EP2548294A2 - Motorkonverterschaltung für einen elektrischen antriebsmotor sowie elektrische antriebsvorrichtung mit einer derartigen motorkonverterschaltung - Google Patents

Motorkonverterschaltung für einen elektrischen antriebsmotor sowie elektrische antriebsvorrichtung mit einer derartigen motorkonverterschaltung

Info

Publication number
EP2548294A2
EP2548294A2 EP11710665A EP11710665A EP2548294A2 EP 2548294 A2 EP2548294 A2 EP 2548294A2 EP 11710665 A EP11710665 A EP 11710665A EP 11710665 A EP11710665 A EP 11710665A EP 2548294 A2 EP2548294 A2 EP 2548294A2
Authority
EP
European Patent Office
Prior art keywords
motor
converter circuit
motor converter
electric drive
ceramic capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11710665A
Other languages
English (en)
French (fr)
Inventor
Göran SCHUBERT
Manuel Graf
Markus Fenderl
Peter Bertelshofer
Edgar Jerichow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Original Assignee
Conti Temic Microelectronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conti Temic Microelectronic GmbH filed Critical Conti Temic Microelectronic GmbH
Publication of EP2548294A2 publication Critical patent/EP2548294A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Definitions

  • the invention relates to a motor converter circuit according to the preamble of claim 1.
  • the invention further relates to an electric drive device with such a motor converter circuit.
  • Electric drive devices are used for example in the form of auxiliary electric drives both in the automation and household appliance industry as well as in rail technology, automotive engineering and aeronautics.
  • the electric drive motor is connected to a motor converter which is controlled by a converter driver.
  • the motor converter is powered by a voltage source and a DC link capacitor.
  • the DC link capacitor is designed as an electrolytic capacitor. The disadvantage is that in such a motor converter circuits, the electrolytic capacitors age too quickly and therefore the
  • the invention has for its object to provide a motor converter circuit for an electric drive motor having a longer life. This object is achieved by a motor converter circuit with the features of claim 1.
  • the DC link capacitor is part of a so-called ⁇ filter. The filter attenuation and the size of the output voltage ripples are dependent on conventional motor converter circuits.
  • a DC link capacitor with the lowest power dissipation is built up by the parallel connection of several ceramic capacitors.
  • the ceramic capacitors each have a loss resistance of 1 mO to 2 ⁇ , which means that the associated solder or splice contribute more power dissipation than the ceramic capacitors themselves.
  • 50 ceramic capacitors with a capacity of 10 ⁇ connected in parallel and has Each solder joint has an ohmic loss resistance of 25 ms, the result is a loss resistance of the intermediate circuit capacitor of 1 ⁇ m. This loss resistance is about 1/20 smaller than that of a built-up of electrolytic capacitors DC link capacitor.
  • the parallel connection of ceramic capacitors results on the one hand less heating due to the lower loss resistance and on the other hand due to the large number of solder joints better heat dissipation compared to the contacts of the capacitive winding of the electrolytic capacitors.
  • the intermediate circuit capacitor no longer needs to be operated in resonance. At the fundamental frequency thus mainly capacitive reactances are connected in parallel, whereby the thermally induced loss resistance change with the negative temperature coefficient in the background. Furthermore, the partial inductance that can be assigned to the intermediate circuit capacitor is smaller by factors than in the case of electrolytic capacitors in the case of a parallel connection of ceramic capacitors. This leads to a reduction of the quality in the resonance range of the intermediate circuit capacitor and thus to a lower voltage drop at higher frequencies, ie frequencies which are greater than the resonance frequency. This results in a broadband 7r filter higher attenuation.
  • a motor converter circuit according to one of claims 2 to 5 ensures a long life.
  • the invention is also based on the object to provide an electric drive device which has a longer life.
  • FIG. 1 shows a schematic diagram of an electric drive device with a motor converter according to the invention.
  • An electric drive device 1 has a voltage source 2, which drives an electric drive motor 4 via a motor converter circuit 3.
  • the motor converter circuit 3 has two terminals 5, 6, which are connected to the poles 7, 8 of the voltage source 2 and the DC voltage source.
  • the first terminal 5 is referred to as Kl-30 terminal and the second terminal 6 so Kl-31 terminal.
  • the terminal 6 represents the ground terminal of the motor converter circuit 3.
  • the pole 8 of the voltage source 2 is connected to a ground conductor 9, which is for example the chassis of a motor vehicle or the engine block of an internal combustion engine.
  • the motor converter circuit 3 has a motor converter 10, which is controlled by means of a converter driver 11.
  • the motor converter 10 or the DC / AC converter is designed as a B6 bridge and has six power switches 12.
  • an x-filter 13 is inserted in the motor converter circuit 3 in the direction of the voltage source 2.
  • Filter 13 has on the input side a filter capacitance or a filter capacitor 14, which is connected between the terminals 5 and 6. Parallel to the filter capacitor 14, a series circuit of an inductance or corresponding coil 15 and a DC link capacitor or a DC link capacitor 16 is connected. The converter driver 11 and the motor converter 10 are connected between a connection line 17 extending from the coil 15 to the intermediate circuit capacitor 16 and a return conductor 18. On the output side, the
  • the drive motor 4 is designed as a brushless DC motor (BLDC motor).
  • the motor housing 22 of the drive motor 4 is connected via a connecting conductor 23 to the ground conductor 9.
  • the intermediate circuit capacitor 16 is formed of a plurality of parallel connected ceramic capacitors 24 (Kerko). By connecting in parallel, for example, 50 ceramic capacitors 24 with a capacity of 10, an intermediate capacitor or
  • Block capacitor 16 constructed with comparatively low power dissipation.
  • the individual ceramic capacitors 24 have a loss resistance in the range of 1 ⁇ to 2 mi2, which means that the soldering or splicing 25 contribute more losses to the power dissipation than the ceramic capacitors 24 themselves. With a loss resistance of about 25 mQ Each solder joint 25 results in a loss resistance of the intermediate circuit capacitor 16 of approximately 1 m, which is approximately 1/20 of the loss resistance of a conventional intermediate circuit capacitor constructed from electrolytic capacitors. Due to the low loss resistance of the ceramic capacitors 24 results in a lower power loss and accordingly a lower heating, which is better dissipated due to the large number of solder joints 25. Although the ceramic capacitors 24 have a negative temperature coefficient, these unlike electrolytic capacitors thus do not result in an impermissible heating and a resulting rapid aging.
  • the individual ceramic capacitors 24 have a loss resistance in the range of 1 ⁇ to 2 mi2, which means that the soldering or splicing 25 contribute more losses to the
  • Motor converter circuit 3 accordingly has a comparatively longer service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Eine elektrische Antriebsvorrichtung (1) weist eine erfindungsgemäße Motorkonverterschaltung (3) mit einem Zwischenkreiskondensator (16) auf. Der Zwischenkreiskondensator (16) ist aus einer Parallelschaltung von mehreren keramischen Kondensatoren (24) aufgebaut. Die keramischen Kondensatoren (24) haben einen geringeren Verlustwiderstand und ermöglichen eine bessere Wärmeabfuhr, sodass die Motorkonverterschaltung (3) eine vergleichweise längere Lebensdauer aufweist.

Description

Motorkonverterschaltung für einen elektrischen Antriebsmotor sowie elektrische Antriebsvorrichtung mit einer derartigen
Motorkonverterschaltung Die Erfindung betrifft eine Motorkonverterschaltung gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft ferner eine elektrische Antriebsvorrichtung mit einer derartigen Motorkonverterschaltung.
Elektrische Antriebsvorrichtungen werden beispielsweise in Form von elektrischen Hilfsantrieben sowohl in der Automatisierungs- sowie Haushaltsgeräteindustrie als auch in der Schienenverkehrstechnik, Kfz-Technik und der Aeronautik genutzt. Bei diesen Antriebsvorrichtungen ist der elektrische Antriebsmotor an einen Motorkonverter angeschlossen, der von einem Konverter-Treiber gesteuert wird. Der Motorkonverter wird von ei- ner Spannungsquelle und einem Zwischenkreiskondensator gespeist. Der Zwischenkreiskondensator ist als Elektrolytkondensator ausgeführt. Nachteilig ist, dass bei derartigen Motorkonverterschaltungen die Elektrolytkondensatoren zu häufig schnell altern und dementsprechend die
Motorkonverterschaltungen schnell ausfallen.
Der Erfindung liegt die Aufgabe zugrunde, eine Motorkonverterschaltung für einen elektrischen Antriebsmotor zu schaffen, die eine längere Lebensdauer aufweist. Diese Aufgabe wird durch eine Motorkonverterschaltung mit den Merkmalen des Anspruchs 1 gelöst. Zur Einhaltung der maßgeblichen EMV- Grenzwerte ist der Zwischenkreiskondensator Teil eines sogenannten τ- Filters. Die Filterdämpfung sowie die Größe der ausgangseitigen Span- nungsrippel hängen bei herkömmlichen Motorkonverterschaltungen maß-
BESTÄTIGUIMGSKOPIE geblich von der Kapazität, des Verlustwiderstandes und der Induktivität des Elektrolytkondensators ab. Da die ohmschen Verluste im Elektrolytkondensator derart groß sind, dass gerade noch die geforderte Filterdämpfung realisiert werden kann, dürfen weder die Kapazität noch die Induktivi- tät des Elektrolytkondensators einen zum Verlustwiderstand additiven Spannungsabfall liefern. Dies wird dadurch erreicht, dass der Elektrolytkondensator in Serienresonanz zu der Grundwelle der Schaltfrequenz des Motorkonverters betrieben wird. Dies wiederum führt zu großen Kapazitäten, beispielsweise im Bereich von 1 mF bis 2 mF für Schaltfrequenzen von 20 kHz, und damit zu körperlich großen Bauteilen bzw. Elektrolytkondensatoren. Da Elektrolytkondensatoren nur eine bestimmte Verlustleistung je Bauteil vertragen, werden mehrere Elektrolytkondensatoren zur Verteilung der Ströme und der damit verbundenen Verlustleistung parallel geschaltet. Beispielsweise werden für Antriebsmotoren mit einer Leistung von 200 W bis 1 kW zwei bis fünf Elektrolytkondensatoren parallel geschaltet.
Erfindungsgemäß wurde nun erkannt, dass parallel geschaltete Elektrolytkondensatoren bei geringem Bauraumangebot nur unzureichend thermisch miteinander gekoppelt sind, was zu einer schnellen Alterung vereinzelter Elektrolytkondensatoren und im schlimmsten Fall zu einem schnellen Ausfall der Motorkonverterschaltung führt. Hintergrund ist, dass die Elektrolytkondensatoren einerseits hohe Verlustwiderstände und diese andererseits negative Temperaturkoeffizienten aufweisen. Dementsprechend nimmt der Verlustwiderstand des niederohmigsten Elektrolytkondensators, der den größten Strom führt, durch die unzureichende Abfuhr von Abwärme weiter ab, sodass noch mehr Strom durch diesen fließt, wodurch die Verlustleistung und damit die Temperatur weiter steigt. Die Parallelschaltung der Elektrolytkondensatoren bildet somit ein mitgekoppeltes System, welches dazu führt, dass thermisch schlecht gekoppelte Elektrolytkondensatoren schnell altern.
Demgegenüber wird durch die Parallelschaltung von mehreren kerami- sehen Kondensatoren ein Zwischenkreiskondensator mit geringster Verlustleistung aufgebaut. Die keramischen Kondensatoren haben jeweils einen Verlustwiderstand von 1 mO bis 2 ηιΩ , was bedeutet, dass die zugehörigen Löt- bzw. Klebestellen mehr Verlustleistung beisteuern als die keramischen Kondensatoren selbst. Werden beispielsweise 50 keramische Kondensatoren mit einer Kapazität von jeweils 10 μΈ parallel geschaltet und weist jede Lötstelle einen ohmschen Verlustwiderstand von 25 mß auf, so ergibt sich ein Verlustwiderstand des Zwischenkreiskondensators von 1 ιηΩ . Dieser Verlustwiderstand ist um ca. 1/20 kleiner als der eines aus Elektrolytkondensatoren aufgebauten Zwischenkreiskondensators. Durch die Parallelschaltung von keramischen Kondensatoren ergibt sich aufgrund des geringeren Verlustwiderstandes einerseits eine geringere Erwärmung und andererseits aufgrund der Vielzahl von Lötstellen eine bessere Wärmeabführung im Vergleich zu den Kontaktierungen der kapazitiven Wickel der Elektrolytkondensatoren.
Da der Spannungsabfall am Verlustwiderstand um ca. 1/20 reduziert wird, ist ein Spannungsabfall am kapazitiven Blindwiderstand des Zwischenkreiskondensators zulässig, sodass der Zwischenkreiskondensator mit geringeren kapazitiven Werten dimensioniert werden kann. Der Zwischen- kreiskondensator muss nicht mehr in seiner Resonanz betrieben werden. Bei der Grundfrequenz werden somit hauptsächlich kapazitive Blindwiderstände parallel geschaltet, wodurch die thermisch bedingte Verlustwiderstandsänderung mit den negativen Temperaturkoeffizienten in den Hintergrund tritt. Weiterhin ist die dem Zwischenkreiskondensator zuordenbare partielle Induktivität bei einer Parallelschaltung von keramischen Kondensatoren um Faktoren kleiner als bei Elektrolytkondensatoren. Dies führt zu einer Ver- ringerung der Güte im Resonanzbereich des Zwischenkreiskondensators und somit zu einem geringeren Spannungsabfall bei höheren Frequenzen, d.h. Frequenzen, die größer als die Resonanzfrequenz sind. Hierdurch ergibt sich ein breitbandigeres 7r-Filter höherer Dämpfung. Eine Motorkonverterschaltung nach einem der Ansprüche 2 bis 5 gewährleistet eine lange Lebensdauer.
Der Erfindung liegt ferner die Aufgabe zugrunde, eine elektrische Antriebsvorrichtung zu schaffen, die eine längere Lebensdauer aufweist.
Diese Aufgabe wird durch eine elektrische Äntriebsvorrichtung mit den Merkmalen des Anspruchs 6 gelöst. Die Vorteile der erfindungsgemäßen Antriebsvorrichtung entsprechen den bereits beschriebenen Vorteilen der erfindungsgemäßen Motorkonverterschaltung .
Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausfuhrungsbeispiels. Die Figur zeigt eine Prinzipdarstellung einer elektrischen Antriebsvorrichtung mit einem erfindungsgemäßen Motorkonverter.
Eine elektrische Antriebsvorrichtung 1 weist eine Spannungsquelle 2 auf, die über eine Motorkonverterschaltung 3 einen elektrischen Antriebsmotor 4 ansteuert. Die Motorkonverterschaltung 3 weist zwei Klemmen 5, 6 auf, die mit den Polen 7, 8 der Spannungsquelle 2 bzw. der Gleichspannungsquelle verbunden sind. Die erste Klemme 5 wird als Kl-30-Klemme und die zweite Klemme 6 also Kl-31 -Klemme bezeichnet. Die Klemme 6 stellt die Masse- klemme der Motorkonverterschaltung 3 dar. Der Pol 8 der Spannungsquelle 2 ist mit einem Masseleiter 9 verbunden, der beispielsweise das Chassis eines Kfz oder der Motorblock eines Verbrennungsmotors ist.
Zur Ansteuerung des Antriebsmotors 4 weist die Motorkonverterschaltung 3 einen Motorkonverter 10 auf, der mittels eines Konverter-Treibers 11 angesteuert wird. Der Motorkonverter 10 bzw. der DC/AC-Konverter ist als B6-Brücke ausgebildet und weist sechs Leistungsschalter 12 auf.
Zur Einhaltung von EMV-Grenzwerten ist in Richtung der Spannungsquel- le 2 ein x-Filter 13 in die Motorkonverterschaltung 3 eingefügt. Das 7Γ-
Filter 13 weist eingangsseitig eine Filterkapazität bzw. einen Filterkondensator 14 auf, der zwischen die Klemmen 5 und 6 geschaltet ist. Parallel zu dem Filterkondensator 14 ist eine Reihenschaltung aus einer Induktivität bzw. entsprechenden Spule 15 und einer Zwischenkreiskapazität bzw. ei- nem Zwischenkreiskondensator 16 geschaltet. Der Konverter-Treiber 11 und der Motorkonverter 10 sind zwischen eine Verbindungsleitung 17, die sich von der Spule 15 zu dem Zwischenkreiskondensator 16 erstreckt, und einen Rückleiter 18 geschaltet. Ausgangsseitig weist die
Motorkonverterschaltung 3 drei Ausgangsklemmen 19, 20, 21 auf, an de- nen der Antriebsmotor 4 angeschlossen ist. Der Antriebsmotor 4 ist als bürstenloser Gleichstrommotor (BLDC-Motor) ausgebildet. Das Motorgehäuse 22 des Antriebsmotors 4 ist über einen Verbindungsleiter 23 mit dem Masseleiter 9 verbunden. Der Zwischenkreiskondensator 16 ist aus mehreren parallel zueinander geschalteten keramischen Kondensatoren 24 (Kerko) ausgebildet. Durch Parallelschalten von beispielsweise 50 keramischen Kondensatoren 24 mit einer Kapazität von jeweils 10 ist ein Zwischenkondensator bzw.
Blockkondensator 16 mit vergleichsweise geringer Verlustleistung aufgebaut. Die einzelnen keramischen Kondensatoren 24 haben einen Verlustwiderstand im Bereich von jeweils 1 ηιΩ bis 2 mi2 , was bedeutet, dass die Löt- bzw. Klebstellen 25 mehr Verluste zu der Verlustleistung beisteuern als die keramischen Kondensatoren 24 selbst. Bei einem Verlustwiderstand von ca. 25 mQ je Lötstelle 25 ergibt sich ein Verlustwiderstand des Zwi- schenkreiskondensators 16 von ca. 1 mü , dies ist ca. 1/20 des Verlustwiderstandes eines herkömmlichen Zwischenkreiskondensators, der aus Elektrolytkondensatoren aufgebaut ist. Durch den geringen Verlustwiderstand der keramischen Kondensatoren 24 entsteht eine geringere Verlustleistung und dementsprechend eine geringere Erwärmung, die aufgrund der Vielzahl von Lötstellen 25 besser abgeführt wird. Obwohl auch die keramischen Kondensatoren 24 einen negativen Temperaturkoeffizienten haben, kommt es bei diesen im Gegensatz zu Elektrolytkondensatoren somit nicht zu einer unzulässigen Erwärmung und einer daraus resultierenden schnellen Alterung. Die
Motorkonverterschaltung 3 weist dementsprechend eine vergleichsweise längere Lebensdauer auf.

Claims

Motorkonverterschaltung für einen elektrischen Antriebsmotor, umfassend
eine erste Klemme (5) und eine zweite Klemme (6) zum Anschluss an eine Spannungsquelle (2),
einen Motorkonverter (10) zur Ansteuerung eines elektrischen Antriebsmotors (4),
einen Konverter-Treiber (11) zur Ansteuerung des Motorkonverters (10), und
ein 7r-Filter (13) mit
~ einer mit den Klemmen (4, 5) verbundenen Filterkapazität (14),
— einer parallel zu dem Motorkonverter (10) geschalteten Zwischenkreiskapazität (16), und
~ einer mit der ersten Klemme (5) verbundenen und in Reihe zu der Zwischenkreiskapazität (16) geschalteten Induktivität (15), dadurch gekennzeichnet,
dass die Zwischenkreiskapazität (16) aus mehreren parallel zueinander geschalteten keramischen Kondensatoren (24) ausgebildet ist.
Motorkonverterschaltung nach Anspruch 1 , dadurch gekennzeichnet, dass mindestens 10, insbesondere mindestens 30 und insbesondere mindestens 50 keramische Kondensatoren (24) parallel geschaltet sind.
Motorkonverterschaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Parallelschaltung der keramischen Kondensatoren (24) derart dimensioniert ist, dass diese bei einer Grundwelle der Schaltfrequenz des Motorkonverters (10) nicht in ihrer Serienresonanz betrieben wird.
4. Motorkonverterschaltung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass jeder der keramischen Kondensatoren (24) einen ohmschen Verlustwiderstand von höchstens 2 m hat und insbesondere einen ohmschen Verlustwiderstand im Bereich von 1 mß bis 2 mß hat. 5. Motorkonverterschaltung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jede Lötstelle (25) eines keramischen Kondensators (24) einen ohmschen Verlustwiderstand von höchstens 25 mQ hat.
6. Elektrische Antriebsvorrichtung, umfassend
- eine Motorkonverterschaltung (3) nach einem der Ansprüche 1 bis
5,
eine Spannungsquelle (2), die mit einem ersten Pol (7) mit der ersten Klemme (5) und mit einem zweiten Pol (8) mit der zweiten Klemme (6) verbunden ist, und
- einen elektrischen Antriebsmotor (4), der mit dem Motorkonverter
(10) verbunden ist.
EP11710665A 2010-03-19 2011-01-19 Motorkonverterschaltung für einen elektrischen antriebsmotor sowie elektrische antriebsvorrichtung mit einer derartigen motorkonverterschaltung Withdrawn EP2548294A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010012210 2010-03-19
PCT/DE2011/000052 WO2011113403A2 (de) 2010-03-19 2011-01-19 Motorkonverterschaltung für einen elektrischen antriebsmotor sowie elektrische antriebsvorrichtung mit einer derartigen motorkonverterschaltung

Publications (1)

Publication Number Publication Date
EP2548294A2 true EP2548294A2 (de) 2013-01-23

Family

ID=44541516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11710665A Withdrawn EP2548294A2 (de) 2010-03-19 2011-01-19 Motorkonverterschaltung für einen elektrischen antriebsmotor sowie elektrische antriebsvorrichtung mit einer derartigen motorkonverterschaltung

Country Status (5)

Country Link
US (1) US20130009581A1 (de)
EP (1) EP2548294A2 (de)
JP (1) JP2013523075A (de)
DE (1) DE112011100953A5 (de)
WO (1) WO2011113403A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808748B2 (ja) 2009-11-12 2015-11-10 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミットベシュレンクテル ハフツングConti Temic microelectronic GmbH 電気駆動装置用制御回路装置及びこのような制御回路装置を持つ電気駆動装置
EP2608378A1 (de) * 2011-12-19 2013-06-26 Siemens Aktiengesellschaft Stromrichterschaltung
US10390172B2 (en) * 2016-03-28 2019-08-20 Intel IP Corporation Localization in machine-to-machine systems
AT521100A1 (de) * 2018-04-13 2019-10-15 Ceracap Engel Kg Wechselrichter mit Zwischenkreis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419915A (en) * 1987-07-13 1989-01-24 Shinko Electric Co Ltd Inverter overcurrent detection method
EP0508336A1 (de) * 1991-04-09 1992-10-14 ABBPATENT GmbH Kondensatoranordnung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038587A (en) * 1975-08-21 1977-07-26 Sprague Electric Company Ceramic disc capacitor and method of making the same
DE3032819A1 (de) * 1979-09-04 1981-03-19 North American Philips Corp., New York, N.Y. Kondensator mit bandleitungsanschluessen
JP3501685B2 (ja) * 1999-06-04 2004-03-02 三菱電機株式会社 電力変換装置
DE10161632A1 (de) * 2001-12-14 2003-07-10 Siemens Ag Erzeugungsverfahren für eine Wechselspannung mit einer variablen Spannungshöhe und einem Vorzeichenverlauf sowie hiermit korrespondierender Zwischenkreisumrichter
DE10232716A1 (de) * 2002-07-18 2004-04-22 Robert Bosch Gmbh Lüfteransteuerung mit verbesserter elektromagnetischer Verträglichkeit
JP4802849B2 (ja) * 2006-05-09 2011-10-26 トヨタ自動車株式会社 モータ駆動装置
JP5098522B2 (ja) * 2007-08-30 2012-12-12 株式会社村田製作所 インバータ装置の設計方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419915A (en) * 1987-07-13 1989-01-24 Shinko Electric Co Ltd Inverter overcurrent detection method
EP0508336A1 (de) * 1991-04-09 1992-10-14 ABBPATENT GmbH Kondensatoranordnung

Also Published As

Publication number Publication date
WO2011113403A3 (de) 2012-07-26
JP2013523075A (ja) 2013-06-13
DE112011100953A5 (de) 2013-01-24
US20130009581A1 (en) 2013-01-10
WO2011113403A2 (de) 2011-09-22

Similar Documents

Publication Publication Date Title
EP2559136B1 (de) Batterie mit variabler ausgangsspannung
EP2519958B1 (de) Leistungskondensator
EP3334022B1 (de) Stromrichtereinrichtung für ein kraftfahrzeug und kraftfahrzeug
DE102011014826A1 (de) Stromversorgungskreis und Motorvorrichtung
DE102018216236B4 (de) Ladeschaltung für einen fahrzeugseitigen elektrischen Energiespeicher
WO2018091021A1 (de) Sammelschiene mit einem blechstapel sowie verfahren zum herstellen einer sammelschiene
EP2548294A2 (de) Motorkonverterschaltung für einen elektrischen antriebsmotor sowie elektrische antriebsvorrichtung mit einer derartigen motorkonverterschaltung
DE102012205725A1 (de) Leistungselektronikmodul, Verfahren zur Herstellung
EP2271513B1 (de) Mehrsystemfahrzeugtransformator
DE102018216233A1 (de) Ladeschaltung für einen fahrzeugseitigen elektrischen Energiespeicher
EP2499728B1 (de) Ansteuerschaltung für eine elektrische antriebsvorrichtung sowie elektrische antriebsvorrichtung mit einer derartigen ansteuerschaltung
DE102012110635A1 (de) Stromrichtervorrichtung und Verfahren zur Stromregelung an einer Elektroarbeitsmaschine
EP3741039B1 (de) Verfahren zur ansteuerung, ansteuerschaltung, bremssystem und verwendung
DE102016012093A1 (de) Anschlusseinheit für ein Elektrogerät, Elektrogerätesystem und Verfahren zur Herstellung
DE112021001283T5 (de) Rauschfilter und leistungsumsetzungsvorrichtung
DE102010042050A1 (de) Verfahren zum Betreiben einer elektrischen Maschine
WO2017133962A1 (de) Gleichspannungswandler-anordnung für eine elektrische maschine
DE102020213647A1 (de) Stator für eine elektrische Maschine und elektrische Maschine
DE102009053061A1 (de) Elektrische Anordnung zur Bildung eines Spannungszwischenkreises
WO2021174281A1 (de) Umrichteranordnung und prüfstand mit einer umrichteranordnung
DE102019103832A1 (de) Vorrichtung zur Unterdrückung von EMV-Gleichtaktstörungen in Kfz- Hochvoltanwendungen
DE102021211686A1 (de) Filterschaltung für ein elektrisches Antriebssystem und elektrisches Antriebssystem
EP4078632A1 (de) Elektrische vorrichtung für einen stromrichter, stromrichter und anordnung mit einer elektrischen maschine und einem stromrichter
DE102018203167A1 (de) Spannungswandler
WO2017108735A1 (de) Antriebselektronik für einen elektrischen antrieb in einem fahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120912

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131105

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140516