EP2556309B1 - Passive phase change cooling device - Google Patents

Passive phase change cooling device Download PDF

Info

Publication number
EP2556309B1
EP2556309B1 EP11730998.9A EP11730998A EP2556309B1 EP 2556309 B1 EP2556309 B1 EP 2556309B1 EP 11730998 A EP11730998 A EP 11730998A EP 2556309 B1 EP2556309 B1 EP 2556309B1
Authority
EP
European Patent Office
Prior art keywords
tube
gas
pressure
reservoir
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11730998.9A
Other languages
German (de)
French (fr)
Other versions
EP2556309A1 (en
Inventor
Jean-Marc Duval
Ivan Charles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2556309A1 publication Critical patent/EP2556309A1/en
Application granted granted Critical
Publication of EP2556309B1 publication Critical patent/EP2556309B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Definitions

  • the invention relates to a cooling device comprising a cooling tube and a pressure oscillator connected to a first end of the cooling tube for generating a pressure oscillation and a displacement of a cycle gas contained in the cooling tube.
  • the device also comprises means for phase-shifting the pressure oscillation with respect to the displacement of the cycle gas connected to a second end of the cooling tube.
  • the figure 1 represents, schematically, a conventional Stirling type cryogenics device.
  • the device 1 comprises a tube 2 containing a compressible gas 3.
  • the device also comprises a piston 4 at one end of the tube and heat exchangers 5a and 5b which are traversed by the gas.
  • the exchanger 5a is placed near the piston 4 while the exchanger 5b is disposed at the other end of the tube 2.
  • a mobile thermal regenerator 6 is disposed between the heat exchangers 5a and 5b.
  • the figure 2 represents schematically the operating steps of the cooling device of the figure 1 .
  • the gas undergoes alternating pressure variations. These pressure variations are coupled to displacements of the regenerator in the tube.
  • the operation can be divided into four phases (AD) based on the Stirling continuous cycle.
  • the regenerator 6 is positioned near the exchanger 5b leaving a space, occupied by the gas 3, near the exchanger 5a.
  • a first compression phase A the piston 4 is moved to the heat exchanger 5a to compress the gas 3.
  • the gas is heated and part of the heat is transferred to the heat exchanger 5a.
  • phase B transfer the regenerator 6 is moved to the exchanger 5a.
  • a quantity of gas 3 passes through the regenerator 6 while cooling to occupy a volume located this time near the exchanger 5b.
  • phase C expansion the piston 4 away from the exchanger 5a.
  • the gas 3 relaxes and cools further. The gas thus produces the cooling effect.
  • regenerator 6 During a last transfer phase D, the regenerator 6 returns to its initial position near the exchanger 5b. A quantity of gas 3 passes through the regenerator 6 again while heating up.
  • the piston 4 acts as a source of pressure oscillations while the regenerator 6 acts as a thermal sponge by taking or supplying thermal energy to the gas passing therethrough. It also acts as a thermal insulator between the hot side of the tube 2 at the heat exchanger 5a and the cold side of the tube at the heat exchanger 5b.
  • cryogenic devices operating according to this principle depends in particular on the phase difference between the displacement of the regenerator and the pressure wave of the gas.
  • this phase shift is mechanically ensured by the displacement of the regenerator 6, which is approximately in quadrature phase with respect to the displacement of the piston 4.
  • the device of the figure 1 has a good efficiency but a complex architecture, in particular because of the presence of a cold moving part, constituted by the regenerator 6. Due to this complexity and vibration induced by the mobile regenerator, the Stirling type cooling device does not can be used in some space or aeronautical applications.
  • the figure 3 represents a cooling device having a reduced number of moving parts.
  • This type of device is commonly referred to as a pulsed gas tube or a pulsed tube.
  • the phase shift between the displacement wave and the gas pressure wave is achieved passively by means of an inerting tube and a gas tank.
  • the regenerator is fixed.
  • This cooling device generally comprises a pressure oscillator 7 for compressing and displacing the cycle gas in the tube 2.
  • the tube 2, shown in U at the figure 3 comprises a portion formed by the regenerator 6 and a portion formed by an expansion tube 8.
  • a heat exchanger 5b is placed between the regenerator 6 and the expansion tube 8 to interface with the environment to be cooled.
  • the oscillator 7 is connected to one end of the tube 2 on the regenerator 6 side while a phase shift system 9 is connected to the other end of the tube 2, on the side of the expansion tube 8.
  • the phase shift system 9 allows to adjust the variations of flow and pressure of the cycle gas and conventionally comprises an inerting tube 10 and a gas tank 11.
  • Heat exchangers 5a and 5c are disposed at the hot ends of the tube 2, respectively interfaces with the pressure oscillator 7 and with the phase shift system 9.
  • the assembly comprising the regenerator 6, the expansion tube 8 and the phase shift system 9 may be called "cold finger" of the cooling device.
  • the operating cycle of such a device is close to the Stirling cycle described in connection with the figure 2 .
  • the pulsed gas tube is different from the device of the figure 1 by the immobility of the regenerator 6 and therefore the absence of moving parts in the cold part, thus reducing the vibrations.
  • the reliability of the device is then increased and the integration facilitated.
  • a passive component formed by the expansion tube 8 and the phase shift system 9 is used. Part of the gas present in the expansion tube 8 acts as a virtual piston which transmits the work of the cold zone (exchanger 5b) to the phase shift system 9.
  • the expansion tube 8 thermally isolates the "cold" heat exchanger 5b from the heat exchanger 5c "hot".
  • the phase shift system 9 communicates with the expansion tube 8 and provides resistance to the displacement of the cycle gas. It creates the required phase shift between the pressure swing and the inlet gas flow of the inerting tube 10.
  • the inerting tube is sometimes called a "capillary tube” for its geometric characteristics, preferably fine and elongated.
  • the phase difference obtained varies as a function of the losses of charge, at the inlet and along the tube 10, and of the physical parameters of the gas used. It also depends on the frequency, the average pressure and the pressure oscillation at the inlet of the tube 10, the side of the exchanger 5c.
  • the figure 4 represents the phase and amplitude of the inlet gas flow of the inertance tube for a given pressure wave and for different geometries of the inertance tube.
  • the diameter of the tube varies from 1 to 3 mm and its length is between 500 and 3000 mm. It can be noted that the area of low flows and high phases, shown in dashed lines, is inaccessible whatever the geometry of the inertance tube used. Thus, one can not play on the geometrical parameters to improve the performances of phase shift and amplitude of the flow of the tube of inertance.
  • the document US5689959 describes a pulsed gas tube according to the preamble of claim 1 comprising a compressor, a regenerator, an expansion tube, a control valve and a tank, all connected in series.
  • the reservoir and the valve constitute phase shift means.
  • the expansion tube comprises a movable spherical or cylindrical element for separating the active gas from the hot side and the active gas from the cold side of the expansion tube.
  • the invention aims a compact cooling device and simple to achieve while having good cooling performance.
  • the invention relates to a cooling device for obtaining an optimal phase shift passively.
  • the figure 5 represents a cooling device, of the pulsed gas tube type, having a compact and optimized phase shift system.
  • This device comprises, like the pulsed tube of the figure 3 a cooling tube 2 containing a cycle gas and a pressure oscillator 7 connected to a first end of the tube 2.
  • the cycle gas is preferably selected from helium, neon, argon, nitrogen and carbon dioxide. Helium is particularly used because it allows to reach very low temperatures, between 4 K and 80 K approximately.
  • the pressure oscillator 7 generates a pressure wave, preferably sinusoidal, for compressing and moving the cycle gas in the tube 2.
  • a phase shift system 9 between the pressure oscillation and the displacement of the gas is connected to a second end of the tube 2.
  • the cooling tube preferably comprises a regenerator 6, on the side of the first end, and an expansion tube 8, on the side of the second end.
  • Heat exchangers 5a and 5c are respectively disposed at the first and second ends of the tube 2 and define the hot parts of the tube 2. These parts are generally at ambient temperature, as are the phase shift system 9 and the pressure oscillator 7.
  • a heat exchanger 5b is disposed in the tube 2 between the regenerator 6 and the expansion tube 8. It forms the cold zone of the device intended to be brought into contact with a system to be cooled, for example an infrared detector.
  • the phase shift system 9 comprises an inerting tube 10 connecting the second end of the cooling tube 2 to a gas tank 11.
  • Inerting tube preferably has a diameter of between 0.5 mm and 5 mm and a length of between 500 mm and 5000 mm.
  • phase shift can be improved by modifying the properties of the fluid, in particular the density to viscosity ratio.
  • the device of the figure 5 proposes to extend the possibilities of phase shift and amplitude of flow ( Fig.4 ) of the inerting tube 10 using a phase shift fluid different from the cycle gas.
  • the fluid used for the phase shift is separated from the cycle gas by a sealed pressure transmission element 13.
  • the pressure transmission element 13 also allows the transfer of the compression and expansion work of the cycle gas to the phase shift fluid. It is a passive component that induces little vibration, preferably a membrane that deforms under the action of gas.
  • the membrane 13 is preferably of metal or polymer.
  • a polymer membrane provides greater elasticity. The deformations tolerated by a polymer membrane, which define the volume swept by the membrane in operation, will be greater than in the case of a metal membrane for a given diameter. The polymer membrane will be more compact than a metal membrane for the same volume swept.
  • an elastomeric membrane 40 mm in diameter and 1 mm thick allows a deformation (arrow) of 4.5 mm for a swept volume of 3.8 cm 3 .
  • a metal membrane for example aluminum, 60 mm in diameter and 0.1 mm thick will have a displacement of about 2 mm for a swept volume of 3.8 cm 3 . The metal membrane will have better durability while the elastomeric membrane will be easier to implement.
  • the phase shift can be improved by increasing the ratio of the density to the viscosity of the fluid.
  • the phase shift fluid has a density greater than that of the cycle gas or a viscosity lower than that of the cycle gas or the two combined.
  • the ratio of the density to the viscosity of the fluid is preferably greater than twice that of the cycle gas and less than 15 times that of the cycle gas.
  • the phase shift fluid is preferably selected from nitrogen, argon, neon and air.
  • nitrogen, air or argon the ratio of density to viscosity is about 10 times that of helium.
  • neon the ratio is about 3.6 times higher than that of helium.
  • the device preferably comprises means for regulating the average position of the membrane 13, by balancing the average pressures on either side of the membrane.
  • the figure 6 represents an exemplary embodiment of regulation means.
  • a first pressure sensor 14a is placed on one side of the membrane 13, for example in the tank 11 separated from the membrane by the inertance tube 10.
  • a second sensor 14b is placed on the other side of the membrane 13 in the cooling tube 2, between the exchanger 5c and the membrane 13 for example.
  • the means for regulating the average position of the membrane 13 comprise a device 15 for heating the tank 11.
  • the gas tank is heated as a function of the difference in average pressures on either side of the membrane 13. That is, between the reservoir 11 and the cooling tube 2. In this manner, the average pressure in the phase shift system varies to maintain the diaphragm 13 about a centered position.
  • the filling of the tank is done in such a way that the tank is at a pressure lower than the nominal pressure in the absence of heating.
  • the pressure sensors 14a and 14b are replaced by a displacement sensor of the membrane, for example a sensor of the inductive, capacitive, laser or strain gage type. Such a sensor is connected to the heater 15.
  • the figure 7 represents a preferred embodiment of a cooling device.
  • the device comprises, in addition to the elements of the device of the figure 5 a second sealed pressure transmission element 16, or membrane, between the inerting tube 10 and the tank 11.
  • the tube 10 can then be filled with a separate phase shift fluid and separated from the gas contained in the tank 11.
  • the phase shift fluid is preferably incompressible.
  • a liquid may be used for the phase shift in the tube 10 while the reservoir is filled with a compressible gas, preferably identical to the cycle gas.
  • a liquid in the inertance tube 10 further increases the possibilities of phase shift. Indeed, thanks to the incompressible nature of the liquids, storage phenomena in the tube 10 are removed.
  • a liquid has, in addition, a high density and allows a simpler implementation.
  • the device further comprises a device for balancing the average gas pressures acting on the membranes 13 and 16, ie the average pressures of the reservoir 11 and the cooling tube 2. Thanks to this equilibration, the liquid between the membranes 13 and 16 is in a central position when the device is off and in the middle centered position when in operation.
  • the figure 8 represents an exemplary embodiment of this balancing device.
  • the device comprises a connecting tube 18 which connects the end of the tube 2 from the side of the expansion tube 8 to the tank 11. The two volumes of gas are then connected and the average pressures equalize.
  • the connection tube 18 has a high pressure drop so that the alternating flow rate in this tube 18 is negligible (two orders of magnitude) in front of the reciprocating flow rate of the inerting tube 10. Then, the operation of the cooling device is not altered.
  • a balancing device comprising pressure sensors and a heating device, such as that described in connection with the figure 6 , is also possible in the case of two membranes.
  • the pressure swing has, in a conventional manner, an amplitude of 1 bar and a frequency of 50 Hz.
  • An inert tube filled with conventional cycle gas measures, for example, 2 mm in diameter and 2000 mm in length.
  • the inertance tube then offers a flow rate of 0.25 g / s and a phase shift (or phase) of 25 °.
  • the inertance tube makes it possible to obtain an identical flow rate with a greater phase shift, of the order of 60 °.
  • the inerting tube then has a diameter of about 1 mm and a length of about 1700 mm.
  • the inertance tube Using two membranes and water as a phase shift fluid, it is possible to obtain a similar flow rate of 0.2 g / s, with an even greater phase shift, of the order of 75 °.
  • the dimensions of the inertance tube are then a diameter of 2.0 mm and a length of about 1600 mm.
  • phase shift between the pressure and the displacement of the cycle gas is optimized by the choice of a phase shift fluid associated with a geometry of the inertance tube.
  • An adjustable valve can be used to experimentally adjust the pressure drops and thus the phase shift and the amplitude of the flow. In the long term, it can be replaced by a calibrated orifice. It can be placed between the first membrane and the pulsed tube or between the second membrane and the buffer volume formed by the reservoir. Such a circuit will also provide energy dissipation at the second end of the cooling tube.
  • cooling device may include an additional asymmetric recirculation circuit for adjusting the flow rate at the hot end of the pulsed tube.
  • This circuit preferably connects the first end of the cooling tube, on the side of the pressure oscillator, to the second end of the tube before the first membrane.
  • This circuit may be formed by a nonreturn valve associated with a pressure drop, for example a needle valve, an orifice or another capillary tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Description

Domaine technique de l'inventionTechnical field of the invention

L'invention est relative à un dispositif de refroidissement comprenant un tube de refroidissement et un oscillateur de pression relié à une première extrémité du tube de refroidissement pour générer une oscillation de pression et un déplacement d'un gaz de cycle contenu dans le tube de refroidissement. Le dispositif comprend également des moyens de déphasage de l'oscillation de pression par rapport au déplacement du gaz de cycle reliés à une seconde extrémité du tube de refroidissement.The invention relates to a cooling device comprising a cooling tube and a pressure oscillator connected to a first end of the cooling tube for generating a pressure oscillation and a displacement of a cycle gas contained in the cooling tube. . The device also comprises means for phase-shifting the pressure oscillation with respect to the displacement of the cycle gas connected to a second end of the cooling tube.

État de la techniqueState of the art

La figure 1 représente, de manière schématique, un dispositif classique de cryogénie de type Stirling. Le dispositif 1 comprend un tube 2 renfermant un gaz compressible 3. Le dispositif comprend également un piston 4 à une extrémité du tube et des échangeurs thermiques 5a et 5b qui sont traversés par le gaz. L'échangeur 5a est placé à proximité du piston 4 tandis que l'échangeur 5b est disposé à l'autre extrémité du tube 2. Un régénérateur thermique mobile 6 est disposé entre les échangeurs thermiques 5a et 5b.The figure 1 represents, schematically, a conventional Stirling type cryogenics device. The device 1 comprises a tube 2 containing a compressible gas 3. The device also comprises a piston 4 at one end of the tube and heat exchangers 5a and 5b which are traversed by the gas. The exchanger 5a is placed near the piston 4 while the exchanger 5b is disposed at the other end of the tube 2. A mobile thermal regenerator 6 is disposed between the heat exchangers 5a and 5b.

La figure 2 représente, de manière schématique, des étapes de fonctionnement du dispositif de refroidissement de la figure 1. Le gaz subit des variations de pression de manière alternative. Ces variations de pression sont couplées à des déplacements du régénérateur dans le tube. Le fonctionnement peut être découpé en quatre phases (A-D) basées sur le cycle continu de Stirling.The figure 2 represents schematically the operating steps of the cooling device of the figure 1 . The gas undergoes alternating pressure variations. These pressure variations are coupled to displacements of the regenerator in the tube. The operation can be divided into four phases (AD) based on the Stirling continuous cycle.

En début de cycle, le régénérateur 6 est positionné près de l'échangeur 5b laissant un espace, occupé par le gaz 3, près de l'échangeur 5a.At the beginning of the cycle, the regenerator 6 is positioned near the exchanger 5b leaving a space, occupied by the gas 3, near the exchanger 5a.

Lors d'une première phase A de compression, le piston 4 est déplacé vers l'échangeur thermique 5a pour compresser le gaz 3. Le gaz s'échauffe et une partie de la chaleur est transférée à l'échangeur thermique 5a.During a first compression phase A, the piston 4 is moved to the heat exchanger 5a to compress the gas 3. The gas is heated and part of the heat is transferred to the heat exchanger 5a.

En phase B de transfert, le régénérateur 6 est déplacé vers l'échangeur 5a. Une quantité de gaz 3 traverse le régénérateur 6 en se refroidissant pour occuper un volume situé cette fois près de l'échangeur 5b.In phase B transfer, the regenerator 6 is moved to the exchanger 5a. A quantity of gas 3 passes through the regenerator 6 while cooling to occupy a volume located this time near the exchanger 5b.

En phase C de détente, le piston 4 s'éloigne de l'échangeur 5a. Le gaz 3 se détend et se refroidit davantage. Le gaz produit ainsi l'effet frigorifique.In phase C expansion, the piston 4 away from the exchanger 5a. The gas 3 relaxes and cools further. The gas thus produces the cooling effect.

Lors d'une dernière phase D de transfert, le régénérateur 6 revient dans sa position initiale près de l'échangeur 5b. Une quantité de gaz 3 traverse à nouveau le régénérateur 6 en se réchauffant.During a last transfer phase D, the regenerator 6 returns to its initial position near the exchanger 5b. A quantity of gas 3 passes through the regenerator 6 again while heating up.

Ainsi, le piston 4 agit comme une source d'oscillations de pression tandis que le régénérateur 6 joue le rôle d'une éponge thermique en prélevant ou fournissant de l'énergie thermique au gaz le traversant. Il joue également le rôle d'isolant thermique entre le côté chaud du tube 2, au niveau de l'échangeur thermique 5a, et le côté froid du tube, au niveau de l'échangeur thermique 5b.Thus, the piston 4 acts as a source of pressure oscillations while the regenerator 6 acts as a thermal sponge by taking or supplying thermal energy to the gas passing therethrough. It also acts as a thermal insulator between the hot side of the tube 2 at the heat exchanger 5a and the cold side of the tube at the heat exchanger 5b.

L'efficacité des dispositifs cryogéniques fonctionnant selon ce principe dépend notamment du déphasage entre le déplacement du régénérateur et l'onde de pression du gaz. Dans le cas du dispositif représenté sur la figure 1, ce déphasage est assuré mécaniquement par le déplacement du régénérateur 6, qui est approximativement en quadrature de phase par rapport au déplacement du piston 4.The effectiveness of cryogenic devices operating according to this principle depends in particular on the phase difference between the displacement of the regenerator and the pressure wave of the gas. In the case of the device represented on the figure 1 this phase shift is mechanically ensured by the displacement of the regenerator 6, which is approximately in quadrature phase with respect to the displacement of the piston 4.

Le dispositif de la figure 1 présente une bonne efficacité mais une architecture complexe, en raison notamment de la présence d'une pièce mobile froide, constituée par le régénérateur 6. En raison de cette complexité et des vibrations induites par le régénérateur mobile, le dispositif de refroidissement de type Stirling ne peut être utilisé dans certaines applications spatiales ou aéronautiques.The device of the figure 1 has a good efficiency but a complex architecture, in particular because of the presence of a cold moving part, constituted by the regenerator 6. Due to this complexity and vibration induced by the mobile regenerator, the Stirling type cooling device does not can be used in some space or aeronautical applications.

La figure 3 représente un dispositif de refroidissement ayant un nombre réduit de pièces mobiles. Ce type de dispositif est appelé communément tube à gaz pulsé ou tube à pulsation. Le déphasage entre l'onde de déplacement et l'onde de pression du gaz est réalisé de manière passive à l'aide d'un tube d'inertance et d'un réservoir de gaz. Le régénérateur est fixe.The figure 3 represents a cooling device having a reduced number of moving parts. This type of device is commonly referred to as a pulsed gas tube or a pulsed tube. The phase shift between the displacement wave and the gas pressure wave is achieved passively by means of an inerting tube and a gas tank. The regenerator is fixed.

Ce dispositif de refroidissement comporte généralement un oscillateur de pression 7 permettant de compresser et déplacer le gaz de cycle dans le tube 2. Le tube 2, représenté en U à la figure 3, comprend une partie formée par le régénérateur 6 et une partie formée par un tube de détente 8. Un échangeur de chaleur 5b est placé entre le régénérateur 6 et le tube de détente 8 pour réaliser l'interface avec l'environnement à refroidir.This cooling device generally comprises a pressure oscillator 7 for compressing and displacing the cycle gas in the tube 2. The tube 2, shown in U at the figure 3 , comprises a portion formed by the regenerator 6 and a portion formed by an expansion tube 8. A heat exchanger 5b is placed between the regenerator 6 and the expansion tube 8 to interface with the environment to be cooled.

L'oscillateur 7 est relié à une extrémité du tube 2 du côté du régénérateur 6 tandis qu'un système de déphasage 9 est relié à l'autre extrémité du tube 2, du côté du tube de détente 8. Le système de déphasage 9 permet d'ajuster les variations de débit et de pression du gaz de cycle et comprend classiquement un tube d'inertance 10 et un réservoir de gaz 11. Des échangeurs de chaleur 5a et 5c sont disposés aux extrémités chaudes du tube 2, respectivement interfaces avec l'oscillateur de pression 7 et avec le système de déphasage 9.The oscillator 7 is connected to one end of the tube 2 on the regenerator 6 side while a phase shift system 9 is connected to the other end of the tube 2, on the side of the expansion tube 8. The phase shift system 9 allows to adjust the variations of flow and pressure of the cycle gas and conventionally comprises an inerting tube 10 and a gas tank 11. Heat exchangers 5a and 5c are disposed at the hot ends of the tube 2, respectively interfaces with the pressure oscillator 7 and with the phase shift system 9.

L'ensemble comprenant le régénérateur 6, le tube de détente 8 et le système de déphasage 9 peut être appelé « doigt froid » du dispositif de refroidissement.The assembly comprising the regenerator 6, the expansion tube 8 and the phase shift system 9 may be called "cold finger" of the cooling device.

Le cycle de fonctionnement d'un tel dispositif est proche du cycle de Stirling décrit en relation avec la figure 2. Le tube à gaz pulsé se distingue du dispositif de la figure 1 par l'immobilité du régénérateur 6 et donc l'absence de pièce mobile dans la partie froide, réduisant ainsi les vibrations. La fiabilité du dispositif est alors augmentée et l'intégration facilitée. A la place d'un régénérateur mobile, un composant passif formé par le tube de détente 8 et le système déphasage 9 est utilisé. Une partie du gaz présent dans le tube de détente 8 agit comme un piston virtuel qui transmet le travail de la zone froide (échangeur 5b) au système de déphasage 9. Le tube de détente 8 isole thermiquement l'échangeur thermique 5b « froid » de l'échangeur thermique 5c « chaud ».The operating cycle of such a device is close to the Stirling cycle described in connection with the figure 2 . The pulsed gas tube is different from the device of the figure 1 by the immobility of the regenerator 6 and therefore the absence of moving parts in the cold part, thus reducing the vibrations. The reliability of the device is then increased and the integration facilitated. In place of a mobile regenerator, a passive component formed by the expansion tube 8 and the phase shift system 9 is used. Part of the gas present in the expansion tube 8 acts as a virtual piston which transmits the work of the cold zone (exchanger 5b) to the phase shift system 9. The expansion tube 8 thermally isolates the "cold" heat exchanger 5b from the heat exchanger 5c "hot".

Le système de déphasage 9 communique avec le tube de détente 8 et offre une résistance au déplacement du gaz de cycle. Il crée le déphasage requis entre l'oscillation de pression et le débit du gaz en entrée du tube d'inertance 10. Le tube d'inertance est parfois appelé « tube capillaire » pour ses caractéristiques géométriques, de préférence, fin et allongé. Le déphasage obtenu varie en fonction des pertes de charge, en entrée et le long du tube 10, et des paramètres physiques du gaz employé. Il dépend également de la fréquence, de la pression moyenne et de l'oscillation de pression en entrée du tube 10, du côté de l'échangeur 5c.The phase shift system 9 communicates with the expansion tube 8 and provides resistance to the displacement of the cycle gas. It creates the required phase shift between the pressure swing and the inlet gas flow of the inerting tube 10. The inerting tube is sometimes called a "capillary tube" for its geometric characteristics, preferably fine and elongated. The phase difference obtained varies as a function of the losses of charge, at the inlet and along the tube 10, and of the physical parameters of the gas used. It also depends on the frequency, the average pressure and the pressure oscillation at the inlet of the tube 10, the side of the exchanger 5c.

La figure 4 représente la phase et l'amplitude du débit du gaz en entrée du tube d'inertance pour une onde de pression donnée et pour différentes géométries du tube d'inertance. Le diamètre du tube varie de 1 à 3 mm et sa longueur est comprise entre 500 et 3000 mm. On peut remarquer que la zone des débits faibles et des phases élevées, représentée en pointillés, est inaccessible quelle que soit la géométrie du tube d'inertance employée. Ainsi, on ne peut jouer sur les paramètres géométriques pour améliorer les performances de déphasage et d'amplitude du débit du tube d'inertance.The figure 4 represents the phase and amplitude of the inlet gas flow of the inertance tube for a given pressure wave and for different geometries of the inertance tube. The diameter of the tube varies from 1 to 3 mm and its length is between 500 and 3000 mm. It can be noted that the area of low flows and high phases, shown in dashed lines, is inaccessible whatever the geometry of the inertance tube used. Thus, one can not play on the geometrical parameters to improve the performances of phase shift and amplitude of the flow of the tube of inertance.

De nombreuses améliorations du système de déphasage passif de la figure 3 ont été envisagées. Néanmoins, ces solutions restent complexes et difficiles à mettre en oeuvre. De plus, elles ne permettent pas toujours d'obtenir une valeur optimale du déphasage.Many improvements to the passive phase shift system of the figure 3 have been considered. Nevertheless, these solutions remain complex and difficult to implement. In addition, they do not always make it possible to obtain an optimum value of the phase shift.

Par ailleurs, le document US5689959 décrit un tube à gaz pulsé selon le préambule de la revendication 1 comprenant un compresseur, un régénérateur, un tube de détente, une valve de régulation et un réservoir, tous connectés en série. Le réservoir et la valve constituent des moyens de déphasage. Le tube de détente comporte un élément mobile, sphérique ou cylindrique, pour séparer le gaz actif du côté chaud et le gaz actif du côté froid du tube de détente. Ainsi, le rendement de refroidissement tube à gaz pulsé est amélioré.In addition, the document US5689959 describes a pulsed gas tube according to the preamble of claim 1 comprising a compressor, a regenerator, an expansion tube, a control valve and a tank, all connected in series. The reservoir and the valve constitute phase shift means. The expansion tube comprises a movable spherical or cylindrical element for separating the active gas from the hot side and the active gas from the cold side of the expansion tube. Thus, the efficiency of pulsed gas tube cooling is improved.

Résumé de l'inventionSummary of the invention

L'invention vise un dispositif de refroidissement compact et simple à réaliser tout en ayant de bonnes performances de refroidissement.The invention aims a compact cooling device and simple to achieve while having good cooling performance.

Plus particulièrement, l'invention vise un dispositif de refroidissement permettant d'obtenir un déphasage optimal de manière passive.More particularly, the invention relates to a cooling device for obtaining an optimal phase shift passively.

Selon l'invention, on tend vers ces objectifs par un dispositif ayant les charactéristiques de la revendication 1.According to the invention, there is a tendency towards these objectives by a device having the features of claim 1.

Description sommaire des dessinsBrief description of the drawings

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation donnés à titre d'exemples non limitatifs et illustrés à l'aide des dessins annexés, dans lesquels :

  • la figure 1 représente, de manière schématique, un dispositif de refroidissement de type Stirling selon l'art antérieur,
  • la figure 2 représente des étapes d'un cycle de fonctionnement du dispositif de la figure 1,
  • la figure 3 représente, de manière schématique, un dispositif de refroidissement à déphasage passif selon l'art antérieur,
  • la figure 4 représente la phase et l'amplitude du débit de gaz d'un dispositif selon la figure 3, pour différentes géométries du système de déphasage,
  • les figures 5 et 6 représentent, de manière schématique, deux modes particuliers de réalisation d'un dispositif de refroidissement comprenant un élément de séparation, et
  • les figures 7 et 8 représentent deux modes de réalisation d'un dispositif de refroidissement comprenant deux éléments de séparation.
Other advantages and features will emerge more clearly from the following description of particular embodiments given as non-limiting examples and illustrated with the aid of the accompanying drawings, in which:
  • the figure 1 represents, schematically, a Stirling type cooling device according to the prior art,
  • the figure 2 represents steps of an operating cycle of the device of the figure 1 ,
  • the figure 3 represents, schematically, a passive phase-shift cooling device according to the prior art,
  • the figure 4 represents the phase and the amplitude of the gas flow of a device according to the figure 3 , for different geometries of the phase shift system,
  • the Figures 5 and 6 show, schematically, two particular embodiments of a cooling device comprising a separation element, and
  • the Figures 7 and 8 represent two embodiments of a cooling device comprising two separating elements.

Description d'un mode de réalisation préféré de l'inventionDescription of a preferred embodiment of the invention

La figure 5 représente un dispositif de refroidissement, de type tube à gaz pulsé, ayant un système de déphasage compact et optimisé.The figure 5 represents a cooling device, of the pulsed gas tube type, having a compact and optimized phase shift system.

Ce dispositif comporte, comme le tube pulsé de la figure 3, un tube de refroidissement 2 contenant un gaz de cycle et un oscillateur de pression 7 relié à une première extrémité du tube 2. Le gaz de cycle est, de préférence, choisi parmi l'hélium, le néon, l'argon, l'azote et le dioxyde de carbone. L'hélium est particulièrement utilisé car il permet d'atteindre des températures très basses, entre 4 K et 80 K environ. L'oscillateur de pression 7 génère une onde de pression, de préférence sinusoïdale, pour comprimer et déplacer le gaz de cycle dans le tube 2. Un système de déphasage 9 entre l'oscillation de pression et le déplacement du gaz est relié à une seconde extrémité du tube 2.This device comprises, like the pulsed tube of the figure 3 a cooling tube 2 containing a cycle gas and a pressure oscillator 7 connected to a first end of the tube 2. The cycle gas is preferably selected from helium, neon, argon, nitrogen and carbon dioxide. Helium is particularly used because it allows to reach very low temperatures, between 4 K and 80 K approximately. The pressure oscillator 7 generates a pressure wave, preferably sinusoidal, for compressing and moving the cycle gas in the tube 2. A phase shift system 9 between the pressure oscillation and the displacement of the gas is connected to a second end of the tube 2.

Le tube de refroidissement comprend, de préférence, un régénérateur 6, du côté de la première extrémité, et un tube de détente 8, du côté de la seconde extrémité. Des échangeurs thermiques 5a et 5c sont disposés respectivement aux première et seconde extrémités du tube 2 et définissent les parties chaudes du tube 2. Ces parties sont généralement à température ambiante, de même que le système de déphasage 9 et l'oscillateur de pression 7. Un échangeur thermique 5b est disposé dans le tube 2 entre le régénérateur 6 et le tube de détente 8. Il forme la zone froide du dispositif destinée à être mise en contact avec un système à refroidir, par exemple un détecteur infrarouge.The cooling tube preferably comprises a regenerator 6, on the side of the first end, and an expansion tube 8, on the side of the second end. Heat exchangers 5a and 5c are respectively disposed at the first and second ends of the tube 2 and define the hot parts of the tube 2. These parts are generally at ambient temperature, as are the phase shift system 9 and the pressure oscillator 7. A heat exchanger 5b is disposed in the tube 2 between the regenerator 6 and the expansion tube 8. It forms the cold zone of the device intended to be brought into contact with a system to be cooled, for example an infrared detector.

Le système de déphasage 9 comprend un tube d'inertance 10 reliant la seconde extrémité du tube de refroidissement 2 à un réservoir de gaz 11. Le tube d'inertance a, de préférence, un diamètre compris entre 0,5 mm et 5 mm et une longueur comprise entre 500 mm et 5000 mm.The phase shift system 9 comprises an inerting tube 10 connecting the second end of the cooling tube 2 to a gas tank 11. Inerting tube preferably has a diameter of between 0.5 mm and 5 mm and a length of between 500 mm and 5000 mm.

Comme décrit précédemment en relation avec la figure 4, une géométrie particulière du tube d'inertance ne permet pas d'obtenir une valeur élevée du déphasage et une amplitude de débit faible. Cette limitation est due d'une part aux effets de stockage dans le tube d'inertance et d'autre part aux propriétés du fluide utilisé pour le déphasage. Ainsi, le déphasage peut être amélioré en modifiant les propriétés du fluide, notamment le ratio densité sur viscosité.As previously described in relation to the figure 4 a particular geometry of the inertance tube does not make it possible to obtain a high value of the phase shift and a low flow amplitude. This limitation is due on the one hand to the effects of storage in the inertance tube and, on the other hand, to the properties of the fluid used for the phase shift. Thus, the phase shift can be improved by modifying the properties of the fluid, in particular the density to viscosity ratio.

Le dispositif de la figure 5 propose d'étendre les possibilités de déphasage et d'amplitude de débit (Fig.4) du tube d'inertance 10 en utilisant un fluide de déphasage différent du gaz de cycle. Le fluide utilisé pour le déphasage est séparé du gaz de cycle par un élément de transmission de pression 13 étanche.The device of the figure 5 proposes to extend the possibilities of phase shift and amplitude of flow ( Fig.4 ) of the inerting tube 10 using a phase shift fluid different from the cycle gas. The fluid used for the phase shift is separated from the cycle gas by a sealed pressure transmission element 13.

L'élément de transmission de pression 13 permet également le transfert du travail de compression et de détente du gaz de cycle au fluide de déphasage. Il s'agit d'un composant passif qui induit peu de vibrations, de préférence une membrane qui se déforme sous l'action du gaz.The pressure transmission element 13 also allows the transfer of the compression and expansion work of the cycle gas to the phase shift fluid. It is a passive component that induces little vibration, preferably a membrane that deforms under the action of gas.

La membrane 13 est, de préférence, en métal ou en polymère. Une membrane en polymère offre une plus grande élasticité. Les déformations tolérées par une membrane en polymère, qui définissent le volume balayé par la membrane en fonctionnement, seront plus importantes que dans le cas d'une membrane métallique pour un diamètre donné. La membrane en polymère sera donc plus compacte qu'une membrane métallique pour un même volume balayé. Typiquement, une membrane en élastomère de 40 mm de diamètre et de 1 mm d'épaisseur permet une déformation (flèche) de 4,5 mm pour un volume balayé de 3,8 cm3. Une membrane métallique, en aluminium par exemple, de 60 mm de diamètre et de 0,1 mm d'épaisseur aura un déplacement de l'ordre de 2 mm pour un volume balayé de 3,8 cm3. La membrane métallique aura une meilleure durabilité tandis que la membrane en élastomère sera plus facile à mettre en oeuvre.The membrane 13 is preferably of metal or polymer. A polymer membrane provides greater elasticity. The deformations tolerated by a polymer membrane, which define the volume swept by the membrane in operation, will be greater than in the case of a metal membrane for a given diameter. The polymer membrane will be more compact than a metal membrane for the same volume swept. Typically, an elastomeric membrane 40 mm in diameter and 1 mm thick allows a deformation (arrow) of 4.5 mm for a swept volume of 3.8 cm 3 . A metal membrane, for example aluminum, 60 mm in diameter and 0.1 mm thick will have a displacement of about 2 mm for a swept volume of 3.8 cm 3 . The metal membrane will have better durability while the elastomeric membrane will be easier to implement.

Le déphasage peut être amélioré en augmentant le rapport de la densité sur la viscosité du fluide. Ainsi, le fluide de déphasage a une densité supérieure à celle du gaz de cycle ou une viscosité inférieure à celle du gaz de cycle ou les deux combinées. Le rapport de la densité sur la viscosité du fluide est, de préférence, supérieur à deux fois celui du gaz de cycle et inférieur à 15 fois celui du gaz de cycle. Le fluide de déphasage est, de préférence, choisi parmi l'azote, l'argon, le néon et l'air. Par exemple, pour l'azote, l'air ou l'argon, le rapport de la densité sur la viscosité est environ 10 fois supérieur à celui de l'hélium. Pour le néon, le rapport est environ 3,6 fois supérieur à celui de l'hélium.The phase shift can be improved by increasing the ratio of the density to the viscosity of the fluid. Thus, the phase shift fluid has a density greater than that of the cycle gas or a viscosity lower than that of the cycle gas or the two combined. The ratio of the density to the viscosity of the fluid is preferably greater than twice that of the cycle gas and less than 15 times that of the cycle gas. The phase shift fluid is preferably selected from nitrogen, argon, neon and air. For example, for nitrogen, air or argon, the ratio of density to viscosity is about 10 times that of helium. For neon, the ratio is about 3.6 times higher than that of helium.

Pour de meilleures performances de la membrane 13, il est souhaitable que celle-ci ait une position moyenne centrée. Ainsi, en fonctionnement, la membrane 13 oscille autour de sa position centrale pour maximiser le volume balayé. La dynamique de fonctionnement est ainsi maximisée. Le dispositif comprend, de préférence, des moyens de régulation de la position moyenne de la membrane 13, par équilibrage des pressions moyennes de part et d'autre de la membrane.For better performance of the membrane 13, it is desirable that it has a centered middle position. Thus, in operation, the membrane 13 oscillates around its central position to maximize the swept volume. The dynamic of operation is thus maximized. The device preferably comprises means for regulating the average position of the membrane 13, by balancing the average pressures on either side of the membrane.

La figure 6 représente un exemple de réalisation de moyens de régulation. Un premier capteur de pression 14a est placé d'un côté de la membrane 13, par exemple dans le réservoir 11 séparé de la membrane par le tube d'inertance 10. Un second capteur 14b est placé de l'autre côté de la membrane 13 dans le tube de refroidissement 2, entre l'échangeur 5c et la membrane 13 par exemple. Enfin, les moyens de régulation de la position moyenne de la membrane 13 comprennent un dispositif de chauffage 15 du réservoir 11. Le réservoir de gaz est chauffé en fonction de la différence de pressions moyennes de part et d'autre de la membrane 13, c'est-à-dire entre le réservoir 11 et le tube de refroidissement 2. De cette manière, la pression moyenne dans le système de déphasage varie pour maintenir la membrane 13 autour d'une position centrée. Le remplissage du réservoir est fait de telle sorte que le réservoir soit à une pression inférieure à la pression nominale en absence de chauffage.The figure 6 represents an exemplary embodiment of regulation means. A first pressure sensor 14a is placed on one side of the membrane 13, for example in the tank 11 separated from the membrane by the inertance tube 10. A second sensor 14b is placed on the other side of the membrane 13 in the cooling tube 2, between the exchanger 5c and the membrane 13 for example. Finally, the means for regulating the average position of the membrane 13 comprise a device 15 for heating the tank 11. The gas tank is heated as a function of the difference in average pressures on either side of the membrane 13. That is, between the reservoir 11 and the cooling tube 2. In this manner, the average pressure in the phase shift system varies to maintain the diaphragm 13 about a centered position. The filling of the tank is done in such a way that the tank is at a pressure lower than the nominal pressure in the absence of heating.

Dans une variante de réalisation non représentée, les capteurs de pression 14a et 14b sont remplacés par un capteur de déplacement de la membrane, par exemple un capteur de type inductif, capacitif, laser ou une jauge de contrainte. Un tel capteur est relié au dispositif de chauffage 15.In an alternative embodiment not shown, the pressure sensors 14a and 14b are replaced by a displacement sensor of the membrane, for example a sensor of the inductive, capacitive, laser or strain gage type. Such a sensor is connected to the heater 15.

La figure 7 représente un mode de réalisation préféré d'un dispositif de refroidissement. Le dispositif comporte, en plus des éléments du dispositif de la figure 5, un second élément de transmission de pression 16 étanche, ou membrane, entre le tube d'inertance 10 et le réservoir 11. Le tube 10 peut alors être rempli d'un fluide de déphasage distinct et séparé du gaz contenu dans le réservoir 11. Le fluide de déphasage est, de préférence, incompressible. Un liquide peut être utilisé pour le déphasage dans le tube 10 tandis que le réservoir est rempli d'un gaz compressible, de préférence, identique au gaz de cycle.The figure 7 represents a preferred embodiment of a cooling device. The device comprises, in addition to the elements of the device of the figure 5 a second sealed pressure transmission element 16, or membrane, between the inerting tube 10 and the tank 11. The tube 10 can then be filled with a separate phase shift fluid and separated from the gas contained in the tank 11. The phase shift fluid is preferably incompressible. A liquid may be used for the phase shift in the tube 10 while the reservoir is filled with a compressible gas, preferably identical to the cycle gas.

L'utilisation d'un liquide dans le tube d'inertance 10 augmente davantage les possibilités de déphasage. En effet, grâce au caractère incompressible des liquides, les phénomènes de stockage dans le tube 10 sont supprimés. Un liquide a, de plus, une densité élevée et permet une mise en application plus simple.The use of a liquid in the inertance tube 10 further increases the possibilities of phase shift. Indeed, thanks to the incompressible nature of the liquids, storage phenomena in the tube 10 are removed. A liquid has, in addition, a high density and allows a simpler implementation.

Le dispositif comprend, de plus, un dispositif d'équilibrage des pressions moyennes des gaz qui s'exercent sur les membranes 13 et 16, c'est-à-dire les pressions moyennes du réservoir 11 et du tube de refroidissement 2. Grâce à cet équilibrage, le liquide compris entre les membranes 13 et 16 est dans une position centrale lorsque le dispositif est éteint et dans position moyenne centrée lorsqu'il est en fonctionnement.The device further comprises a device for balancing the average gas pressures acting on the membranes 13 and 16, ie the average pressures of the reservoir 11 and the cooling tube 2. Thanks to this equilibration, the liquid between the membranes 13 and 16 is in a central position when the device is off and in the middle centered position when in operation.

La figure 8 représente un exemple de réalisation de ce dispositif d'équilibrage. Le dispositif comprend un tube de connexion 18 qui relie l'extrémité du tube 2 du côté du tube de détente 8 au réservoir 11. Les deux volumes de gaz sont alors reliés et les pressions moyennes s'égalisent. Le tube de connexion 18 a une perte de charge élevée de manière à ce que le débit alternatif dans ce tube 18 soit négligeable (deux ordres de grandeur) devant le débit alternatif du tube d'inertance 10. Alors, le fonctionnement du dispositif de refroidissement n'est pas altéré.The figure 8 represents an exemplary embodiment of this balancing device. The device comprises a connecting tube 18 which connects the end of the tube 2 from the side of the expansion tube 8 to the tank 11. The two volumes of gas are then connected and the average pressures equalize. The connection tube 18 has a high pressure drop so that the alternating flow rate in this tube 18 is negligible (two orders of magnitude) in front of the reciprocating flow rate of the inerting tube 10. Then, the operation of the cooling device is not altered.

Un dispositif d'équilibrage comprenant des capteurs de pression et un dispositif de chauffage, comme celui décrit en relation avec la figure 6, est également possible dans le cas de deux membranes.A balancing device comprising pressure sensors and a heating device, such as that described in connection with the figure 6 , is also possible in the case of two membranes.

Considérons à titre d'exemple un tube à gaz pulsé fonctionnant à une pression moyenne de 20 bars et à une température côté chaud de 300 K. L'oscillation de pression a, de manière classique, une amplitude de 1 bar et une fréquence de 50 Hz.Consider by way of example a pulsed gas tube operating at an average pressure of 20 bar and a hot side temperature of 300 K. The pressure swing has, in a conventional manner, an amplitude of 1 bar and a frequency of 50 Hz.

Un tube d'inertance rempli de gaz de cycle classique mesure, par exemple, 2 mm de diamètre et 2000 mm de longueur. Le tube d'inertance offre alors un débit de 0,25 g/s et un déphasage (ou phase) de 25°.An inert tube filled with conventional cycle gas measures, for example, 2 mm in diameter and 2000 mm in length. The inertance tube then offers a flow rate of 0.25 g / s and a phase shift (or phase) of 25 °.

A l'aide d'une membrane séparant le gaz de cycle (hélium) du gaz de déphasage (azote) comme cela est représenté sur la figure 5, le tube d'inertance permet d'obtenir un débit identique avec un déphasage plus important, de l'ordre de 60°. Le tube d'inertance a alors un diamètre de 1 mm environ et une longueur de 1700 mm environ.Using a membrane separating the cycle gas (helium) from the phase shift gas (nitrogen) as shown in FIG. figure 5 , the inertance tube makes it possible to obtain an identical flow rate with a greater phase shift, of the order of 60 °. The inerting tube then has a diameter of about 1 mm and a length of about 1700 mm.

A l'aide de deux membranes et de l'eau comme fluide de déphasage, il est possible d'obtenir un débit similaire de 0,2 g/s, avec un déphasage encore plus important, de l'ordre de 75°. Les dimensions du tube d'inertance sont alors un diamètre de 2,0 mm et une longueur de 1600 mm environ.Using two membranes and water as a phase shift fluid, it is possible to obtain a similar flow rate of 0.2 g / s, with an even greater phase shift, of the order of 75 °. The dimensions of the inertance tube are then a diameter of 2.0 mm and a length of about 1600 mm.

Le déphasage entre la pression et le déplacement du gaz de cycle est optimisé par le choix d'un fluide de déphasage associé à une géométrie du tube d'inertance.The phase shift between the pressure and the displacement of the cycle gas is optimized by the choice of a phase shift fluid associated with a geometry of the inertance tube.

Une vanne réglable peut être utilisée pour ajuster expérimentalement les pertes de charge et donc le déphasage et l'amplitude du débit. À terme, elle peut être remplacée par un orifice calibré. Elle peut être placée entre la première membrane et le tube pulsé ou entre la seconde membrane et le volume tampon formé par le réservoir. Un tel circuit assurera également la dissipation d'énergie à la seconde extrémité du tube de refroidissement.An adjustable valve can be used to experimentally adjust the pressure drops and thus the phase shift and the amplitude of the flow. In the long term, it can be replaced by a calibrated orifice. It can be placed between the first membrane and the pulsed tube or between the second membrane and the buffer volume formed by the reservoir. Such a circuit will also provide energy dissipation at the second end of the cooling tube.

De nombreuses variantes et modifications du dispositif de refroidissement décrit ici apparaîtront à l'homme du métier. Notamment, il pourra comprendre un circuit additionnel de re-circulation asymétrique pour régler le débit à l'extrémité chaude du tube pulsé. Ce circuit relie, de préférence, la première extrémité du tube de refroidissement, du côté de l'oscillateur de pression, à la seconde extrémité du tube avant la première membrane. Ce circuit peut être formé par un clapet anti-retour associé à une perte de charge, par exemple une vanne à aiguille, un orifice ou encore un autre tube capillaire.Many variations and modifications of the cooling device described herein will be apparent to those skilled in the art. In particular, it may include an additional asymmetric recirculation circuit for adjusting the flow rate at the hot end of the pulsed tube. This circuit preferably connects the first end of the cooling tube, on the side of the pressure oscillator, to the second end of the tube before the first membrane. This circuit may be formed by a nonreturn valve associated with a pressure drop, for example a needle valve, an orifice or another capillary tube.

Claims (11)

  1. A cooling device comprising :
    - a cooling tube (2) containing a working gas,
    - a pressure oscillator (7) connected to a first end of the cooling tube to generate a pressure oscillation and displacement of the working gas,
    - means for phase shifting (9) the pressure oscillation relative to displacement of the working gas, connected to a second end of the cooling tube,
    - a first sealed pressure transmission element (13) arranged to separate the working gas from a fluid contained in the means for phase shifting, characterized in that it the fluid is of different nature from that of the working gas.
  2. The device according to claim 1, characterized in that the fluid has a higher density over viscosity ratio than that of the working gas.
  3. The device according to claim 2, characterized in that the density over viscosity ratio of the fluid is more than twice that of the working gas.
  4. The device according to claim 1, characterized in that the means for phase shifting (9) comprise an inertance tube (10) connecting the second end of the cooling tube (2) to a reservoir (11).
  5. The device according to claim 4, characterized in that it comprises means for adjusting the mean position of the first pressure transmission element (13).
  6. The device according to claim 5, characterized in that the means for adjusting the mean position of the first pressure transmission element (13) comprise:
    - a first pressure sensor (14a) in the reservoir (11),
    - a second pressure sensor (14b) in the cooling tube (2), and
    - means (15) for heating the reservoir according to the pressure difference between the reservoir (11) and the cooling tube (2).
  7. The device according to claim 1, characterized in that the fluid is a gas chosen from nitrogen, argon, neon, carbon dioxide and air.
  8. The device according to claim 4, characterized in that it comprises a second sealed pressure transmission element (16) between the inertance tube (10) and the reservoir (11), arranged to separate the fluid from a compressible gas contained in the reservoir.
  9. The device according to claim 8, characterized in that the fluid is a liquid.
  10. The device according to claim 8, characterized in that it comprises means for balancing the mean pressures of the reservoir (11) and of the cooling tube (2).
  11. The device according to claim 10, characterized in that the means for balancing the mean pressures comprise a connecting tube (18) connecting the second end of the cooling tube (2) to the reservoir (11).
EP11730998.9A 2010-04-09 2011-04-08 Passive phase change cooling device Not-in-force EP2556309B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001493A FR2958734B1 (en) 2010-04-09 2010-04-09 COOLING DEVICE WITH PASSIVE PHASE.
PCT/FR2011/000205 WO2011124790A1 (en) 2010-04-09 2011-04-08 Passive phase change cooling device

Publications (2)

Publication Number Publication Date
EP2556309A1 EP2556309A1 (en) 2013-02-13
EP2556309B1 true EP2556309B1 (en) 2018-08-22

Family

ID=43088414

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11730998.9A Not-in-force EP2556309B1 (en) 2010-04-09 2011-04-08 Passive phase change cooling device

Country Status (4)

Country Link
US (1) US10222097B2 (en)
EP (1) EP2556309B1 (en)
FR (1) FR2958734B1 (en)
WO (1) WO2011124790A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2017003498A1 (en) * 2017-12-29 2018-05-04 Ahr Energy Spa Method to produce heat transfer between two or more means and a system to execute said method.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2104155A (en) * 1981-08-19 1983-03-02 British Aerospace Stirling cycle machines
JP2844435B2 (en) * 1995-06-27 1999-01-06 岩谷産業株式会社 Pulse tube refrigerator
JP2697707B2 (en) * 1995-10-12 1998-01-14 株式会社移動体通信先端技術研究所 Pulse tube refrigerator
US5791149A (en) * 1996-08-15 1998-08-11 Dean; William G. Orifice pulse tube refrigerator with pulse tube flow separator
US5813235A (en) * 1997-02-24 1998-09-29 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Resonantly coupled α-stirling cooler
US6209328B1 (en) * 1998-07-23 2001-04-03 Lg Electronics, Inc. Oil-free compressor-integrated pulse tube refrigerator
US6578364B2 (en) * 2001-04-20 2003-06-17 Clever Fellows Innovation Consortium, Inc. Mechanical resonator and method for thermoacoustic systems
DE102004033027B4 (en) * 2004-07-07 2008-07-03 TransMIT Gesellschaft für Technologietransfer mbH Invention relating to cryogenic cooling devices
CN2913968Y (en) * 2006-01-17 2007-06-20 浙江大学 Bellows joint apparatus for coupling thermoacoustic engine and vessel refrigerator
EP2171277A2 (en) * 2007-07-16 2010-04-07 Technion Research & Development Foundation Ltd. Piezo-hydraulic compressor/pressure oscillator for cryogenic cooling and other applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2556309A1 (en) 2013-02-13
FR2958734B1 (en) 2013-02-22
WO2011124790A1 (en) 2011-10-13
FR2958734A1 (en) 2011-10-14
US20130025841A1 (en) 2013-01-31
US10222097B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
EP2802834B1 (en) Cooling device suitable for regulating the temperature of a heat source of a satellite, and method for producing the associated cooling device and satellite
WO1997000416A1 (en) Capillary pumped heat transfer loop
FR2669719A1 (en) CAPILLARY TUBE HEAT PUMP AND MANUFACTURING METHOD THEREFOR.
EP2795226B1 (en) Cooling device
EP2534357A2 (en) Thermoacoustic machine having an electric feedback loop
FR2512881A1 (en) VOLUMETRIC THERMODYNAMIC MACHINE WITH ISOTHERMIC CYCLE
FR2511427A1 (en) ACOUSTIC THERMAL MOTOR WITH STATIONARY SEALING DEVICES
FR3002028A1 (en) DEVICE FOR TRANSPORTING HEAT WITH A DIPHASIC FLUID
FR2723187A1 (en) ENERGY TRANSFER SYSTEM BETWEEN A HOT SOURCE AND A COLD SOURCE
FR2989323A1 (en) Battery module for supplying power to electric traction machine of hybrid or electric motor vehicle, has cold source containing fusion material whose melting point is lower than evaporation temperature of fluid in heat pipe
EP0614059A1 (en) Cooler with a cold finger of pulse tube type
EP2108910A1 (en) Internal heat exchanger comprising a means for thermal storage and loop incorporating such heat exchanger
FR2934361A1 (en) DEVICE FOR VARYING THE PRESSURE OF A PNEUMATIC FLUID BY DISPLACING LIQUID DROPS AND HEAT PUMP USING SUCH A DEVICE
EP2556309B1 (en) Passive phase change cooling device
EP2476301B1 (en) System for thermally controlling an apparatus
EP3217137A1 (en) Device for thermally cooling an object from a cold source such as a cryogenic fluid bath
WO2015121179A1 (en) System for cooling a hot source
EP2981781B1 (en) Heat pipe comprising a cut-off gas plug
FR1465047A (en) Cooling device
FR3057944B1 (en) DEVICE FOR THERMAL ACCUMULATOR WITH ICE HOLD
FR2750481A1 (en) Dual element cryogenic pulsed gas cooler used for cooling miniature elements
FR2966203A1 (en) Stirling type thermodynamic device for autonomous heat pump, has chambers arranged on working liquid circuits, and shifter connected to lower parts of chambers so that each chamber is entirely filled with fluid when shifter is put in motion
EP4325156A1 (en) Heat pipe of the capillary pumping type, with re-entrant grooves including at least one substrate porous at the evaporator
FR3100319A1 (en) Regenerative cryogenic machine
WO2018127548A1 (en) Heat diffusion device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180405

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011051293

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1032977

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1032977

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011051293

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190408

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210312

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210429

Year of fee payment: 11

Ref country code: DE

Payment date: 20210408

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210415

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011051293

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220408

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103