Objekten mit Hilfe derartiger Täuschkörper
PCT/EP2011/002601 WO2011154099A1 (de) 2010-06-11 2011-05-26 Aktive täuschkörper gegen radarquellen sowie verfahren zum schutz von objekten mit hilfe derartiger täuschkörper

Publications (1)

Publication Number Publication Date
EP2580808A1 true EP2580808A1 (de) 2013-04-17

Family

ID=45020120

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11721722.4A Ceased EP2580808A1 (de) 2010-06-11 2011-05-26 Aktive täuschkörper gegen radarquellen sowie verfahren zum schutz von objekten mit hilfe derartiger täuschkörper

Country Status (4)

Country Link
EP (1) EP2580808A1 (de)
DE (1) DE102010032458A1 (de)
RU (1) RU2579994C2 (de)
WO (1) WO2011154099A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3721255A2 (de) * 2017-12-05 2020-10-14 FCS Flight Calibration Services GmbH Verfahren zur passiven vermessung von elektromagnetischen reflexionseigenschaften von streukörpern und verfahren zur erzeugung mindestens eines künstlichen zieles für ein monostatisches, drehendes radar durch eine schwebende plattform
DE102018131524A1 (de) 2018-12-10 2020-06-10 Rheinmetall Waffe Munition Gmbh Verfahren zum Schutz von beweglichen oder unbeweglichen Objekten vor sich nähernden lasergelenkten Bedrohungen
CN112418275B (zh) * 2020-11-03 2022-09-20 南京理工大学 基于距离像特征提取的毫米波引信箔条干扰识别方法
US11987355B2 (en) 2021-06-09 2024-05-21 Raytheon Company Method and flexible apparatus permitting advanced radar signal processing, tracking, and classification/identification design and evaluation using single unmanned air surveillance (UAS) device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357395A1 (de) * 2002-04-26 2003-10-29 Hitachi, Ltd. Miniaturisierter und hermetisch versiegelter Millimeterwellenradarsensor

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2511353A (en) 1944-12-26 1950-06-13 Otto W Leaf Heated minnow bucket
US3958241A (en) 1959-03-06 1976-05-18 The United States Of America As Represented By The Secretary Of The Navy Chaff discrimination system
US3896438A (en) 1959-06-02 1975-07-22 Us Navy Tracking radar countermeasure
US3258771A (en) 1964-12-30 1966-06-28 Warren T Harpster Radar deception jammer
US3662387A (en) 1966-10-29 1972-05-09 Us Air Force Ferrite radar absorbing material
US3496570A (en) 1967-03-28 1970-02-17 Radiation Inc Van atta array
US4126862A (en) 1968-04-23 1978-11-21 The United States Of America As Represented By The Secretary Of The Air Force Countermeasure for LORO radar
US3938151A (en) 1970-08-14 1976-02-10 The United States Of America As Represented By The Secretary Of The Navy Passive radar decoy having a large cross section
US3731313A (en) 1971-09-09 1973-05-01 Tokyo Shibaura Electric Co Van-atta array antenna device
US4646098A (en) 1978-08-11 1987-02-24 Westinghouse Electric Corp. Phase coherent decoy radar transmitter
US5388783A (en) 1979-08-10 1995-02-14 Raytheon Company Echo exhancing decoy
US4606848A (en) 1984-08-14 1986-08-19 The United States Of America As Represented By The Secretary Of The Army Radar attenuating paint
RU2054807C1 (ru) * 1994-03-04 1996-02-20 Сергей Васильевич Ягольников Устройство для создания помех радиолокационным станциям
RU2093965C1 (ru) * 1994-06-29 1997-10-20 Государственный центральный научно-исследовательский радиотехнический институт Способ создания помех радиолокационным станциям (варианты)
GB9808762D0 (en) * 1998-04-25 1998-06-24 Marconi Gec Ltd Modulated reflector circuit
US6377967B1 (en) * 1998-08-12 2002-04-23 Northrop Grumman Corporation Efficient digital integration technique filter
US6721358B1 (en) * 1999-09-01 2004-04-13 The United States Of America As Represented By The Secretary Of The Navy Signal synthesizer and method therefor
KR100815411B1 (ko) * 2000-04-06 2008-03-20 코닌클리케 필립스 일렉트로닉스 엔.브이. 객체-조건부 액세스 시스템
RU2177160C1 (ru) * 2001-01-09 2001-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт "Градиент" Станция ретрансляционного типа однократных имитирующих помех доплеровским радиолокационным станциям
ES2190749B1 (es) 2001-11-30 2004-06-16 Fractus, S.A Dispersores "chaff" multinivel y/o "space-filling", contra radar.
US6628239B1 (en) 2002-05-10 2003-09-30 The United States Of America As Represented By The Secretary Of The Navy Variable scattering device
DE10346001B4 (de) 2003-10-02 2006-01-26 Buck Neue Technologien Gmbh Vorrichtung zum Schützen von Schiffen vor endphasengelenkten Flugkörpern
US7369081B1 (en) 2005-02-25 2008-05-06 Hrl Laboratories, Llc Smart chaff
DE102005035251A1 (de) 2005-07-25 2007-02-01 Rheinmetall Waffe Munition Gmbh Verfahren und Vorrichtung zur Täuschung infrarot-, radar- als auch Dual Mode- gelenkter Flugkörper
DE102006017107A1 (de) 2006-04-10 2007-10-11 Oerlikon Contraves Ag Schutzeinrichtung und Schutzmaßnahme für eine Radaranlage
IL178910A (en) 2006-10-26 2008-04-13 Rst Reut Systems & Advanced Te Airborne bait that transmits radio frequencies (RF) and a method of deceiving radar-guided missiles by exploiting it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357395A1 (de) * 2002-04-26 2003-10-29 Hitachi, Ltd. Miniaturisierter und hermetisch versiegelter Millimeterwellenradarsensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011154099A1 *

Also Published As

Publication number Publication date
RU2579994C2 (ru) 2016-04-10
DE102010032458A1 (de) 2011-12-15
WO2011154099A1 (de) 2011-12-15
RU2013100986A (ru) 2014-07-20

Similar Documents

Publication Publication Date Title
Biddle et al. Future warfare in the Western Pacific: Chinese antiaccess/area denial, US airsea battle, and command of the commons in East Asia
EP2089735B1 (de) Hf-täuschziel und verfahren zum täuschen von auf radar basierenden flugkörpern
CN106646398B (zh) 基于多相位分段调制雷达干扰的有源伪装防护方法与装置
Schroer Electronic warfare.[A century of powered flight: 1903-2003]
EP2580808A1 (de) Aktive täuschkörper gegen radarquellen sowie verfahren zum schutz von objekten mit hilfe derartiger täuschkörper
DK3019819T3 (en) decoy
EP1845332B1 (de) Schutzeinrichtung und Schutzmassnahme für eine Radaranlage
van Bezouwen et al. Status and trends in AESA-based radar
US10731959B1 (en) Deployable active radar countermeasures
EP1816430B1 (de) Verfahren und System zur Abwehr von Flugkörpern
RU2007117076A (ru) Способ повышения живучести беспилотных летательных аппаратов, преодолевающих зоны радиотехнического противодействия и активного поражения и устройство для его осуществления (варианты)
EP2761245B1 (de) Aktives schutzsystem
Žák et al. Advanced Chaff usage in modern EW
EP2439813B1 (de) Täuschkörper zum Schutz von Objekten
Popescu The existing technologies on anti-drone systems
CN103090745A (zh) 一种带中段变速的导弹及防拦截方法
RU2349511C1 (ru) Способ предотвращения террористического акта с использованием самолета и система предотвращения террористического акта с использованием самолета
DE102011120929A1 (de) Schutzsystem, insbesondere für Schiffe, gegen radargelenkte Bedrohungen
Bronk The RAF’s Force Structure Plan and Future Threat Scenarios
DE102010056268A1 (de) Verfahren zum gleichzeitigen Betreiben eines Störsenders sowie eines elektronischen Aufklärungssystems
Zohuri et al. Radar-Absorbent Material and Radar Cross Section
DE102010018111B4 (de) Multilaterationsverfahren zur Lokalisierung von mit Transpondern ausgestatteten Luftfahrzeugen
Pillai et al. Waveform design optimization using bandwidth and energy considerations
Orlenko et al. Review of contemporary systems for aircraft self-protection using towed decoys
Yang Stealth combat aircraft and US warfare

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20201117