EP2531137A1 - Bariatric device and method for recipient with altered anatomy - Google Patents

Bariatric device and method for recipient with altered anatomy

Info

Publication number
EP2531137A1
EP2531137A1 EP11740251A EP11740251A EP2531137A1 EP 2531137 A1 EP2531137 A1 EP 2531137A1 EP 11740251 A EP11740251 A EP 11740251A EP 11740251 A EP11740251 A EP 11740251A EP 2531137 A1 EP2531137 A1 EP 2531137A1
Authority
EP
European Patent Office
Prior art keywords
cardiac
recipient
bariatric device
bariatric
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11740251A
Other languages
German (de)
French (fr)
Inventor
Randal S. Baker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BFKW LLC
Original Assignee
BFKW LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BFKW LLC filed Critical BFKW LLC
Publication of EP2531137A1 publication Critical patent/EP2531137A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/0076Implantable devices or invasive measures preventing normal digestion, e.g. Bariatric or gastric sleeves
    • A61F5/0079Pyloric or esophageal obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/0083Reducing the size of the stomach, e.g. gastroplasty

Definitions

  • the present invention is directed to a bariatric device and method of causing weight loss in a recipient.
  • Obesity is a large and increasing problem in the United States and worldwide.
  • the prevalence of overweight people (BMI greater than 25) increased from 56 percent of United States adults to 65 percent and the prevalence of obese adults (BMI greater than 30) increased from 23 percent to 30 percent.
  • the prevalence of overweight children and adolescents (ages 6-19 years) increased from 11 percent in the period encompassing the year 1990 to 16 percent in the period encompassing the year 2000.
  • the increasing prevalence of excess body mass among children and adolescents will make the problem even greater when they reach adulthood.
  • the problem is not limited to the United States. Between 10 percent and 20 percent of European men are obese, and between 10 percent and 25 percent of European women are obese.
  • a bariatric device and method of causing at least partial satiety in a recipient that either has or is presently undergoing a procedure that alters the anatomy of the recipient includes deploying a bariatric device to the recipient having an altered anatomy.
  • the bariatric device includes a cardiac member having a cardiac surface that is configured to generally conform to the shape and size of a portion of the cardiac region of the stomach of the recipient.
  • the cardiac member stimulates receptors with the cardiac surface in order to influence a neurohormonal mechanism in the recipient sufficient to cause at least partial satiety by augmenting fullness caused by food and simulating fullness in the absence of food.
  • the device may be deployed to a recipient having undergone a bariatric procedure, such as (i) a gastric bypass procedure, (ii) a vertical banded gastroplasty, (iii) a sleeve gastrectomy, (iv) a duodenal switch, or (v) a laparoscopic gastric band, whether the procedure is performed laparoscopically, endoscopically, or the like.
  • a bariatric procedure such as (i) a gastric bypass procedure, (ii) a vertical banded gastroplasty, (iii) a sleeve gastrectomy, (iv) a duodenal switch, or (v) a laparoscopic gastric band, whether the procedure is performed laparoscopically, endoscopically, or the like.
  • the cardiac member may have a self-expanding surface.
  • the self-expanding surface may be in the form of a scroll shaped to allow the self -expanding surface to be contracted in a roll, such as for deployment and unrolled to engage the walls of the stomach.
  • the bariatric device may further include an esophageal member having an esophageal surface that is configured to generally conform to the shape and size of a portion of the esophagus and a connector connected with said esophageal member and said cardiac member.
  • the cardiac surface may be adjustable in order to adjust the amount of stimulus applied to the cardiac portion of the stomach. Adjustment may be made concurrently with deployment or subsequent to deployment. Adjustment may be performed endoscopically via a radio frequency link, or the like.
  • Anti-migration of the cardiac member may be provided.
  • the anti-migration may include providing a surface having tissue adhesion and/or tissue ingrowth characteristics.
  • the anti-migration may include sizing the cardiac member to be generally larger in shape than a stoma of the native stomach.
  • the anti-migration may include mucosa capture.
  • the anti-migration may include a projection from the cardiac member that is configured to extend to the esophagus or the intestine of the recipient to resist misorientation of the bariatric device.
  • the bariatric device and method may be applied to a recipient who had previously undergone bariatric surgery to produce the altered anatomy. Alternatively, the bariatric device and method may be applied concurrently with altering the anatomy of the recipient.
  • FIG. 1 is a perspective view illustrating deployment of a bariatric device in a recipient who underwent or is undergoing a vertical banded gastroplasty;
  • FIG. 2 is a perspective view illustrating deployment of a bariatric device in a recipient who underwent or is undergoing a sleeve gastrectomy;
  • FIG. 3 is a perspective view illustrating deployment of a bariatric device in a recipient who underwent or is undergoing a duodenal switch;
  • FIG. 4 is a perspective view illustrating deployment of a bariatric device in a recipient who underwent or is undergoing a gastric bypass procedure
  • FIG. 5 is a perspective view illustrating deployment of an alternative embodiment of a bariatric device in a recipient who underwent or is undergoing a vertical banded gastroplasty;
  • FIG. 6 is a perspective view illustrating deployment of another alternative embodiment of a bariatric device in a recipient who underwent or is undergoing a sleeve gastrectomy;
  • FIG. 7 is a perspective view illustrating deployment of another alternative embodiment of a bariatric device in a recipient who underwent or is undergoing a duodenal switch;
  • FIG. 8 is a perspective view illustrating deployment of another alternative embodiment of a bariatric device in a recipient who underwent or is undergoing a gastric bypass procedure;
  • FIG. 9 is a perspective view of the bariatric device in FIG. 1;
  • FIG. 10 is the same view as FIG. 9 of an alternative embodiment thereof.
  • a bariatric device of the various embodiments disclosed herein may be applied to a recipient that has an altered anatomy, such as from bariatric surgery.
  • Such bariatric device stimulates receptors at least in the native stomach, or pouch, in order to influence a neurohormonal mechanism in the recipient sufficient to cause at least partial satiety by augmenting fullness caused by food and simulating fullness in the absence of food.
  • Such bariatric device may be applied, for example, to a recipient who had previously undergone bariatric surgery, but is now experiencing difficulty with lack of satiety including weight gain.
  • bariatric device may be deployed to a recipient who is presently undergoing bariatric surgery to enhance the effect of the surgery and avoid lack of satiety in the future.
  • the altered anatomy may be a result of procedures other than bariatric procedures, such as stomach surgery for cancer, or the like. Also, the altered anatomy may be performed using open surgery, laparoscopic surgery, or endoscopic surgery.
  • Bariatric device 10 has a cardiac member 14 that is configured to the stomach component of the altered anatomy to provide a tension, such as an outward pressure.
  • Cardiac member 14 has a wall 20 configured to the size and shape of the cardiac region of a stomach that has undergone vertical banded gastroplasty (FIG. 1). The outer surface of wall 20 applies a strain to the cardiac region of the stomach to stimulate receptors to influence the neurohormonal feedback mechanism in a manner that causes at least partial satiety by augmenting fullness caused by food and simulating fullness in the absence of food as disclosed in commonly assigned U.S. Patent No. 7,846,174, the disclosure of which is hereby incorporated herein reference.
  • Cardiac member 14 may be partially or wholly the size of the stomach pouch. If cardiac member 14 is larger than the stoma of the pouch, the cardiac member will avoid distal migration through the stoma.
  • a bariatric device 110 is shown having a cardiac member 114 that is similar to cardiac member 14, except having a wall configured to the size and shape of the cardiac region of a stomach that has undergone a sleeve gastrectomy (FIG. 2).
  • a bariatric device 210 is shown having a cardiac member 214 that is similar to cardiac members 14, 114, except having a wall configured to the size and shape of the cardiac region of a stomach that has undergone a duodenal switch (FIG. 3).
  • a bariatric device 310 is shown having a cardiac member 314 that is similar to cardiac members 14, 114, 214, except having a wall configured to generally conform to the size and shape of the cardiac region of the proximal pouch of a recipient that has undergone a gastric bypass procedure, also known as a roux-en-y procedure (FIG. 4).
  • a gastric bypass procedure also known as a roux-en-y procedure (FIG. 4).
  • the principles disclosed herein could be used with a recipient who received a laparoscopic gastric band.
  • the cardiac member of such device may be made having an especially soft outer surface. Provisions may be made to resist migration of cardiac member 14, 114, 214 and 314.
  • the cardiac member may be provided having an expanded configuration that is larger than the stoma emptying the stomach pouch. In this fashion, the cardiac member will have a tendency to be retained in the pouch.
  • an anti-migration mechanism may be used to resist distal migration of the cardiac member in the pouch. Such anti-migration mechanism may be in the form of suturing of the cardiac member to the wall of the stomach pouch.
  • Such suturing may be passed through the wall of the bariatric device, through the wall of the stomach, back in through the wall of the stomach and back in through the wall of the bariatric device.
  • the surface characteristics of the suture material and/or the wall of the cardiac member it may be possible to assist anti- migration by promotion of tissue adhesion and/or tissue ingrowth to the device and/or suture.
  • a bariatric device 410 is shown having an esophageal member 412 having a wall configured to the size and shape of a portion of the esophagus connected by a connector 416 with a cardiac member 414 having a wall configured to the size and shape of the cardiac region of a stomach that has undergone vertical banded gastroplasty (FIG. 5).
  • Esophageal member 412 may be configured to reduce stenosis of the esophagus as disclosed in commonly assigned U.S. patent application Ser. No. 61/388,857 filed Oct. 1, 2010, by James A. Foote entitled INTRALUMINAL DEVICE AND METHOD, the disclosure of which is hereby incorporated herein by reference.
  • Connector 416 may include a tension member 424 that passes through the gastroesophageal junction and a tether 426 that is applied in situ as disclosed in commonly assigned U.S. Patent
  • a bariatric device 510 is shown having an esophageal member 512 that is similar to esophageal member 412 having a wall configured to the size and shape of a portion of the esophagus connected by a connector 516 with a cardiac member 514 that is similar to cardiac member 414 and having a wall configured to the size and shape of the cardiac region of a stomach that has undergone a sleeve gastrectomy (FIG. 6).
  • Connector 516 has a tension member 524 and tether 526.
  • a bariatric device 610 is shown having an esophageal member 612 that is similar to esophageal member 412 having a wall configured to the size and shape of a portion of the esophagus connected by a connector 616 with a cardiac member 614 that is similar to cardiac member 414 and having a wall configured to the size and shape of the cardiac region of a stomach that has undergone a duodenal switch (FIG. 7).
  • Connector 616 has a tension member 624 and tether 626.
  • a bariatric device 710 is shown having an esophageal member 712 that is similar to esophageal member 412 having a wall configured to the size and shape of a portion of the esophagus connected by a connector 716 with a cardiac member 714 that is similar to cardiac member 414 and having a wall configured to generally conform to the size and shape of the cardiac region of the proximal pouch of a recipient that has undergone a gastric bypass procedure, also known as a roux-en-y procedure (FIG. 8).
  • Connector 716 has a tension member 724 and tether 726. Other examples will become apparent to the skilled practitioner.
  • Esophageal members 412, 512, 612 and 712 may be provided according to the principles set forth in International Patent Application Publication No WO 2008/101048 A2, the disclosure of which is hereby incorporated herein by reference.
  • the strain exerted by the bariatric devices 410-710 stimulates receptors in the recipient to influence the neurohormonal feedback mechanism present at the esophagus and/or stomach pouch to cause weight loss.
  • the strain that influences the neurohormonal feedback mechanism present at the abdominal portion of the esophagus and/or the cardiac portion of the stomach is intended to be relatively consistent over as large an area as reasonably possible.
  • Cardiac member 14 (or any of the embodiments of a cardiac member disclosed herein) may be defined by a wall 20 having overlapping end portions 20a, 20b (FIG. 9). Wall 20 defines an outer surface 21 that applies a strain on the stomach wall. Wall 20 further defines an opening 22 that is configured to fit against the gastroesophageal junction to restrict the passage of food between the stomach wall and surface 21.
  • Wall 20 which may be generally cylindrical in form, is self-expanding such that end portions 20a, 20b form a scroll shape that tends to unroll outwardly to expand to the shape of the stomach pouch. End portions 20a, 20b may be compressed into a further overlapping roll form in order to be deployed orally. The degree of overlap of end portions 20a, 20b configures the size of the cardiac member to the size of the stomach pouch.
  • Wall 20 may be formed of Nitinol wire or a die cut Nitinol sheet covered with silicone, or the like.
  • Wall 20 may be provided with the ability to adjust the amount of strain or force applied to the cardiac region of the stomach. This may be accomplished, for example, by providing a bladder on outer surface 21, or by otherwise incorporating a bladder into wall 20.
  • the bladder could be filled with saline either during deployment of cardiac member 14 or subsequent to deployment, such as by using an endoscopic needle.
  • an electronic/hydraulic control may be connected to the bladder and adjusted from a control external the patient via a radio frequency link. Adjustment of the bladder in either fashion may be as disclosed in the WO 2008/101048 publication.
  • Adjustability of wall 20 may, alternatively, be provided, such as by a ratcheting mechanism that either brings wall end portions 20a, 20b together or spreads them apart.
  • a ratcheting mechanism may be mounted to wall 20 at or before deployment and accessed endoscopically at or after deployment.
  • a pattern of openings may be formed in end portions 20a, 20b that can be engaged by a ratcheting mechanism having features, such as feet, that engage the openings.
  • Such ratcheting mechanism can be deployed and adjusted endoscopically, such as after deployment.
  • adjustability may be provided by adjusting connector 416-716 including any tension member such as a tether forming a part of the connector.
  • One advantage of providing adjustability to the amount of strain or force applied by wall 20 is to facilitate removal of the device from the recipient. For example, as the recipient experiences reduced excess body fat, the amount of strain or force could be reduced to acclimatize the recipient to reduced satiety provided by the device. Of course, adjustability allows the amount of satiety to be set or adjusted at the time of deployment or after deployment if the patient is experiencing too much or not enough satiety.
  • bariatric device 10' includes a cardiac member 14' that is similar to cardiac member 14 except that wall 20 includes a projection 30 that is configured to extend either distally into the intestine or proximally into the esophagus.
  • Projection 30 may be affixed, such as by suturing, stapling, mucosal capture, or the like. Projection 30 ensures proper orientation of cardiac member 10' with the openings at end portions 20a' and 20b' aligned with the respective openings at the GE junction and pylorus.
  • the bariatric devices disclosed herein may be made in whole or in part from bioabsorbable materials or from non-absorbable materials.
  • the tissue attachment, tissue ingrowth and/or mucosal capture which results from the tissue essentially at least partially incorporating certain embodiments of the bariatric device into the anatomy of the recipient, may provide resistance to the formation of microbial biofilm and thereby reduces the potential for infection, odor, and the like.
  • these may be used in combination with other fixation techniques.
  • These anchoring techniques may be used to promote long-term deployment by incorporating the device into the body of the recipient.
  • the disclosed embodiment provides a new category of weight loss techniques.
  • the embodiment advantageously utilizes mechanoreceptors, such as tension receptors, stretch receptors and/or baroreceptors, such as those located at the cardiac portion of the stomach of the recipient to cause weight loss.
  • the disclosed embodiments facilitate burping and vomiting and do not substantially interfere with other functions of the GE junction pseudo-sphincter.
  • Use with a recipient having undergone bariatric surgery in the past or concurrently with receiving the embodiments of the bariatric device disclosed herein augment the effect of the bariatric procedure which may utilize the presence of solid food to create satiety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Obesity (AREA)
  • Nursing (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

A bariatric device and method of causing at least partial satiety in a recipient that either has or is presently undergoing a procedure that alters the anatomy of the recipient includes deploying a bariatric device to the recipient having an altered anatomy. The bariatric device includes a cardiac member having a cardiac surface that is configured to generally conform to the shape and size of a portion of the cardiac region of the stomach of the recipient. The cardiac member stimulates receptors with the cardiac surface in order to influence a neurohormonal mechanism in the recipient sufficient to cause at least partial satiety by augmenting fullness caused by food and simulating fullness in the absence of food.

Description

BARIATRIC DEVICE AND METHOD FOR RECIPIENT
WITH ALTERED ANATOMY
BACKGROUND OF THE INVENTION
The present invention is directed to a bariatric device and method of causing weight loss in a recipient.
Obesity is a large and increasing problem in the United States and worldwide. In round numbers, from the period encompassing the year 1990 to the period encompassing the year 2000, the prevalence of overweight people (BMI greater than 25) increased from 56 percent of United States adults to 65 percent and the prevalence of obese adults (BMI greater than 30) increased from 23 percent to 30 percent. Likewise, the prevalence of overweight children and adolescents (ages 6-19 years) increased from 11 percent in the period encompassing the year 1990 to 16 percent in the period encompassing the year 2000. The increasing prevalence of excess body mass among children and adolescents will make the problem even greater when they reach adulthood. The problem is not limited to the United States. Between 10 percent and 20 percent of European men are obese, and between 10 percent and 25 percent of European women are obese. Numerous medical conditions are made worse by obesity, including Type II diabetes, stroke, gallbladder disease, and various forms of cancer. Approximately 500,000 people in North America and Western Europe are estimated to die from obesity-related diseases every year and obesity is estimated to affect more than one billion adults worldwide. Therefore, there is a pressing and unmet need for a solution to the epidemic problem.
SUMMARY OF THE INVENTION
A bariatric device and method of causing at least partial satiety in a recipient that either has or is presently undergoing a procedure that alters the anatomy of the recipient, according to an aspect of the invention, includes deploying a bariatric device to the recipient having an altered anatomy. The bariatric device includes a cardiac member having a cardiac surface that is configured to generally conform to the shape and size of a portion of the cardiac region of the stomach of the recipient. The cardiac member stimulates receptors with the cardiac surface in order to influence a neurohormonal mechanism in the recipient sufficient to cause at least partial satiety by augmenting fullness caused by food and simulating fullness in the absence of food.
The device may be deployed to a recipient having undergone a bariatric procedure, such as (i) a gastric bypass procedure, (ii) a vertical banded gastroplasty, (iii) a sleeve gastrectomy, (iv) a duodenal switch, or (v) a laparoscopic gastric band, whether the procedure is performed laparoscopically, endoscopically, or the like.
The cardiac member may have a self-expanding surface. The self-expanding surface may be in the form of a scroll shaped to allow the self -expanding surface to be contracted in a roll, such as for deployment and unrolled to engage the walls of the stomach. The bariatric device may further include an esophageal member having an esophageal surface that is configured to generally conform to the shape and size of a portion of the esophagus and a connector connected with said esophageal member and said cardiac member.
The cardiac surface may be adjustable in order to adjust the amount of stimulus applied to the cardiac portion of the stomach. Adjustment may be made concurrently with deployment or subsequent to deployment. Adjustment may be performed endoscopically via a radio frequency link, or the like.
Anti-migration of the cardiac member may be provided. The anti-migration may include providing a surface having tissue adhesion and/or tissue ingrowth characteristics. The anti-migration may include sizing the cardiac member to be generally larger in shape than a stoma of the native stomach. The anti-migration may include mucosa capture. The anti-migration may include a projection from the cardiac member that is configured to extend to the esophagus or the intestine of the recipient to resist misorientation of the bariatric device.
The bariatric device and method may be applied to a recipient who had previously undergone bariatric surgery to produce the altered anatomy. Alternatively, the bariatric device and method may be applied concurrently with altering the anatomy of the recipient.
These and other objects, advantages and features of this invention will become apparent upon review of the following specification in conjunction with the drawings. BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view illustrating deployment of a bariatric device in a recipient who underwent or is undergoing a vertical banded gastroplasty;
FIG. 2 is a perspective view illustrating deployment of a bariatric device in a recipient who underwent or is undergoing a sleeve gastrectomy;
FIG. 3 is a perspective view illustrating deployment of a bariatric device in a recipient who underwent or is undergoing a duodenal switch;
FIG. 4 is a perspective view illustrating deployment of a bariatric device in a recipient who underwent or is undergoing a gastric bypass procedure;
FIG. 5 is a perspective view illustrating deployment of an alternative embodiment of a bariatric device in a recipient who underwent or is undergoing a vertical banded gastroplasty;
FIG. 6 is a perspective view illustrating deployment of another alternative embodiment of a bariatric device in a recipient who underwent or is undergoing a sleeve gastrectomy;
FIG. 7 is a perspective view illustrating deployment of another alternative embodiment of a bariatric device in a recipient who underwent or is undergoing a duodenal switch;
FIG. 8 is a perspective view illustrating deployment of another alternative embodiment of a bariatric device in a recipient who underwent or is undergoing a gastric bypass procedure;
FIG. 9 is a perspective view of the bariatric device in FIG. 1; and
FIG. 10 is the same view as FIG. 9 of an alternative embodiment thereof.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawings and the illustrative embodiments depicted therein, a bariatric device of the various embodiments disclosed herein may be applied to a recipient that has an altered anatomy, such as from bariatric surgery. Such bariatric device stimulates receptors at least in the native stomach, or pouch, in order to influence a neurohormonal mechanism in the recipient sufficient to cause at least partial satiety by augmenting fullness caused by food and simulating fullness in the absence of food. Such bariatric device may be applied, for example, to a recipient who had previously undergone bariatric surgery, but is now experiencing difficulty with lack of satiety including weight gain. Alternatively, such bariatric device may be deployed to a recipient who is presently undergoing bariatric surgery to enhance the effect of the surgery and avoid lack of satiety in the future. The altered anatomy may be a result of procedures other than bariatric procedures, such as stomach surgery for cancer, or the like. Also, the altered anatomy may be performed using open surgery, laparoscopic surgery, or endoscopic surgery.
Bariatric device 10 has a cardiac member 14 that is configured to the stomach component of the altered anatomy to provide a tension, such as an outward pressure. Cardiac member 14 has a wall 20 configured to the size and shape of the cardiac region of a stomach that has undergone vertical banded gastroplasty (FIG. 1). The outer surface of wall 20 applies a strain to the cardiac region of the stomach to stimulate receptors to influence the neurohormonal feedback mechanism in a manner that causes at least partial satiety by augmenting fullness caused by food and simulating fullness in the absence of food as disclosed in commonly assigned U.S. Patent No. 7,846,174, the disclosure of which is hereby incorporated herein reference. Cardiac member 14 may be partially or wholly the size of the stomach pouch. If cardiac member 14 is larger than the stoma of the pouch, the cardiac member will avoid distal migration through the stoma.
A bariatric device 110 is shown having a cardiac member 114 that is similar to cardiac member 14, except having a wall configured to the size and shape of the cardiac region of a stomach that has undergone a sleeve gastrectomy (FIG. 2). A bariatric device 210 is shown having a cardiac member 214 that is similar to cardiac members 14, 114, except having a wall configured to the size and shape of the cardiac region of a stomach that has undergone a duodenal switch (FIG. 3). A bariatric device 310 is shown having a cardiac member 314 that is similar to cardiac members 14, 114, 214, except having a wall configured to generally conform to the size and shape of the cardiac region of the proximal pouch of a recipient that has undergone a gastric bypass procedure, also known as a roux-en-y procedure (FIG. 4). Although not shown, the principles disclosed herein could be used with a recipient who received a laparoscopic gastric band. In order to avoid tissue erosion at the location of the band, the cardiac member of such device may be made having an especially soft outer surface. Provisions may be made to resist migration of cardiac member 14, 114, 214 and 314. In the case of a vertical banded gastroplasty or a roux-en-y bariatric procedure, the cardiac member may be provided having an expanded configuration that is larger than the stoma emptying the stomach pouch. In this fashion, the cardiac member will have a tendency to be retained in the pouch. For a bariatric device applied, for example, to a sleeve gastrectomy or a duodenal switch, an anti-migration mechanism may be used to resist distal migration of the cardiac member in the pouch. Such anti-migration mechanism may be in the form of suturing of the cardiac member to the wall of the stomach pouch. Such suturing may be passed through the wall of the bariatric device, through the wall of the stomach, back in through the wall of the stomach and back in through the wall of the bariatric device. By selection of the surface characteristics of the suture material and/or the wall of the cardiac member, it may be possible to assist anti- migration by promotion of tissue adhesion and/or tissue ingrowth to the device and/or suture. Alternatively, it may be possible to provide capture of the mucosa and/or muscularis of the wall of the stomach pouch utilizing the principles set forth in
International Patent Application Publication No. WO 2008/100984 A2, the disclosure of which is hereby incorporated herein by reference.
A bariatric device 410 is shown having an esophageal member 412 having a wall configured to the size and shape of a portion of the esophagus connected by a connector 416 with a cardiac member 414 having a wall configured to the size and shape of the cardiac region of a stomach that has undergone vertical banded gastroplasty (FIG. 5). Esophageal member 412 may be configured to reduce stenosis of the esophagus as disclosed in commonly assigned U.S. patent application Ser. No. 61/388,857 filed Oct. 1, 2010, by James A. Foote entitled INTRALUMINAL DEVICE AND METHOD, the disclosure of which is hereby incorporated herein by reference. Connector 416 may include a tension member 424 that passes through the gastroesophageal junction and a tether 426 that is applied in situ as disclosed in commonly assigned U.S. Patent
Application Publication No. 2010/0030017 Al entitled BARIATRIC DEVICE AND METHOD, the disclosure of which is hereby incorporated herein by reference.
A bariatric device 510 is shown having an esophageal member 512 that is similar to esophageal member 412 having a wall configured to the size and shape of a portion of the esophagus connected by a connector 516 with a cardiac member 514 that is similar to cardiac member 414 and having a wall configured to the size and shape of the cardiac region of a stomach that has undergone a sleeve gastrectomy (FIG. 6). Connector 516 has a tension member 524 and tether 526.
A bariatric device 610 is shown having an esophageal member 612 that is similar to esophageal member 412 having a wall configured to the size and shape of a portion of the esophagus connected by a connector 616 with a cardiac member 614 that is similar to cardiac member 414 and having a wall configured to the size and shape of the cardiac region of a stomach that has undergone a duodenal switch (FIG. 7). Connector 616 has a tension member 624 and tether 626.
A bariatric device 710 is shown having an esophageal member 712 that is similar to esophageal member 412 having a wall configured to the size and shape of a portion of the esophagus connected by a connector 716 with a cardiac member 714 that is similar to cardiac member 414 and having a wall configured to generally conform to the size and shape of the cardiac region of the proximal pouch of a recipient that has undergone a gastric bypass procedure, also known as a roux-en-y procedure (FIG. 8). Connector 716 has a tension member 724 and tether 726. Other examples will become apparent to the skilled practitioner.
Esophageal members 412, 512, 612 and 712 may be provided according to the principles set forth in International Patent Application Publication No WO 2008/101048 A2, the disclosure of which is hereby incorporated herein by reference.
The strain exerted by the bariatric devices 410-710 stimulates receptors in the recipient to influence the neurohormonal feedback mechanism present at the esophagus and/or stomach pouch to cause weight loss. The strain that influences the neurohormonal feedback mechanism present at the abdominal portion of the esophagus and/or the cardiac portion of the stomach is intended to be relatively consistent over as large an area as reasonably possible.
In contrast to prior proposed devices, such as restriction devices, which require that the recipient ingest food in order to influence neurohormonal feedback mechanisms, the embodiments of the bariatric device disclosed herein are effective in the absence of food. It also augments fullness caused by food. Cardiac member 14 (or any of the embodiments of a cardiac member disclosed herein) may be defined by a wall 20 having overlapping end portions 20a, 20b (FIG. 9). Wall 20 defines an outer surface 21 that applies a strain on the stomach wall. Wall 20 further defines an opening 22 that is configured to fit against the gastroesophageal junction to restrict the passage of food between the stomach wall and surface 21. Wall 20, which may be generally cylindrical in form, is self-expanding such that end portions 20a, 20b form a scroll shape that tends to unroll outwardly to expand to the shape of the stomach pouch. End portions 20a, 20b may be compressed into a further overlapping roll form in order to be deployed orally. The degree of overlap of end portions 20a, 20b configures the size of the cardiac member to the size of the stomach pouch. Wall 20 may be formed of Nitinol wire or a die cut Nitinol sheet covered with silicone, or the like.
Wall 20 may be provided with the ability to adjust the amount of strain or force applied to the cardiac region of the stomach. This may be accomplished, for example, by providing a bladder on outer surface 21, or by otherwise incorporating a bladder into wall 20. The bladder could be filled with saline either during deployment of cardiac member 14 or subsequent to deployment, such as by using an endoscopic needle. Also, an electronic/hydraulic control may be connected to the bladder and adjusted from a control external the patient via a radio frequency link. Adjustment of the bladder in either fashion may be as disclosed in the WO 2008/101048 publication.
Adjustability of wall 20 may, alternatively, be provided, such as by a ratcheting mechanism that either brings wall end portions 20a, 20b together or spreads them apart. Such ratcheting mechanism may be mounted to wall 20 at or before deployment and accessed endoscopically at or after deployment. Alternatively, a pattern of openings may be formed in end portions 20a, 20b that can be engaged by a ratcheting mechanism having features, such as feet, that engage the openings. Such ratcheting mechanism can be deployed and adjusted endoscopically, such as after deployment.
In the case of bariatric devices 410-710, adjustability may be provided by adjusting connector 416-716 including any tension member such as a tether forming a part of the connector.
One advantage of providing adjustability to the amount of strain or force applied by wall 20 is to facilitate removal of the device from the recipient. For example, as the recipient experiences reduced excess body fat, the amount of strain or force could be reduced to acclimatize the recipient to reduced satiety provided by the device. Of course, adjustability allows the amount of satiety to be set or adjusted at the time of deployment or after deployment if the patient is experiencing too much or not enough satiety.
In an alternative embodiment shown in FIG. 10, bariatric device 10' includes a cardiac member 14' that is similar to cardiac member 14 except that wall 20 includes a projection 30 that is configured to extend either distally into the intestine or proximally into the esophagus. Projection 30 may be affixed, such as by suturing, stapling, mucosal capture, or the like. Projection 30 ensures proper orientation of cardiac member 10' with the openings at end portions 20a' and 20b' aligned with the respective openings at the GE junction and pylorus.
The bariatric devices disclosed herein may be made in whole or in part from bioabsorbable materials or from non-absorbable materials. The tissue attachment, tissue ingrowth and/or mucosal capture, which results from the tissue essentially at least partially incorporating certain embodiments of the bariatric device into the anatomy of the recipient, may provide resistance to the formation of microbial biofilm and thereby reduces the potential for infection, odor, and the like. As with all anti-migration fixation techniques described herein, these may be used in combination with other fixation techniques. These anchoring techniques may be used to promote long-term deployment by incorporating the device into the body of the recipient.
Thus, it is seen that the disclosed embodiment provides a new category of weight loss techniques. The embodiment advantageously utilizes mechanoreceptors, such as tension receptors, stretch receptors and/or baroreceptors, such as those located at the cardiac portion of the stomach of the recipient to cause weight loss. The disclosed embodiments facilitate burping and vomiting and do not substantially interfere with other functions of the GE junction pseudo-sphincter. Use with a recipient having undergone bariatric surgery in the past or concurrently with receiving the embodiments of the bariatric device disclosed herein augment the effect of the bariatric procedure which may utilize the presence of solid food to create satiety.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A bariatric device, comprising:
a cardiac member having a cardiac surface that is configured to generally conform to the shape and size of a portion of the cardiac region of the stomach of a recipient with altered anatomy; and
said cardiac member being adapted to stimulate receptors in order to influence a neurohormonal mechanism in the recipient sufficient to cause at least partial satiety by augmenting fullness caused by food and simulating fullness in the absence of food.
2. The bariatric device as claimed in claim 1 wherein said cardiac member is configured to the size and shape of the cardiac region of a recipient having undergone at least one chosen from (i) a gastric bypass procedure, (ii) a vertical banded gastroplasty, (iii) a sleeve gastrectomy, and (iv) a duodenal switch.
3. The bariatric device as claimed in claim 1 wherein said cardiac member has a self -expanding surface.
4. The bariatric device as claimed in claim 3 wherein said self-expanding surface is scroll-shaped to allow said self-expanding surface to be contracted in a roll.
5. The bariatric device as claimed in claim 1 including an esophageal member having an esophageal surface that is configured to generally conform to the shape and size of a portion of the esophagus and a connector connected with said esophageal member and said cardiac member.
6. The bariatric device as claimed in claim 5 wherein said cardiac member is configured to the size and shape of the cardiac region of a recipient having undergone at least one chosen from (i) a gastric bypass procedure, (ii) a vertical banded gastroplasty, (iii) a sleeve gastrectomy, and (iv) a duodenal switch.
7. The bariatric device as claimed in any of the preceding claims including an anti- migration mechanism.
8. The bariatric device as claimed in claim 7 wherein said anti-migration mechanism comprises at least one chosen from (i) a tissue adhesion surface and (ii) a tissue ingrowth surface.
9. The bariatric device as claimed in claim 7 wherein said anti-migration mechanism comprises said cardiac member being generally larger in shape than a stoma of the native stomach.
10. The bariatric device as claimed in claim 7 wherein said anti-migration mechanism comprises a structure to capture at least the mucosa of the stomach wall.
11. The bariatric device as claimed in claim 7 wherein said anti-migration mechanism comprises a projection from said cardiac member, said projection configured to extend to the esophagus or the intestine of the recipient to resist misorientation of said bariatric device.
12. A method of causing at least partial satiety in a recipient, comprising:
deploying a bariatric device to a recipient having an altered anatomy, said bariatric device comprising a cardiac member having a cardiac surface that is configured to generally conform to the shape and size of a portion of the cardiac region of the stomach of the recipient; and
stimulating receptors with said cardiac surface in order to influence a
neurohormonal mechanism in the recipient sufficient to cause at least partial satiety by augmenting fullness caused by food and simulating fullness in the absence of food.
13. The method as claimed in claim 12 including deploying said bariatric device to a recipient having undergone at least one chosen from (i) a gastric bypass procedure, (ii) a vertical banded gastroplasty, (iii) a sleeve gastrectomy, and (iv) a duodenal switch.
14. The method as claimed in claim 10 wherein said cardiac member has a self- expanding surface.
15. The method as claimed in claim 14 wherein said self-expanding surface is scroll- shaped to allow said self -expanding surface to be contract in a roll.
16. The method as claimed in claim 12 wherein said bariatric device has an esophageal member comprising an esophageal surface that is configured to generally conform to the shape and size of a portion of the esophagus and a connector connected with said esophageal member and said cardiac member.
17. The method as claimed in claim 16 including deploying said bariatric device to a recipient having undergone at least one chosen from (i) a gastric bypass procedure, (ii) a vertical banded gastroplasty, (iii) a sleeve gastrectomy, and (iv) a duodenal switch.
18. The method as claimed in any of claims 12 through 17 wherein said bariatric device includes an anti-migration mechanism.
19. The method as claimed in claim 18 wherein said anti-migration mechanism includes providing at least one chosen from (i) a tissue adhesion surface and (ii) a tissue ingrowth surface.
20. The method as claimed in claim 18 wherein said anti-migration mechanism includes said cardiac member being generally larger in shape than a stoma of the native stomach.
21. The method as claimed in claim 18 wherein said anti-migration mechanism comprises capturing at least mucosa of the stomach wall.
22. The method as claimed in claim 18 wherein said anti-migration mechanism comprises a projection from said cardiac member, said projection configured to extend to the esophagus or the intestine of the recipient to resist misorientation of said bariatric device.
23. The method as claimed in claim 12 applied to a recipient who had previously undergone bariatric surgery to produce the altered anatomy.
24. The method as claimed in claim 12 applied concurrently with altering the anatomy of the recipient.
25. The method as claimed in claim 12 including adjusting the amount of stimulating with said cardiac surface.
26. The bariatric device as claimed in claim 1 wherein said bariatric device is adjustable.
EP11740251A 2010-02-02 2011-02-01 Bariatric device and method for recipient with altered anatomy Withdrawn EP2531137A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30067410P 2010-02-02 2010-02-02
US30137310P 2010-02-04 2010-02-04
PCT/US2011/023306 WO2011097209A1 (en) 2010-02-02 2011-02-01 Bariatric device and method for recipient with altered anatomy

Publications (1)

Publication Number Publication Date
EP2531137A1 true EP2531137A1 (en) 2012-12-12

Family

ID=44355737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11740251A Withdrawn EP2531137A1 (en) 2010-02-02 2011-02-01 Bariatric device and method for recipient with altered anatomy

Country Status (4)

Country Link
EP (1) EP2531137A1 (en)
CN (1) CN102740798A (en)
AU (1) AU2011213048B2 (en)
WO (1) WO2011097209A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007004239A (en) 2004-10-15 2007-06-12 Bfkw Llc Bariatric device and method.
US8529431B2 (en) 2007-02-14 2013-09-10 Bfkw, Llc Bariatric device and method
KR101890692B1 (en) 2011-05-20 2018-08-23 비에프케이더블유, 엘엘씨 Intraluminal device and method with enhanced anti-migration
EP3038564A4 (en) * 2013-08-27 2016-10-12 Bfkw Llc Method and device for treating metabolic disease
US9579186B2 (en) * 2014-06-26 2017-02-28 Boston Scientific Scimed, Inc. Medical devices and methods to prevent bile reflux after bariatric procedures
WO2016044660A1 (en) * 2014-09-18 2016-03-24 Boston Scientific Scimed, Inc. Device allowing pyloric sphincter to normally function for bariatric stents
US11013629B2 (en) 2014-12-29 2021-05-25 Bfkw, Llc Fixation of intraluminal device
CA2972582A1 (en) 2014-12-29 2016-07-07 Bfkw, Llc Fixation of intraluminal device
US11020213B2 (en) 2014-12-29 2021-06-01 Bfkw, Llc Fixation of intraluminal device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4403604A (en) * 1982-05-13 1983-09-13 Wilkinson Lawrence H Gastric pouch
US6572627B2 (en) * 2001-01-08 2003-06-03 Shlomo Gabbay System to inhibit and/or control expansion of anatomical features
EP1503700B1 (en) * 2002-05-08 2012-09-26 Abbott Laboratories Endoprosthesis having foot extensions
MX2007004239A (en) * 2004-10-15 2007-06-12 Bfkw Llc Bariatric device and method.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011097209A1 *

Also Published As

Publication number Publication date
AU2011213048B2 (en) 2015-05-28
CN102740798A (en) 2012-10-17
AU2011213048A1 (en) 2012-08-16
WO2011097209A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
US9055998B2 (en) Bariatric device and method for recipient with altered anatomy
AU2011213048B2 (en) Bariatric device and method for recipient with altered anatomy
US11642234B2 (en) Bariatric device and method
US11504255B2 (en) Bariatric device and method
US20040148034A1 (en) Apparatus and methods for treatment of morbid obesity
US20110264234A1 (en) Gastro-esophageal reflux disease reduction device and method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20141001