EP2553765B1 - Microwave scanner - Google Patents

Microwave scanner Download PDF

Info

Publication number
EP2553765B1
EP2553765B1 EP11703631.9A EP11703631A EP2553765B1 EP 2553765 B1 EP2553765 B1 EP 2553765B1 EP 11703631 A EP11703631 A EP 11703631A EP 2553765 B1 EP2553765 B1 EP 2553765B1
Authority
EP
European Patent Office
Prior art keywords
openings
transmitting device
radiation
waveguide
closure element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11703631.9A
Other languages
German (de)
French (fr)
Other versions
EP2553765A1 (en
Inventor
Thomas Focke
Joerg Hilsebecher
Oliver Lange
Reinhard Meschenmoser
Arne Zender
Thomas Schoeberl
Thomas Hansen
Karl Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2553765A1 publication Critical patent/EP2553765A1/en
Application granted granted Critical
Publication of EP2553765B1 publication Critical patent/EP2553765B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/002Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/22Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave

Definitions

  • a measuring method is to guide a focused microwave beam over a field of view and thereby scan by means of microwave radiation environment. This requires an antenna that radiates into a narrow space. In addition, the spatial direction of the radiation must also be changed, so that the viewing area can be scanned ("scanned"). Antennas or antenna systems that meet this requirement are called scanners.
  • the electromagnetic propagation wavelength depends on the frequency.
  • a suitable waveguide different electromagnetic waves, which originate from the same electromagnetic radiation source, can be superimposed in such a way that the emission direction of the superimposed waves depends on the frequency.
  • Such an antenna is called a frequency scanner ("frequency scanning array").
  • DE 10 2007 045 013 A1 shows a radar device for alternative scanning of a long range by means of a continuous modulated radar signal or a near range by means of a pulsed modulated radar signal.
  • DE 37 38 705 A1 shows an arrangement for changing the radiation characteristic of a microwave antenna by means of a lens arrangement.
  • US 3,604,012 shows an antenna for emitting electromagnetic radiation in at least two adjacent quadrants.
  • the antenna comprises a plurality of radiators, which are controllable in a predetermined phase relationship in order to change an emission direction of the antenna.
  • US 4,229,745 shows an antenna comprising a slotted waveguide.
  • the slots are closed by means of associated PIN diodes to microwave radiation.
  • Opposed diodes may alternatively be driven to change a direction of radiation of the antenna by 180 °.
  • FR 2 843 834 A1 shows a receiving antenna for digital television signals.
  • the entry of electromagnetic radiation through multiple slots is enabled or prevented by electrical circuitry associated with the slots to alter a directivity and gain of the antenna.
  • the invention has for its object to provide a transmitting device by means of which different radiation characteristics can be achieved in a simple manner.
  • a transmission device for electromagnetic radiation comprises a waveguide with an input for feeding in an electromagnetic wave, wherein the waveguide has a plurality of openings in order to let the electromagnetic wave emerge from the waveguide.
  • a controllable closure element is provided for selectively closing at least one of the further openings with respect to the electromagnetic shaft.
  • the closure element comprises a mechanical diaphragm which is adapted to completely or partially close the at least one further openings.
  • a microwave system can be constructed in a simple manner, which scans different spatial areas depending on the control of the closure element.
  • a first emission characteristic is narrower with a larger antenna gain than a second emission characteristic. Scanning in a far range can be done by means of the first radiation characteristic in a relatively narrow field of view, while the scanning in a near area by means of the second radiation characteristic can be done in a wider field of view.
  • the openings are arranged in the waveguide such that a radiation direction of the electromagnetic radiation is dependent on the frequency of the radiation is.
  • the closure element can be configured to only partially close at least one of the openings. By partially closing, a reduction in the emission of the electromagnetic wave at the affected opening can be achieved, the reduction depending on the degree of closure. As a result, the emission characteristic can advantageously be controlled particularly precisely.
  • the closure member may be configured to uniformly close a plurality of the openings.
  • the closure element can be rotated or displaced, for example, in a direction perpendicular to the propagation direction of the electromagnetic radiation.
  • the openings may be arranged in a row.
  • the exiting electromagnetic radiation in a direction perpendicular to the extension direction of the row is not influenced independently of the frequency of the electromagnetic radiation and the activation of the closure element.
  • This embodiment is particularly advantageous for a typical scanner with constant elevation angle.
  • the openings may be evenly spaced, whereby advantageously a symmetry of the radiation characteristic with respect to the emission direction can be achieved or improved.
  • the electromagnetic radiation may be radar radiation.
  • FIG. 1 shows an electromagnetic radiation transmitting device 100 in an exploded view.
  • the transmitting device 100 comprises a waveguide 110 with an upper part 112 and a lower part 115.
  • the parts 112 and 115 are in contact with one another, as indicated by the vertical arrows.
  • Mutually corresponding recesses in the two parts 112, 115 form a meander 130, which ends at inputs 140 at the edge of the waveguide 110.
  • One of the inputs 130 is sufficient in principle, the second illustrated input 130 is optional.
  • a series of openings 120 is inserted in the vertical direction, wherein each of the openings 120 at another location on the meander 130 hits.
  • the transmitting device 100 may be constructed in the manner shown, for example, from two plates 112, 115, such as brass or other metal, or be formed in another way so as to give a corresponding waveguide.
  • an electromagnetic wave can be coupled into the meander 130 by means of a transition (not shown).
  • the electromagnetic wave propagates along the meander 130 and partially exits through openings 120.
  • Each microwave radiation emerging from the openings 120 has a characteristic distance to the input used, which influences the phase position of the exiting microwave radiation.
  • the shape, size and arrangement of the openings 120 are preferably selected so that each of the openings 120 can be modeled as a point source of electromagnetic radiation.
  • the openings 120 may be filled with a material which is permeable to the electromagnetic radiation to prevent entry of foreign bodies into the waveguide 110.
  • the meander 130 is shaped between the openings 120 in such a way that the microwave radiations exiting through the openings 120 overlap above the transmitting device 100 in accordance with their phase positions, so that an emission characteristic and a radiation direction of the electromagnetic radiation are effected overall by means of positive and negative interference.
  • Frequency-modulated electromagnetic high frequency is preferably radiated periodically into the transmitting device 100, so that a radiation characteristic that forms due to the interfering radiation emerging from the openings 120 is frequency-dependent.
  • the openings 120 are tuned with the meander 130 and the frequency-modulated radiation in such a way that the emission characteristic of the transmission device 100 assumes a frequency-controlled direction with respect to the z-axis.
  • the direction changes periodically due to the periodically controlled high frequency, so that electromagnetic radiation is radiated into a field of view of the transmitting device 100. Reflections of this radiation can travel the same way in the opposite direction and be absorbed by a transition at one of the inputs 130, so that by means of a comparison of the transmitted with the received radio frequency, a conclusion on objects in the field of view is possible.
  • individual ones of the openings 120 are designed so that they can be closed relative to the microwave radiation radiated into the meander 130. This can be done by a microwave-tight aperture, which can be spent in front of one or more of the openings 120. Depending on the position, the aperture 120 can open or close one or more of the openings 120, so that the microwave radiation emerging from the openings 120 is dependent on the position of the aperture.
  • the aperture may be displaced, rotatable or hinged with respect to the openings 120 and may consist of a metal plate. Differently sized apertures in the bezel, which may be wholly or partially aligned with the apertures 120, may permit full or partial release of each cause the openings 120.
  • the aperture may be configured to enable a plurality of different positions to have a plurality of predetermined patterns of shared apertures 120 that correspond to a plurality of predetermined emission characteristics of the transmitter 100.
  • a closure which can be controlled directly by means of an electrical or optical signal is provided.
  • a semiconductor may be arranged in front of one of the openings 120 and brought into different conductivities by means of a control voltage, so that it emits microwave radiation as a function of its conductance value from the opening 120.
  • An individually controllable closure element can be arranged in front of each of the openings so that different emission characteristics can be set without having to perform a mechanical movement on the transmission device 100.
  • control of the conductance - and thus the permeability to microwave radiation - synchronized with the frequency modulation of the radiated into the input 140 electromagnetic wave to achieve a dependent on the orientation of the emitted radiation bundling the resulitterenden radiation characteristic.
  • FIG. 2 shows different emission characteristics of the transmitting device 100 FIG. 1
  • a first emission characteristic 210 and a second emission characteristic 220 are shown in a polar coordinate system.
  • An additional Cartesian coordinate system facilitates the reference to the representation of FIG. 1 ,
  • the transmitting device 100 is not explicitly shown and is located at the origin of the polar coordinate system.
  • the 0 ° direction corresponds to the y direction in FIG. 1
  • the 90 ° direction corresponds to the x direction in FIG. 1
  • a point on the outline is defined by a direction in the polar coordinate system and by a distance from the origin of the polar coordinate system, where the distance of the point corresponds to a signal strength.
  • Both emission characteristics 210 and 220 are substantially symmetrical to the 0 ° direction.
  • the maximum opening angle of the illustrated first emission direction 210 is approximately 12 °, while the maximum opening angle of the second emission characteristic 220 is approximately 60 °.
  • the highest signal strength of the first emission characteristic 210 in the 0 ° direction is almost twice as large as the highest signal strength of the second emission characteristic 220 in the same direction.
  • the first emission characteristic 210 is therefore particularly suitable for scanning a remote target, for example by means of a long-range radar (LRR).
  • the second radiation characteristic 220 is better suited for close range scanning, for example by means of a medium-range or short-range radar (MRR).
  • MRR medium-range or short-range radar
  • a change in the emission direction by means of a change in the frequency of the electromagnetic radiation as described above with reference to FIG. 1 can be represented in the given polar representation by rotating the respective emission characteristic 210, 220 about the origin of the polar coordinate system.
  • the ideally illustrated lobe form of the emission characteristics 210 and 220 is also distorted.
  • the basic properties of the radiation characteristics 210 and 220 with respect to the aperture angle and signal strength are retained.
  • FIG. 3 shows the transmitting device 100 from FIG. 1 with selectively closed openings 120.
  • the openings 120 are shown by way of example and do not correspond to those in FIG FIG. 1 shown openings 120.
  • the perspective corresponds to a line of sight in FIG. 1 from below along the y-axis, ie in the direction in which microwave radiation exits from the openings 120.
  • the openings 120 in the waveguide 110 are closed by means of a diaphragm 310.
  • a diaphragm 310 Regarding a numbering in the positive x direction of the openings 120 in FIG. 3 From left to right, the openings 1, 2, 8, 12, 13, 17, 24 and 25 are closed by the aperture 310.
  • the second radiation characteristic 220 in FIG. 2 realized. If the aperture 310 shifted upward (in the positive z-direction), so that no more of the openings 120 are closed, so there is a different radiation characteristic, for example, the first radiation characteristic 210 from FIG. 2 ,
  • the illustrated arrangement and shape of the openings 120 in the waveguide 110 is exemplary.
  • the openings 120 may have shapes other than rectangular in shape and have different distances from each other.
  • the openings 120 may also be on the in FIG. 1 shown inner surface of the waveguide 110 in two dimensions (x and z) be distributed, instead of, as shown, to be arranged in a row.
  • the openings 120 may be arranged along a circle or an ellipse. Multiple circles or ellipses may be concentric with each other.
  • the aperture 310 is formed corresponding to the openings 120.
  • the aperture 310 may also be configured to be displaced along the x-axis in addition to or as an alternative to displacement along the z-axis.
  • the aperture 310 may also be rotated about the y-axis. This is particularly advantageous with the arrangement of openings 120 along circles or ellipses, as described above.
  • the aperture 310 may be shaped to effect multiple patterns of closed, partially closed, and open apertures 120, respectively.
  • a plurality of diaphragms 310 may also be used, in particular each hole 120 to be closed may have an individual diaphragm 310.
  • the aperture 310 may also be replaced by a flap mechanism.
  • openings 120 to be closed can also be selectively closed with respect to electromagnetic radiation by means of another activatable closure element, for example an element whose electromagnetic permeability is voltage-controlled.
  • the invention is particularly suitable for the construction of a microwave scanner for use in a motor vehicle radar, a movement or burglar alarm and other applications in which scanning antennas in the microwave range are desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

Stand der TechnikState of the art

Für Mikrowellensysteme, wie sie beispielsweise in Radareinrichtungen für Kraftfahrzeuge verwendet werden, besteht eine Messmethode darin, einen gebündelten Mikrowellenstrahl über einen Sichtbereich zu führen und dabei mittels der Mikrowellenstrahlung eine Umgebung abzutasten. Dafür wird eine Antenne benötigt, die in einen eng definierten Raum abstrahlt. Zusätzlich muss sich auch die Raumrichtung der Abstrahlung verändern lassen, damit der Sichtbereich abgetastet ("gescannt") werden kann. Antennen bzw. Antennensysteme, die diese Anforderung erfüllen, werden Scanner genannt.For microwave systems, such as are used in radar devices for motor vehicles, a measuring method is to guide a focused microwave beam over a field of view and thereby scan by means of microwave radiation environment. This requires an antenna that radiates into a narrow space. In addition, the spatial direction of the radiation must also be changed, so that the viewing area can be scanned ("scanned"). Antennas or antenna systems that meet this requirement are called scanners.

Um ein mechanisches Bewegen der Antenne zu vermeiden, kann die Tatsache ausgenutzt werden, dass in Wellenleitern die elektromagnetische Ausbreitungswellenlänge von der Frequenz abhängt. Bei Verwendung eines geeigneten Wellenleiters können unterschiedliche elektromagnetische Wellen, die aus derselben elektromagnetischen Strahlungsquelle stammen, derart überlagert werden, dass die Abstrahlrichtung der überlagerten Wellen von der Frequenz abhängt. Eine solche Antenne wird Frequenzscanner ("frequency scanning array") genannt.In order to avoid a mechanical movement of the antenna, the fact can be exploited that in waveguides the electromagnetic propagation wavelength depends on the frequency. When using a suitable waveguide, different electromagnetic waves, which originate from the same electromagnetic radiation source, can be superimposed in such a way that the emission direction of the superimposed waves depends on the frequency. Such an antenna is called a frequency scanner ("frequency scanning array").

DE 10 2007 045 013 A1 zeigt eine Radareinrichtung zum alternativen Abtasten eines Fernbereichs mittels eines kontinuierlichen modulierten Radarsignals oder eines Nahbereichs mittels eines gepulsten modulierten Radarsignals. DE 10 2007 045 013 A1 shows a radar device for alternative scanning of a long range by means of a continuous modulated radar signal or a near range by means of a pulsed modulated radar signal.

DE 37 38 705 A1 zeigt eine Anordnung zur Veränderung der Abstrahlcharakteristik einer Mikrowellenantenne mittels einer Linsenanordnung. DE 37 38 705 A1 shows an arrangement for changing the radiation characteristic of a microwave antenna by means of a lens arrangement.

US 3,604,012 zeigt eine Antenne zur Aussendung von elektromagnetischer Strahlung in wenigstens zwei aneinander angrenzenden Quadranten. Die Antenne umfasst mehrere Strahler, die in einer vorbestimmten Phasenbeziehung ansteuerbar sind, um eine Ausstrahlungsrichtung der Antenne zu verändern. US 3,604,012 shows an antenna for emitting electromagnetic radiation in at least two adjacent quadrants. The antenna comprises a plurality of radiators, which are controllable in a predetermined phase relationship in order to change an emission direction of the antenna.

US 4,229,745 zeigt eine Antenne, die einen mit Schlitzen versehenen Hohlleiter umfasst. Die Schlitze sind mittels zugeordneten PIN-Dioden gegenüber Mikrowellenstrahlung verschließbar. Einander gegenüberliegende Dioden können alternativ angesteuert werden, um eine Ausstrahlungsrichtung der Antenne um 180° zu ändern. US 4,229,745 shows an antenna comprising a slotted waveguide. The slots are closed by means of associated PIN diodes to microwave radiation. Opposed diodes may alternatively be driven to change a direction of radiation of the antenna by 180 °.

FR 2 843 834 A1 zeigt eine Empfangsantenne für digitale Fernsehsignale. Der Eintritt von elektromagnetischer Strahlung durch mehrere Schlitze wird durch den Schlitzen zugeordnete elektrische Schaltungen ermöglicht oder verhindert, um einen Richtfaktor und eine Verstärkung der Antenne zu verändern. FR 2 843 834 A1 shows a receiving antenna for digital television signals. The entry of electromagnetic radiation through multiple slots is enabled or prevented by electrical circuitry associated with the slots to alter a directivity and gain of the antenna.

DE 10 2007 056 910 A1 zeigt eine arraybasierte Antenne, bei der durch Zu- oder Abschalten von Elementen des Arrays Strahlbreiten von Strahlungskeulen richtungsabhängig variierbar sind. DE 10 2007 056 910 A1 shows an array-based antenna in which by switching on or off of elements of the array beam widths of radiation lobes are directionally variable.

Der Erfindung liegt die Aufgabe zugrunde, eine Sendevorrichtung anzugeben, mittels derer auf einfache Weise unterschiedliche Abstrahlcharakteristiken erzielt werden können.The invention has for its object to provide a transmitting device by means of which different radiation characteristics can be achieved in a simple manner.

Offenbarung der ErfindungDisclosure of the invention

Die Erfindung löst dieses Problem durch die Sendevorrichtung mit Merkmalen von Anspruch 1. Unteransprüche geben bevorzugte Ausführungsformen an.
Erfindungsgemäß umfasst eine Sendevorrichtung für elektromagnetische Strahlung einen Hohlleiter mit einem Eingang zum Einspeisen einer elektromagnetischen Welle, wobei der Hohlleiter mehrere Öffnungen aufweist, um die elektromagnetische Welle aus dem Hohlleiter austreten zu lassen. Zum selektiven Verschließen wenigstens einer der weiteren Öffnungen gegenüber der elektromagnetischen Welle ist ein ansteuerbares Verschlusselement vorgesehen. Das Verschlusselement umfasst eine mechanische Blende, die dazu eingerichtet ist, die wenigstens eine weitere Öffnungen ganz oder teilweise zu verschließen.
Durch selektives Öffnen bzw. Verschließen einer oder mehrerer Öffnungen des Hohlleiters lässt sich die Abstrahlcharakteristik der Sendevorrichtung gezielt beeinflussen. Insbesondere können in Abhängigkeit einer Ansteuerung des Verschlusselements wenigstens zwei Abstrahlcharakteristiken erzielt werden, die sich in ihren Ausdehnungen, etwa in ihren Öffnungswinkeln und/oder Reichweiten, unterscheiden. Dadurch kann auf einfache Weise ein Mikrowellensystem aufgebaut sein, welches je nach Ansteuerung des Verschlusselements unterschiedliche räumliche Gebiete abtastet.
Bevorzugterweise ist dabei eine erste Abstrahlcharakteristik schmaler mit größerem Antennengewinn als eine zweite Abstrahlcharakteristik. Ein Abtasten in einem Fernbereich kann mittels der ersten Abstrahlcharakteristik in einem relativ schmalen Sichtbereich erfolgen, während das Abtasten in einem nahen Bereich mittels der zweiten Abstrahlcharakteristik in einem breiteren Sichtbereich erfolgen kann.
The invention solves this problem by the transmitting device with features of claim 1. Subclaims indicate preferred embodiments.
According to the invention, a transmission device for electromagnetic radiation comprises a waveguide with an input for feeding in an electromagnetic wave, wherein the waveguide has a plurality of openings in order to let the electromagnetic wave emerge from the waveguide. For selectively closing at least one of the further openings with respect to the electromagnetic shaft, a controllable closure element is provided. The closure element comprises a mechanical diaphragm which is adapted to completely or partially close the at least one further openings.
By selectively opening or closing one or more openings of the waveguide, the emission characteristic of the transmitting device can be selectively influenced. In particular, depending on a control of the closure element at least two emission characteristics can be achieved, which differ in their expansions, such as in their opening angles and / or ranges. As a result, a microwave system can be constructed in a simple manner, which scans different spatial areas depending on the control of the closure element.
Preferably, a first emission characteristic is narrower with a larger antenna gain than a second emission characteristic. Scanning in a far range can be done by means of the first radiation characteristic in a relatively narrow field of view, while the scanning in a near area by means of the second radiation characteristic can be done in a wider field of view.

Die Öffnungen sind derart im Hohlleiter angeordnet, dass eine Abstrahlrichtung der elektromagnetischen Strahlung von der Frequenz der Strahlung abhängig ist. Dadurch kann auf einfache Weise ein Scanner aufgebaut sein, bei dem die relativ häufige Änderung der Abstrahlrichtung ohne Veränderung me chanischer Komponenten über die Frequenz durchgeführt wird, während die wesentlich seltenere Umschaltung zwischen einem Nah- und einem Fernbereich mittels des Verschlusselements bewerkstelligt ist.The openings are arranged in the waveguide such that a radiation direction of the electromagnetic radiation is dependent on the frequency of the radiation is. As a result, a scanner can be constructed in a simple manner in which the relatively frequent change in the emission direction without changing me chanischer components is performed over the frequency, while the much less frequent switching between a near and a far range is accomplished by means of the shutter member.

Das Verschlusselement kann dazu eingerichtet sein, wenigstens eine der Öffnungen nur partiell zu verschließen. Durch das partielle Verschließen kann eine Reduzierung der Abstrahlung der elektromagnetischen Welle an der betroffenen Öffnung erzielt werden, wobei die Reduzierung vom Grad des Verschließens abhängig ist. Dadurch lässt sich die Abstrahlcharakteristik vorteilhafterweise besonders genau steuern.The closure element can be configured to only partially close at least one of the openings. By partially closing, a reduction in the emission of the electromagnetic wave at the affected opening can be achieved, the reduction depending on the degree of closure. As a result, the emission characteristic can advantageously be controlled particularly precisely.

Das Verschlusselement kann dazu eingerichtet sein, mehrere der Öffnungen gleichmäßig zu verschließen. Das Verschlusselement kann beispielsweise in einer senkrecht zur Ausbreitungsrichtung der elektromagnetischen Strahlung stehenden Richtung verdreht oder verschoben werden. Durch Vorsehen entsprechender Perforationen in der Blende können auf einfache Weise mehrere Konstellationen geöffneter und verschlossener Öffnungen realisiert sein, so dass in unterschiedlichen Stellungen der Blende eine Vielzahl unterschiedlicher Abstrahlcharakteristiken bereitgestellt sein können.The closure member may be configured to uniformly close a plurality of the openings. The closure element can be rotated or displaced, for example, in a direction perpendicular to the propagation direction of the electromagnetic radiation. By providing corresponding perforations in the diaphragm, a plurality of constellations of opened and closed openings can be realized in a simple manner, so that a multiplicity of different radiation characteristics can be provided in different positions of the diaphragm.

Die Öffnungen können in einer Reihe angeordnet sein. Dadurch wird die austretende elektromagnetische Strahlung in einer Richtung senkrecht zur Ausdehnungsrichtung der Reihe unabhängig von der Frequenz der elektromagnetischen Strahlung und der Ansteuerung des Verschlusselements nicht beeinflusst. Diese Ausführungsform ist insbesondere vorteilhaft für einen typischen Scanner mit konstantem Elevationswinkel. Die Öffnungen können gleichmäßig beabstandet sein, wodurch vorteilhafterweise eine Symmetrie der Abstrahlcharakteristik bezüglich der Abstrahlrichtung erreicht bzw. verbessert werden kann.The openings may be arranged in a row. As a result, the exiting electromagnetic radiation in a direction perpendicular to the extension direction of the row is not influenced independently of the frequency of the electromagnetic radiation and the activation of the closure element. This embodiment is particularly advantageous for a typical scanner with constant elevation angle. The openings may be evenly spaced, whereby advantageously a symmetry of the radiation characteristic with respect to the emission direction can be achieved or improved.

Die elektromagnetische Strahlung kann eine Radarstrahlung sein.The electromagnetic radiation may be radar radiation.

Die Erfindung wird nun mit Bezug auf die beigefügten Figuren genauer beschrieben, in denen:

Figur 1
eine Sendevorrichtung für elektromagnetische Strahlung;
Figur 2
unterschiedliche Abstrahlcharakteristiken der Sendevorrichtung aus Figur 1; und
Figur 3
die Sendevorrichtung aus Figur 1 mit selektiv verschlossenen Öffnungen
darstellt.The invention will now be described in more detail with reference to the attached figures, in which:
FIG. 1
a transmitting device for electromagnetic radiation;
FIG. 2
different emission characteristics of the transmitting device FIG. 1 ; and
FIG. 3
the transmitter off FIG. 1 with selectively closed openings
represents.

Beschreibung der FigurenDescription of the figures

Figur 1 zeigt eine Sendevorrichtung 100 für elektromagnetische Strahlung in einer Explosionsdarstellung. Die Sendevorrichtung 100 umfasst einen Hohlleiter 110 mit einem Oberteil 112 und einem Unterteil 115. Im Betrieb liegen die Teile 112 und 115 aufeinander, wie durch die vertikalen Pfeile angedeutet ist. Zueinander korrespondierende Vertiefungen in den beiden Teilen 112, 115 bilden einen Mäander 130, der an Eingängen 140 am Rand des Hohlleiters 110 endet. Einer der Eingänge 130 ist prinzipiell ausreichend, der zweite dargestellte Eingang 130 ist optional. In das Oberteil 112 ist eine Reihe Öffnungen 120 in vertikaler Richtung eingebracht, wobei jede der Öffnungen 120 an einer anderen Stelle auf den Mäander 130 trifft. FIG. 1 shows an electromagnetic radiation transmitting device 100 in an exploded view. The transmitting device 100 comprises a waveguide 110 with an upper part 112 and a lower part 115. In operation, the parts 112 and 115 are in contact with one another, as indicated by the vertical arrows. Mutually corresponding recesses in the two parts 112, 115 form a meander 130, which ends at inputs 140 at the edge of the waveguide 110. One of the inputs 130 is sufficient in principle, the second illustrated input 130 is optional. In the upper part 112, a series of openings 120 is inserted in the vertical direction, wherein each of the openings 120 at another location on the meander 130 hits.

Die Sendevorrichtung 100 kann in der gezeigten Weise etwa aus zwei Platten 112, 115, etwa aus Messing oder einem anderen Metall, aufgebaut sein oder auch auf eine andere Weise so geformt sein, dass sich ein entsprechender Wellenleiter ergibt.The transmitting device 100 may be constructed in the manner shown, for example, from two plates 112, 115, such as brass or other metal, or be formed in another way so as to give a corresponding waveguide.

Durch einen oder beide der Eingänge 130 kann mittels eines Überganges (nicht gezeigt) eine elektromagnetische Welle in den Mäander 130 eingekoppelt werden. Die elektromagnetische Welle pflanzt sich entlang des Mäanders 130 fort und tritt teilweise durch die Öffnungen 120 nach oben aus. Jede aus den Öffnungen 120 austretende Mikrowellenstrahlung hat eine charakteristische Distanz zum verwendeten Eingang, welche die Phasenlage der austretenden Mikrowellenstrahlung beeinflusst. Form, Größe und Anordnung der Öffnungen 120 sind vorzugsweise derart gewählt, dass jede der Öffnungen 120 als eine punktförmige Quelle elektromagnetischer Strahlung modelliert werden kann. Die Öffnungen 120 können mit einem Material ausgefüllt sein, welches für die elektromagnetische Strahlung durchlässig ist, um ein Eintreten von Fremdkörpern in den Hohlleiter 110 zu verhindern.By means of one or both of the inputs 130, an electromagnetic wave can be coupled into the meander 130 by means of a transition (not shown). The electromagnetic wave propagates along the meander 130 and partially exits through openings 120. Each microwave radiation emerging from the openings 120 has a characteristic distance to the input used, which influences the phase position of the exiting microwave radiation. The shape, size and arrangement of the openings 120 are preferably selected so that each of the openings 120 can be modeled as a point source of electromagnetic radiation. The openings 120 may be filled with a material which is permeable to the electromagnetic radiation to prevent entry of foreign bodies into the waveguide 110.

Der Mäander 130 ist zwischen den Öffnungen 120 derart geformt, dass sich die durch die Öffnungen 120 austretenden Mikrowellenstrahlungen oberhalb der Sendevorrichtung 100 entsprechend ihrer Phasenlagen überlagern, so dass mittels positiver und negativer Interferenz insgesamt eine Abstrahlcharakteristik und eine Abstrahlrichtung der elektromagnetischen Strahlung bewirkt wird.The meander 130 is shaped between the openings 120 in such a way that the microwave radiations exiting through the openings 120 overlap above the transmitting device 100 in accordance with their phase positions, so that an emission characteristic and a radiation direction of the electromagnetic radiation are effected overall by means of positive and negative interference.

In die Sendevorrichtung 100 wird vorzugsweise periodisch frequenzmodulierte elektromagnetische Hochfrequenz eingestrahlt, so dass eine Abstrahlcharakteristik, die sich aufgrund der aus den Öffnungen 120 austretenden interferierenden Strahlung bildet, frequenzabhängig ist. Insbesondere ist bevorzugt, dass die Öffnungen 120 derart mit dem Mäander 130 und der frequenzmodulierten Strahlung abgestimmt sind, dass die Abstrahlcharakteristik der Sendevorrichtung 100 eine frequenzgesteuerte Richtung bezüglich der z-Achse einnimmt. Die Richtung ändert sich aufgrund der periodisch gesteuerten Hochfrequenz periodisch, so dass elektromagnetische Strahlung in einen Sichtbereich der Sendevorrichtung 100 abgestrahlt wird. Reflektionen dieser Strahlung können den gleichen Weg in umgekehrter Richtung durchlaufen und von einem Übergang an einem der Eingänge 130 aufgenommen werden, so dass mittels eines Vergleichs der gesendeten mit der empfangenen Hochfrequenz ein Rückschluss auf Objekte im Sichtbereich möglich ist.Frequency-modulated electromagnetic high frequency is preferably radiated periodically into the transmitting device 100, so that a radiation characteristic that forms due to the interfering radiation emerging from the openings 120 is frequency-dependent. In particular, it is preferred that the openings 120 are tuned with the meander 130 and the frequency-modulated radiation in such a way that the emission characteristic of the transmission device 100 assumes a frequency-controlled direction with respect to the z-axis. The direction changes periodically due to the periodically controlled high frequency, so that electromagnetic radiation is radiated into a field of view of the transmitting device 100. Reflections of this radiation can travel the same way in the opposite direction and be absorbed by a transition at one of the inputs 130, so that by means of a comparison of the transmitted with the received radio frequency, a conclusion on objects in the field of view is possible.

Um unterschiedliche Abstrahlcharakteristiken der Sendevorrichtung 100 zu realisieren, sind einzelne der Öffnungen 120 gegenüber der in den Mäander 130 eingestrahlten Mikrowellenstrahlung verschließbar ausgeführt. Dies kann durch eine mikrowellendichte Blende erfolgen, die vor eine oder mehrere der Öffnungen 120 verbracht werden kann. Die Blende kann eine oder mehrere der Öffnungen 120 je nach Stellung freigeben oder verschließen, so dass die aus den Öffnungen 120 austretende Mikrowellenstrahlung von der Stellung der Blende abhängig ist. Die Blende kann bezüglich der Öffnungen 120 verschieb-, dreh- oder klappbar sein und etwa aus einer Metallplatte bestehen. Unterschiedlich große Öffnungen in der Blende, die ganz oder teilweise mit den Öffnungen 120 in Deckung gebracht werden können, können eine vollständige oder teilweise Freigabe jeder der Öffnungen 120 bewirken. Die Blende kann ausgebildet sein, mehreren unterschiedlichen Stellungen mehrere vorbestimmte Muster von freigegebenen Öffnungen 120 zu ermöglichen, die zu mehreren vorbestimmten Abstrahlcharakteristiken der Sendeeinrichtung 100 korrespondieren.In order to realize different emission characteristics of the transmitting device 100, individual ones of the openings 120 are designed so that they can be closed relative to the microwave radiation radiated into the meander 130. This can be done by a microwave-tight aperture, which can be spent in front of one or more of the openings 120. Depending on the position, the aperture 120 can open or close one or more of the openings 120, so that the microwave radiation emerging from the openings 120 is dependent on the position of the aperture. The aperture may be displaced, rotatable or hinged with respect to the openings 120 and may consist of a metal plate. Differently sized apertures in the bezel, which may be wholly or partially aligned with the apertures 120, may permit full or partial release of each cause the openings 120. The aperture may be configured to enable a plurality of different positions to have a plurality of predetermined patterns of shared apertures 120 that correspond to a plurality of predetermined emission characteristics of the transmitter 100.

In einer anderen Ausführungsform ist anstelle eines mechanischen Verschlusses ein mittels eines elektrischen oder optischen Signals unmittelbar steuerbarer Verschluss vorgesehen. Beispielsweise kann ein Halbleiter vor einer der Öffnungen 120 angeordnet und mittels einer Steuerspannung in unterschiedliche Leitfähigkeiten gebracht werden, so dass er Mikrowellenstrahlung in Abhängigkeit seines Leitwertes aus der Öffnung 120 entlässt. Vor jeder der Öffnungen kann ein individuell steuerbares Verschlusselement angeordnet sein, so dass sich unterschiedliche Abstrahlcharakteristiken einstellen lassen, ohne eine mechanische Bewegung an der Sendevorrichtung 100 durchführen zu müssen. In einer weiteren Ausführungsform kann die Steuerung des Leitwertes - und damit der Permissivität gegenüber Mikrowellenstrahlung - synchronisiert mit der Frequenzmodulation der in den Eingang 140 eingestrahlten elektromagnetischen Welle erfolgen, um eine von der Ausrichtung der abgegebenen Strahlung abhängige Bündelung der resuliterenden Abstrahlcharakteristik zu erzielen.In another embodiment, instead of a mechanical closure, a closure which can be controlled directly by means of an electrical or optical signal is provided. For example, a semiconductor may be arranged in front of one of the openings 120 and brought into different conductivities by means of a control voltage, so that it emits microwave radiation as a function of its conductance value from the opening 120. An individually controllable closure element can be arranged in front of each of the openings so that different emission characteristics can be set without having to perform a mechanical movement on the transmission device 100. In a further embodiment, the control of the conductance - and thus the permeability to microwave radiation - synchronized with the frequency modulation of the radiated into the input 140 electromagnetic wave to achieve a dependent on the orientation of the emitted radiation bundling the resulitterenden radiation characteristic.

Figur 2 zeigt unterschiedliche Abstrahlcharakteristiken der Sendevorrichtung 100 aus Figur 1. Eine erste Abstrahlcharakteristik 210 und eine zweite Abstrahlcharakteristik 220 sind in ein polares Koordinatensystem eingezeichnet. Ein zusätzlich angegebenes kartesisches Koordinatensystem erleichtert die Bezugnahme auf die Darstellung von Figur 1. FIG. 2 shows different emission characteristics of the transmitting device 100 FIG. 1 , A first emission characteristic 210 and a second emission characteristic 220 are shown in a polar coordinate system. An additional Cartesian coordinate system facilitates the reference to the representation of FIG. 1 ,

Die Sendevorrichtung 100 ist nicht explizit dargestellt und befindet sich im Ursprung des polaren Koordinatensystems. Die 0 °-Richtung entspricht der y-Richtung in Figur 1, die 90 °-Richtung entspricht der x-Richtung in Figur 1. Für beide Abstrahlcharakteristiken 210 und 220 gilt, dass ein Punkt auf der Außenlinie definiert ist durch eine Richtung im polaren Koordinatensystem und durch einen Abstand vom Ursprung des polaren Koordinatensystems, wobei der Abstand des Punkts einer Signalstärke entspricht. So ist aus den eingezeichneten Abstahlcharakteristiken 210, 220 jeweils die bevorzugte Abstrahlrichtung und eine zugehörige räumliche Verteilung der Abstrahlung ablesbar. In einer typischen Applikation, beispielsweise in einem Scanner-Radar eines Kraftfahrzeugs, entspricht die Darstellung von Figur 2 einer Ansicht von oben.The transmitting device 100 is not explicitly shown and is located at the origin of the polar coordinate system. The 0 ° direction corresponds to the y direction in FIG. 1 , the 90 ° direction corresponds to the x direction in FIG. 1 , For both radiation characteristics 210 and 220, a point on the outline is defined by a direction in the polar coordinate system and by a distance from the origin of the polar coordinate system, where the distance of the point corresponds to a signal strength. Thus, the preferred emission direction and an associated spatial distribution of the emission can be read from the depicted Abstahlcharakteristiken 210, 220 respectively. In a typical Application, for example in a scanner radar of a motor vehicle, corresponds to the representation of FIG. 2 a view from above.

Beide Abstrahlcharakteristiken 210 und 220 sind im Wesentlichen symmetrisch zur 0 °-Richtung. Der maximale Öffnungswinkel der dargestellten ersten Abstrahlrichtung 210 beträgt etwa 12 °, während der maximale Öffnungswinkel der zweiten Abstrahlcharakteristik 220 etwa 60 ° beträgt. Die höchste Signalstärke der ersten Abstrahlcharakteristik 210 in der 0 °-Richtung ist beinahe doppelt so groß wie die höchste Signalstärke der zweiten Abstrahlcharakteristik 220 in der gleichen Richtung. Die erste Abstrahlcharakteristik 210 eignet sich somit in besonderer Weise für eine Abtastung eines entfernten Ziels, beispielsweise mittels eines Fernbereichradars (long range radar, LRR). Die zweite Abstrahlcharakteristik 220 eignet sich besser für eine Nahbereichsabtastung, beispielsweise mittels eines Mittelbereichs - oder Nahbereichsradars (medium range radar, MRR, bzw. short range radar, SRR).Both emission characteristics 210 and 220 are substantially symmetrical to the 0 ° direction. The maximum opening angle of the illustrated first emission direction 210 is approximately 12 °, while the maximum opening angle of the second emission characteristic 220 is approximately 60 °. The highest signal strength of the first emission characteristic 210 in the 0 ° direction is almost twice as large as the highest signal strength of the second emission characteristic 220 in the same direction. The first emission characteristic 210 is therefore particularly suitable for scanning a remote target, for example by means of a long-range radar (LRR). The second radiation characteristic 220 is better suited for close range scanning, for example by means of a medium-range or short-range radar (MRR).

Eine Änderung der Abstrahlrichtung mittels Änderung der Frequenz der elektromagnetischen Strahlung wie oben mit Bezug auf Figur 1 beschrieben ist, kann in der gegebenen Polardarstellung durch ein Drehen der jeweiligen Abstrahlcharakteristik 210, 220 um den Ursprung des polaren Koordinatensystems dargestellt werden. Üblicherweise wird bei einer solchen Richtungsänderung auch die idealisiert dargestellte Keulenform der Abstrahlcharakteristiken 210 und 220 verzerrt. Die grundsätzlichen Eigenschaften der Abstrahlcharakteristiken 210 und 220 bezüglich Öffnungswinkel und Signalstärke bleiben jedoch erhalten.A change in the emission direction by means of a change in the frequency of the electromagnetic radiation as described above with reference to FIG FIG. 1 can be represented in the given polar representation by rotating the respective emission characteristic 210, 220 about the origin of the polar coordinate system. Usually, in such a change in direction, the ideally illustrated lobe form of the emission characteristics 210 and 220 is also distorted. However, the basic properties of the radiation characteristics 210 and 220 with respect to the aperture angle and signal strength are retained.

Figur 3 zeigt die Sendevorrichtung 100 aus Figur 1 mit selektiv verschlossenen Öffnungen 120. Die Öffnungen 120 sind exemplarisch gezeigt und entsprechen nicht den in Figur 1 gezeigten Öffnungen 120. Die Perspektive entspricht einer Blickrichtung in Figur 1 von unten entlang der y-Achse, also in der Richtung, in der Mikrowellenstrahlung aus den Öffnungen 120 austritt. FIG. 3 shows the transmitting device 100 from FIG. 1 with selectively closed openings 120. The openings 120 are shown by way of example and do not correspond to those in FIG FIG. 1 shown openings 120. The perspective corresponds to a line of sight in FIG. 1 from below along the y-axis, ie in the direction in which microwave radiation exits from the openings 120.

Von den Öffnungen 120 im Hohlleiter 110 sind einige mittels einer Blende 310 verschlossen. Bezüglich einer Durchnummerierung in positiver x-Richtung der Öffnungen 120 in Figur 3 von links nach rechts sind die Öffnungen 1, 2, 8, 12, 13, 17, 24 und 25 durch die Blende 310 verschlossen. Dadurch wird beispielsweise die zweite Abstrahlcharakteristik 220 in Figur 2 realisiert. Wird die Blende 310 nach oben (in positiver z-Richtung) verschoben, so dass keine der Öffnungen 120 mehr verschlossen sind, so ergibt sich eine andere Abstrahlcharakteristik, beispielsweise die erste Abstrahlcharakteristik 210 aus Figur 2.Some of the openings 120 in the waveguide 110 are closed by means of a diaphragm 310. Regarding a numbering in the positive x direction of the openings 120 in FIG FIG. 3 From left to right, the openings 1, 2, 8, 12, 13, 17, 24 and 25 are closed by the aperture 310. As a result, for example, the second radiation characteristic 220 in FIG. 2 realized. If the aperture 310 shifted upward (in the positive z-direction), so that no more of the openings 120 are closed, so there is a different radiation characteristic, for example, the first radiation characteristic 210 from FIG. 2 ,

Die dargestellte Anordnung und Form der Öffnungen 120 im Hohlleiter 110 ist exemplarisch. In anderen Ausführungsformen können die Öffnungen 120 andere als die rechteckige Form aufweisen und unterschiedliche Abstände zueinander aufweisen. Die Öffnungen 120 können auch auf der in Figur 1 dargestellten Innenfläche des Hohlleiters 110 in zwei Dimensionen (x und z) verteilt sein, statt, wie dargestellt, in einer Reihe angeordnet zu sein. Beispielsweise können die Öffnungen 120 entlang eines Kreises oder einer Ellipse angeordnet sein. Mehrere Kreise bzw. Ellipsen können konzentrisch zueinander sein.The illustrated arrangement and shape of the openings 120 in the waveguide 110 is exemplary. In other embodiments, the openings 120 may have shapes other than rectangular in shape and have different distances from each other. The openings 120 may also be on the in FIG. 1 shown inner surface of the waveguide 110 in two dimensions (x and z) be distributed, instead of, as shown, to be arranged in a row. For example, the openings 120 may be arranged along a circle or an ellipse. Multiple circles or ellipses may be concentric with each other.

Die Blende 310 ist entsprechend den Öffnungen 120 ausgeformt. In weiteren Ausführungsformen kann die Blende 310 auch dazu eingerichtet sein, zusätzlich oder alternativ zu einer Verschiebung entlang der z-Achse entlang der x-Achse verschoben zu werden. Darüber hinaus kann die Blende 310 auch um die y-Achse gedreht werden. Dies ist besonders vorteilhaft bei Anordnung von Öffnungen 120 entlang von Kreisen bzw. Ellipsen, wie oben beschrieben ist. Die Blende 310 kann ausgeformt sein, mehrere Muster von verschlossenen, teilverschlossenen bzw. offenen Durchlässen 120 zu bewirken.The aperture 310 is formed corresponding to the openings 120. In further embodiments, the aperture 310 may also be configured to be displaced along the x-axis in addition to or as an alternative to displacement along the z-axis. In addition, the aperture 310 may also be rotated about the y-axis. This is particularly advantageous with the arrangement of openings 120 along circles or ellipses, as described above. The aperture 310 may be shaped to effect multiple patterns of closed, partially closed, and open apertures 120, respectively.

In weiteren Ausführungsformen können auch mehrere Blenden 310 verwendet werden, insbesondere kann jedes zu verschließende Loch 120 über eine individuelle Blende 310 verfügen. In einer Variante kann die Blende 310 auch durch einen Klappenmechanismus ersetzt sein. In noch einer weiteren Ausführungsform können zu verschließende Öffnungen 120 auch mittels eines anderen ansteuerbaren Verschlusselements bezüglich elektromagnetischer Strahlung selektiv verschließbar sein, beispielsweise einem Element, dessen elektromagnetische Durchlässigkeit spannungsgesteuert ist.In further embodiments, a plurality of diaphragms 310 may also be used, in particular each hole 120 to be closed may have an individual diaphragm 310. In a variant, the aperture 310 may also be replaced by a flap mechanism. In yet another embodiment, openings 120 to be closed can also be selectively closed with respect to electromagnetic radiation by means of another activatable closure element, for example an element whose electromagnetic permeability is voltage-controlled.

Die Erfindung eignet sich insbesondere zum Aufbau eines Mikrowellen-Scanners zum Einsatz in einem Kfz-Radar, eines Bewegungs- oder Einbruchsmelders sowie weiteren Applikationen, in denen scannende Antennen im Mikrowellenbereich gewünscht sind.The invention is particularly suitable for the construction of a microwave scanner for use in a motor vehicle radar, a movement or burglar alarm and other applications in which scanning antennas in the microwave range are desired.

Claims (9)

  1. Transmitting device (100) for electromagnetic radiation, wherein the transmitting device (100) comprises the following:
    - a waveguide (110) having an input (140) for feeding an electromagnetic wave into the waveguide (110);
    - an opening (120) in the waveguide (110) in order to allow the electromagnetic wave to emerge as radiation,
    - there is at least one further opening (120) in the waveguide (110) and provision is made of a driveable closure element (310) for selectively closing at least one of the openings (120) with respect to the electromagnetic wave, and wherein the openings (120) are arranged in the waveguide (110) in such a way that an emission direction of the electromagnetic radiation is dependent on the frequency of the electromagnetic wave,
    characterized in that
    - the closure element (310) comprises a mechanical diaphragm (310) which is configured to release or wholly or partly to close at least one of the openings (120),
    - in order to achieve, depending on the driving of the closure element (310), at least two emission characteristics (210, 220) which differ in their extents.
  2. Transmitting device (100) according to Claim 1, characterized in that a first emission characteristic (210) is narrower than a second emission characteristic (220).
  3. Transmitting device (100) according to either of the preceding claims, characterized in that the diaphragm (310) has differently sized openings which can be brought to congruence wholly or partly with the openings (120) in order to bring about a complete or partial release of each of the openings (120) .
  4. Transmitting device (100) according to any of the preceding claims, characterized in that the diaphragm (310) is configured to enable, in a plurality of different positions, a plurality of predetermined patterns of released openings (120) which correspond to a plurality of predetermined emission characteristics of the transmitting device (100) .
  5. Transmitting device (100) according to any of the preceding claims, characterized in that the closure element (310) is configured to uniformly close a plurality of the openings (120).
  6. Transmitting device (100) according to any of the preceding claims, characterized in that the closure element (310) is formed by a material which can be controlled electrically or optically in terms of its conductivity.
  7. Transmitting device (100) according to any of the preceding claims, characterized in that the openings (120) are arranged in a row.
  8. Transmitting device (100) according to any of the preceding claims, characterized in that the openings (120) are spaced apart uniformly.
  9. Transmitting device (100) according to any of the preceding claims, characterized in that the electromagnetic radiation is a RADAR radiation.
EP11703631.9A 2010-03-26 2011-01-28 Microwave scanner Active EP2553765B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010003327A DE102010003327A1 (en) 2010-03-26 2010-03-26 microwave scanner
PCT/EP2011/051186 WO2011117003A1 (en) 2010-03-26 2011-01-28 Microwave scanner

Publications (2)

Publication Number Publication Date
EP2553765A1 EP2553765A1 (en) 2013-02-06
EP2553765B1 true EP2553765B1 (en) 2018-07-11

Family

ID=43899663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11703631.9A Active EP2553765B1 (en) 2010-03-26 2011-01-28 Microwave scanner

Country Status (4)

Country Link
US (1) US20130120204A1 (en)
EP (1) EP2553765B1 (en)
DE (1) DE102010003327A1 (en)
WO (1) WO2011117003A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU92331B1 (en) * 2013-12-10 2015-06-11 Iee Sarl Radar sensor with frequency dependent beam steering

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1218633A (en) * 1958-12-19 1960-05-11 Csf Slotted guide radiating a beam of imposed shape
US3604012A (en) * 1968-08-19 1971-09-07 Textron Inc Binary phase-scanning antenna with diode controlled slot radiators
US3568208A (en) * 1968-10-22 1971-03-02 Raytheon Co Varying propagation constant waveguide
US3931624A (en) * 1974-03-21 1976-01-06 Tull Aviation Corporation Antenna array for aircraft guidance system
FR2448792A2 (en) * 1977-06-24 1980-09-05 Radant Etudes Hyperfrequency plate antenna - enables variation of transmission and reception fields also multibeam or electronic sweep operation using minimal number of components
US4203117A (en) * 1978-09-28 1980-05-13 The United States Of America As Represented By The Secretary Of The Army Dual beam line scanner for phased array applications
US4229745A (en) * 1979-04-30 1980-10-21 International Telephone And Telegraph Corporation Edge slotted waveguide antenna array with selectable radiation direction
SE449540B (en) * 1985-10-31 1987-05-04 Ericsson Telefon Ab L M LETTER MANAGEMENT FOR AN ELECTRICALLY CONTROLLED RADAR ANTENNA
US4742355A (en) * 1986-09-10 1988-05-03 Itt Gilfillan, A Division Of Itt Corporation Serpentine feeds and method of making same
DE3738705A1 (en) 1987-11-14 1989-05-24 Licentia Gmbh Arrangement for varying the lobe width of a microwave antenna
US6061035A (en) * 1997-04-02 2000-05-09 The United States Of America As Represented By The Secretary Of The Army Frequency-scanned end-fire phased-aray antenna
SE520642C2 (en) * 2000-03-03 2003-08-05 Ericsson Telefon Ab L M Tunable antenna
FR2843834A1 (en) * 2002-08-23 2004-02-27 Thomson Licensing Sa Terrestrial digital television portable antenna having waveguide with radiating slots each having control circuit providing short/open circuit between slot edges.
US7002517B2 (en) * 2003-06-20 2006-02-21 Anritsu Company Fixed-frequency beam-steerable leaky-wave microstrip antenna
JP3800549B2 (en) * 2004-09-14 2006-07-26 松下電器産業株式会社 Antenna device and multi-beam antenna device
DE102007045013A1 (en) 2007-09-20 2009-04-02 Robert Bosch Gmbh radar device
DE102007056910A1 (en) * 2007-11-26 2009-05-28 Robert Bosch Gmbh Method for operating an array-based beam-swiveling antenna and arrangement and use
US9537212B2 (en) * 2014-02-14 2017-01-03 The Boeing Company Antenna array system for producing dual circular polarization signals utilizing a meandering waveguide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102010003327A1 (en) 2011-09-29
US20130120204A1 (en) 2013-05-16
EP2553765A1 (en) 2013-02-06
WO2011117003A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
DE60006132T2 (en) APERTURE COUPLED SLOT RADIATOR GROUP ANTENNA
DE3885871T2 (en) Electronically controllable antenna.
DE60123905T2 (en) Antenna arrangement, communication device and radar module
EP3311450B1 (en) Waveguide coupling for a line scanner
EP2735055B1 (en) Reflector antenna for a synthetic aperture radar
DE102009054526A1 (en) Dielectric loaded antenna with internal cavity section
DE112019006800T5 (en) Antenna device and radar device
DE2262495A1 (en) ELECTRONIC SCANNING ANTENNA SYSTEM
DE112018007422B4 (en) WAVEGUIDE SLOT GROUP ANTENNA
DE3042456C2 (en)
EP3701280B1 (en) Radar sensor having a plurality of main beam directions
EP2195679A1 (en) Real-time delay system with group antenna for spatially alterable irradiation characteristic for ultra broadband pulses of very high power
WO2014019778A1 (en) Imaging a radar field of view in process automation technology
DE2941563A1 (en) SEMICONDUCTOR ARRANGEMENT
DE102012210314A1 (en) Antenna arrangement and method
DE602004012944T2 (en) High frequency antenna system with multiple beam paths
DE69833070T2 (en) Group antennas with a large bandwidth
DE69121701T2 (en) Pulse radar and components therefor
DE69110120T2 (en) Protection system for an electronic device.
DE3884560T2 (en) THREE-DIMENSIONAL RADIUS LENS WITH HEMISPHERICAL COVER.
EP2553765B1 (en) Microwave scanner
DE3787797T2 (en) SEMICONDUCTOR PHASE-CONTROLLED GROUP ANTENNA WITH SMALL SUB-LOBS.
DE1023799B (en) Radar antenna with variable radiation pattern
EP2608316A1 (en) Assembly with a flat top antenna for emitting or receiving circular and linear polarised electromagnetic waves
DE102016112581A1 (en) Phased array antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011014432

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0025000000

Ipc: H01Q0013200000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 25/00 20060101ALI20180208BHEP

Ipc: H01Q 1/32 20060101ALI20180208BHEP

Ipc: H01Q 21/00 20060101ALI20180208BHEP

Ipc: H01Q 13/20 20060101AFI20180208BHEP

Ipc: H01Q 3/22 20060101ALI20180208BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180412

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1017881

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014432

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181111

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181011

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181011

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014432

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

26N No opposition filed

Effective date: 20190412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190128

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1017881

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210120

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210122

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502011014432

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240322

Year of fee payment: 14