EP2563208A1 - Vorrichtung mit oct-system zur untersuchung und behandlung lebenden gewebes unter erwärmung durch absorption elektromagnetischer strahlung - Google Patents

Vorrichtung mit oct-system zur untersuchung und behandlung lebenden gewebes unter erwärmung durch absorption elektromagnetischer strahlung

Info

Publication number
EP2563208A1
EP2563208A1 EP11733780A EP11733780A EP2563208A1 EP 2563208 A1 EP2563208 A1 EP 2563208A1 EP 11733780 A EP11733780 A EP 11733780A EP 11733780 A EP11733780 A EP 11733780A EP 2563208 A1 EP2563208 A1 EP 2563208A1
Authority
EP
European Patent Office
Prior art keywords
tissue
time
oct
electromagnetic radiation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11733780A
Other languages
English (en)
French (fr)
Other versions
EP2563208B1 (de
Inventor
Reginald Birngruber
Ralf Brinkmann
Gereon Hüttmann
Heike Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medizinisches Laserzentrum Luebeck GmbH
Original Assignee
Medizinisches Laserzentrum Luebeck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medizinisches Laserzentrum Luebeck GmbH filed Critical Medizinisches Laserzentrum Luebeck GmbH
Publication of EP2563208A1 publication Critical patent/EP2563208A1/de
Application granted granted Critical
Publication of EP2563208B1 publication Critical patent/EP2563208B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0097Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying acoustic waves and detecting light, i.e. acoustooptic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser

Definitions

  • Device with OCT system for examination and treatment of living tissue under heating by absorption of electromagnetic radiation
  • the invention relates to a device for the examination and possibly for the therapy of living tissue by means of local heating of the tissue by absorption of electromagnetic radiation, for example laser light or microwave radiation.
  • the invention further relates to a device for measuring tissue properties in real time.
  • the invention also relates to a device for feedback dosimetry control of the therapeutic radiation source.
  • pressure waves are generated by repetitive irradiation with short laser pulses, which propagate through the living eye and can be detected as pressure transients on the cornea with an ultrasound sensor (for example a piezo element).
  • the amplitudes of the pressure transients allow, for example, the inference to the temperature at the ocular fundus - at least on average over the irradiated area, which forms the starting point of the pressure wave.
  • the method of DE 101 35 944 C2 is real-time capable and thus suitable for controlling the therapeutically effective radiation source (here: laser). However, it is not imaging (ie it does not allow spatially resolved measurement), non-contact, and above all, its applicability is limited to the regime of thermoelastic tissue changes. If there is persistent damage, such as coagulation or blistering, then the optoacoustic signals are basically no longer interpretable and typically show a rather random behavior. In order to be able to consistently observe tissue changes by absorbing electromagnetic radiation from the area of thermoelastic expansion to any tissue damage, the use of known optical coherence tomography (OCT) is recommended. This process is imaging, contactless and today very quickly feasible.
  • OCT optical coherence tomography
  • An OCT measurement (also: A-scan) is performed locally where the measuring light beam is directed, whereby the measuring light is scattered back at different depths of the sample.
  • the recurring measuring light is superimposed with a reference light beam, and the measured interference light allows among other things the calculation of the scattered intensity distribution along the backscatter direction (same direction of irradiation) of the measuring light.
  • Typical measuring depths of OCT systems are between 0.5 and 2 millimeters.
  • the measuring light beam can be deflected laterally by means of an electronic scanner and a predetermined line or surface can be guided over the sample by scanning (also: B-scan). It is thus possible to observe the behavior of a selectable sample section or volume of limited depth, in particular of a living tissue.
  • the main applications of OCT are therefore in ophthalmology, dermatology and endoscopy.
  • WO 01/80792 A2 therefore teaches that reflectivity depth profiles of a biological sample with a high measuring speed should be determined and evaluated by means of OCT in order to detect tissue changes by laser therapy.
  • WO 01/80792 A2 does not provide a concrete indication as to which tissue parameters are relevant for the investigation of the irradiation effects or even for the control of the therapeutic radiation and how one should derive corresponding interpretations or measures from the measured profiles.
  • the document only teaches to accompany the therapy irradiation with OCT measurements and leaves it entirely to the reader to judge the measured data itself.
  • thermomechanical properties of the living tissue are used for this purpose.
  • the determination of mechanical properties, in particular by means of OCT measurements, is the subject of OCT elastography (OCE).
  • OCT elastography OCT elastography
  • Ex vivo samples are used to study the microscopic, spatially resolved movement of the samples under mechanical excitation, such as piezoelectric elements, with the possibility of adjusting the temperature of the specimen.
  • the OCE leaves the sample unmodified (non-destructive measuring) and is aimed at precise control of the sample instructed mechanical excitation.
  • the OCE is only conditionally suitable for measuring on a living patient, since then unavoidable intrinsic movements occur and, moreover, the controlled mechanical excitation can not always be performed directly on the target tissue (see, for example, WO 2007/059292 A2, where, however, no OCT, but a laser -Elocimeter on reflective surfaces is used to measure the response to mechanical stimuli).
  • DE 43 09 056 A1 discloses an FD-OCT.
  • short-coherent (broadband) light for example from a super-luminescent diode
  • the interference light is spectrally decomposed and usually mapped to a sensor line or a similar device.
  • FD-OCT swept-source OCT
  • SS-OCT swept-source OCT
  • thermoelastic open to Vakoc et al. the questions of the treatment of proper motions during in vivo application and a suitable observable, with which thermoelastic can be differentiated from persistent tissue expansions in real time - and not only by a subsequent histological inspection.
  • the object of the invention is to provide a device for examination and possibly therapy of living tissue by means of heating by absorption of electromagnetic radiation, which determines thermo-mechanical tissue effects and, if necessary, controls the radiation source on the basis of the measured data.
  • the device according to the invention comprises an electromagnetic radiation source (eg a laser, a flashlamp, a microwave source or the like) and a control unit for controlling the irradiation parameters of the radiation source (in particular intensity, duration of irradiation, repetition rate, pulse energy, luminosity, etc.).
  • the device further comprises at least one FD-OCT device.
  • the at least one FD-OCT device comprises a polychromatic light source, optical components for illuminating the tissue at predetermined measuring locations and for returning the light recurring from the measuring locations to a measuring unit. In the measuring unit also belonging to the FD-OCT device, the recurring light is superimposed with a reference light beam.
  • the measuring unit comprises a detector which detects the spectral intensity distribution at the output of the interferometer (typically a linear line sensor in the case of spectral radar or a photodiode array in the case of SS-OCT).
  • the device according to the invention has an arithmetic unit which performs the following tasks:
  • step f. Differentiate the under e. calculated integrals for at least one coordinate of the coordinate system indicative of the locations of the measured stray levels and phases; G. Provide the after step f. calculated data for output (eg on a viewing device) and / or for further evaluation and decision to control the control unit of the radiation source.
  • the device of the invention is - in its simplest embodiment - so on Vakoc et al. to the extent that they additionally require at least steps e. and f. performs. Although these are first procedural steps, the implementation into a computational unit is unavoidable, since the feasibility of the later explained Dosimetriekontrolle requires that the calculations have to be made within fractions of a second. Without automation this would not be possible.
  • the invention opens up a new level of measurement data interpretation, which will be explained in detail below. From this new interpretation, there are expansion options of the device, which are also the subject of this invention.
  • FIG. 1 shows an intensity image of the scattering intensity distribution in the retina of the eye with the RPE layer marked by a white horizontal line, recorded with an FD-OCT line scan.
  • Vertical white lines indicate selected depth profiles
  • FIG. 2 plots of various measured and calculated quantities along the depth axis for the selected profiles from FIG. 1;
  • FIG. 3 shows a sketch of the device comprising an FD-OCT device (OCT), an electromagnetic radiation source (EM) for irradiating and local heating of a sample, and a computing unit (CPU) and a deflection device for the FD-OCT measuring light;
  • Fig. 4 is a modified sketch of the apparatus of Fig. 3, now adapted to detect three linearly independent components of the local velocity field in the heated sample.
  • an A-scan - recording a single depth profile for a single measurement site - is possible within 10 ⁇ $.
  • the depth resolution of the measurement is about 10 ⁇ , and the depth of a FD-OCT is typically 500 - 1000 ⁇ and is also dependent on the properties of the sample.
  • FIG. 1 shows a typical FD-OCT image, which results in a measurement light illumination (line scan) guided along the surface of a retina.
  • the measurable scattering intensities are shown as an intensity plot, with lighter pixels indicating higher scattering intensities.
  • this distribution is complex Fourier-transformed according to J I (k, t) exp (ikz) dk, and the scattering strength S (z, t) is given as an absolute value and ⁇ ( ⁇ , ⁇ ) as the phase of the Fourier coefficients.
  • z the location coordinate along the Einstrahl- or backscattering direction of the measuring light is referred to here. This is usually set up perpendicular to the tissue surface, but this is not necessary. An oblique incidence of the measuring light can also be expedient (see, for example, FIG. 4 and explanations on this).
  • At must be at most so large that the optical path to the local scatterer at a given wavelength (eg FD-OCT white light 820 ⁇ 40 nm) and given velocity during the interval At by not more than half Wavelength (here eg 410 nm) moves. Otherwise, the phases would change by more than ⁇ , which could not be detected in the measurement. It would come to corresponding misjudgments of the scattering speeds.
  • t m j n and t max for which t m must apply in ⁇ At ⁇ t max in order to be able to make a stable measurement of the scattering speed at the measuring location out of the phases.
  • t m i n depends on the specific measuring device, in particular on its noise behavior, while t max is based on the average measuring light wavelength and on the maximum scattering speed to be expected. In order to reduce the measurement effort (as few A-scans as possible), it is preferable to choose At in the vicinity of t max .
  • the graphs in FIGS. 2 c) and d) show the phase-determined, instantaneous tissue velocities for the profiles 10 and 20, respectively.
  • the laser irradiation is on the much higher speeds (up to 40 ⁇ / s) in profile 10 readable. However, it can not be read at which depth which portion of the radiated energy is absorbed.
  • the instantaneous tissue velocity - calculated by subtracting the phases between two consecutive A-scans - is usually stochastically noisy, also contains portions of additional oscillations, is affected by living motions in living tissue, and does not distinguish between elastic and persistent effects.
  • displacement field D a barely noisy average
  • the integration also acts as a low pass.
  • the displacement field D is nothing other than the actual shift of scattering points in the tissue due to the absorption of electromagnetic radiation as a function of time and the coordinate z in the direction of irradiation.
  • D (z, t) is in principle a vector field, but only the vector component in the z direction is measurable.
  • the time integral can be formed between arbitrary times. Preferably, one chooses as the start of integration a time before or at the onset of the absorption irradiation and as the end of integration usually a time after switching off the radiation source.
  • Fig. 2 e) and f the z-components of the displacement fields in the profiles 10 and 20, respectively, are shown. This already shows a steep shoulder in Fig. 2 e) at a defined depth of about 200 ⁇ below the retinal surface. If one differentiates both displacements according to the depth coordinate z, the difference between irradiated and non-irradiated tissue becomes particularly obvious, as the graphs 2 g) and h), respectively, show. A vertical line marks in all graphs of FIG. 2 the position of the maximum of FIG. 2 g).
  • OCL is the - in general also temperature-dependent - linear thermal expansion coefficient and ⁇ is the temperature rise.
  • is the temperature rise.
  • ccv volumetric expansion coefficients
  • the device according to the invention directly permits the measurement of spatially resolved thermoelastic tissue expansion (or contraction) and indirectly also of the depth-resolved temperature distribution along a scan line in the direction of irradiation.
  • the data thus obtained always represent snapshots at time t.
  • the measurement light beam can be guided in a manner known per se over a region of tissue in a scanning manner.
  • This makes it possible to perform a plurality of A-scans on a predetermined grid of the tissue surface (B-scan, along x and y coordinate axes). It is known to summarize the measurement data of all A-scans and to obtain a three-dimensional image of the tissue.
  • the polychromatic measuring light comes from a light source, which is integrated in the FD-OCT device (OCT). It is guided over a fiber, collimated at the exit end and directed to a periodically pivotable deflection mirror (30). This directs the measuring light to an imaging optics (40), which focuses it on the sample surface (50). The focus passes over the sample (50) during the movement of the deflecting mirror (30).
  • the FD-OCT device (OCT) also includes the means for superimposing the light scattered back from the sample with a reference light beam and for detecting the interference light according to the prior art.
  • the measurement data of the FD-OCT device (OCT) are provided via an indicated in Fig.
  • the arithmetic unit (CPU) compiles the measurement data for a full period of movement of the deflection mirror (30) as a B-scan data set indexed by the measurement location on the sample and the time, and stores it after completion. It computes scattering intensities and phases from the FD-OCT measurement data, forms the differences between the phase data of successive B scans (temporal differentiation for calculation of the local velocity component), accumulates these phase differences cumulatively (temporal integration for calculating the local displacement component D (x , y, z, t)) and differentiates the respectively updated time integral according to the depth coordinate.
  • the spatial derivative also updated after the completion of each B-scan describes the linear expansion ⁇ (x, y, z, t) of the sample (50) in the beam direction as a function of the location of the sample on the sample surface, the depth in the sample and time.
  • the electromagnetic radiation source (EM) is shown, the light is guided over its own fiber and irradiated separately on the sample.
  • the radiation source (EM) here also includes the control unit for controlling the irradiation parameters, which according to the prior art is commonly available in structural unit with the actual light source.
  • a data connection is provided between the radiation source (EM) and the arithmetic unit (CPU).
  • the arithmetic unit (CPU) query the set irradiation parameters and / or specify changed irradiation parameters, thus controlling the radiation source (EM).
  • the radiation source (EM) There are hardly any restrictions on the radiation emitted by the radiation source (EM). It only needs to be absorbed in the sample (50, here: living tissue).
  • the entire electromagnetic spectrum below the X-ray radiation comes into consideration. Pulsed or cw irradiation is possible, as well as mono- or polychromatic light can be used. In particular, even the FD-OCT measuring light radiation itself could serve to heat the tissue when a high intensity is irradiated. Normally, the intensity of the FD-OCT measurement light is too low to significantly affect the tissue.
  • the irradiation of electromagnetic energy to heat the tissue by absorption is usually targeted and limited to a small area (spot). This is especially true for laser therapy.
  • the area of interest thus is usually limited to an environment around this spot.
  • the device according to the invention therefore preferably has a scanner for deflecting the FD-OCT measuring light, which has a scanning area with the spot as the center. This could also be conveyed constructively in that the applicator for the radiation to be absorbed is rigidly connected to the scanner to which the measuring light is supplied via the optical fibers.
  • the scanner can also be made wavelength-selective and the measurement light can be reflected into the beam path of the therapy beam, so that it only deflects the wavelength range of the measurement light radiation, while the therapeutically effective radiation (for example microwaves) passes undistractedly through the scanner.
  • the therapeutically effective radiation for example microwaves
  • the scanner can be a surface scanner or a line scanner.
  • a line scanner will sweep the center of the spot.
  • a mapping of the tissue expansion in the z-direction SD (x, y, z, t) / oz on the temperature distribution in the living tissue is possible as long as only thermoelastic movements take place.
  • dD / dz is a sufficient measure for the assessment of tissue expansion, as long as the micromechanical isotropy of the tissue can be assumed.
  • one is not necessarily dependent on the isotropy assumption. Since the device according to the invention described so far always measures the component of the displacement field along the irradiation direction, a preferred refinement is to provide a plurality of simultaneous, non-parallel measuring light beams. In particular, with simultaneous oblique irradiation from three linearly independent directions, it is also possible to measure three linearly independent components of the displacement field.
  • FIG. 2 shows an embodiment of the device in which the only difference from FIG. 1 is that the FD-OCT measuring light emerges from three collimated fibers in collimated fashion and strikes the deflection mirror.
  • the three fiber ends should form the vertices of a triangle.
  • Light from each fiber thus reaches another point of the imaging optics and is refracted towards the measuring location.
  • the three measuring light beams are then irradiated from each of three linearly independent directions to each measuring location, and it only takes a single scanner to guide all measuring light beams together over the sample.
  • the different irradiation directions can also be realized by using three differently oriented and thus fixed, measuring light-guiding fibers which radiate directly onto the sample (not shown).
  • the divergence of the displacement field D (x, y, z, t) can also be calculated for non-isotropic samples. It indicates the three-dimensional tissue expansion due to the absorption of electromagnetic radiation.
  • the divergence of a field has the meaning of its source strength. It is invariant to translations of the field. Thus, proper movements of the living tissue are eliminated from the measurement insofar as they affect the considered tissue as a whole. Only expansions, for example due to blood pulse in capillaries within the considered tissue, are still detected. However, they are characterized by a characteristic frequency (about 1 Hz) and can be isolated as such.
  • an absorbing volume If an absorbing volume is exposed to electromagnetic radiation, its temperature initially increases linearly. A portion of the radiated energy is transported by heat diffusion into the environment, as soon as a sufficiently high temperature gradient is present, which allows effective heat transfer. The increase in the temperature at the absorption location is reduced as the irradiation continues.
  • the temporal temperature profile at an unchanged absorber volume can be accurately predicted if one knows (locally) the absorption capacity and the heat diffusion constant. Conversely, both values can be calculated from the time course of the measured temperature distribution, making sure that there are no irreversible changes (e.g., phase transitions, denaturations) to the tissue.
  • the tissue expansion ⁇ div D to be measured as a function of time by applying equation (2) is a direct measure of the achieved Depth- or spatially resolved, dynamic temperature rise and allows using a heat conduction model, the conclusion on the depth or space-resolved absorption capacity and the heat diffusion constant.
  • the arithmetic unit of the device can now calculate a prediction of the temperature field that would have to result if the power of the therapy radiation is increased by a predetermined increment. It then instructs the control unit of the radiation source to make appropriate settings for the realization of this increment (eg increasing the intensity, increasing the pulse rate of a pulsed laser or the like).
  • tissue changes in particular protein denaturation may be considered.
  • the tissue then locally changes its optical properties, in particular scattering and absorption capacity, so that the onset of such transformations must lead to significant deviations from the prediction based solely on thermal conduction in the inert medium.
  • the arithmetic unit has not only a physically - and not only empirically - justified termination criterion available, but also a snapshot of tissue expansion at the time of onset of tissue change, which is preferably stored immediately. Thus, even with hindsight, a precise analysis of the tissue damage achieved possible.
  • the therapeutic radiation source For the purpose of dosimetry control, it is advisable to set the therapeutic radiation source at the beginning of the irradiation to parameters which certainly can not cause tissue damage. Only when the computing unit has sufficient data for a stable temperature modeling after a start-up phase, it makes sense to gradually increase the therapeutically effective radiation dose.
  • the aforementioned increment should also explicitly include the case of constant irradiation parameters in the next time step. The increment of the power of the therapy radiation is therefore greater than or equal to zero.
  • the device according to the invention can also be used merely to measure or map the aforementioned tissue parameters.
  • the device is thus a therapy and a diagnostic device.
  • the electromagnetic radiation source whose radiation is absorbed in living tissue for the purpose of local heating, is required in both applications to precisely control the energy deposition. It is an important aspect of the invention that this energy deposition occurs directly in the area monitored by the FD OCT scan.
  • Vertebrae in the displacement field D correspond to local distortions of the tissue as it expands under the influence of the electromagnetic radiation. Such twists are always to be expected when the absorption capacity of the fabric varies greatly locally and the heating of adjacent areas takes place at different speeds with otherwise identical radiant power. In particular, vertebrae can be expected parallel to the tissue surface.
  • red D represents a possibility, in particular for short-term radiation exposures in which heat diffusion still plays no role and div D ⁇ ⁇ ⁇ t is still a good approximation, the spatially resolved absorption capacity of the tissue (which is laterally variable in the retina, for example).
  • mechanical parameters such as modulus of elasticity or shear modulus eg ex vivo measurements or can transfer. If, on the other hand, the absorption capacity is assumed to be given (for example, from the observation of the time behavior of the temperature described above), it is possible to carry out in vivo measurements of precisely these micromechanical parameters where strong differences in absorption permit this.
  • the present invention teaches to translate phase information of a FD-OCT system from a measurement area in a living tissue that is locally heated during the measurement by absorption of electromagnetic radiation into local and instantane tissue velocities, then temporally integrate them to a displacement field which, in turn, is to be spatially differentiated to obtain an observable, particularly tissue expansion or local tissue rotation.
  • the steps essential to the invention are only computer-aided in the required speed feasible and thus necessary to integrate into a device.
  • the measurement of the observables is made contactless purely optically.
  • the observable is free of translations due to proper movements of the living sample in the measurement area.
  • the observable may be spatially resolved and recorded as a function of time.
  • the observable has a physically interpretable time behavior, which allows the application of theoretical concepts and models, in particular heat conduction theory, to make predictions about their time evolution under certain assumptions. The occurrence of these predictions can be monitored and significant deviations from the predictions indicate a violation of the assumptions made. If this is the case, the irradiation of the tissue can be deactivated.
  • the dosimetry control of the device according to the invention is thus based on the monitoring of the predictability of the effects caused by the therapy radiation.
  • said observable is also suitable for determining physical tissue parameters such as absorbency, thermal conductivity or shear modulus in vivo and in real time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Vascular Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Vorrichtung zur Untersuchung oder zur Therapie lebenden Gewebes mittels lokaler Erwärmung des Gewebes durch Absorption elektromagnetischer Strahlung, mit wenigstens einer elektromagnetische Strahlung abgebenden Strahlungsquelle, einer Steuereinheit zur Steuerung der Bestrahlungsparameter der Strahlungsquelle und wenigstens einer FD-OCT-Einrichtung mit einer ein Messlicht abgebenden Lichtquelle zur Beleuchtung desjenigen Gewebebereichs, in dem die elektromagnetische Strahlung vom Gewebe absorbiert wird, gekennzeichnet durch eine Recheneinheit zum Ausführen der Schritte: Ermitteln der an einem vorbestimmten Messort des Gewebes in Einstrahlrichtung des Messlichts tiefenaufgelösten Gewebegeschwindigkeit aus der Phaseninformation des FD-OCT-Interferenzlichts, zeitliches Integrieren der ermittelten Gewebegeschwindigkeit, räumliches Differenzieren des berechneten Zeitintegrals, und Anzeigen der räumlichen Ableitung als Funktion von Ort und Zeit und/oder Zuführen der räumlichen Ableitung als Funktion von Ort und Zeit zu einem Bewertungsmodul und/oder Zuführen der räumlichen Ableitung als Funktion von Ort und Zeit zur Steuereinheit.

Description

Vorrichtung mit OCT-System zur Untersuchung und Behandlung lebenden Gewebes unter Erwärmung durch Absorption elektromagnetischer Strahlung
Die Erfindung betrifft eine Vorrichtung zur Untersuchung und ggf. zur Therapie lebenden Gewebes mittels lokaler Erwärmung des Gewebes durch Absorption elektromagnetischer Strahlung, beispielsweise von Laserlicht oder Mikrowellenstrahlung. Die Erfindung betrifft ferner eine Vorrichtung zur Messung von Gewebeeigenschaften in Echtzeit. Die Erfindung betrifft überdies eine Vorrichtung zur Feedback-Dosimetriekontrolle der therapeutischen Strahlungsquelle.
Die Analyse der Expansion eines Absorbers und die damit emittierte Druckwelle nach Applikation eines kurzen Laserpulses ist in Sigrist M. W.,„Laser Generation of Acoustic Waves in Liquids and Gases", Journal of Applied Physics 60(7):R83-R121, 1986 beschrieben worden.
Auf dieser Grundlage entstand die optoakustische Temperaturmessung an der Retina, wie sie in der DE 101 35 944 C2 dargestellt ist. Dabei werden durch repetitive Bestrahlung mit kurzen Laserpulsen Druckwellen erzeugt, die sich durch das lebende Auge fortpflanzen und als Drucktransienten auf der Hornhaut mit einem Ultraschallsensor (z.B. Piezo-Element) erfasst werden können. Die Amplituden der Drucktransienten lassen beispielsweise den Rückschluss auf die Temperatur am Augenhintergrund zu - zumindest im Mittel über den bestrahlten Bereich, der den Ausgangspunkt der Druckwelle bildet.
Das Verfahren der DE 101 35 944 C2 ist echtzeitfahig und somit zur Steuerung der therapeutisch wirksamen Strahlungsquelle (hier: Laser) geeignet. Es ist jedoch nicht bildgebend (d.h. es erlaubt keine ortsaufgelöste Messung), nicht kontaktlos und vor allem ist seine Anwendbarkeit auf das Regime der thermoelastischen Gewebeänderungen beschränkt. Kommt es zu persistenten Schäden, etwa zu Koagulationen oder Blasenbildung, dann sind die optoakustischen Signale grundsätzlich nicht mehr interpretierbar und zeigen typisch ein eher zufälliges Verhalten. Um Gewebeveränderungen durch Absorption elektromagnetischer Strahlung vom Bereich der thermoelastischen Expansion bis hin zu beliebigen Gewebeschäden konsistent beobachten zu können, empfiehlt sich die Anwendung der bekannten Optischen Kohärenztomographie (Optical Coherence Tomography, OCT). Dieses Verfahren ist bildgebend, kontaktlos und heute sehr schnell durchführbar. Eine OCT-Messung (auch: A-Scan) erfolgt lokal dort, wohin man den Messlichtstrahl richtet, wobei das Messlicht in verschiedenen Tiefen der Probe zurückgestreut wird. Das wiederkehrende Messlicht wird mit einem Referenzlichtstrahl überlagert, und das gemessene Interferenzlicht erlaubt u. a. die Berechnung der Streustärkenverteilung entlang der Rückstreurichtung (gleich Einstrahlrichtung) des Messlichts. Typische Messtiefen von OCT-Systemen liegen zwischen 0,5 und 2 Millimeter. Der Messlichtstrahl kann mittels eines elektronischen Scanners seitlich abgelenkt und eine vorbestimmte Linie oder Fläche abrasternd über die Probe geführt werden (auch: B-Scan). Man kann somit das Verhalten eines wählbaren Probenschnitts oder -volumens begrenzter Tiefe observieren, insbesondere eines lebenden Gewebes. Hauptanwendungen der OCT liegen deshalb in der Ophthalmologie, der Dermatologie und in der Endoskopie.
Die WO 01/80792 A2 lehrt deshalb, dass Reflektivitäts-Tiefenprofile einer biologischen Probe mit hoher Messgeschwindigkeit mittels OCT bestimmt und bewertet werden sollen, um Gewebeveränderungen durch Lasertherapie zu erkennen. Allerdings ist der WO 01/80792 A2 kein konkreter Hinweis darauf zu entnehmen, welche Gewebeparameter für die Untersuchung der Bestrahlungseffekte oder gar für die Steuerung der Therapiestrahlung relevant sind und wie man aus den gemessenen Profilen entsprechende Interpretationen oder Maßnahmen ableiten soll. Insofern lehrt die Druckschrift nur, die Therapiebestrahlung mit OCT- Messungen zu begleiten und überlässt es ganz dem Leser, die gemessenen Daten selbst zu beurteilen.
In Anbetracht der DE 101 35 944 C2 wendet man sich zu diesem Zweck den thermomechanischen Eigenschaften des lebenden Gewebes zu. Das Bestimmen mechanischer Eigenschaften insbesondere mittels OCT-Messungen ist Gegenstand der OCT-Elastographie (OCE). Beispielsweise aus der Arbeit von Liang et al., „Optical micro-scale mapping of dynamic biomechanical tissue properties", Vol. 16, No. 15, OPTICS EXPRESS, 11052 pp. (2008) geht ein Verfahren zur bildgebenden Bestimmung der biomechanischen Eigenschaften biologischer ex vivo Proben hervor, welches die mikroskopische, ortsaufgelöste Bewegung der Proben bei mechanischer Anregung, etwa mittels Piezoelementen, untersucht. Dabei kann die Temperatur der Probe gezielt eingestellt werden. Die OCE lässt die Probe unverändert (zerstörungsfreies Messen) und ist auf eine genaue Kontrolle der mechanischen Erregung angewiesen.
Die OCE eignet sich nur bedingt zur Messung an einem lebenden Patienten, da dann unvermeidliche Eigenbewegungen auftreten und zudem die kontrollierte mechanische Erregung nicht immer direkt am Zielgewebe vorgenommen werden kann (s. z. B. WO 2007/059292 A2, wo allerdings kein OCT, sondern ein Laser-Velocimeter an reflektierenden Flächen benutzt wird, um die Antwort auf mechanische Anregungen zu messen).
Die Arbeit von Liang et al. gibt zwei wertvolle Hinweise: zum einen soll man sich die messbaren OCT-Phasen ansehen, um die lokalen Gewebebewegungen festzustellen, und zum zweiten wird zur Phasenmessung die Verwendung eines Spectral Domain oder auch Fourier Domain (FD-) OCT empfohlen.
Beispielsweise geht aus der DE 43 09 056 AI ein FD-OCT hervor. Dabei wird Licht aus einer kurzkohärenten Lichtquelle in der Probe in einer Ebene mit Abstand z zu einer Referenzebene (z=0) gestreut und mit zurück gestreutem Licht aus der Referenzebene überlagert. Es kommt so zu konstruktiver oder destruktiver Interferenz für einen beliebigen, festen Abstand z der Ebenen je nachdem, welche der eingestrahlten Wellenlängen λ man betrachtet. Bei Verwendung kurzkohärenten (breitbandigen) Lichts, z.B. aus einer Superlumineszenzdiode, wird das Interferenzlicht spektral zerlegt und üblicherweise auf eine Sensorzeile oder eine vergleichbare Vorrichtung abgebildet. Dies erlaubt das Messen der Verteilung I(k), k=2π/λ als räumliche Verteilung auf der Sensorzeile. Die Fouriertransformation dieser Verteilung führt auf das tiefenabhängige Streuvermögen S(z). Neben dieser als Spektralradar bezeichneten Ausführung beruht eine weitere Ausführungsform der FD-OCT, die auch Swept-Source OCT (SS-OCT) genannt wird, auf einem schnell durchstimmbaren Laser mit einem Photodetektor, der den spektralen Verlauf der Interferenz am Ausgang des Interferometers misst.
Die Arbeit von Vakoc et al.„Real-time microscopic visualization of tissue response to laser thermal therapy". J. Biomed. Op , Vol. 12(2), p. 020501-1 (2007) stellt schließlich den nächstkommenden Stand der Technik dar. Sie demonstriert insbesondere die Messbarkeit von Gewebegeschwindigkeiten aus dem Phasensignal einer FD-OCT unter gleichzeitiger Absorption von Laserstrahlung. Die gezielte lokale Erwärmung führt zur Denaturierung von ex vivo Gewebe, und die Korrelation zwischen dem OCT-Phasensignal und der Schädigungstiefe wird anhand histologischer Befunde für verschiedene Expositionszeiten belegt. Die Messung der OCT-Phasen ist dabei in Echtzeit durchführbar.
Dies bestätigt, dass der Fortschritt einer Bearbeitung biologischen Gewebes durch Absorption elektromagnetischer Strahlung prinzipiell anhand der messbaren Phasendaten eines FD-OCT beobachtet werden kann.
Offen bleiben auch bei Vakoc et al. die Fragen nach der Behandlung von Eigenbewegungen bei der in vivo Anwendung sowie nach einer geeigneten Observablen, anhand derer thermoelastische von persistenten Gewebeexpansionen in Echtzeit - und eben nicht erst durch eine anschließende histologische Inspektion - unterschieden werden können.
Die Aufgabe der Erfindung besteht darin, eine Vorrichtung zur Untersuchung und ggf. Therapie lebenden Gewebes mittels Erwärmung durch Absorption elektromagnetischer Strahlung anzugeben, die thermomechanische Gewebeeffekte ermittelt und bei Bedarf die Strahlungsquelle auf der Basis der Messdaten steuert.
Die Aufgabe wird gelöst durch die Vorrichtung mit den Merkmalen von Anspruch 1. Die Unteransprüche geben vorteilhafte Ausgestaltungen an. Die erfindungsgemäße Vorrichtung umfasst eine elektromagnetische Strahlungsquelle (z.B. einen Laser, eine Blitzlampe, eine Mikrowellenquelle o. ä.) sowie eine Steuereinheit zur Kontrolle der Bestrahlungsparameter der Strahlungsquelle (insbesondere Intensität, Bestrahlungsdauer, Repetitionsrate, Pulsenergie, Leuchtstärke etc.). Die Vorrichtung weist ferner wenigstens eine FD-OCT-Einrichtung auf. Die wenigstens eine FD-OCT-Einrichtung umfasst eine polychromatische Lichtquelle, optische Komponenten zur Beleuchtung des Gewebes an vorbestimmten Messorten sowie zur Rückführung des von den Messorten wiederkehrenden Lichts in eine Messeinheit. In der ebenfalls zur FD-OCT-Einrichtung zählenden Messeinheit wird das wiederkehrende Licht mit einem Referenzlichtstrahl überlagert. Die Messeinheit umfasst einen Detektor, der die spektrale Intensitätsverteilung am Ausgang des Interferometers detektiert (typisch ein linearer Zeilensensor bei Spektralradar oder eine Photodiodenanordung bei SS-OCT)
Weiterhin besitzt die erfindungsgemäße Vorrichtung eine Recheneinheit, die folgende Aufgaben ausführt:
a. Auslesen der Messdaten wenigstens eines Detektors der wenigstens einen FD-OCT- Einrichtung für einen vorbestimmten Messort auf der Probenoberfläche;
b. Berechnen der Streustärken und Phasen aus den Sensordaten entlang der wenigstens einen Einstrahlrichtung des FD-OCT-Messlichts;
c. Berechnen der lokalen Gewebegeschwindigkeiten entlang wenigstens einer Einstrahlrichtung aus den zuvor bestimmten Phasen;
d. Wiederholen der Schritte a. bis c. in vorbestimmten Zeitabständen für denselben Messort;
e. Integrieren der unter c. bestimmten lokalen Geschwindigkeiten über die Zeit durch Aufsummieren der unter c. bestimmten Daten über eine vorbestimmte Mehrzahl von Wiederholungen gemäß Schritt d.;
f. Differenzieren der unter e. berechneten Integrale nach wenigstens einer Koordinate des die Orte der gemessenenen Streustärken und Phasen indizierenden Koordinatensystems; g. Bereitstellen der nach Schritt f. berechneten Daten zur Ausgabe (z.B. auf einem Sichtgerät) und/oder zur Weiterbewertung und Entscheidung zur Ansteuerung der Kontrolleinheit der Strahlungsquelle.
Der letztgenannte Schritt g. wird weiter unten erläutert.
Die erfindungsgemäße Vorrichtung geht - in ihrer einfachsten Ausgestaltung - also über Vakoc et al. insoweit hinaus, dass sie zusätzlich mindestens die Schritte e. und f. ausführt. Wenngleich dies zunächst Verfahrensschritte sind, ist die Implementation in eine Recheneinheit unumgänglich, da die Ausführbarkeit der später erläuterten Dosimetriekontrolle voraussetzt, dass die Berechnungen binnen Sekundenbruchteilen zu erfolgen haben. Ohne Automation wäre dies nicht möglich.
Die Erfindung erschließt eine neue Ebene der Messdateninterpretation, die nachfolgend im Detail erklärt werden soll. Aus dieser neuen Interpretation ergeben sich Erweiterungsoptionen der Vorrichtung, die ebenfalls Gegenstand dieser Erfindung sind.
Die Erfindung wird auch anhand von Figuren erläutert. Dabei zeigt:
Fig. 1 ein Intensitätsbild der Streustärkenverteilung in der Netzhaut des Auges mit der RPE- Schicht, die durch eine weiße waagrechte Linie markiert ist, aufgezeichnet mit einem FD-OCT-Linienscan. Vertikale weiße Linien kennzeichnen ausgewählte Tiefenprofile;
Fig. 2 Plots verschiedener gemessener und berechneter Größen entlang der Tiefenachse für die ausgewählten Profile aus Fig. 1 ;
Fig. 3 eine Skizze der Vorrichtung umfassend eine FD-OCT-Einrichtung (OCT), eine elektromagnetische Strahlungsquelle (EM) zum Bestrahlen und lokalen Erwärmen einer Probe und eine Recheneinheit (CPU) sowie eine Ablenkeinrichtung für das FD- OCT-Messlicht; Fig. 4 eine modifizierte Skizze der Vorrichtung aus Fig. 3, nunmehr ausgebildet zum Erfassen von drei linear unabhängigen Komponenten des lokalen Geschwindigkeitsfeldes in der erwärmten Probe.
Mit heutigen FD-OCT-Systemen ist ein A-Scan - die Aufzeichnung eines einzelnen Tiefenprofils für einen einzelnen Messort - innerhalb von 10 μ$ möglich. Die Tiefenauflösung der Messung liegt bei etwa 10 μηι, und die Messtiefe eines FD-OCT beträgt typisch 500 - 1000 μιη und ist auch abhängig von den Eigenschaften der Probe.
Fig. 1 zeigt ein typisches FD-OCT-Bild, das sich bei einer entlang der Oberfläche einer Retina geführten Messlichtbeleuchtung (Linien-Scan) ergibt. Dargestellt sind die messbaren Streustärken als Intensitätsplot, wobei hellere Pixel höhere Streustärken indizieren.
Das FD-OCT detektiert die spektrale Intensitätsverteilung des Interferenzlichts I(k,t) (dabei ist k= 2π/λ die Wellenzahl eines Messlichtanteils, t ist die Zeit). In Schritt b. wird diese Verteilung vorzugsweise komplex fouriertransformiert gemäß J I(k,t) exp(ikz) dk, und es ergibt sich die Streustärke S(z,t) als Absolutbetrag und φ(ζ,ΐ) als Phase der Fourierkoeffizienten. Mit z wird hier die Ortskoordinate entlang der Einstrahl- bzw. Rückstreurichtung des Messlichts bezeichnet. Diese wird üblich senkrecht zur Gewebeoberfläche eingerichtet, doch dies ist nicht notwendig. Auch ein schräger Einfall des Messlichts kann zweckmäßig sein (s. etwa Fig. 4 und Erläuterungen dazu).
Es ist von der so genannten Doppler-OCT her bekannt, dass die Ableitung der Phase nach der Zeit ein Maß für die lokale Geschwindigkeitskomponente der Streuer in Richtung des Strahles ist, d.h. dcp/dt ~ v(z,t). In der Praxis berechnet man anstelle des Differential- den Differenzenquotienten Δφ/Δΐ mit einem nicht zu kleinen At, da es in der Messung zahlreiche Störquellen gibt, die ein statistischen Phasenrauschen nach sich ziehen. Wäre At zu klein, würde dieses informationslose Rauschen numerisch überbetont, d.h. das Signal-Rausch- Verhältnis wäre ungünstig. Andererseits darf At höchstens so groß sein, dass sich die optische Wegstrecke zum lokalen Streuer bei gegebener Wellenlänge (z.B. FD-OCT Weißlicht 820 ± 40 nm) und gegebener Geschwindigkeit während des Intervalls At um nicht mehr als die halbe Wellenlänge (hier z.B. 410 nm) bewegt. Anderenfalls würden sich die Phasen um mehr als π ändern, was in der Messung aber nicht erkannt werden könnte. Es käme zu entsprechenden Fehleinschätzungen der Streuergeschwindigkeiten. Somit existieren Werte tmjn und tmax, für die tmin < At < tmax gelten muss, um eine stabile Messung der Streuergeschwindigkeit am Messort aus den Phasen vornehmen zu können. Dabei hängt tmin von der konkreten Messvorrichtung, insbesondere von deren Rauschverhalten, ab, während sich tmax an der mittleren Messlichtwellenlänge und an der maximal zu erwartenden Streuergeschwindigkeit orientiert. Zur Reduktion des Messaufwandes (möglichst wenige A-Scans) wird man vorzugsweise At in der Nähe von tmax wählen.
Beispielsweise für die Messung von Gewebegeschwindigkeiten bis hin zu 100 μηι/s reicht es aus, A-Scans in Zeitabständen von At = 5 ms durchzuführen und auszuwerten. Sind höhere Geschwindigkeiten zu erwarten, sollte man At verringern.
Bei der FD-OCT-Messung aus Fig. 1 werden Streustärken, Phasen und Gewebegeschwindigkeiten zu vorbestimmten Zeitschritten gemessen, während zugleich eine Laserbestrahlung stattfindet. Der bestrahlte Bereich ist mit einem breiten Pfeil (EM) gekennzeichnet. Zum Zeitpunkt des Entstehens von Fig. 1 ist bereits für etwa 500 ms eine Laserleistung von 94 mW appliziert worden. Die mit RPE gekennzeichnete weiße Linie markiert den Verlauf der RPE-Schicht, die bekanntlich einen Großteil des Laserlichts absorbiert. Zwei vertikale weiße Linien kennzeichnen ausgewählte Tiefenprofile 10 und 20, entlang derer die Messdaten genauer in Fig. 2 gezeigt werden. Dabei liegt das Tiefenprofil 10 im Zentrum der Lasereinstrahlung, hingegen das Tiefenprofil 20 außerhalb des beleuchteten Flecks.
In Fig. 2 a) und b) sind die Streustärken für die Profile 10 und 20 dargestellt. An diesen ist praktisch kein Unterschied auszumachen, d.h. es ist schwierig, zwischen bestrahltem und nicht bestrahltem Gewebe allein anhand der Streustärken zu unterscheiden.
Die Graphiken in Fig. 2 c) und d) zeigen die aus den Phasen bestimmten, instantanen Gewebegeschwindigkeiten für die Profile 10 und 20, respektive. Die Laserbestrahlung ist an den deutlich höheren Geschwindigkeiten (bis hin zu 40 μηι/s) in Profil 10 ablesbar. Jedoch ist auch daran nicht abzulesen, in welcher Tiefe welcher Anteil der eingestrahlten Energie absorbiert wird. Das negative Vorzeichen der Geschwindigkeit besagt, dass sich das Gewebe auf die Ebene z=0 an der Retinaoberfläche zu bewegt. Es kommt der Einstrahlrichtung also entgegen, wie man dies durch die Expansion erwarten darf.
Die instantane Gewebegeschwindigkeit - berechnet durch Differenzbildung der Phasen zwischen zwei aufeinander folgenden A-Scans - ist gewöhnlich stochastisch verrauscht, enthält zudem Anteile zusätzlicher Oszillationen, wird bei lebendem Gewebe durch Eigenbewegungen beeinflusst und lässt keinen Unterschied erkennen zwischen elastischen und persistenten Effekten.
Demgegenüber ist das Zeitintegral, das im Folgenden als Verschiebungsfeld D bezeichnet wird, ein kaum verrauschter Mittelwert, wobei die Integration zugleich als Tiefpass wirkt. Das Verschiebungsfeld D ist nichts anderes als die tatsächliche Verschiebung von Streupunkten im Gewebe infolge der Absorption elektromagnetischer Strahlung als Funktion der Zeit und der Koordinate z in Einstrahlrichtung.
D(z,t) ist im Prinzip ein Vektorfeld, doch nur die Vektorkomponente in z-Richtung ist messbar. Das Zeitintegral kann zwischen beliebigen Zeitpunkten gebildet werden. Bevorzugt wird man als Integrationsanfang eine Zeit vor oder bei Einsetzen der Absorptionsbestrahlung wählen und als Integrationsende gewöhnlich eine Zeit nach dem Abschalten der Strahlungsquelle.
In Fig. 2 e) und f) sind die z-Komponenten der Verschiebungsfelder in den Profilen 10 und 20, respektive, dargestellt. Dabei zeigt sich bereits eine steile Schulter in Fig. 2 e) in einer definierten Tiefe von etwa 200 μιη unterhalb der Retinaoberfläche. Differenziert man beide Verschiebungen nach der Tiefenkoordinate z, wird der Unterschied zwischen bestrahltem und nicht bestrahltem Gewebe besonders augenfällig, wie die Graphiken Fig. 2 g) und h), respektive, zeigen. Eine senkrechte Linie markiert in allen Graphiken der Fig. 2 die Lage des Maximums aus Fig. 2 g). Zu jedem Zeitpunkt t ist der Differenzenquotient [D(z+Az,t) - D(z,t)]/Az die Abstandsänderung zweier Punkte, die sich ursprünglich im Abstand Δζ zueinander befanden. Mithin folgt für infinitesimales Δζ, dass die Ableitung dD/dz die lineare Gewebeexpansion, ε (z,t) = dD(z,t)/dz, angibt. Im Falle der rein thermoelastischen Expansion des Gewebes (reversible Expansion, keine Denaturierung o. ä.) lässt sich hieraus direkt auf die Temperaturerhöhung im Gewebe schließen.
(1) ε (z,t) = aL(T) ΔΤ
Dabei ist OCL der - im Allgemeinen auch temperaturabhängige - lineare thermische Expansionskoeffizient und ΔΤ der Temperaturanstieg. Für biologische Gewebe und auch für Wasser sind Expansionskoeffizienten bekannt. Sofern nur volumetrische Expansionskoeffizienten ccv bekannt sind, kann man sich mit der Näherung für isotrope Medien CCL ~ otv /3 behelfen.
Soweit die im Gewebe durch Absorption elektromagnetischer Strahlung deponierte Energie nicht ausreicht, eine Veränderung des Gewebes herbeizuführen, erlaubt die erfindungsgemäße Vorrichtung unmittelbar die Messung der ortsaufgelösten thermoelastischen Gewebeexpansion (oder -kontraktion) und mittelbar auch der tiefenaufgelösten Temperaturverteilung entlang einer Scanlinie in Einstrahlrichtung. Die so gewonnenen Daten stellen stets Momentaufnahmen zur Zeit t dar.
Vorteilhafterweise kann der Messlichtstrahl in an sich bekannter Weise über ein Gewebeareal abrasternd geführt werden. Dies ermöglicht das Durchführen einer Vielzahl von A-Scans auf einem vorbestimmten Raster der Gewebefläche (B-Scan, entlang x- und y- Koordinatenachsen). Es ist bekannt, die Messdaten aller A-Scans zusammenzufassen und so ein dreidimensionales Abbild des Gewebes zu erhalten.
Ein Ausführungsbeispiel für eine erfindungsgemäße Vorrichtung zur Durchführung von B- Scans ist in Fig. 3 dargestellt. Das polychromatische Messlicht entstammt einer Lichtquelle, die in der FD-OCT-Einrichtung (OCT) integriert ist. Es wird über eine Faser geführt, am Austrittsende kollimiert und auf einen periodisch schwenkbaren Ablenkspiegel (30) gelenkt. Dieser lenkt das Messlicht auf eine abbildende Optik (40), die es auf die Probenoberfläche (50) fokussiert. Der Fokus läuft über die Probe (50) während der Bewegung des Ablenkspiegels (30). Die FD-OCT-Einrichtung (OCT) umfasst zudem die Mittel zur Überlagerung des von der Probe zurück gestreuten Lichts mit einem Referenzlichtstrahl und zur Detektion des Interferenzlichts nach dem Stand der Technik. Die Messdaten der FD-OCT- Einrichtung (OCT) werden über eine in Fig. 1 angedeutete Datenleitung der Recheneinheit (CPU) zur Analyse und Aufzeichnung bereitgestellt. Die Recheneinheit (CPU) stellt beispielsweise die Messdaten für eine volle Periode der Bewegung des Ablenkspiegels (30) als B-Scan-Datensatz indiziert durch den Messort auf der Probe und die Zeit zusammen und speichert diesen nach der Fertigstellung. Sie berechnet Streustärken und Phasen aus den FD- OCT-Messdaten, bildet die Differenzen zwischen den Phasendaten aufeinander folgender B- Scans (zeitliches Differenzieren zur Berechnung der lokalen Geschwindigkeitskomponente), summiert diese Phasendifferenzen kumulativ auf (zeitliches Integrieren zur Berechnung der lokalen Verschiebungskomponente D(x,y,z,t)) und differenziert das jeweils aktualisierte Zeitintegral nach der Tiefenkoordinate. Die ebenfalls nach der Fertigstellung jedes B-Scans aktualisierte räumliche Ableitung beschreibt die lineare Expansion ε (x,y,z,t) der Probe (50) in Einstrahlrichtung als Funktion des Messortes auf der Probenoberfläche, der Tiefe in der Probe und der Zeit.
Weiterhin ist in Fig. 1 die elektromagnetische Strahlungsquelle (EM) dargestellt, deren Licht über eine eigene Faser geführt und separat auf die Probe eingestrahlt wird. Die Strahlungsquelle (EM) umfasst hier auch die Steuereinheit zur Kontrolle der Bestrahlungsparameter, die nach dem Stand der Technik gängig in baulicher Einheit mit der eigentlichen Lichtquelle vorliegt. Es ist in Fig. 1 eine Datenverbindung zwischen der Strahlungsquelle (EM) und der Recheneinheit (CPU) vorgesehen. Über diese Datenverbindung kann die Recheneinheit (CPU) die eingestellten Bestrahlungsparameter abfragen und/oder geänderte Bestrahlungsparameter vorgeben, mithin die Strahlungsquelle (EM) ansteuern. Für die von der Strahlungsquelle (EM) emittierte Strahlung sind kaum Einschränkungen vorgesehen. Sie muss in der Probe (50, hier: lebendes Gewebe) nur absorbiert werden. Das gesamte elektromagnetische Spektrum unterhalb der Röntgenstrahlung kommt in Betracht. Gepulste oder cw-Bestrahlung sind möglich, ebenso kann mono- oder polychromatisches Licht verwendet werden. Insbesondere könnte sogar die FD-OCT-Messlichtstrahlung selbst zur Erwärmung des Gewebes dienen, wenn eine hohe Intensität eingestrahlt wird. Normalerweise ist die Intensität des FD-OCT-Messlichts zu gering, um das Gewebe nennenswert zu beeinflussen.
Die Einstrahlung elektromagnetischer Energie zur Erwärmung des Gewebes durch Absorption erfolgt für gewöhnlich zielgerichtet und auf einen kleinen Bereich (Spot) begrenzt. Dies gilt insbesondere für die Lasertherapie. Das somit interessierende Areal ist üblich auf eine Umgebung um diesen Spot begrenzt. Die erfindungsgemäße Vorrichtung weist daher bevorzugt einen Scanner zur Ablenkung des FD-OCT-Messlichts auf, der einen Scanbereich mit dem Spot als Zentrum besitzt. Dies könnte konstruktiv auch dadurch befördert werden, dass der Applikator für die zu absorbierende Strahlung starr mit dem Scanner verbunden ist, dem das Messlicht über die Lichtleiterfasern zugeführt wird. Alternativ kann der Scanner auch wellenlängenselektiv ausgebildet sein und das Messlicht in den Strahlengang des Therapiestrahls eingespiegelt werden, so dass er nur den Wellenlängenbereich der Messlichtstrahlung ablenkt, während die therapeutisch wirksame Strahlung (z.B. Mikrowellen) unabgelenkt den Scanner passiert.
Der Scanner kann ein Flächen- oder ein Linienscanner sein. Vorzugsweise wird ein Linienscanner dabei das Zentrum des Spots überstreichen.
Ein Mapping der Gewebeexpansion in z-Richtung SD(x,y,z,t)/öz auf die Temperaturverteilung im lebenden Gewebe ist möglich, solange nur thermoelastische Bewegungen stattfinden. dD/dz ist eine zur Beurteilung der Gewebeexpansion ausreichende Messgröße, solange die mikromechanische Isotropie des Gewebes unterstellt werden kann. Vorteilhafterweise ist man nicht unbedingt auf die Isotropieannahme angewiesen. Da die bislang beschriebene, erfindungsgemäße Vorrichtung immer die Komponente des Verschiebungsfeldes entlang der Einstrahlrichtung misst, ist eine bevorzugte Ausgestaltung darin zu sehen, eine Mehrzahl von simultanen, nicht parallelen Messlichtstrahlen vorzusehen. Insbesondere kann man bei gleichzeitiger schräger Einstrahlung aus drei linear unabhängigen Richtungen auch drei linear unabhängige Komponenten des Verschiebungsfeldes vermessen.
Fig. 2 zeigt eine Ausgestaltung der Vorrichtung, bei der als einziger Unterschied zu Fig. 1 vorgesehen ist, dass das FD-OCT-Messlicht aus drei parallel gerichteten Fasern kollimiert austritt und auf den Ablenkspiegel trifft. Dabei sollen die drei Faserenden die Eckpunkte eines Dreiecks bilden. Licht aus jeder Faser gelangt so auf einen anderen Punkt der abbildenden Optik und wird zum Messort hin gebrochen. Effektiv werden die drei Messlichtstrahlen dann aus drei linear unabhängigen Richtungen auf jeden Messort eingestrahlt, und es bedarf dabei nur eines einzelnen Scanners, um alle Messlichtstrahlen gemeinsam über die Probe zu führen. Die unterschiedlichen Einstrahlrichtungen kann man alternativ auch durch die Verwendung dreier unterschiedlich zur Probe orientierter und so fixierter, Messlicht führender Fasern realisieren, die direkt auf die Probe einstrahlen (nicht dargestellt). Diese Strahlen stets zeitgleich über dasselbe Areal auf der Probe zu führen wäre jedoch aufwendiger. Es ist dabei nicht zwingend erforderlich, drei FD-OCT-Systeme parallel zu betreiben. Vielmehr kann man in einem festen Zeittakt das Messlicht zyklisch durch jede der drei Fasern leiten. Beispielsweise kann nach jedem abgeschlossenen B-Scan eine andere Faser aktiviert werden.
Auf die Verwendung von Fasern ist man nicht angewiesen, so dass das Vorgesagte nicht einschränkend aufgefasst werden soll. Bekanntlich kann man jeden fasergeführten optischen Aufbau auch ohne Fasern realisieren. Dies ist nur gewöhnlich unpraktisch.
Bei der FD-OCT-Messung aus drei linear unabhängigen Raumrichtungen ergeben sich einige Registrierungsschwierigkeiten, auf die an dieser Stelle hingewiesen werden soll. Zum einen erfasst man alle Messdaten a priori in einem schiefwinkligen Koordinatensystem. Zum anderen erfasst man einzelne Geschwindigkeitskomponenten stets zeitgleich entlang einer dieser Koordinatenachsen. Gewöhnlich wird man infolge der Diskretisierung der Abrasterung durch die Messlicht-Scanner nur wenige Voxel des Probenvolumens haben, für die man zwei oder gar drei Komponenten des Geschwindigkeitsfeldes direkt misst. Und selbst dann werden die verschiedenen Komponenten auch noch zu verschiedenen Zeiten bestimmt. Man müsste einigen numerischen Aufwand betreiben, um das komplette Geschwindigkeitsfeld als Funktion von Ort und Zeit durch dreidimensionale Interpolation einigermaßen genau zu bestimmen. Zur Durchführung der Erfindung ist die Aufgabe glücklicherweise einfacher, da die Zeitintegration eine Interpolation entlang der Zeitachse unnötig macht. Bei der Ortsregistrierung sind Interpolationen (der Zeitintegrale, also der Verschiebungen) hingegen angebracht, und es ist zu beachten, dass nicht für alle Voxel der Probe alle drei Komponenten des Verschiebungsfeldes überhaupt vorliegen. Außerhalb eines Schnittvolumens, das von alle drei Tiefenscans durchsetzt wird, fehlen entsprechende Messdaten. Man sollte deshalb das interessierende Schnittvolumen ausreichend groß festlegen und die nicht darin befindlichen Messdaten aus der Auswertung entfernen.
Mit der Messung aller drei Komponenten des Verschiebungsfeldes kann auch für nichtisotrope Proben die Divergenz des Verschiebungsfeldes D(x,y,z,t) berechnet werden. Sie gibt die dreidimensionale Gewebeexpansion infolge der Absorption elektromagnetischer Strahlung an.
(2) ε (x,y,z,t) = div D(x,y,z,t) = αν(Τ) ΔΤ
In der Physik hat die Divergenz eines Feldes die Bedeutung seiner Quellstärke. Sie ist invariant gegenüber Translationen des Feldes. Somit sind Eigenbewegungen des lebenden Gewebes insoweit aus der Messung eliminiert, wie sie das betrachtete Gewebe als Ganzes betreffen. Lediglich Expansionen, die beispielsweise auf Blutpuls in Kapillaren innerhalb des betrachteten Gewebes zurückgehen, werden immer noch erfasst. Sie zeichnen sich jedoch durch eine charakteristische Frequenz (ca. 1 Hz) aus und können als solche isoliert werden.
Das Zeitverhalten der Divergenz des Verschiebungsfeldes kann ebenfalls physikalisch interpretiert werden. Die nachfolgenden Aussagen gelten sowohl für die dreidimensionale als auch für die eingangs beschriebene eindimensionale Messung der Gewebeexpansion. Es wird dabei erläutert, wie der Schritt g. der zu Beginn genannten Aufgaben der Recheneinheit zu bewerkstelligen ist.
Wird ein absorbierendes Volumen mit elektromagnetischer Strahlung beaufschlagt, so steigt seine Temperatur zunächst linear an. Ein Teil der eingestrahlten Energie wird durch Wärmediffusion in die Umgebung transportiert, sobald ein ausreichend hoher Temperaturgradient vorliegt, der einen effektiven Wärmetransport ermöglicht. Der Anstieg der Temperatur am Absorptionsort lässt dadurch bei Fortsetzung der Einstrahlung nach. Mit Hilfe der Wärmeleitungstheorie lässt sich der zeitliche Temperaturverlauf an einem unveränderten Absorbervolumen genau vorhersagen, wenn man (lokal) das Absorptionsvermögen und die Wärmediffusionskonstante kennt. Umgekehrt lassen sich beide Werte aus dem Zeitverlauf der gemessenen Temperaturverteilung berechnen, wenn man sicherstellt, dass keine irreversiblen Änderungen (z.B. Phasenübergänge, Denaturierungen) am Gewebe auftreten.
Wird die elektromagnetische Strahlung in einer Dosis in das Gewebe eingestrahlt, die für das Auslösen irreversibler Gewebeänderungen sicher nicht ausreicht, dann ist die zu messende Gewebeexpansion ε = div D als Funktion der Zeit durch Anwendung von Gleichung (2) ein direktes Maß für den erzielten, tiefen- bzw. ortsaufgelösten, dynamischen Temperaturanstieg und erlaubt über ein Wärmeleitungsmodell den Rückschluss auf das tiefen- bzw. ortsaufgelöste Absorptionsvermögen sowie die Wärmediffusionskonstante.
Mit Hilfe dieser Gewebeparameter kann die Recheneinheit der erfindungsgemäßen Vorrichtung nun eine Vorhersage des Temperaturfeldes berechnen, das sich ergeben müsste, wenn die Leistung der Therapiestrahlung um ein vorbestimmtes Inkrement erhöht wird. Sie weist dann die Steuereinheit der Strahlungsquelle an, entsprechende Einstellungen zur Realisierung dieses Inkrements vorzunehmen (z.B. Intensitätssteigerung, Erhöhung der Pulsrate eines Pulslasers oder dergleichen). Nach dem Ende des folgende Scans der FD-OCT- Einrichtung erstellt die Recheneinheit ein Update von D, ε = div D und des modellierten Temperaturfeldes und vergleicht letzteres mit der Vorhersage. Liegen die Unterschiede zwischen ermittelter und vorhergesagter Temperaturverteilung innerhalb tolerabler Grenzen (bedingt durch Messunsicherheiten), so wird auf Basis der aktuellen Messung die nächste Vorhersage erstellt und der Steuereinrichtung ein weiterer Inkrement-Befehl erteilt. Zeigen sich hingegen Unterschiede in einem Ausmaß, das sich nicht mehr durch Messunsicherheiten erklären lässt, so ist davon auszugehen, dass im Gewebe zusätzliche Expansionen oder Kontraktionen durch Gewebeänderungen stattgefunden haben, insbesondere kommen hierfür Protein-Denaturierungen in Betracht. Zudem ändert das Gewebe dann lokal seine optischen Eigenschaften, insbesondere Streu- und Absorptionsvermögen, so dass das Einsetzen solcher Umwandlungen zu deutlichen Abweichungen von der - allein auf Wärmeleitung im inerten Medium basierenden - Vorhersage führen muss.
Das Auftreten solcher Abweichungen kann zum Anlass genommen werden, die Therapiebestrahlung abzubrechen. Die Recheneinheit hat dabei nicht nur ein physikalisch - und nicht nur empirisch - begründetes Abbruchkriterium zur Verfügung, sondern überdies auch eine Momentaufnahme der Gewebeexpansion zum Zeitpunkt des Einsetzens der Gewebeänderung, die vorzugsweise sofort abgespeichert wird. Damit ist auch im Nachhinein noch eine genaue Analyse der erzielten Gewebeschäden möglich.
Für die Zwecke der Dosimetriekontrolle ist es ratsam, die therapeutische Strahlungsquelle zu Beginn der Bestrahlung auf Parameter einzustellen, die gewiss keine Schäden im Gewebe hervorrufen können. Erst wenn die Recheneinheit nach einer Startphase ausreichende Daten für eine stabile Temperaturmodellierung zur Verfügung hat, ist es sinnvoll, die therapeutisch wirksame Strahlungsdosis schrittweise zu steigern. Das vorgenannte Inkrement soll also auch ausdrücklich den Fall gleich bleibender Bestrahlungsparameter im nächsten Zeitschritt einschließen. Das Inkrement der Leistung der Therapiestrahlung ist also größer oder gleich Null.
Die Realisierung bzw. Aktivierung der Dosimetriekontrolle wie zuvor beschrieben ist optional. Die erfindungsgemäße Vorrichtung kann auch lediglich dazu verwendet werden, die zuvor genannten Gewebeparameter zu vermessen oder zu kartieren. Die Vorrichtung ist somit ein Therapie- und ein Diagnosegerät. Die elektromagnetische Strahlungsquelle, deren Strahlung im lebenden Gewebe zum Zwecke der lokalen Erwärmung absorbiert wird, ist in beiden Anwendungen erforderlich, um die Energiedeponierung präzise zu steuern. Es ist ein wichtiger Aspekt der Erfindung, dass diese Energiedeponierung direkt in das vom FD-OCT- Scan überwachte Gebiet erfolgt.
Zum Abschluss soll noch auf eine Erweiterungsmöglichkeit der Erfindung hingewiesen werden. Diese betrifft den Fall der dreidimensionalen FD-OCT-Messung, wenn also alle drei Komponenten des Vektorfeldes D(x,y,z,t) ermittelt werden. Wie bereits besprochen, wird diese Möglichkeit aufgrund der Registrierungsprobleme erfordern, dass man B-Scans vornimmt, um ein vorbestimmtes Schnittvolumen mit Tiefenscans zu durchsetzen. Man verfügt somit über ein vektorwertiges Datenfeld über einem dreidimensionalen Volumen. Dies ermöglicht die Berechnung der Rotation von D in diesem Volumen, also der Wirbelstärke des Verschiebungsfeldes.
Wirbel im Verschiebungsfeld D entsprechen lokalen Verdrehungen des Gewebes, wenn dieses unter Einwirkung der elektromagnetischen Strahlung expandiert. Solche Verdrehungen sind immer dann zu erwarten, wenn das Absorptionsvermögen des Gewebes lokal stark variiert und die Erwärmung benachbarter Bereiche unterschiedlich schnell erfolgt bei ansonsten gleicher Strahlungsleistung. Man wird insbesondere mit Wirbeln parallel zur Gewebeoberfläche rechnen können.
Das Bestimmen von rot D stellt insbesondere für kurzzeitige Strahlungsexpositionen, bei denen Wärmediffusion noch keine Rolle spielt und div D ~ ΔΤ ~ t noch eine gute Näherung ist, eine Möglichkeit dar, das ortsaufgelöste Absorptionsvermögen des Gewebes (das z.B. in der Retina lateral variabel ist) zu untersuchen, wenn man mechanische Parameter wie Elastizitätsmodul oder Schermodul z.B. aus ex vivo Messungen kennt oder übertragen kann. Setzt man hingegen das Absorptionsvermögen als gegeben voraus (beispielsweise aus der weiter oben beschriebenen Beobachtung des Zeitverhaltens der Temperatur), so kann man in vivo Messungen eben dieser mikromechanischen Parameter dort vornehmen, wo starke Unterschiede in der Absorption dies gestatten. Zusammenfassend lehrt die vorliegende Erfindung, Phaseninformationen eines FD-OCT- Systems aus einem Messgebiet in einem lebenden Gewebe, das während der Messung durch Absorption elektromagnetischer Strahlung lokal erwärmt wird, in lokale und instantane Gewebegeschwindigkeiten zu übersetzen, diese dann zeitlich zu integrieren, um ein Verschiebungsfeld zu berechnen, welches seinerseits danach räumlich zu differenzieren ist, um eine Observable - insbesondere die Gewebeexpansion oder die lokale Gewebeverdrehung - zu erhalten. Die erfindungswesentlichen Schritte sind nur rechnergestützt in der erforderlichen Geschwindigkeit durchführbar und somit notwendig in eine Vorrichtung zu integrieren.
Die Messung der Observablen erfolgt kontaktlos rein optisch. Die Observable ist frei von Translationen durch Eigenbewegungen der lebenden Probe im Messgebiet. Mit den Mitteln der Erfindung kann die Observable ortsaufgelöst und als Funktion der Zeit aufgezeichnet werden. Die Observable besitzt ein physikalisch interpretierbares Zeitverhalten, welches die Anwendung theoretischer Konzepte und Modelle, insbesondere der Wärmeleitungstheorie, erlaubt, um Voraussagen über ihre Zeitentwicklung unter bestimmten Annahmen zu treffen. Das Eintreten dieser Voraussagen kann überwacht werden, und signifikante Abweichungen von den Voraussagen weisen auf eine Verletzung der getroffenen Annahmen hin. Ist dies der Fall, so kann die Bestrahlung des Gewebes deaktiviert werden. Die Dosimetriekontrolle der erfindungsgemäßen Vorrichtung basiert somit auf der Überwachung der Vorhersagbarkeit der durch die Therapiestrahlung verursachten Effekte.
Ist eine Dosimetriekontrolle der zu absorbierenden Strahlung nicht gewünscht oder nicht erforderlich, weil die Strahlungsdosis für Gewebeschäden ohnehin zu gering gewählt wird, so ist besagte Observable überdies geeignet, physikalische Gewebeparameter wie Absorptionsvermögen, Wärmeleitwert oder Schermodul in vivo und in Echtzeit zu ermitteln.

Claims

ANSPRÜCHE
1. Vorrichtung zur Untersuchung oder zur Therapie lebenden Gewebes mittels lokaler Erwärmung des Gewebes durch Absorption elektromagnetischer Strahlung, mit
- wenigstens einer elektromagnetische Strahlung abgebenden Strahlungsquelle,
- einer Steuereinheit zur Steuerung der Bestrahlungsparameter der Strahlungsquelle und
- wenigstens einer FD-OCT-Einrichtung mit einer ein Messlicht abgebenden Lichtquelle zur Beleuchtung desjenigen Gewebebereichs, in dem die elektromagnetische Strahlung vom Gewebe absorbiert wird, gekennzeichnet durch eine Recheneinheit zum Ausführen der Schritte:
- Ermitteln der an einem vorbestimmten Messort des Gewebes in Einstrahlrichtung des Messlichts tiefenaufgelösten Gewebegeschwindigkeit' aus der Phaseninformation des FD-OCT-Interferenzlichts,
- zeitliches Integrieren der ermittelten Gewebegeschwindigkeit,
- räumliches Differenzieren des berechneten Zeitintegrals, und
- Anzeigen der räumlichen Ableitung als Funktion von Ort und Zeit und/oder Zuführen der räumlichen Ableitung als Funktion von Ort und Zeit zu einem Bewertungsmodul und/oder Zuführen der räumlichen Ableitung als Funktion von Ort und Zeit zur Steuereinheit.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Recheneinheit als Zeitintegral ein eindimensionales Verschiebungsfeld des Gewebes und als Ableitung dieses Verschiebungsfeldes nach der Koordinate der Einstrahlrichtung des Messlichts die lineare Gewebeexpansion berechnet.
3. Vorrichtung nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine steuerbare Ablenkvorrichtung für das FD-OCT-Messlicht zum Überstreichen des Messlichtstrahls über jenen Bereich des Gewebes, der den Ort der maximalen Erwärmung durch die Strahlungsquelle umgibt.
4. Vorrichtung nach einem der vorangehenden Ansprüche, gekennzeichnet durch optische Mittel zur Einstrahlung des FD-OCT-Messlicht aus wenigstens drei linear unabhängigen Richtungen auf das Gewebe.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Recheneinheit als Zeitintegral ein dreidimensionales Verschiebungsfeld des Gewebes und als Divergenz dieses Verschiebungsfeldes die volumetrische Gewebeexpansion berechnet.
6. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Recheneinheit als Zeitintegral ein dreidimensionales Verschiebungsfeld des Gewebes und als Rotation dieses Verschiebungsfeldes die lokale Gewebeverdrehung berechnet.
7. Vorrichtung nach einem der Ansprüche 2 oder 5, dadurch gekennzeichnet, dass die Recheneinheit gespeicherte thermische Expansionskoeffizienten des Gewebes enthält und aus der Gewebeexpansion eine Temperaturverteilung berechnet.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Recheneinheit gespeicherte Absorptionskoeffizienten und Wärmeleitwerte des Gewebes enthält und aus einer in einem Zeitschritt vorliegenden Temperaturverteilung bei vorgegebenen Bestrahlungsparametern wenigstens die im nächsten Zeitschritt zu erwartende Temperaturverteilung berechnet.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Recheneinheit die Steuereinheit der Strahlungsquelle ansteuert und die Änderung der Bestrahlungsparameter in Abhängigkeit von der Abweichung zwischen gemessener und erwarteter Temperaturverteilung veranlasst.
EP11733780.8A 2010-04-28 2011-04-16 Vorrichtung mit oct-system zur untersuchung und behandlung lebenden gewebes unter erwärmung durch absorption elektromagnetischer strahlung Active EP2563208B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010018679A DE102010018679A1 (de) 2010-04-28 2010-04-28 Vorrichtung mit OCT-System zur Untersuchung und Behandlung lebenden Gewebes unter Erwärmung durch Absorption elektromagnetischer Strahlung
PCT/DE2011/000419 WO2011134454A1 (de) 2010-04-28 2011-04-16 Vorrichtung mit oct-system zur untersuchung und behandlung lebenden gewebes unter erwärmung durch absorption elektromagnetischer strahlung

Publications (2)

Publication Number Publication Date
EP2563208A1 true EP2563208A1 (de) 2013-03-06
EP2563208B1 EP2563208B1 (de) 2015-01-07

Family

ID=44483896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11733780.8A Active EP2563208B1 (de) 2010-04-28 2011-04-16 Vorrichtung mit oct-system zur untersuchung und behandlung lebenden gewebes unter erwärmung durch absorption elektromagnetischer strahlung

Country Status (6)

Country Link
US (1) US8774904B2 (de)
EP (1) EP2563208B1 (de)
JP (1) JP5815673B2 (de)
KR (1) KR101825610B1 (de)
DE (1) DE102010018679A1 (de)
WO (1) WO2011134454A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3003177B1 (de) 2013-05-31 2021-03-10 Covidien LP Chirurgische vorrichtung mit einer endeffektorbaugruppe zur gewebeüberwachung bei chirurgischen eingriffen
US10420608B2 (en) 2014-05-20 2019-09-24 Verily Life Sciences Llc System for laser ablation surgery
JP6798095B2 (ja) * 2014-12-02 2020-12-09 株式会社ニデック 光コヒーレンストモグラフィ装置、及びそれに用いる制御プログラム
CN107669245A (zh) * 2017-11-10 2018-02-09 西安飞秒光纤技术有限公司 一种多功能阵列光学相干断层成像探头
DE102021201080B3 (de) 2021-02-05 2022-04-07 Medizinisches Laserzentrum Lübeck GmbH Lasertherapievorrichtung zur Therapie eines lebenden Gewebes
EP4046684B1 (de) * 2021-02-23 2023-08-23 Medizinisches Laserzentrum Lübeck GmbH Vorrichtung zum behandeln von biologischem gewebe

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4309056B4 (de) 1993-03-20 2006-05-24 Häusler, Gerd, Prof. Dr. Verfahren und Vorrichtung zur Ermittlung der Entfernung und Streuintensität von streuenden Punkten
EP0697611B9 (de) * 1994-08-18 2003-01-22 Carl Zeiss Mit optischer Kohärenz-Tomographie gesteuerter chirurgischer Apparat
US6540391B2 (en) 2000-04-27 2003-04-01 Iridex Corporation Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation
JP2002113017A (ja) * 2000-10-05 2002-04-16 Fuji Photo Film Co Ltd レーザ治療装置
DE10135944C2 (de) 2001-07-24 2003-10-02 Med Laserzentrum Luebeck Gmbh Verfahren und Vorrichtung zur nichtinvasiven Bestimmung der Temperatur an mit einer Strahlung, insbesondere Laserstrahlung behandeltem biologischem Gewebe
JP4190325B2 (ja) * 2003-03-24 2008-12-03 株式会社トプコン 固体レーザ装置及び固体レーザ装置によるレーザ照射方法
US7359062B2 (en) * 2003-12-09 2008-04-15 The Regents Of The University Of California High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
US20070121120A1 (en) 2005-11-16 2007-05-31 Schachar Ronald A Apparatus and method for measuring scleral curvature and velocity of tissues of the eye
ES2527669T3 (es) * 2006-11-10 2015-01-28 Topcon Medical Laser Systems, Inc. Sistema para determinar la dosimetría en fotomedicina oftálmica
BRPI0810177A2 (pt) * 2007-04-10 2014-12-30 Univ Southern California Métodos e sistemas para medição de fluxo sanguíneo usando tomografia de coerência doppler
WO2009033107A2 (en) * 2007-09-06 2009-03-12 Lensx Lasers, Inc. Photodisruptive treatment of crystalline lens
JP2011502585A (ja) * 2007-11-02 2011-01-27 アルコン レンゼックス, インコーポレーテッド 術後の眼の光学的性能を改善するための方法および装置
US8452383B2 (en) * 2008-02-29 2013-05-28 Tomophase Corporation Temperature profile mapping and guided thermotherapy
WO2010105197A2 (en) * 2009-03-12 2010-09-16 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measuring at least one mechanical property of tissue using coherent speckle techniques(s)
US8285368B2 (en) * 2009-07-10 2012-10-09 The Regents Of The University Of California Endoscopic long range fourier domain optical coherence tomography (LR-FD-OCT)
ES2660570T3 (es) * 2009-09-23 2018-03-23 Lightlab Imaging, Inc. Sistemas, aparatos y métodos de recopilación de datos de medición de resistencia vascular y morfología luminal
US8478384B2 (en) * 2010-01-19 2013-07-02 Lightlab Imaging, Inc. Intravascular optical coherence tomography system with pressure monitoring interface and accessories
US8433393B2 (en) * 2011-07-07 2013-04-30 Carl Zeiss Meditec, Inc. Inter-frame complex OCT data analysis techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011134454A1 *

Also Published As

Publication number Publication date
KR20130120365A (ko) 2013-11-04
US8774904B2 (en) 2014-07-08
KR101825610B1 (ko) 2018-02-05
JP5815673B2 (ja) 2015-11-17
JP2013524956A (ja) 2013-06-20
WO2011134454A1 (de) 2011-11-03
EP2563208B1 (de) 2015-01-07
DE102010018679A1 (de) 2011-11-03
US20130102894A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
EP2563208B1 (de) Vorrichtung mit oct-system zur untersuchung und behandlung lebenden gewebes unter erwärmung durch absorption elektromagnetischer strahlung
DE102014108424B3 (de) Nicht-invasive Stoffanalyse
EP2107884B2 (de) Verfahren und gerät zur netzhautdiagnostik
EP0876596B1 (de) Verfahren und vorrichtung zur bestimmung eines analyten in einer streuenden matrix
EP1909639B1 (de) Verfahren zur in vivo gewebeklassifizierung
DE10135944C2 (de) Verfahren und Vorrichtung zur nichtinvasiven Bestimmung der Temperatur an mit einer Strahlung, insbesondere Laserstrahlung behandeltem biologischem Gewebe
DE69712255T2 (de) Verfahren und Vorrichtung zur Messung der Glukosekonzentration
EP0772768B1 (de) Apparat und methode zur optischen charakterisierung von struktur und zusammensetzung einer streuenden probe
EP2774530B1 (de) Verfahren zur photoakustischen Tomographie
WO2014032773A1 (de) System und verfahren zur optischen kohärenztomographie sowie positionierelement
DE102010012810A1 (de) Vorrichtung und Verfahren zur Steuerung einer Lasertherapie des Auges
DE10301416B3 (de) Verfahren und Vorrichtung zur kontaktlosen Temperaturüberwachung und -regelung
DE102015009641A1 (de) Verfahren zur Klassifizierung der Katarakt eines Auges
WO2012136340A1 (de) Verfahren und system zur optischen kohärenztomographie
WO1994013194A1 (de) Vorrichtung und verfahren zur optischen, ortsauflösenden bestimmung von dichteverteilungen in biologischem gewebe
EP2709577B1 (de) Gerät zur untersuchung oder bearbeitung eines humanen auges
DE102010032138A1 (de) OCT-basiertes, ophthalmologisches Messsytem
DE102006047476A1 (de) Verfahren und Anordnung zum Abbilden eines Objekts mit Licht und Scherkräften
DE102008039643A1 (de) Verfahren und Vorrichtung zur interferometrischen Messung dreidimensionaler biometrischer Merkmale in Haut
EP2226003B1 (de) Medizintechnische Bildregistrierung mittels optischer Kohärenztomographie
WO2011138036A1 (de) Anordnung und verfahren zur interferometrie
EP1014849A1 (de) Verfahren zur bewertung einer infolge einer lokalen durchstrahlung eines lebewesens erhaltenen streulichtverteilung durch kennwert-ermittlung
WO2009124569A1 (de) Optisches kohärenztomographiesystem und optisches kohärenztomographieverfahren
WO2007137848A1 (de) Vorrichtung und verfahren zur darstellung der inneren struktur eines körpers mittels laser induzierter ultraschall-diagnose
DE102015101026B4 (de) Kraftrückkopplungssystem für ein medizinisches Instrument

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 705113

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011005561

Country of ref document: DE

Effective date: 20150226

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150407

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150407

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150507

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011005561

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150416

26N No opposition filed

Effective date: 20151008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110416

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 705113

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160416

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230403

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240425

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240425

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 14