EP2577191B1 - Cryogenic cooling method and installaton using liquid co2 and employing tow exchangers in series - Google Patents

Cryogenic cooling method and installaton using liquid co2 and employing tow exchangers in series Download PDF

Info

Publication number
EP2577191B1
EP2577191B1 EP11723574.7A EP11723574A EP2577191B1 EP 2577191 B1 EP2577191 B1 EP 2577191B1 EP 11723574 A EP11723574 A EP 11723574A EP 2577191 B1 EP2577191 B1 EP 2577191B1
Authority
EP
European Patent Office
Prior art keywords
pressure
exchanger
liquid
regulator
triple point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11723574.7A
Other languages
German (de)
French (fr)
Other versions
EP2577191A1 (en
Inventor
Didier Pathier
Thierry Dubreuil
Mohammed Youbi-Idrissi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2577191A1 publication Critical patent/EP2577191A1/en
Application granted granted Critical
Publication of EP2577191B1 publication Critical patent/EP2577191B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Definitions

  • the present invention relates to the field of cooling processes using CO 2 .
  • the pressure in the tube In order for the heat exchange to be carried out while remaining in the liquid and gaseous phase (vaporization of the liquid CO 2 without taking the risk of forming solid CO 2 ), the pressure in the tube must be maintained at a value greater than the theoretical pressure of 5.18 bar corresponding to the pressure of the triple point of this fluid. In practice, the system is in some way clamped to a pressure of 6 to 7 bar thus providing a safety margin of 0.82 to 1.82 bar.
  • such applications for the use of CO 2 discharged at 6 bar can be found after passing through an exchanger in the refrigerated truck transport, but also in tunnels or freezing chambers; where a heat exchanger is supplied with liquid CO 2 which, by evaporating in this exchanger, extracts heat from the medium to be cooled and thus produces the desired cold; the transfer of the cold to the products passes by an exchange with the internal air of the tunnel, the room or the truck by the intervention of means of ventilation associated with each exchanger
  • This weir and the outlet of the first exchanger can be installed at the top in the overall installation, to avoid liquid outlets, but configurations where the two exchangers are on the same plane are perfectly conceivable.
  • the present invention thus relates to a process using liquid CO 2 as a cryogenic fluid for transferring frigories to products, a process of the so-called indirect injection type where the liquid CO 2 is sent to a heat exchanger system where it is used.
  • evaporates the transfer of cold products passing through an exchange between the atmosphere surrounding the products and the cold walls of the heat exchanger, the exchanger system consisting of two exchangers connected in series, the second heat exchanger is maintained at the atmospheric pressure or at a pressure between the triple point of the fluid and the atmospheric pressure, characterized in that the first exchanger is maintained at a pressure greater than the pressure of the triple point of CO 2 .
  • the installation therefore comprises, if necessary, means for maintaining in the second exchanger the atmospheric pressure or a pressure comprised between the triple point of the fluid and the atmospheric pressure.
  • thermodynamic properties of the fluid at different points of the figure 1 and unambiguously permits to demonstrate the advantages of the invention in terms of refrigerating efficiency.
  • Table illustrates in particular several temperature conditions at the exchanger outlets.
  • the expected temperature profile in the exchanger CO 2 side and coolant (air for example for a frozen food transport application) visualized in figure 3 shows that the present invention also has a positive impact on the temperature profile in the exchangers: the fact that the second exchanger stage is at atmospheric pressure makes it possible to benefit from a cryogenic effect as demonstrated by the curves of this figure 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention concerne le domaine des procédés de refroidissement mettant en oeuvre du CO2.The present invention relates to the field of cooling processes using CO 2 .

L'utilisation du CO2 dans de tels procédés de refroidissement est, on le sait, très avantageuse puisque ce fluide présente une phase solide à -80°C à la pression atmosphérique, ce qui permet de mettre en oeuvre pour certaines applications de la glace sèche, glace très efficace notamment pour apporter du froid de manière localisée sans aucune installation frigorifique. De nombreuses applications du CO2 solide existent comme par exemple les sacs de glace carbonique chargés dans les conteneurs de transport de produits alimentaires ou pharmaceutiques, ou encore les utilisations pour le maintien en froid des repas dans le domaine des transports aériens.The use of CO 2 in such cooling processes is, as is known, very advantageous since this fluid has a solid phase at -80 ° C. at atmospheric pressure, which makes it possible to use ice for certain applications. dryer, very effective ice especially to bring cold localized without any refrigeration facility. Many solid CO 2 applications exist such as dry ice bags loaded in containers for the transport of food or pharmaceutical products, as well as uses for keeping meals cold in the air transport sector.

Cependant, lorsque ce gaz est utilisé dans des échangeurs de chaleur (injection « indirecte »), typiquement à tubes ou à plaques, cet avantage se transforme en inconvénient car l'apparition intempestive de la forme solide du CO2 (neige carbonique) dans un échangeur entraine assez rapidement le bouchage de celui-ci. Le document D1 = EP-1 659 355 illustre l'état de la technique de telles mises en oeuvre selon le préambule de la revendication de procédé 1 et une installation selon le préambule de la revendication 6.However, when this gas is used in heat exchangers ("indirect" injection), typically tubes or plates, this advantage turns into a drawback because the inadvertent appearance of the solid form of CO 2 (dry ice) in a exchanger causes quite quickly clogging thereof. The document D1 = EP-1,659,355 illustrates the state of the art of such implementations according to the preamble of the process claim 1 and an installation according to the preamble of claim 6.

Pour éviter cet inconvénient de passage en phase solide, on cherche donc à éviter que la phase solide du CO2 n'apparaisse, et on favorise donc les conditions permettant que le CO2 reste sous forme liquide ou gazeuse dans l'ensemble de l'échangeur.To avoid this disadvantage of passage into the solid phase, it is therefore sought to prevent the solid phase of CO 2 from appearing, and so the conditions are allowed to allow the CO 2 remains in liquid or gaseous form in the whole of the exchanger.

Pour que l'échange thermique soit réalisé en restant en phase liquide et gazeuse (vaporisation du CO2 liquide sans prendre le risque de former du CO2 solide), la pression dans le tube doit être maintenue à une valeur supérieure à la pression théorique de 5,18 bar correspondant à la pression du point triple de ce fluide. Dans la pratique, on bride en quelque sorte le système à une pression de 6 à 7 bar en se ménageant ainsi une marge de sécurité de 0,82 à 1,82 bar.In order for the heat exchange to be carried out while remaining in the liquid and gaseous phase (vaporization of the liquid CO 2 without taking the risk of forming solid CO 2 ), the pressure in the tube must be maintained at a value greater than the theoretical pressure of 5.18 bar corresponding to the pressure of the triple point of this fluid. In practice, the system is in some way clamped to a pressure of 6 to 7 bar thus providing a safety margin of 0.82 to 1.82 bar.

Alors que la température de sublimation du CO2 solide à la pression atmosphérique est de -80°C, le fait de maintenir la pression dans l'échangeur à 6 bar relatifs augmente la température de vaporisation à environ -50°C.While the sublimation temperature of CO 2 solid at atmospheric pressure is -80 ° C, maintaining the pressure in the exchanger at 6 bar relative increases the vaporization temperature to about -50 ° C.

D'autre part, le fait de réaliser l'échange thermique à 6 bar et non à la pression atmosphérique diminue légèrement la capacité frigorifique du CO2. En effet, lorsqu'un kilogramme de CO2 soutiré d'un stockage, par exemple dans des conditions standard de type 20 bar absolus / -20°C, entre dans un échangeur, il y libère 277,97 kJ/kg s'il est rejeté à -50°C sous forme gazeuse à 6 bar relatifs, alors que pour la même quantité de CO2, il libère 292,6 kJ/kg lorsqu'il est rejeté à -50°C à la pression atmosphérique, soit un gain de 5%.On the other hand, the fact of carrying out the heat exchange at 6 bar and not at atmospheric pressure slightly decreases the cooling capacity of the CO 2 . Indeed, when a kilogram of CO 2 withdrawn from storage, for example under standard conditions of 20 bar absolute / -20 ° C, enters a heat exchanger, it releases 277.97 kJ / kg if is released at -50 ° C in gaseous form at 6 bar relative, while for the same amount of CO 2 , it releases 292.6 kJ / kg when it is released at -50 ° C at atmospheric pressure, ie 5% gain.

A titre d'exemple, on trouve de telles applications d'utilisation du CO2 rejeté à 6 bar après passage dans un échangeur dans le transport réfrigéré en camion mais également dans des tunnels ou chambre de surgélation; où un échangeur de chaleur est alimenté en CO2 liquide qui en s'évaporant dans cet échangeur, extrait la chaleur du milieu à refroidir et produit ainsi le froid désiré ; le transfert du froid aux produits passe par un échange avec l'air interne du tunnel, de la chambre ou du camion par l'intervention de moyens de ventilation associés à chaque échangeurBy way of example, such applications for the use of CO 2 discharged at 6 bar can be found after passing through an exchanger in the refrigerated truck transport, but also in tunnels or freezing chambers; where a heat exchanger is supplied with liquid CO 2 which, by evaporating in this exchanger, extracts heat from the medium to be cooled and thus produces the desired cold; the transfer of the cold to the products passes by an exchange with the internal air of the tunnel, the room or the truck by the intervention of means of ventilation associated with each exchanger

On comprend dès lors qu'il serait intéressant de pouvoir proposer une solution technique permettant de réaliser l'échange thermique dans un échangeur type à tubes ou à plaques (échange indirect), pour des températures d'échangeur néanmoins basses (typiquement -50°C), sans risquer bien entendu la formation de neige et en ne perdant pas la capacité calorifique du CO2 après sa détente de 6 bar à la pression atmosphérique.It is therefore understood that it would be interesting to be able to propose a technical solution for carrying out heat exchange in a tube or plate type heat exchanger (indirect exchange), for nevertheless low heat exchanger temperatures (typically -50 ° C. ), without, of course, risking the formation of snow and not losing the heat capacity of the CO 2 after its relaxation of 6 bar at atmospheric pressure.

Comme on le verra plus en détail dans ce qui suit, la présente invention propose une nouvelle solution d'échange dont les principales caractéristiques peuvent être résumées ainsi :

  • la solution proposée ici réside dans la configuration d'échangeur adoptée, où l'échangeur, qui peut être par exemple de type à tubes ou à plaques, est constitué de deux échangeurs montés en série ;
  • le premier échangeur est apte à être alimenté par du CO2 liquide (par exemple dans des conditions standards de type -20°C/20 bar), le liquide rencontrant, avant son arrivée dans le premier échangeur un détendeur thermostatique ou un ensemble sonde de température/régulateur/vanne, ou tout autre moyen permettant d'ajuster le débit de CO2 parvenant au 1er échangeur aux besoins thermiques en jeu, i.e. de contrôler une surchauffe, en d'autres termes une différence de température entre la température correspondant à la pression de vapeur saturante (par exemple 6 bar, -53,1°C) et par exemple -50°C, ce qui correspond à 3,1 ° de surchauffe ;
  • on maintient dans ce premier échangeur une pression supérieure à 5,18 bar relatifs, i.e. la température du changement de phase du CO2 (et on empêche ainsi la formation de neige), on pourra par exemple maintenir 6 bar absolus grâce à un déverseur ou un ensemble capteur de pression/régulateur/vanne, placé en sortie de ce premier échangeur ;
  • cet arrangement permet d'assurer que le CO2 est présent dans le premier échangeur sous une forme strictement diphasique liquide/gaz, sans qu'à aucun moment les conditions mises en oeuvre ne permettent la formation de solide ;
  • la température minimum obtenue sur ce premier échangeur est alors voisine de -50°C ;
  • selon un des modes de réalisation, le déverseur en sortie du premier échangeur est précédé par un séparateur de phase pour éviter toute sortie de liquide du premier échangeur.
As will be seen in more detail in the following, the present invention proposes a new exchange solution whose main characteristics can be summarized as follows:
  • the solution proposed here resides in the adopted exchanger configuration, where the heat exchanger, which may for example be of the tube or plate type, consists of two exchangers connected in series;
  • the first exchanger is able to be fed with liquid CO 2 (for example under standard conditions of the -20 ° C / 20 bar type), the liquid meeting, before its arrival in the first heat exchanger a thermostatic expansion valve or a probe assembly of temperature / regulator / valve, or any other means for adjusting the CO 2 flow reaching the exchanger 1, the heat requirements involved, ie to control overheating, in other words, a temperature difference between the temperature corresponding to the saturation vapor pressure (for example 6 bar, -53.1 ° C.) and for example -50 ° C., which corresponds to 3.1 ° of superheating;
  • in this first exchanger is maintained a pressure greater than 5.18 bar relative, ie the CO 2 phase change temperature (and thus prevents the formation of snow), one can for example maintain 6 bar absolute thanks to a discharge or a pressure sensor / regulator / valve assembly, placed at the outlet of this first exchanger;
  • this arrangement makes it possible to ensure that the CO 2 is present in the first exchanger in a strictly two-phase liquid / gas form, without the conditions used at any time permitting the formation of solid;
  • the minimum temperature obtained on this first exchanger is then close to -50 ° C;
  • according to one of the embodiments, the discharge device at the outlet of the first exchanger is preceded by a phase separator to prevent any liquid outlet from the first exchanger.

Ce déverseur ainsi que la sortie du premier échangeur pourront être installés en partie haute dans l'installation globale, pour éviter les sorties de liquide, mais des configurations où les deux échangeurs sont sur le même plan sont parfaitement envisageables.This weir and the outlet of the first exchanger can be installed at the top in the overall installation, to avoid liquid outlets, but configurations where the two exchangers are on the same plane are perfectly conceivable.

La présence optionnelle du séparateur évoqué ci-dessus participe au renforcement de la fiabilité du système. Il évite l'amenée de liquide dans le déverseur et donc la formation de neige et le bouchage de ce point.

  • En résumé, le CO2 liquide se vaporise dans ce premier échangeur et le gaz formé dans l'échangeur, par exemple à 6 bar, est libéré dans le second échangeur;
  • ce second échangeur est à la pression atmosphérique (et en tout état de cause à une pression inférieure au point triple du fluide), le gaz passe alors en entrant dans ce second échangeur de 6 bar (ou de la pression plus généralement maintenue dans le premier échangeur) à la pression atmosphérique (ou en tout état de cause à une pression comprise entre le point triple du fluide et la pression atmosphérique), ceci en produisant du froid, à savoir une température typiquement comprise entre -60°C et -70°C ;
  • et c'est tout le mérite de la présente invention puisque dans le second échangeur est alors utilisé ce froid, produit par la détente à la pression atmosphérique, et toute l'énergie contenue dans le CO2 est alors utilisée.
The optional presence of the separator mentioned above contributes to strengthening the reliability of the system. It avoids the supply of liquid in the discharge and thus the formation of snow and the capping of this point.
  • In summary, the liquid CO 2 vaporizes in this first exchanger and the gas formed in the exchanger, for example at 6 bar, is released in the second exchanger;
  • this second exchanger is at atmospheric pressure (and in any case at a pressure below the triple point of the fluid), the gas then passes entering this second exchanger 6 bar (or more generally maintained pressure in the first exchanger) at atmospheric pressure (or in any event at a pressure between the triple point of the fluid and the atmospheric pressure), this producing cold, namely a temperature typically between -60 ° C and -70 ° VS ;
  • and this is the merit of the present invention since in the second exchanger is then used this cold, produced by the relaxation at atmospheric pressure, and all the energy contained in the CO 2 is then used.

La présente invention concerne alors un procédé mettant en oeuvre du CO2 liquide comme fluide cryogénique pour transférer des frigories à des produits, procédé du type dit à injection indirecte où le CO2 liquide est envoyé dans un système d'échangeur thermique où il s'évapore, le transfert de froid aux produits passant par un échange entre l'atmosphère environnant les produits et les parois froides de l'échangeur thermique, le système d'échangeur étant constitué de deux échangeurs montés en série, le second échangeur est lui maintenu à la pression atmosphérique ou à une pression comprise entre le point triple du fluide et la pression atmosphérique, se caractérisant en ce que le premier échangeur est maintenu à une pression supérieure à la pression du point triple du CO2.The present invention thus relates to a process using liquid CO 2 as a cryogenic fluid for transferring frigories to products, a process of the so-called indirect injection type where the liquid CO 2 is sent to a heat exchanger system where it is used. evaporates, the transfer of cold products passing through an exchange between the atmosphere surrounding the products and the cold walls of the heat exchanger, the exchanger system consisting of two exchangers connected in series, the second heat exchanger is maintained at the atmospheric pressure or at a pressure between the triple point of the fluid and the atmospheric pressure, characterized in that the first exchanger is maintained at a pressure greater than the pressure of the triple point of CO 2 .

La présente invention concerne également une installation de transfert de frigories à des produits utilisant du CO2 liquide, l'installation mettant en oeuvre un procédé du type dit à injection indirecte et comprenant :

  • un système d'échangeur thermique apte y faire transiter le CO2 liquide ; et
  • des moyens de ventilation associés au système d'échangeur thermique, apte à mettre en contact l'atmosphère environnant les produits avec les parois froides du système d'échangeur thermique,
    l'installation mettant en oeuvre les mesures suivantes :
    • le système d'échangeur est constitué de deux échangeurs montés en série ;
    • l'installation comprend, en amont de l'entrée du premier échangeur, un moyen apte à ajuster le débit de CO2 et à en contrôler le niveau de surchauffe par rapport à la température correspondant à la pression de vapeur saturante, tel qu'un détendeur thermostatique ou un ensemble sonde de température/régulateur/vanne;
    • le second échangeur est à la pression atmosphérique ou à une pression comprise entre le point triple du fluide et la pression atmosphérique, se caractérisant en ce que l'installation comprend un moyen pour maintenir dans le premier échangeur une pression supérieure à la pression du point triple du CO2, préférentiellement un déverseur ou un ensemble capteur de pression/régulateur/vanne.
The present invention also relates to an installation for transferring frigories to products using liquid CO 2 , the installation implementing a process of the so-called indirect injection type and comprising:
  • a heat exchanger system suitable for passing the liquid CO 2 therethrough; and
  • ventilation means associated with the heat exchanger system, able to put the atmosphere surrounding the products in contact with the cold walls of the heat exchanger system,
    the installation implementing the following measures:
    • the exchanger system consists of two exchangers connected in series;
    • the plant comprises, upstream of the inlet of the first exchanger, a means able to adjust the flow rate of CO 2 and to control the level of superheating with respect to the temperature corresponding to the saturation vapor pressure, such that a thermostatic expansion valve or a temperature probe / regulator / valve assembly;
    • the second exchanger is at atmospheric pressure or at a pressure between the triple point of the fluid and the atmospheric pressure, characterized in that the installation comprises means for maintaining in the first exchanger a pressure greater than the pressure of the triple point CO 2 , preferably an overflow device or a pressure sensor / regulator / valve assembly.

L'installation comprend donc le cas échéant un moyen pour maintenir dans le second échangeur la pression atmosphérique ou une pression comprise entre le point triple du fluide et la pression atmosphérique.The installation therefore comprises, if necessary, means for maintaining in the second exchanger the atmospheric pressure or a pressure comprised between the triple point of the fluid and the atmospheric pressure.

D'autres caractéristiques et avantages de la présente invention apparaîtront alors plus clairement dans la description suivante, donnée à titre illustratif mais nullement limitatif, faite en relation avec les figures 1 et 2 annexées qui sont des représentations schématiques partielles d'installations conformes à l'invention, la figure 3 démontrant le profil de température attendu dans l'ensemble d'échangeur, coté CO2 et fluide caloporteur (air).Other characteristics and advantages of the present invention will then become more clearly apparent in the following description, given by way of illustration but in no way limiting, made in connection with the figures 1 and 2 which are partial diagrammatic representations of installations according to the invention, the figure 3 demonstrating the expected temperature profile in the exchanger assembly, CO 2 side and coolant (air).

On reconnaît sur la figure 1 la présence des éléments suivants, et donc le parcours suivi par le CO2, sous ses différentes phases, dans cette installation :

  • le premier échangeur est apte à être alimenté par du CO2 liquide (par exemple dans des conditions standards de type -20°C/20 bar), le liquide rencontrant, avant son arrivée dans le premier échangeur un détendeur thermostatique (en aval du point 1) ou tout autre moyen permettant d'ajuster le débit de CO2 parvenant au 1er échangeur aux besoins thermiques en jeu, i.e. de contrôler une surchauffe, en d'autres termes une différence de température entre la température correspondant à la pression de vapeur saturante (par exemple 6 bar, -53,1 °C) et par exemple -50°C, ce qui correspond à 3,1 °C de surchauffe.
We recognize on the figure 1 the presence of the following elements, and therefore the path taken by the CO 2 , under its different phases, in this installation:
  • the first heat exchanger is capable of being supplied with liquid CO 2 (for example under standard conditions of the -20 ° C / 20 bar type), the liquid meeting before its arrival in the first heat exchanger a thermostatic expansion valve (downstream from the point 1) or any other means for adjusting the flow rate of CO 2 reaching the exchanger 1, the heat requirements involved, ie to control overheating, in other words, a temperature difference between the vapor pressure corresponding to the temperature saturating (for example 6 bar, -53.1 ° C) and for example -50 ° C, which corresponds to 3.1 ° C overheating.

En aval du point 2 le fluide entre dans le 1er échangeur.

  • on maintient dans ce premier échangeur une pression supérieure à 5,18 bar relatifs, température du changement de phase du CO2 (permettant ainsi d'empêcher la formation de neige), grâce au déverseur placé en sortie de ce premier échangeur sur la figure (déverseur placé entre les points 3 et 4);
  • cet arrangement permet d'assurer que le CO2 est présent dans le premier échangeur sous une forme strictement diphasique liquide/gaz, sans qu'à aucun moment les conditions mises en oeuvre ne permettent la formation de solide ;
  • la température minimum obtenue sur ce premier échangeur est alors de -50°C ;
  • sur le mode de réalisation illustré ici, le déverseur en sortie du premier échangeur est précédé par un séparateur de phase (entre les points 3' et 3) pour éviter toute sortie de liquide du premier échangeur. Pour ce mode de réalisation, le déverseur ainsi que la sortie du premier échangeur sont installés en partie haute dans l'installation globale, pour éviter les sorties de liquide.
  • en sortie du point 4 et donc du déverseur, le gaz entre dans le second échangeur, dont il ressort au point 5.
Downstream of point 2 the fluid enters the 1st exchanger.
  • in this first exchanger is maintained a pressure greater than 5.18 bar relative to CO 2 phase change temperature (thus preventing snow formation), thanks to the discharger placed at the outlet of this first exchanger in the figure ( overflow located between points 3 and 4);
  • this arrangement makes it possible to ensure that the CO 2 is present in the first exchanger in a strictly two-phase liquid / gas form, without the conditions used at any time permitting the formation of solid;
  • the minimum temperature obtained on this first exchanger is then -50 ° C;
  • in the embodiment illustrated here, the outflow of the first exchanger is preceded by a phase separator (between the points 3 'and 3) to prevent any liquid outlet of the first exchanger. For this embodiment, the discharger and the outlet of the first heat exchanger are installed at the top in the overall installation, to prevent liquid outflows.
  • at the outlet of point 4 and therefore of the discharger, the gas enters the second exchanger, from which it emerges at point 5.

Le tableau ci-dessous fournit les propriétés thermodynamiques du fluide aux différents points de la figure 1 et permet sans ambigüité de démontrer les avantages de l'invention en termes de rendement frigorifique. Le tableau illustre notamment plusieurs conditions de températures en sorties des échangeurs.The table below provides the thermodynamic properties of the fluid at different points of the figure 1 and unambiguously permits to demonstrate the advantages of the invention in terms of refrigerating efficiency. Table illustrates in particular several temperature conditions at the exchanger outlets.

Et pour bien démontrer l'intérêt de la présente invention, comparons justement l'efficacité énergétique d'un système ne mettant pas en oeuvre l'invention et d'un système mettant en oeuvre la présente invention, dans le cas où la température finale dans l'échangeur est de -25°C et dans le cas où la température finale dans l'échangeur est de -5°C.And in order to clearly demonstrate the advantage of the present invention, it is worth comparing the energy efficiency of a system not implementing the invention and a system implementing the present invention, in the case where the final temperature in the exchanger is -25 ° C and in the case where the final temperature in the exchanger is -5 ° C.

Considérons le 1er cas (la température finale dans l'échangeur est de-25°C) :

  • Cas d'un système mettant en oeuvre un seul échangeur : 1 kg de CO2 libère 457 - 154,5 = 302,5 kJ
  • Cas d'un système mettant en oeuvre deux échangeurs conformément à l'invention : 1 kg de CO2 libère 464,5 - 154,5 = 310 kJ ; soit un gain énergétique de 2,5%.
Consider the case 1 (the final temperature in the heat exchanger is of-25 ° C):
  • Case of a system using a single exchanger: 1 kg of CO 2 releases 457 - 154.5 = 302.5 kJ
  • Case of a system using two exchangers according to the invention: 1 kg of CO 2 releases 464.5 - 154.5 = 310 kJ; an energy gain of 2.5%.

Second cas d'illustration, où la température finale de l'échangeur est de -5°C :

  • Cas d'un système mettant en oeuvre un seul échangeur : 1 kg de CO2 libère 474,6 - 154,5 = 320,1 kJ
  • Cas d'un système mettant en oeuvre deux échangeurs conformément à l'invention : 1 kg de CO2 libère 480,8 - 154,5 = 326,3 kJ soit un gain de 1,9%.
Tableau 1 Point Sur la figure T(°C) P (bar abs) H (kJ/kg) 1 -20,0 19,7 154,5 2 -53,1 6 154,5 3' -53,1 6 431, 6 3 -50,0 6 434,5 3 standard -25,0 6, 0 457,0 3 standard -5,0 6,0 474, 6 4 -63,1 1 434,5 5 -25,0 1 464,5 5 -5,0 1 480,8 Second case of illustration, where the final temperature of the exchanger is -5 ° C:
  • Case of a system using a single exchanger: 1 kg of CO 2 releases 474.6 - 154.5 = 320.1 kJ
  • Case of a system using two exchangers according to the invention: 1 kg of CO 2 releases 480.8 - 154.5 = 326.3 kJ, a gain of 1.9%.
<b><u> Table 1 </ u></b> Point On the figure T (° C) P (bar abs) H (kJ / kg) 1 -20.0 19.7 154.5 2 -53.1 6 154.5 3 ' -53.1 6 431, 6 3 -50.0 6 434.5 3 standard -25.0 6, 0 457.0 3 standard -5.0 6.0 474, 6 4 -63.1 1 434.5 5 -25.0 1 464.5 5 -5.0 1 480.8

Et le profil de température attendu dans l'échangeur coté CO2 et fluide caloporteur (air par exemple pour une application transport de produits surgelés) visualisé en figure 3 montre que la présente invention a également un impact positif sur le profil de température dans les échangeurs : le fait que le deuxième étage d'échangeur soit à la pression atmosphérique permet de bénéficier d'un effet cryogénique comme le démontrent les courbes de cette figure 3.And the expected temperature profile in the exchanger CO 2 side and coolant (air for example for a frozen food transport application) visualized in figure 3 shows that the present invention also has a positive impact on the temperature profile in the exchangers: the fact that the second exchanger stage is at atmospheric pressure makes it possible to benefit from a cryogenic effect as demonstrated by the curves of this figure 3 .

Si la figure 1 présentait un premier exemple de mode de mise en oeuvre de l'invention, la figure 2 en présente quant à elle un autre, que nous ne décrierons pas en détail ici, puisqu'on l'aura compris à sa lecture, il illustre la variante mettant en oeuvre :

  • en amont du premier échangeur non pas un détendeur thermostatique mais un ensemble d'un orifice calibré et d'une vanne contrôlée en température ;
  • en sortie de premier échangeur l'installation comprend non pas un déverseur mais comprend un ensemble capteur de pression/régulateur/vanne.
If the figure 1 presented a first example of a mode of implementation of the invention, the figure 2 it presents another, which we will not describe in detail here, since it will be understood from its reading, it illustrates the variant implementing:
  • upstream of the first exchanger not a thermostatic expansion valve but a set of a calibrated orifice and a temperature controlled valve;
  • at the outlet of the first heat exchanger the installation comprises not a discharge but includes a pressure sensor / regulator / valve assembly.

Claims (9)

  1. Method using liquid CO2 as a cryogenic fluid to transfer frigories to products, method of what is known as the indirect-injection type where the liquid CO2 is sent to a heat exchange system where it evaporates, the transfer of cold to the products occurring through an exchange between the atmosphere surrounding the products and the cold walls of the heat exchanger, the exchanger system being formed by two exchangers connected in series, the second exchanger (4/5) being kept at atmospheric pressure or at a pressure between the triple point pressure of the fluid and atmospheric pressure, characterised in that the first exchanger (2/3') is kept at a pressure above the triple point pressure of CO2.
  2. Method according to claim 1, characterised as follows:
    - liquid CO2 is supplied to the first heat exchanger, the liquid encountering, before its arrival in the first exchanger, a means (1/2) capable of adjusting the flow rate of CO2 and of controlling its overheat level in relation to the temperature corresponding to the saturation vapour pressure;
    - a pressure greater than the triple point pressure of CO2 is maintained in the first exchanger;
    - the liquid CO2 is vaporised in the first exchanger and the gas thus formed is directed into the second exchanger, which is kept at atmospheric pressure or at a pressure between the triple point of the fluid and atmospheric pressure.
  3. Method according to claim 2, characterised in that said means capable of adjusting the flow rate is a thermostatic regulator or an assembly formed by a temperature sensor, a regulator and a valve.
  4. Method according to either claim 2 or claim 3, characterised in that the pressure in the first exchanger is kept at a pressure above the triple point pressure of CO2 by virtue of a back-pressure regulator (3/4) or an assembly formed by a pressure sensor, a regulator and a valve, located at the outlet of said first exchanger.
  5. Method according to claim 4, characterised in that the back-pressure regulator at the outlet of the first exchanger is preceded by a phase separator (3'/3).
  6. Installation for the transfer of frigories to products using liquid CO2, this installation using what is known as an indirect-injection type method and comprising:
    - a heat exchanger system capable of conveying liquid CO2 therein;
    and
    - ventilation means associated with the heat exchanger system, capable of bringing the atmosphere surrounding the products into contact with the cold walls of the heat exchanger system,
    the installation having the following features:
    - the exchanger system is formed by two exchangers connected in series (2/3', 4/5);
    - the installation comprises, upstream of the inlet of the first exchanger, a means (1/2) capable of adjusting the CO2 flow rate and of controlling its overheat level in relation to the temperature corresponding to the saturation vapour pressure;
    - the second exchanger is at atmospheric pressure or a pressure between the triple point of the fluid and atmospheric pressure, characterised in that the installation comprises a means for maintaining a pressure above the triple point pressure of CO2 in the first heat exchanger.
  7. Installation according to claim 6, characterised in that said means capable of adjusting the flow rate is a thermostatic regulator or an assembly formed by a temperature sensor, a regulator and a valve.
  8. Installation according to either claim 6 or claim 7, characterised in that said means for maintaining a pressure above the triple point pressure of CO2 in the first heat exchanger is a back-pressure regulator (3/4) or an assembly formed by a pressure sensor, a regulator and a valve, located at the outlet of said first exchanger.
  9. Installation according to any of claims 6 to 8, characterised in that it comprises a phase separator (3'/3) inserted upstream of the means for maintaining a pressure above the triple point pressure of CO2 in the first exchanger.
EP11723574.7A 2010-06-03 2011-05-05 Cryogenic cooling method and installaton using liquid co2 and employing tow exchangers in series Not-in-force EP2577191B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054342A FR2960952B1 (en) 2010-06-03 2010-06-03 METHOD AND INSTALLATION FOR CRYOGENIC COOLING USING LIQUID CO 2 USING TWO SERIES EXCHANGERS
PCT/FR2011/051023 WO2011151548A1 (en) 2010-06-03 2011-05-05 Cryogenic cooling method and installation using liquid co2 and employing two exchangers in series

Publications (2)

Publication Number Publication Date
EP2577191A1 EP2577191A1 (en) 2013-04-10
EP2577191B1 true EP2577191B1 (en) 2014-12-17

Family

ID=43413856

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11723574.7A Not-in-force EP2577191B1 (en) 2010-06-03 2011-05-05 Cryogenic cooling method and installaton using liquid co2 and employing tow exchangers in series

Country Status (7)

Country Link
US (1) US20130081789A1 (en)
EP (1) EP2577191B1 (en)
DK (1) DK2577191T3 (en)
ES (1) ES2532206T3 (en)
FR (1) FR2960952B1 (en)
PT (1) PT2577191E (en)
WO (1) WO2011151548A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3108385B1 (en) * 2020-03-19 2022-06-17 Air Liquide France Ind Vaporization system for cryogenic fluids and in particular CO2

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1593918B1 (en) * 2004-05-06 2013-03-13 Air Liquide Deutschland GmbH Indirect cooling of refrigerated vehicles
US7600390B2 (en) * 2004-10-21 2009-10-13 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor
EP1659355A3 (en) * 2004-11-17 2008-02-13 Air Liquide Deutschland GmbH Cooling process and cooling apparatus for refrigerated vehicles
FR2886719B1 (en) * 2005-06-02 2007-08-10 Air Liquide METHOD FOR REFRIGERATING A THERMAL LOAD

Also Published As

Publication number Publication date
FR2960952A1 (en) 2011-12-09
DK2577191T3 (en) 2015-03-09
FR2960952B1 (en) 2012-07-13
ES2532206T3 (en) 2015-03-25
EP2577191A1 (en) 2013-04-10
US20130081789A1 (en) 2013-04-04
WO2011151548A1 (en) 2011-12-08
PT2577191E (en) 2015-03-11

Similar Documents

Publication Publication Date Title
EP3628911B1 (en) Device and method for filling pressurised gas tanks
EP2875294A2 (en) Method for liquefying a natural gas, including a phase change
EP2539650B1 (en) Cryogenic cooling method using a gas-solid diphasic flow of co2
FR2805339A1 (en) PROCESS FOR THE PRODUCTION OF OXYGEN BY CRYOGENIC RECTIFICATION
US20150176892A1 (en) Process for storing liquid rich in carbon dioxide in solid form
WO2015036697A2 (en) Method and device for separation at sub-ambient temperature
EP2577191B1 (en) Cryogenic cooling method and installaton using liquid co2 and employing tow exchangers in series
US10907896B2 (en) Method for turndown of a liquefied natural gas (LNG) plant
EP2475945A2 (en) Method and facility for producing oxygen through air distillation
WO2009153515A1 (en) Method and device for refrigerated transport using cold air or liquid produced onboard
EP3645934B1 (en) Station and method for filling pressurised gas tanks
US20220307731A1 (en) System, method and apparatus for the regeneration of nitrogen energy within a closed loop cryogenic system
CH693187A5 (en) Process and refrigeration production facility from a thermal cycle of a low boiling point fluid.
WO2011114012A2 (en) Process for liquefying a natural gas with refrigerant mixtures containing at least one unsaturated hydrocarbon
WO2015082788A1 (en) Refrigeration method, and corresponding cold box and cryogenic equipment
EP2938414B1 (en) Method and apparatus for separating a carbon dioxide-rich gas
JP2004361053A (en) Ice heat storage device, and ice heat storage method
WO2021064318A1 (en) Refrigerant fluid intended for a refrigerant fluid circuit of a natural gas treatment system
FR2995393A1 (en) METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP2150758B1 (en) Backup co2 cooling system
FR3034511A1 (en) THERMAL EXCHANGER FOR THE CRYOGENIC TRANSPORT OF THERMOSENSITIVE PRODUCTS
JP2007232329A (en) Cold utilization method
FR3033397A1 (en) PROCESS FOR COMPRESSING AND COOLING A GASEOUS MIXTURE
JP2006313004A (en) Heat exchange system, heat exchange method, vaporization method of liquefied gas, and cold recovery method
WO2024017549A1 (en) Facility and method for the liquefaction of hydrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011012312

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25D0003100000

Ipc: F28D0015020000

RIC1 Information provided on ipc code assigned before grant

Ipc: F25D 3/10 20060101ALI20130919BHEP

Ipc: F28D 15/02 20060101AFI20130919BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140502

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20140512

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140610

INTG Intention to grant announced

Effective date: 20140617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 702219

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011012312

Country of ref document: DE

Effective date: 20150205

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150302

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20150305

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2532206

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150325

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 702219

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20150504

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150417

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011012312

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011012312

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150505

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150505

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150601

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150505

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150505

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110505

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217