EP2517300B1 - Broadband directional coupler - Google Patents

Broadband directional coupler Download PDF

Info

Publication number
EP2517300B1
EP2517300B1 EP10793148.7A EP10793148A EP2517300B1 EP 2517300 B1 EP2517300 B1 EP 2517300B1 EP 10793148 A EP10793148 A EP 10793148A EP 2517300 B1 EP2517300 B1 EP 2517300B1
Authority
EP
European Patent Office
Prior art keywords
resistor
connection
directional coupler
broadband directional
coupler according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10793148.7A
Other languages
German (de)
French (fr)
Other versions
EP2517300A1 (en
Inventor
Michael Morgenstern
Dirk Fehse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Publication of EP2517300A1 publication Critical patent/EP2517300A1/en
Application granted granted Critical
Publication of EP2517300B1 publication Critical patent/EP2517300B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/183Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers at least one of the guides being a coaxial line

Definitions

  • the invention relates to a directional coupler for measuring the power of a leading and a returning high frequency signal on a coaxial line in a wide frequency range, e.g. in the range of 9 kHz to 250 MHz.
  • the broadband directional coupler is e.g. designed for outputs of up to 250 watts.
  • Directional couplers are often used in conjunction with power amplifiers to quickly and reliably detect if there is a mismatch or not. If the power of the leading and the returning high-frequency signal can be detected, the power amplifier can be automatically switched off before any damage to the return high-frequency signal is exceeded.
  • the broadbandness of such a directional coupler is just necessary for immunity tests in order to examine the functionality of the device under test in a wide frequency range.
  • different antennas and equipment are used for coupling interfering signals into the test object. Cable breaks, faulty connectors or defective antennas are just a few of the ways that can lead to mismatch.
  • the necessary output power of the power amplifier changes significantly over the frequency range to be tested.
  • a generic arrangement of a directional coupler is from the US 6,066,994 known.
  • the directional coupler is symmetrical constructed, wherein the outer conductor of the coaxial conductor is separated at two points and is connected via a respective shunt resistor to the outer conductor of the coaxial conductor at the input and output.
  • a ferrite core ensures that both ends of the outer conductor are insulated against each other for low frequencies.
  • Above the shunt resistor a measurement voltage proportional to the inner conductor current drops, which poles differently depending on the direction in which the power flows.
  • a capacitive voltage divider which is connected to the inner conductor, generates a measuring voltage that is proportional to the inner conductor voltage. This measurement voltage is applied to the gate of a field effect transistor (FET).
  • FET field effect transistor
  • the source and drain of the FET are connected to a DC voltage source via a plurality of resistors.
  • the decoupled at the source terminal, proportional to the inner conductor voltage measurement voltage is added or subtracted via a capacitor, a resistor and a coaxial cable to the falling across a shunt resistor, proportional to the inner conductor current measurement voltage.
  • this adds both voltages in one branch, whereas they subtract to zero in the other branch. In the case of a mismatch, the voltage difference does not become zero.
  • VSWR Voltage Standing Wave Ratio
  • a disadvantage of the arrangement of US 6,066,994 is the complicated structure to integrate all components into the overall system.
  • the necessary resistors are mainly designed as wired resistors.
  • the bending of the connecting legs of the resistors, or the coaxial cable, as well as the soldering process itself, must be done by hand.
  • This causes everyone Directional coupler has slightly different properties.
  • Another disadvantage is the capacitive voltage divider. So that the directional coupler can even work in the low frequency range, this capacitive voltage divider may hardly be loaded.
  • the use of a FET as an impedance converter is essential.
  • two additional voltage sources are required, which further increase the already high cabling effort and additionally require an external power supply.
  • Broadband directional couplers for measuring the power of a leading and / or a returning high frequency signal on a line are also from the WO 2005/048396 A1 and the US 2005/0264374 A1 known.
  • the invention is therefore based on the object to provide a broadband directional coupler, which is constructed much simpler and dispenses with active components.
  • the broadband directional coupler is preferably to be used in a wide frequency range of e.g. 9 kHz to 250 MHz work reliably and can detect powers of preferably up to 250 W.
  • the broadband directional coupler is used to measure the power of a leading and / or a returning high frequency signal on a line.
  • the broadband directional coupler has a voltage divider connected to an inner conductor of the line and a first resistor connected to an outer conductor of the line.
  • the voltage divider has ohmic resistances and a first terminal of a second resistor is connected to the inner conductor of the line and a second terminal of the second resistor is connected to connected to a first terminal of a third resistor.
  • a second terminal of the third resistor is directly or indirectly connected to a first terminal of the first resistor and at the same time to the outer conductor of the lead.
  • a measuring voltage is tapped off at the second terminal of the second resistor or at the first terminal of the third resistor.
  • the broadband directional coupler according to the invention has an ohmic voltage divider instead of a capacitive one.
  • This voltage divider may be much more heavily loaded, so that no active components are required as an impedance converter. This not only reduces the wiring complexity within the Breitbandrichtkopplers, but it can also be dispensed with an external power supply.
  • the adjustment of the broadband directional coupler according to the invention is therefore much simpler, so that on the one hand the production time is shortened and on the other hand the individual broadband directional couplers do not differ in their properties.
  • Fig. 1 shows a simplified circuit diagram of the Breitbandrichtkopkopers invention.
  • the circuit diagram is constructed exactly symmetrical about the axis 21 around.
  • the broadband directional coupler is constructed by two independent measuring units 22 and 23. At the input terminal 13 of the first measuring unit 22, both the signal source, as well as a complex load over a coaxial cable can be connected. The same applies to the input terminal 13 of the second measuring unit 23. About the running through both measuring units 22, 23 inner conductor 1, a high frequency signal is transmitted from the power amplifier to the complex load.
  • Each measuring unit 22, 23 has two four-poles 19, 20 each.
  • the first quadrupole 19 comprises a voltage divider, consisting of the ohmic resistors 4 and 6, which serves to divide a high RF voltage as frequency independent as possible to a small measurement voltage.
  • the first resistor 4 is directly galvanically connected to the inner conductor 1 at its first connection. Its second terminal is connected to the first terminal of a second resistor 6. Between two resistors 4, 6, the divided measuring voltage can be tapped off at node 12.
  • the first resistor 4 must be designed with high resistance (eg 30k ohms). However, it should be noted here that the resistor 4 has a resistance value of, for example, 30 k ohms only at a DC voltage up to a low-frequency AC voltage. For high-frequency alternating voltages (of eg 250 MHz), the resistor 4 has by design only an ohmic resistance of eg 500 ohms and a total of a complex impedance. As the frequency increases, this increases the current flowing through the resistor 4 by a multiple. For this reason, the resistor 4 must be able to release the absorbed heat energy again. This is best achieved by choosing a resistor with as large a surface as possible.
  • all resistors and capacitors are preferably designed as SMD components (surface-mounted device). On the one hand, this allows automatic assembly and, on the other hand, the heat energy can be released directly to the board material, whereby the heat transfer is significantly better than with air.
  • the resistor 4 is e.g. realized in the design 2512. Due to the necessarily large design, the cap capacity forms stronger than resistors with smaller designs.
  • the cap capacity of the resistor 4 is visible as a capacitance 5 in the circuit diagram. This capacitance 5 is a purely parasitic capacitance which, due to its size of e.g. up to 0.1 pF.
  • the resistor 6 has a significantly smaller design (eg 0402). As a result, a smaller cap capacity is formed, which results in that the time constant T 1 consisting of the resistor 4 and its cap capacity 5 differs significantly from the time constant T 2 consisting of the resistor 6 and its cap capacity. For this reason, in the exemplary embodiment, a capacitor 7 is connected with its terminals parallel to the terminals of the resistor 6.
  • the capacitor 7 is a capacitor whose capacitance can be variably adjusted (trimming capacitor). This takes into account the fact that the cap capacity 5 of the resistor 4 can vary in size from component to component.
  • a further adjustable capacitor 10 (trimming capacitor) is preferably connected with its first terminal. His second connection however, it is connected to ground.
  • the first terminal of the capacitor 10 is connected to the decoupling terminal 15 via the resistor 11.
  • the trim capacitor 10 serves to equalize the frequency response in the forward direction.
  • the capacitance of the trimming capacitor 7 is adjusted such that a time constant T 2 results from the trimming capacitor 7 and the resistor 6, which is as exactly as possible the further time constant T 1 , which results from the resistor 4 together with its cap capacity 5.
  • the resistor 11 serves to ensure that the trim capacitor 10 only has to have a small final capacity.
  • the second terminals of the trim capacitor 7 and the resistor 6 are connected to the node 17. Also connected to the potential of the node 17 via the node 18, a first terminal of the resistor 8. At the same potential and a first terminal of the capacitor 9 is connected. The second terminals of the capacitor 9 and the resistor 8 are connected to ground.
  • the resistor 8 is preferably made very low impedance.
  • the outer conductor of the coaxial line connected to the input terminal 13 is in the broadband directional coupler in an inner 3 and a in Fig. 1 divided outer outer conductor 38, not shown, wherein the inner outer conductor 3 is connected only at one end directly to the outer outer conductor 38 and thus to ground.
  • the second end of the inner outer conductor 3 is directly or indirectly via the node 18 and thus over the first terminal of the resistor 8 to the outer outer conductor 38 and thus connected to ground.
  • Between the inner 3 and the outer outer conductor 38 at least one high-permeability ring band core 2 is arranged. This ensures that a significant current flows through the resistor 8.
  • the voltage drop across the resistor 8 is proportional to the internal conductor current, as long as the resistor 8 has no parasitic inductances. This is not the case in reality, so that a capacitor 9 must be connected in parallel to the terminals of the resistor 8.
  • This capacitor 9 compensates the parasitic inductance of the resistor 8 at a reference frequency of 250 MHz.
  • a positive or a negative voltage drops across the resistor 8.
  • the measurement voltages occurring at both four-poles 19, 20 have the same value, the same phase response and are frequency-independent. Depending on the sign of the two measuring voltages, these are vectorially added or subtracted at node 12. The voltage resulting therefrom at the node 12 can then be tapped off at the coupling-out connection 15.
  • Each measuring unit 22, 23 has at least one input terminal 13 and at least one decoupling terminal 15. Both the input terminal and the decoupling terminal can be connected to a source or to a complex load.
  • the arrangement is operated in the forward direction when the signal source at the input terminal 13 of the first measuring unit 22 and the complex load at the input terminal 13 of the second measuring unit 23 is connected.
  • a voltage proportional to the root of the power of the leading high-frequency signal is available, whereas at the decoupling connection 15 of the second measuring unit 23, a voltage proportional to the root of the power of the returning high-frequency signal is provided.
  • the broadband directional coupler can also be operated in the reverse direction without the attenuation changing.
  • the signal source at the input terminal 13 of the second measuring unit 23 and the complex load at the input terminal 13 of the first measuring unit 22 are connected.
  • a voltage proportional to the root of the power of the leading high-frequency signal is available, whereas at the coupling-out terminal 15 of the first measuring unit 22, a voltage proportional to the root of the power of the returning high-frequency signal is provided.
  • Fig. 2A explains the parasitic effects caused by the fact that the outer conductor must be opened in order to attach the ohmic voltage divider consisting of the resistors 4 and 6 to the inner conductor and the resistor 8 to the outer conductor can.
  • Fig. 2A shows the first measuring unit 22 of the Breitbandrichtkopkopers invention. Dashed lines indicate the second measuring unit 23, which is constructed exactly mirror-symmetrical to the first measuring unit 22. In the embodiment in Fig. 2A is connected to the input terminal 13 of the first measuring unit 22, a signal source, not shown. The input terminal 13 of the second measuring unit 23 is with connected to a complex load, not shown.
  • a current flow along the inner conductor 1 in the direction of arrow 36 from the input terminal 13 of the first measuring unit 22 to the input terminal 13 of the second measuring unit 23 is shown.
  • the inner conductor 1 is guided by a not shown recess 40 on the board 30 through this.
  • the first resistor 4 is galvanically connected to the inner conductor 1 via the solder connection 37.
  • the second terminal of the first resistor 4 is connected via the node 12 to the first terminal of a second resistor 6, as well as from the circuit diagram Fig. 1 evident.
  • a connection is made from the node 12 via the resistor 11, not shown, to the coupling-out connection 15 to which a coaxial plug connection 60 is connected.
  • the second terminal of the second resistor 6 is connected to the node 17. Via a via 37, the node 17, which is located on the input terminal 13 facing side 31 of the board 30, with the node 18, which is located on the side facing away from the input terminal 13 32 of the board 30, respectively.
  • the length of the via 37 is equal to the thickness of the board 30 and is 1.6 mm in a two-layer FR 4 multilayer board, for example.
  • the node 18 is as in Fig. 1 can be seen directly connected to the first terminal of the resistor 8. How out Fig. 2A it can be seen, the resistance 8 in the embodiment not only of a single resistor, but of several individual resistors, which the inner outer conductor 3 with connect to the outer outer conductor 38.
  • the further capacitors 5, 7, 9, 10 and the resistor 15 are in for clarity FIGS. 2A and 2B not shown.
  • the dotted surface is a measuring loop 39.
  • This consists of the second resistor 6 of the voltage divider and the coaxial connector 60 on the first side 31 of the board 30.
  • the signal line from the node 12 to the coaxial connector 60 is on the first side 31 board 30 and has only spaced from the board 30 for clarity.
  • the node 17 on the first side 31 of the board 30 is connected to the node 18 on the second side 32 of the board 30.
  • On the second side of the board is the resistor 8.
  • the second terminal of the resistor 8 is connected to the outer conductor 38.
  • Via contacts, not shown, on the board 30, the outer conductor 38 is connected to the coaxial connector 60 and to the outer conductor 31 on the first side 31 of the board 30.
  • the measuring loop 39 is closed.
  • a current flowing in the direction of arrow 36 on the inner conductor 1 causes a magnetic field whose field lines extend in a circle around the inner conductor 1.
  • the magnetic field lines run in the direction of the arrow 33. At point 34 they exit and at point 35 they enter again.
  • the area spanned by the measuring loop 39 is traversed by the field lines of the magnetic field, wherein a voltage is induced in the measuring loop 39.
  • This coupling takes place with an angle error of 90 °. That to the root of the power of the leading high-frequency signal proportional measuring voltage, which has a forward damping on average of 57.5 dB, for example, is greatly disturbed by the induced voltage.
  • the proportional to the root of the power of the returning high-frequency signal measurement voltage which has a return loss on average of, for example 95 dB, is superimposed by the induced voltage such that it can no longer be measured.
  • Fig. 2B shows the preferred solution according to the invention for avoiding parasitic couplings into the measuring loop.
  • the structure and the current direction are essentially the same as in Fig. 2A , so here's the description of Fig. 2A is referenced.
  • Both resistors 4 and 6 of the voltage divider should therefore not be arranged on the same side of the board 30. Therefore, the resistor 6 of the voltage divider is no longer arranged on the first side 31 of the circuit board 30, but on the side facing away from the input terminal 13 side 32 of the board 30, where the resistor 8 is arranged.
  • the signal line from the node 12 to the coaxial connector 60 is located on the second side 32 of the circuit board 30 and has been drawn only for clarity spaced from the board 30.
  • This type of arrangement means that no closed measuring loop builds up over the outer conductor, via which a voltage can be induced by a magnetic field. All resistors 4,6,8,11 and / or Capacitors 7, 9, 10 of a measuring unit 22, 23 are arranged on a circuit board 30.
  • Fig. 3A shows the first side 31 of the board 30.
  • the board 30 has in the middle of a circular recess 40 through which the inner conductor 1 is passed.
  • the inner conductor 1 is connected via a solder connection 37 and / or a screw connection with the first side 31 of the circuit board 30 in such a way that a low-resistance electrical contact between the inner conductor 1 and the conductor 41 is produced.
  • This conductor 41 electrically connects the first terminal of the resistor 4 to the inner conductor 1.
  • the second terminal of the resistor 4 is connected to the first terminals of the trim capacitors 7 and 10. Between the first terminals of the trim capacitors 7 and 10 is the via 37, which connects the first side 31 with the second side 32 of the board 30.
  • the second terminal of the capacitor 10 is connected to ground.
  • the second terminal of the capacitor 7 is connected via a further via, which is not shown, to the second terminal of the resistor 6.
  • Fig. 3B shows the second side 32, and the input terminal 13 facing away from the side 32 of the board 30.
  • the inner conductor 1 is guided on the second side 32 through the recess 40 of the board 30.
  • the surface 44 between the two rings shows the bearing surface of the spring element 45, which is connected to the second side 32 of the board 30 via the support surface such that a low-resistance electrical contact between the spring element 45 and the board 30 is made. This is advantageously done by a soldering process.
  • the spring element 45 is additionally over not shown holes in the board 30 anchored with this, so that the spring element 45 remains fixed to the board 30 even with radial forces. Annularly 45 different components are arranged around the spring element.
  • the resistor 1 is composed of a plurality of individual resistors connected in parallel, which are arranged in a ring around the spring element 45 and contact this.
  • the resistors in the exemplary embodiment are 42 individual resistors 8 1 to 8 42 .
  • Its second terminal is connected to the outer outer conductor 38 of the Breitbandrichtkopplers.
  • the resistance ring which consists of the annularly arranged resistors, is interrupted at the decoupling connection, whereby a ring segment with two ends is formed. It is desirable that the current on the inner outer conductor 3 flows evenly across all resistors 8 1 to 8 42 against the outer outer conductor 38.
  • Each resistor has a resistance value of about 12.1 ohms in the embodiment, with the nominal resistance decreasing in principle toward the ends of the resistor ring.
  • the resistors 8 1 and 8 42 have a resistance of 10 ohms.
  • the inductance associated with each resistor should be reduced by the parallel circuit so that no phase errors in the measured value arise.
  • the inductance of the resistors 8 1 to 8 42 connected in parallel differs in reality from the calculated model such that additional compensation makes sense.
  • the capacity 9 is off Fig. 1 formed from up to four individual capacitors 9 1 to 9 4 , of which two capacitors with their terminals in parallel to each end of the resistor ring are switched.
  • the capacitance of the parallel-connected capacitors 9 1 to 9 4 is selected so that the inductance of the resistors 8 1 to 8 42 connected in parallel is compensated, for example, at a frequency of 250 MHz.
  • the resistor 6 of the voltage divider Between the two ends of the resistor ring is the resistor 6 of the voltage divider. Immediately adjacent and connected via its first terminal to the first terminal of the resistor 6 is the resistor 11, at the second terminal of a measuring voltage is tapped, which is proportional to the root of the power of the leading or returning high-frequency signal.
  • the resistor 11 has a resistance value of about 160 ohms in the embodiment.
  • This measuring voltage is conducted with a coaxial connector, preferably a SMP or SMA coaxial connector, from the broadband directional coupler, which is attached to the coupling-out connection 15.
  • Fig. 4 shows the housing body 38 of the Breitbandrichtkoppler invention.
  • the housing body 38 is made of a solid conductive metal, preferably aluminum.
  • two cylindrical recesses are formed on the left and right sides, the walls of which form an inner 3 and an outer outer conductor 38.
  • the outer outer conductor 38 is at the same potential as the housing body 38 and therefore has the same reference numerals.
  • These cylindrical recesses have an inner radius 58 and an outer radius 57.
  • the outer radius 57 is slightly larger than the outer radius of the ring band core 2 designed as a hollow cylinder.
  • the inner radius 58 is slightly smaller than the inner radius of the hollow cylinder As a result, the toroidal core 2 can be inserted into the housing body 38 of the broadband directional coupler.
  • the first recess which is made on both sides of the housing body 38 may only be so deep that the toroidal core 2 can be inserted straight and at the same time the board can be screwed onto both ends of the housing body 38.
  • the first left and right recesses are separated by a metallic partition 71.
  • the recess itself can preferably be done by a milling.
  • the solid cylinder and thus the inner outer conductor 3, which remains standing along the longitudinal axis 51 of the housing body 38 is extended by a further left and right cylindrical recess to the hollow cylinder.
  • the inner radius of the hollow cylinder must be so large that an inner conductor 1 can be inserted without causing contact of the inner conductor 1 with the inner outer conductor 3, either by direct contact or due to a flashover due to excessive electric field strengths.
  • This second recess extends in contrast to the first recess along the longitudinal axis 51 through the entire housing body 38.
  • the recess is advantageously carried out by a bore or milling. As a result, two independent measuring units 22 and 23 are formed for the leading and the returning high-frequency signal.
  • the inner conductor 1 may be provided at its ends with a threaded hole so that it can be screwed to the circuit board 30.
  • a part of a screw 53 is exemplified in Fig. 4 located.
  • the housing body 38 has four threaded holes 54 at each end, each having the same distance to a corner. About these threaded holes 54, a circuit board 30 and a housing cover 62 is screwed onto each end of the housing body 38 of the Breitbandrichtkopplers, the boards 30 are preferably constructed identically.
  • the housing body 38 further includes a side indentation 52 that is shaped to mate with an SMP or SMA coaxial connector secured to the circuit board 30.
  • a recess 55 Centered at the top of the housing body 38 at the edge in each case a recess 55, whose shape corresponds to half a solid cylinder. At the bottom of this recess 55 each have a further threaded bore 56 is formed. About this threaded hole 56, the housing body 38 of the Breitbandrichtkopplers be permanently fixed in another housing or device.
  • Fig. 5 shows the interior view of the Breitbandrichtkoppler without the housing body 38.
  • the inner conductor 1 depending on the embodiment of a continuous conductor, as in Fig. 5 represented, or from conductor segments, in each end a thread is formed, via which two conductors can be connected to a corresponding screw 53.
  • the inner conductor 1 is made of three conductor segments constructed, with a conductor segment is located in each case on the first side 31 of the board 30 of each measuring unit 22,23.
  • Another conductor segment connects the second side 32 of the first circuit board 30 of the first measuring unit 22 with the second side 32 of the second circuit board 30 of the second measuring unit 23.
  • the inner conductor 1 is guided concentrically through the left- and right-side recess.
  • the diameter of the inner conductor 1 is adapted such that a characteristic impedance of the broadband coupler is adapted to a system impedance of, in particular, 50 ohms.
  • the diameter of the inner conductor 1 may change several times. This is possible both with a continuous inner conductor 1, as well as with an inner conductor 1 consisting of a plurality of inner conductor segments.
  • the spring element 45 which is arranged on the second side 32 of the board 30.
  • the spring element 45 consists of individual separate spring segments, which can be bent radially outward under the action of a force.
  • the spring element 45 is arranged on the side facing away from the input terminal 13 side of the boards 30 so that it surrounds the inner outer conductor 3 such that a low-resistance electrical contact is made and at the same time no radial movements of the inner outer conductor 3 are possible.
  • each board 30 has at least one SMP or SMA coaxial connector 60, which is connected to the Auskoppelan gleich 15 and the outer outer conductor 38.
  • corresponding recesses 52 are made in the housing cover 62 and in the housing body 38.
  • Fig. 6 shows the shows the complete broadband directional coupler consisting of the housing cover 62, the board 30 and the housing body 38.
  • the housing body has, as in Fig. 4 shown, two recesses 55, which each have a threaded bore 56.
  • the housing cover 62 has at the corners four lowered threaded holes, so that the housing cover 62 can be firmly fixed together with the screws 61 together with the board 30 to the housing body 38.
  • Another bore in the housing cover 62 serves to allow the inner conductor 1 to be guided out of the broadband directional coupler.
  • a Koaxialsteckitati can be attached.
  • Fig. 7 shows to illustrate the structure of a section along the longitudinal axis 51 through the broadband directional coupler according to the invention.
  • the individual components of the broadband directional coupler consisting of the housing cover 62, the circuit board 30 and the housing body 38, which are firmly connected to one another via the screws 61, can be seen particularly well here.
  • the inner conductor 1 is passed through the through hole through the broadband directional coupler.
  • the non-conductive centering elements 70 serve to keep the inner conductor 1 in position.
  • the resistor 4 of the voltage divider to the inner conductor 1 is electrically connected. Good to see next to the mirror-symmetrical structure of the arrangement along the axis 21 and the cylindrical recesses on the left and the right side, in which the toroidal cores 2 are inserted.
  • the cylindrical recesses are separated from one another by the metallic dividing wall 71, whereby two independent measuring units 22 and 23 form for the leading and the returning high-frequency signal and, on the other hand, the inner outer conductor 3 with the outer outer conductor 38 and thus via this metallic dividing wall 71 connected to the housing body 38.
  • This can already be clearly recognized by means of Fig. 3B and Fig. 5 described spring element 45 through which the inner outer conductor 3 is contacted electrically low resistance to the board 30.
  • the spring element 45 serves at the same time for fixing the ring band cores 2, so that no movements in the axial direction are possible.
  • Via the circuit board 30, the current flows through the resistor 8 from the inner outer conductor 3 back to the outer outer conductor 38.
  • the board 30 is in the region of the outer outer conductor 38 coated on both sides with copper and repeatedly plated through. About the tightened screw 61, the outer outer conductor 38 is electrically connected via the circuit board 30 with low impedance to the housing cover.
  • the power is positive at a positive half-wave of the high-frequency signal and under the condition that the power is exclusive from the power amplifier to the complex load and no reflections take place, a current profile corresponding to the direction of the arrow 72 on the inner conductor 1 a.
  • a measuring voltage which is proportional to the root of the power of the leading high-frequency signal is available at the coupling-out terminal 15 of the first measuring unit 22, and a measuring voltage which is proportional to the root of the power of the returning high-frequency signal is available at the coupling-out terminal 15 of the second measuring unit 23.
  • the voltage drop across the voltage divider of each measuring unit 22 and 23 is the same and in this example positive.
  • the current flow of the current flowing back in this example via the housing cover 62, the board 30 and the housing body 38 corresponds to the direction of arrow 73.
  • the current splits, with only a small part along the outer outer conductor 38 back to the power amplifier flows.
  • the largest part flows via the resistor 8 of the second measuring unit 23 against the inner outer conductor 3 of the second measuring unit 23.
  • a negative voltage drops across the resistor 8 of the second measuring unit 23.
  • This voltage is supplied to the node 12 of the second measuring unit 23 of the positive voltage of the voltage divider. Both voltages have the same amplitude, but different signs.
  • no voltage is measured in this case.
  • a portion of the current flows from the inner outer conductor 3 of the second measuring unit 23 via the metallic partition wall 71 back into the outer outer conductor 38.
  • a part of Current from the inner outer conductor 3 of the second measuring unit 23 flows together with part of the current coming from the outer outer conductor 38, into the inner outer conductor 3 of the first measuring unit 22.
  • This current flows through the resistor 8 of the first measuring unit 22 back to the outer outer conductor 38th According to the wiring diagram Fig. 1
  • a positive voltage drops across the resistor 8 of the first measuring unit 22.
  • This voltage is added to the node 12 of the first measuring unit 22 to the positive voltage of the voltage divider. Both voltages have the same amplitude, and the same sign.
  • a voltage is measured in this case which is proportional to the root of the power of the leading high-frequency signal.
  • a voltage can be measured at both outcoupling connections 15. From these two voltages, the power of the leading and the returning high-frequency signal can be calculated.
  • the high permeability annular band cores 2 ensure that the majority of the current flows through the resistor 8. Without the toroidal cores 2, an inductance would build up in the then empty cylindrical recess, via which the resistor 8 would be shorted. As a result, no appreciable voltage drop across the resistor 8 could be measured.
  • the permeability of the toroidal core 2 determines the lower operating frequency of the Breitbandrichtkopplers.

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

Die Erfindung betrifft einen Richtkoppler zum Messen der Leistung eines vorlaufenden und eines rücklaufenden Hochfrequenzsignals auf einer Koaxialleitung in einem breiten Frequenzbereich, z.B. im Bereich von 9 kHz bis 250 MHz. Der Breitbandrichtkoppler ist dabei z.B. für Leistungen von bis zu 250 Watt ausgelegt.The invention relates to a directional coupler for measuring the power of a leading and a returning high frequency signal on a coaxial line in a wide frequency range, e.g. in the range of 9 kHz to 250 MHz. The broadband directional coupler is e.g. designed for outputs of up to 250 watts.

Richtkoppler werden oft zusammen mit Leistungsverstärkern verwendet, um schnell und sicher erkennen zu können, ob eine Fehlanpassung vorliegt oder nicht. Kann die Leistung des vorlaufenden und rücklaufenden Hochfrequenzsignals erfasst werden, so kann der Leistungsverstärker bei Überschreiten eines Richtwerts für das rücklaufende Hochfrequenzsignal automatisch abgeschaltet werden, bevor eine Schädigung eintritt. Die Breitbandigkeit eines solchen Richtkopplers ist gerade für Störfestigkeitsprüfungen notwendig, um die Funktionsfähigkeit des Prüflings in einem breiten Frequenzbereich untersuchen zu können. Dabei kommen je nach Frequenzbereich und Prüfnorm unterschiedliche Antennen und Apparaturen zum Einkoppeln von Störsignalen in den Prüfling zur Anwendung. Kabelbrüche, fehlerhafte Steckverbindungen oder defekte Antennen sind nur einige Möglichkeiten, die zur Fehlanpassung führen können. Abhängig von Kabeldämpfungen und der Antennencharakteristik, ändert sich die notwendige Ausgangsleistung des Leistungsverstärkers signifikant über den zu prüfenden Frequenzbereich.Directional couplers are often used in conjunction with power amplifiers to quickly and reliably detect if there is a mismatch or not. If the power of the leading and the returning high-frequency signal can be detected, the power amplifier can be automatically switched off before any damage to the return high-frequency signal is exceeded. The broadbandness of such a directional coupler is just necessary for immunity tests in order to examine the functionality of the device under test in a wide frequency range. Depending on the frequency range and test standard, different antennas and equipment are used for coupling interfering signals into the test object. Cable breaks, faulty connectors or defective antennas are just a few of the ways that can lead to mismatch. Depending on the cable attenuation and the antenna characteristics, the necessary output power of the power amplifier changes significantly over the frequency range to be tested.

Eine gattungsgemäße Anordnung eines Richtkopplers ist aus der US 6,066,994 bekannt. Der Richtkoppler ist symmetrisch aufgebaut, wobei der Außenleiter des Koaxialleiters an zwei Stellen aufgetrennt ist und über je einen Shuntwiderstand mit dem Außenleiter des Koaxialleiters am Ein- und Ausgang verbunden ist. Ein Ferritkern sorgt dafür, dass beide Enden des Außenleiters für niedrige Frequenzen gegeneinander isoliert sind. Über dem Shuntwiderstand fällt eine dem Innenleiterstrom proportionale Messspannung ab, welche je nach dem, in welche Richtung die Leistung fließt, unterschiedlich gepolt ist. Ein kapazitiver Spannungsteiler, welcher mit dem Innenleiter verbunden ist, erzeugt eine der Innenleiterspannung proportionale Messspannung. Diese Messspannung wird an das Gate eines Feldeffekttransistors (FET) angelegt. Source und Drain des FETs werden über mehrere Widerstände mit einer Gleichspannungsquelle verbunden. Die am Sourceanschluss entkoppelte, zur Innenleiterspannung proportionale Messspannung, wird über einen Kondensator, einen Widerstand und ein Koaxialkabel zu der über einen Shuntwiderstand abfallenden, zum Innenleiterstrom proportionalen Messspannung addiert oder subtrahiert. Bei Anpassung addieren sich hierbei beide Spannungen in einem Zweig, wohingegen sie sich in dem anderen Zweig zu Spannungsnull subtrahieren. Bei einer Fehlanpassung wird die Spannungsdifferenz nicht Null. Bei unendlichem VSWR (Voltage Standing Wave Ratio; Stehwellenverhältnis) sind beide Spannungen gleich groß.A generic arrangement of a directional coupler is from the US 6,066,994 known. The directional coupler is symmetrical constructed, wherein the outer conductor of the coaxial conductor is separated at two points and is connected via a respective shunt resistor to the outer conductor of the coaxial conductor at the input and output. A ferrite core ensures that both ends of the outer conductor are insulated against each other for low frequencies. Above the shunt resistor, a measurement voltage proportional to the inner conductor current drops, which poles differently depending on the direction in which the power flows. A capacitive voltage divider, which is connected to the inner conductor, generates a measuring voltage that is proportional to the inner conductor voltage. This measurement voltage is applied to the gate of a field effect transistor (FET). The source and drain of the FET are connected to a DC voltage source via a plurality of resistors. The decoupled at the source terminal, proportional to the inner conductor voltage measurement voltage is added or subtracted via a capacitor, a resistor and a coaxial cable to the falling across a shunt resistor, proportional to the inner conductor current measurement voltage. When fitted, this adds both voltages in one branch, whereas they subtract to zero in the other branch. In the case of a mismatch, the voltage difference does not become zero. With infinite VSWR (Voltage Standing Wave Ratio) both voltages are the same.

Nachteilig an der Anordnung der US 6,066,994 ist der komplizierte Aufbau, um sämtliche Bauteile in das Gesamtsystem integrieren zu können. Die notwendigen Widerstände sind hauptsächlich als bedrahtete Widerstände ausgeführt. Das Biegen der Anschlussbeine der Widerstände, bzw. der Koaxialkabel, wie auch der Lötprozess selbst, muss in Handarbeit erfolgen. Dies führt dazu, dass jeder Richtkoppler geringfügig unterschiedliche Eigenschaften aufweist. Weiterhin als nachteilig erweist sich der kapazitive Spannungsteiler. Damit der Richtkoppler überhaupt im niedrigen Frequenzbereich arbeiten kann, darf dieser kapazitive Spannungsteiler kaum belastet werden. Hierfür ist der Einsatz eines FETs als Impedanzwandler unabdingbar. Für den FET selbst sind zudem noch zwei Spannungsquellen notwendig, die den ohnehin schon hohen Verkabelungsaufwand noch weiter erhöhen und zusätzlich eine externe Spannungsversorgung notwendig machen.A disadvantage of the arrangement of US 6,066,994 is the complicated structure to integrate all components into the overall system. The necessary resistors are mainly designed as wired resistors. The bending of the connecting legs of the resistors, or the coaxial cable, as well as the soldering process itself, must be done by hand. This causes everyone Directional coupler has slightly different properties. Another disadvantage is the capacitive voltage divider. So that the directional coupler can even work in the low frequency range, this capacitive voltage divider may hardly be loaded. For this purpose, the use of a FET as an impedance converter is essential. For the FET itself, two additional voltage sources are required, which further increase the already high cabling effort and additionally require an external power supply.

Breitbandrichtkoppler zur Messung der Leistung eines vorlaufenden und/oder eines rücklaufenden Hochfrequenzsignals auf einer Leitung sind auch aus der WO 2005/048396 A1 und der US 2005/0264374 A1 bekannt.Broadband directional couplers for measuring the power of a leading and / or a returning high frequency signal on a line are also from the WO 2005/048396 A1 and the US 2005/0264374 A1 known.

Ein weiterer Breitbandrichtkoppler ist aus dem Artikel HOER CA ET AL: "BROAD-BAND RESISTIVE- DIVIDER- TYPE DIRECTIONAL COUPLER", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1970 NOV . bekannt.Another broadband directional coupler is from the Article HOER CA ET AL: "BROAD-BAND RESISTIVE-DIVIDER-TYPE DIRECTIONAL COUPLER", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1970 NOV , known.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Breitbandrichtkoppler zu schaffen, welcher deutlich einfacher aufgebaut ist und dabei auf aktive Komponenten verzichtet. Der Breitbandrichtkoppler soll bevorzugt in einem breiten Frequenzbereich von z.B. 9 kHz bis 250 MHz zuverlässig arbeiten und Leistungen von bevorzugt bis zu 250 W detektieren können.The invention is therefore based on the object to provide a broadband directional coupler, which is constructed much simpler and dispenses with active components. The broadband directional coupler is preferably to be used in a wide frequency range of e.g. 9 kHz to 250 MHz work reliably and can detect powers of preferably up to 250 W.

Die Aufgabe wird durch den erfindungsgemäßen Breitbandrichtkoppler mit den Merkmalen des Anspruchs 1 gelöst. Die Unteransprüche enthalten vorteilhafte Weiterbildungen der Erfindung.The object is achieved by the broadband directional coupler according to the invention with the features of claim 1. The dependent claims contain advantageous developments of the invention.

Der Breitbandrichtkoppler dient zur Messung der Leistung eines vorlaufenden und/oder eines rücklaufenden Hochfrequenzsignals auf einer Leitung. Der Breitbandrichtkoppler weist einen Spannungsteiler auf, der mit einem Innenleiter der Leitung verbunden ist, und einen ersten Widerstand, der mit einem Außenleiter der Leitung verbunden ist. Der Spannungsteiler weist ohmsche Widerstände auf und ein erster Anschluss eines zweiten Widerstands ist mit dem Innenleiter der Leitung verbunden und ein zweiter Anschluss des zweiten Widerstands ist mit einem ersten Anschluss eines dritten Widerstands verbunden. Ein zweiter Anschluss des dritten Widerstands ist mit einem ersten Anschluss des ersten Widerstands und gleichzeitig mit dem Außenleiter der Leitung direkt oder indirekt verbunden.The broadband directional coupler is used to measure the power of a leading and / or a returning high frequency signal on a line. The broadband directional coupler has a voltage divider connected to an inner conductor of the line and a first resistor connected to an outer conductor of the line. The voltage divider has ohmic resistances and a first terminal of a second resistor is connected to the inner conductor of the line and a second terminal of the second resistor is connected to connected to a first terminal of a third resistor. A second terminal of the third resistor is directly or indirectly connected to a first terminal of the first resistor and at the same time to the outer conductor of the lead.

Dabei ist an dem zweiten Anschluss des zweiten Widerstands bzw. an dem ersten Anschluss des dritten Widerstands eine Messspannung abgegriffen.In this case, a measuring voltage is tapped off at the second terminal of the second resistor or at the first terminal of the third resistor.

Der erfindungsgemäße Breitbandrichtkoppler weist statt einem kapazitiven einen ohmschen Spannungsteiler auf. Dieser Spannungsteiler darf deutlich stärker belastet werden, so dass keine aktiven Bauelemente als Impedanzwandler notwendig sind. Dadurch verringert sich nicht nur der Beschaltungsaufwand innerhalb des Breitbandrichtkopplers, sondern es kann zusätzlich auf eine externe Spannungsversorgung verzichtet werden. Der Abgleich des erfindungsgemäßen Breitbandrichtkopplers ist daher deutlich einfacher, so dass sich einerseits die Produktionszeit verkürzt und sich andererseits dabei die einzelnen Breitbandrichtkoppler in ihrer Eigenschaft nicht unterscheiden.The broadband directional coupler according to the invention has an ohmic voltage divider instead of a capacitive one. This voltage divider may be much more heavily loaded, so that no active components are required as an impedance converter. This not only reduces the wiring complexity within the Breitbandrichtkopplers, but it can also be dispensed with an external power supply. The adjustment of the broadband directional coupler according to the invention is therefore much simpler, so that on the one hand the production time is shortened and on the other hand the individual broadband directional couplers do not differ in their properties.

Verschiedene Ausführungsbeispiele der Erfindung werden nachfolgend unter Bezugnahme auf die Zeichnung beispielhaft beschrieben. Gleiche Gegenstände weisen dieselben Bezugszeichen auf. Die entsprechenden Figuren der Zeichnung zeigen im Einzelnen:

Fig. 1
einen vereinfachten Schaltplan der erfindungsgemäßen Anordnung des Breitbandrichtkopplers;
Fig. 2A
die parasitäre Einkopplung des Magnetfelds in die Messschleife bei ungünstiger Anordnung der Bauteile;
Fig. 2B
die bevorzugte Anordnung der Bauteile zur Vermeidung einer parasitären Einkopplung des Magnetfelds in die Messschleife;
Fig. 3A
ein Ausführungsbeispiel der Platinenoberseite des erfindungsgemäßen Breitbandrichtkopplers;
Fig. 3B
ein Ausführungsbeispiel der Platinenunterseite des erfindungsgemäßen Breitbandrichtkopplers;
Fig. 4
ein Ausführungsbeispiel der Gehäusekonstruktion mit Blick auf die Leiterstrukturen des erfindungsgemäßen Breitbandrichtkopplers;
Fig. 5
eine Innenansicht des erfindungsgemäßen Breitbandrichtkopplers;
Fig. 6
den vollständigen erfindungsgemäßen Breitbandrichtkoppler mit beiden Platinen und Gehäusedeckeln;
Fig. 7
einen Schnitt entlang der Längsachse durch den erfindungsgemäßen Breitbandrichtkoppler.
Various embodiments of the invention will now be described by way of example with reference to the drawings. Same objects have the same reference numerals. The corresponding figures of the drawing show in detail:
Fig. 1
a simplified circuit diagram of the inventive arrangement of the Breitbandrichtkopplers;
Fig. 2A
the parasitic coupling of the magnetic field in the measuring loop in unfavorable arrangement of the components;
Fig. 2B
the preferred arrangement of the components to avoid parasitic coupling of the magnetic field in the measuring loop;
Fig. 3A
an embodiment of the board top of the Breitbandrichtkoppler invention;
Fig. 3B
an embodiment of the sinker underside of the Breitbandrichtkopkopers invention;
Fig. 4
an embodiment of the housing construction with a view of the conductor structures of the Breitbandrichtkopkopers invention;
Fig. 5
an interior view of the Breitbandrichtkoppler invention;
Fig. 6
the complete broadband directional coupler according to the invention with both boards and housing covers;
Fig. 7
a section along the longitudinal axis through the broadband directional coupler according to the invention.

Fig. 1 zeigt einen vereinfachten Schaltplan des erfindungsgemäßen Breitbandrichtkopplers. Der Schaltplan ist exakt spiegelsymmetrisch um die Achse 21 herum aufgebaut. Der Breitbandrichtkoppler ist durch zwei voneinander unabhängige Messeinheiten 22 und 23 aufgebaut. Am Eingangsanschluss 13 der ersten Messeinheit 22 kann sowohl die Signalquelle, als auch eine komplexe Last über ein koaxiales Kabel angeschlossen werden. Selbiges gilt für den Eingangsanschluss 13 der zweiten Messeinheit 23. Über den durch beide Messeinheiten 22, 23 verlaufenden Innenleiter 1 wird ein Hochfrequenzsignal vom Leistungsverstärker zur komplexen Last übertragen. Fig. 1 shows a simplified circuit diagram of the Breitbandrichtkopkopers invention. The circuit diagram is constructed exactly symmetrical about the axis 21 around. The broadband directional coupler is constructed by two independent measuring units 22 and 23. At the input terminal 13 of the first measuring unit 22, both the signal source, as well as a complex load over a coaxial cable can be connected. The same applies to the input terminal 13 of the second measuring unit 23. About the running through both measuring units 22, 23 inner conductor 1, a high frequency signal is transmitted from the power amplifier to the complex load.

Im Folgenden wird näher auf die Messeinheit 22 eingegangen. Jede Messeinheit 22, 23 weist jeweils zwei Vierpole 19, 20 auf. Der erste Vierpol 19 umfasst einen Spannungsteiler, bestehend aus den ohmschen Widerständen 4 und 6, welcher dazu dient, eine hohe Hochfrequenzspannung möglichst frequenzunabhängig auf eine kleine Messspannung herunterzuteilen. Der erste Widerstand 4 ist hierbei an seinem ersten Anschluss direkt galvanisch mit dem Innenleiter 1 verbunden. Sein zweiter Anschluss ist mit dem ersten Anschluss eines zweiten Widerstands 6 verbunden. Zwischen beiden Widerständen 4,6 kann am Knoten 12 die heruntergeteilte Messspannung abgegriffen werden.In the following, the measuring unit 22 will be discussed in more detail. Each measuring unit 22, 23 has two four-poles 19, 20 each. The first quadrupole 19 comprises a voltage divider, consisting of the ohmic resistors 4 and 6, which serves to divide a high RF voltage as frequency independent as possible to a small measurement voltage. In this case, the first resistor 4 is directly galvanically connected to the inner conductor 1 at its first connection. Its second terminal is connected to the first terminal of a second resistor 6. Between two resistors 4, 6, the divided measuring voltage can be tapped off at node 12.

Der erste Widerstand 4 muss hochohmig (z.B. 30k Ohm) ausgeführt sein. Allerdings ist hierbei zu beachten, dass der Widerstand 4 ausschließlich bei einer Gleichspannung bis hin zu einer niederfrequenten Wechselspannung einen Widerstandswert von z.B. 30k Ohm aufweist. Für hochfrequente Wechselspannungen (von z.B. 250 MHz) hat der Widerstand 4 konstruktionsbedingt nur noch einen ohmschen Widerstandswert von z.B. 500 Ohm und insgesamt eine komplexe Impedanz. Bei zunehmender Frequenz erhöht sich dadurch der durch den Widerstand 4 fließende Strom um ein Vielfaches. Aus diesem Grund muss der Widerstand 4 in der Lage sein, die aufgenommene Wärmeenergie wieder abzugeben. Dies gelingt am besten dadurch, dass ein Widerstand mit einer möglichst großen Oberfläche gewählt wird.The first resistor 4 must be designed with high resistance (eg 30k ohms). However, it should be noted here that the resistor 4 has a resistance value of, for example, 30 k ohms only at a DC voltage up to a low-frequency AC voltage. For high-frequency alternating voltages (of eg 250 MHz), the resistor 4 has by design only an ohmic resistance of eg 500 ohms and a total of a complex impedance. As the frequency increases, this increases the current flowing through the resistor 4 by a multiple. For this reason, the resistor 4 must be able to release the absorbed heat energy again. This is best achieved by choosing a resistor with as large a surface as possible.

In der vorliegenden Erfindung sind alle Widerstände und Kondensatoren bevorzugt als SMD-Bauteile (surface-mounted device, Oberflächen-montierbares Bauteil) ausgeführt. Dies erlaubt zum einen eine automatische Bestückung und zum anderen kann die Wärmeenergie direkt an das Platinenmaterial abgegeben werden, wodurch der Wärmeübergang deutlich besser als bei Luft ist. Der Widerstand 4 ist dabei z.B. in der Bauform 2512 realisiert. Aufgrund der notwendigerweise großen Bauform bildet sich die Kappenkapazität stärker aus, als bei Widerständen mit kleineren Bauformen. Die Kappenkapazität des Widerstands 4 ist als Kapazität 5 im Schaltplan sichtbar. Bei dieser Kapazität 5 handelt es sich um eine rein parasitäre Kapazität, die aufgrund ihrer Größe von z.B. bis zu 0,1 pF berücksichtigt werden muss.In the present invention, all resistors and capacitors are preferably designed as SMD components (surface-mounted device). On the one hand, this allows automatic assembly and, on the other hand, the heat energy can be released directly to the board material, whereby the heat transfer is significantly better than with air. The resistor 4 is e.g. realized in the design 2512. Due to the necessarily large design, the cap capacity forms stronger than resistors with smaller designs. The cap capacity of the resistor 4 is visible as a capacitance 5 in the circuit diagram. This capacitance 5 is a purely parasitic capacitance which, due to its size of e.g. up to 0.1 pF.

Der Widerstand 6 hat eine deutlich kleinere Bauform (z. B. 0402). Dadurch bildet sich eine kleinere Kappenkapazität aus, welche dazu führt, dass sich die Zeitkonstante T1 bestehend aus dem Widerstand 4 und seiner Kappenkapazität 5 deutlich von der Zeitkonstante T2 bestehend aus dem Widerstand 6 und seiner Kappenkapazität unterscheidet. Aus diesem Grund wird im Ausführungsbeispiel ein Kondensator 7 mit seinen Anschlüssen parallel zu den Anschlüssen des Widerstands 6 hinzugeschaltet. Bei dem Kondensator 7 handelt es sich um einen Kondensator, dessen Kapazität variabel eingestellt werden kann (Trimmkondensator). Dadurch wird dem Umstand Rechnung getragen, dass die Kappenkapazität 5 des Widerstands 4 von Bauteil zu Bauteil unterschiedlich groß sein kann.The resistor 6 has a significantly smaller design (eg 0402). As a result, a smaller cap capacity is formed, which results in that the time constant T 1 consisting of the resistor 4 and its cap capacity 5 differs significantly from the time constant T 2 consisting of the resistor 6 and its cap capacity. For this reason, in the exemplary embodiment, a capacitor 7 is connected with its terminals parallel to the terminals of the resistor 6. The capacitor 7 is a capacitor whose capacitance can be variably adjusted (trimming capacitor). This takes into account the fact that the cap capacity 5 of the resistor 4 can vary in size from component to component.

Am Potential des Knotens 12 wird bevorzugt ein weiterer einstellbarer Kondensator 10 (Trimmkondensator) mit seinem ersten Anschluss angeschlossen. Sein zweiter Anschluss hingegen wird mit Masse verbunden. Über den Widerstand 11 wird der erste Anschluss des Kondensators 10 mit dem Auskoppelanschluss 15 verbunden. Der Trimmkondensator 10 dient dabei dazu, den Frequenzgang in Vorlaufrichtung abzugleichen. Die Kapazität des Trimmkondensators 7 wird derart eingestellt, dass sich eine Zeitkonstante T2 aus dem Trimmkondensator 7 und dem Widerstand 6 ergibt, welche möglichst genau gleich der weiteren Zeitkonstante T1 ist, welche sich aus dem Widerstand 4 zusammen mit seiner Kappenkapazität 5 ergibt. Dadurch wird das Richtverhältnis abgeglichen und dafür gesorgt, dass nur eine minimale Spannung in Rücklaufrichtung am Auskoppelanschluss 15 anliegt, wenn am jeweiligen Ausgang Anpassung (VSWR = 1) herrscht.At the potential of the node 12, a further adjustable capacitor 10 (trimming capacitor) is preferably connected with its first terminal. His second connection however, it is connected to ground. The first terminal of the capacitor 10 is connected to the decoupling terminal 15 via the resistor 11. The trim capacitor 10 serves to equalize the frequency response in the forward direction. The capacitance of the trimming capacitor 7 is adjusted such that a time constant T 2 results from the trimming capacitor 7 and the resistor 6, which is as exactly as possible the further time constant T 1 , which results from the resistor 4 together with its cap capacity 5. As a result, the directivity is adjusted and ensured that only a minimum voltage in the return direction at the Auskoppelanschluss 15 is present when the respective output adjustment (VSWR = 1) prevails.

Der Widerstand 11 dient dazu, dass der Trimmkondensator 10 nur über eine kleine Endkapazität verfügen muss. Die zweiten Anschlüsse des Trimkondensators 7 und des Widerstands 6 sind mit dem Knoten 17 verbunden. Ebenfalls mit dem Potential des Knoten 17 ist über den Knoten 18 ein erster Anschluss des Widerstands 8 verbunden. Am selben Potential wird auch ein erster Anschluss des Kondensators 9 angeschlossen. Die zweiten Anschlüsse des Kondensators 9 und des Widerstands 8 sind mit Masse verbunden. Der Widerstand 8 ist bevorzugt sehr niederohmig ausgeführt.The resistor 11 serves to ensure that the trim capacitor 10 only has to have a small final capacity. The second terminals of the trim capacitor 7 and the resistor 6 are connected to the node 17. Also connected to the potential of the node 17 via the node 18, a first terminal of the resistor 8. At the same potential and a first terminal of the capacitor 9 is connected. The second terminals of the capacitor 9 and the resistor 8 are connected to ground. The resistor 8 is preferably made very low impedance.

Der Außenleiter der am Eingangsanschluss 13 angeschlossenen Koaxialleitung wird in dem Breitbandrichtkoppler in einen inneren 3 und einen in Fig. 1 nicht dargestellten äußeren Außenleiter 38 aufgeteilt, wobei der innere Außenleiter 3 nur an einem Ende direkt mit dem äußeren Außenleiter 38 und damit mit Masse verbunden ist. Das zweite Ende des inneren Außenleiters 3 ist direkt oder indirekt über den Knoten 18 und damit über den ersten Anschluss des Widerstands 8 mit dem äußeren Außenleiter 38 und damit mit Masse verbunden. Zwischen dem inneren 3 und dem äußeren Außenleiter 38 ist zumindest ein hochpermeabler Ringbandkern 2 angeordnet. Dadurch wird gewährleistet, dass ein nennenswerter Strom über den Widerstand 8 fließt. Die über dem Widerstand 8 abfallende Spannung ist proportional zum Innenleiterstrom, solange der Widerstand 8 keine parasitären Induktivitäten aufweist. Dies ist in der Realität nicht der Fall, so dass parallel zu den Anschlüssen des Widerstands 8 ein Kondensator 9 geschaltet werden muss.The outer conductor of the coaxial line connected to the input terminal 13 is in the broadband directional coupler in an inner 3 and a in Fig. 1 divided outer outer conductor 38, not shown, wherein the inner outer conductor 3 is connected only at one end directly to the outer outer conductor 38 and thus to ground. The second end of the inner outer conductor 3 is directly or indirectly via the node 18 and thus over the first terminal of the resistor 8 to the outer outer conductor 38 and thus connected to ground. Between the inner 3 and the outer outer conductor 38 at least one high-permeability ring band core 2 is arranged. This ensures that a significant current flows through the resistor 8. The voltage drop across the resistor 8 is proportional to the internal conductor current, as long as the resistor 8 has no parasitic inductances. This is not the case in reality, so that a capacitor 9 must be connected in parallel to the terminals of the resistor 8.

Dieser Kondensator 9 kompensiert die parasitäre Induktivität des Widerstands 8 bei einer Bezugsfrequenz von 250 MHz. Je nachdem ob das Hochfrequenzsignal vom Eingangsanschluss 13 der ersten Messeinheit 22 zum Eingangsanschluss 13 der zweiten Messeinheit 23 läuft oder umgekehrt, fällt über dem Widerstand 8 eine positive oder eine negative Spannung ab. Bei entsprechender Anpassung haben die an beiden Vierpolen 19, 20 anfallenden Messspannungen den gleichen Wert, den gleichen Phasengang und sind frequenzunabhängig. Je nach Vorzeichen der beiden Messspannungen werden diese am Knoten 12 vektoriell addiert oder subtrahiert. Die daraus am Knoten 12 resultierende Spannung kann anschließend am Auskoppelanschluss 15 abgegriffen werden.This capacitor 9 compensates the parasitic inductance of the resistor 8 at a reference frequency of 250 MHz. Depending on whether the high-frequency signal runs from the input terminal 13 of the first measuring unit 22 to the input terminal 13 of the second measuring unit 23 or vice versa, a positive or a negative voltage drops across the resistor 8. With appropriate adaptation, the measurement voltages occurring at both four-poles 19, 20 have the same value, the same phase response and are frequency-independent. Depending on the sign of the two measuring voltages, these are vectorially added or subtracted at node 12. The voltage resulting therefrom at the node 12 can then be tapped off at the coupling-out connection 15.

Jede Messeinheit 22,23 verfügt über zumindest einen Eingangsanschluss 13 und über zumindest einen Auskoppelanschluss 15. Sowohl der Eingangsanschluss, als auch der Auskoppelanschluss können mit einer Quelle oder einer komplexen Last verbunden werden. Die Anordnung wird in Vorwärtsrichtung betrieben, wenn die Signalquelle am Eingangsanschluss 13 der ersten Messeinheit 22 und die komplexe Last am Eingangsanschluss 13 der zweiten Messeinheit 23 angeschlossen wird. Am Auskoppelanschluss 15 der ersten Messeinheit 22 steht eine der Wurzel der Leistung des vorlaufenden Hochfrequenzsignals proportionale Spannung bereit, wohingegen am Auskoppelanschluss 15 der zweiten Messeinheit 23 eine der Wurzel der Leistung des rücklaufenden Hochfrequenzsignals proportionale Spannung bereit gestellt ist.Each measuring unit 22, 23 has at least one input terminal 13 and at least one decoupling terminal 15. Both the input terminal and the decoupling terminal can be connected to a source or to a complex load. The arrangement is operated in the forward direction when the signal source at the input terminal 13 of the first measuring unit 22 and the complex load at the input terminal 13 of the second measuring unit 23 is connected. At the decoupling connection 15 of the first measuring unit 22, a voltage proportional to the root of the power of the leading high-frequency signal is available, whereas at the decoupling connection 15 of the second measuring unit 23, a voltage proportional to the root of the power of the returning high-frequency signal is provided.

Der Breitbandrichtkoppler kann allerdings auch in Rückwärtsrichtung betrieben werden, ohne dass sich dabei die Dämpfung ändert. In diesem Fall wird die Signalquelle am Eingangsanschluss 13 der zweiten Messeinheit 23 und die komplexe Last am Eingangsanschluss 13 der ersten Messeinheit 22 angeschlossen. Am Auskoppelanschluss 15 der zweiten Messeinheit 23 steht eine der Wurzel der Leistung des vorlaufenden Hochfrequenzsignals proportionale Spannung bereit, wohingegen am Auskoppelanschluss 15 der ersten Messeinheit 22 eine der Wurzel der Leistung des rücklaufenden Hochfrequenzsignals proportionale Spannung bereit gestellt ist.However, the broadband directional coupler can also be operated in the reverse direction without the attenuation changing. In this case, the signal source at the input terminal 13 of the second measuring unit 23 and the complex load at the input terminal 13 of the first measuring unit 22 are connected. At the coupling-out connection 15 of the second measuring unit 23, a voltage proportional to the root of the power of the leading high-frequency signal is available, whereas at the coupling-out terminal 15 of the first measuring unit 22, a voltage proportional to the root of the power of the returning high-frequency signal is provided.

Fig. 2A erläutert die parasitären Effekte, die dadurch entstehen, dass der Außenleiter geöffnet werden muss, um den ohmschen Spannungsteiler bestehend aus den Widerständen 4 und 6 an den Innenleiter und den Widerstand 8 an den Außenleiter anbringen zu können. Fig. 2A zeigt die erste Messeinheit 22 des erfindungsgemäßen Breitbandrichtkopplers. Gestrichelt angedeutet ist die zweite Messeinheit 23, die exakt spiegelsymmetrisch zur ersten Messeinheit 22 aufgebaut ist. Im Ausführungsbeispiel in Fig. 2A ist an dem Eingangsanschluss 13 der ersten Messeinheit 22 eine nicht dargestellte Signalquelle angeschlossen. Der Eingangsanschluss 13 der zweiten Messeinheit 23 ist mit einer nicht dargestellten komplexen Last verbunden. Exemplarisch ist ein Stromfluss entlang des Innenleiters 1 in Pfeilrichtung 36 vom Eingangsanschluss 13 der ersten Messeinheit 22 zum Eingangsanschluss 13 der zweiten Messeinheit 23 eingezeichnet. Der Innenleiter 1 wird dabei durch eine nicht dargestellte Aussparung 40 auf der Platine 30 durch diese geführt. Fig. 2A explains the parasitic effects caused by the fact that the outer conductor must be opened in order to attach the ohmic voltage divider consisting of the resistors 4 and 6 to the inner conductor and the resistor 8 to the outer conductor can. Fig. 2A shows the first measuring unit 22 of the Breitbandrichtkopkopers invention. Dashed lines indicate the second measuring unit 23, which is constructed exactly mirror-symmetrical to the first measuring unit 22. In the embodiment in Fig. 2A is connected to the input terminal 13 of the first measuring unit 22, a signal source, not shown. The input terminal 13 of the second measuring unit 23 is with connected to a complex load, not shown. As an example, a current flow along the inner conductor 1 in the direction of arrow 36 from the input terminal 13 of the first measuring unit 22 to the input terminal 13 of the second measuring unit 23 is shown. The inner conductor 1 is guided by a not shown recess 40 on the board 30 through this.

Auf einer dem Eingangsanschluss 13 zugewandten Seite 31 der Platine 30, wird der erste Widerstand 4 über die Lötverbindung 37 galvanisch mit dem Innenleiter 1 verbunden. Auf derselben Seite 31 der Platine 30 wird der zweite Anschluss des ersten Widerstands 4 über den Knoten 12 mit dem ersten Anschluss eines zweiten Widerstands 6 verbunden, wie dies auch aus dem Schaltbild aus Fig. 1 hervorgeht. Zudem erfolgt vom Knoten 12 aus eine Verbindung über den nicht dargestellten Widerstand 11 zum Auskoppelanschluss 15 an den eine Koaxialsteckverbindung 60 angeschlossen ist.On a side 31 of the circuit board 30 facing the input connection 13, the first resistor 4 is galvanically connected to the inner conductor 1 via the solder connection 37. On the same side 31 of the board 30, the second terminal of the first resistor 4 is connected via the node 12 to the first terminal of a second resistor 6, as well as from the circuit diagram Fig. 1 evident. In addition, a connection is made from the node 12 via the resistor 11, not shown, to the coupling-out connection 15 to which a coaxial plug connection 60 is connected.

Der zweite Anschluss des zweiten Widerstands 6 ist mit dem Knoten 17 verbunden. Über eine Durchkontaktierung 37 wird der Knoten 17, welcher auf der dem Eingangsanschluss 13 zugewandten Seite 31 der Platine 30 liegt, mit dem Knoten 18, welcher auf der dem Eingangsanschluss 13 abgewandten Seite 32 der Platine 30 liegt, verbunden. Die Länge der Durchkontaktierung 37 ist gleich der Dicke der Platine 30 und beträgt bei einer zweilagigen FR4 Multilayerplatine z.B. 1,6 mm. Der Knoten 18 ist wie in Fig. 1 ersichtlich direkt mit dem ersten Anschluss des Widerstands 8 verbunden. Wie aus Fig. 2A ersichtlich ist, besteht der Widerstand 8 im Ausführungsbeispiel nicht nur aus einem einzelnen Widerstand, sondern aus mehreren Einzelwiderständen, welche den inneren Außenleiter 3 mit dem äußeren Außenleiter 38 verbinden. Die weiteren Kapazitäten 5, 7, 9, 10 und der Widerstand 15 sind aus Gründen der Übersichtlichkeit in Fig. 2A und 2B nicht dargestellt.The second terminal of the second resistor 6 is connected to the node 17. Via a via 37, the node 17, which is located on the input terminal 13 facing side 31 of the board 30, with the node 18, which is located on the side facing away from the input terminal 13 32 of the board 30, respectively. The length of the via 37 is equal to the thickness of the board 30 and is 1.6 mm in a two-layer FR 4 multilayer board, for example. The node 18 is as in Fig. 1 can be seen directly connected to the first terminal of the resistor 8. How out Fig. 2A it can be seen, the resistance 8 in the embodiment not only of a single resistor, but of several individual resistors, which the inner outer conductor 3 with connect to the outer outer conductor 38. The further capacitors 5, 7, 9, 10 and the resistor 15 are in for clarity FIGS. 2A and 2B not shown.

Die gepunktete Fläche stellt eine Messschleife 39 dar. Diese besteht aus dem zweiten Widerstand 6 des Spannungsteilers und der Koaxialsteckverbindung 60 auf der ersten Seite 31 der Platine 30. Die Signalleitung vom Knoten 12 zur Koaxialsteckverbindung 60 liegt auf der ersten Seite 31 Platine 30 und wurde nur zur Verdeutlichung beabstandet von der Platine 30 eingezeichnet. Über die Durchkontaktierung 37 ist der Knoten 17 auf der ersten Seite 31 der Platine 30 mit dem Knoten 18 auf der zweiten Seite 32 der Platine 30 verbunden. Auf der zweiten Seite der Platine befindet sich der Widerstand 8. Der zweite Anschluss des Widerstands 8 ist mit dem Außenleiter 38 verbunden. Über nicht dargestellte Durchkontaktierungen auf der Platine 30 ist der Außenleiter 38 mit der Koaxialsteckverbindung 60 und mit dem Außenleiter auf der ersten Seite 31 der Platine 30 verbunden. Die Messschleife 39 ist geschlossen.The dotted surface is a measuring loop 39. This consists of the second resistor 6 of the voltage divider and the coaxial connector 60 on the first side 31 of the board 30. The signal line from the node 12 to the coaxial connector 60 is on the first side 31 board 30 and has only spaced from the board 30 for clarity. Via the via 37, the node 17 on the first side 31 of the board 30 is connected to the node 18 on the second side 32 of the board 30. On the second side of the board is the resistor 8. The second terminal of the resistor 8 is connected to the outer conductor 38. Via contacts, not shown, on the board 30, the outer conductor 38 is connected to the coaxial connector 60 and to the outer conductor 31 on the first side 31 of the board 30. The measuring loop 39 is closed.

Wie aus Fig. 2A hervorgeht ruft ein in Pfeilrichtung 36 fließender Strom auf dem Innenleiter 1 ein Magnetfeld hervor, dessen Feldlinien kreisförmig um den Innenleiter 1 herum verlaufen. Die Magnetfeldlinien verlaufen in Richtung des Pfeils 33. An Punkt 34 treten sie aus und an Punkt 35 treten sie wieder ein. Die von der Messschleife 39 aufgespannte Fläche wird von den Feldlinien des Magnetfelds durchflossen, wobei in der Messschleife 39 eine Spannung induziert wird. Diese Einkopplung erfolgt mit einem Winkelfehler von 90°. Die zur Wurzel der Leistung des vorlaufenden Hochfrequenzsignals proportionale Messspannung, welche eine Vorlaufdämpfung im Mittel von z.B. 57,5 dB aufweist, wird durch die induzierte Spannung stark gestört. Die zur Wurzel der Leistung des rücklaufenden Hochfrequenzsignals proportionale Messspannung, welche eine Rücklaufdämpfung im Mittel von z.B. 95 dB aufweist, wird durch die induzierte Spannung derart überlagert, dass sie nicht mehr gemessen werden kann.How out Fig. 2A As can be seen, a current flowing in the direction of arrow 36 on the inner conductor 1 causes a magnetic field whose field lines extend in a circle around the inner conductor 1. The magnetic field lines run in the direction of the arrow 33. At point 34 they exit and at point 35 they enter again. The area spanned by the measuring loop 39 is traversed by the field lines of the magnetic field, wherein a voltage is induced in the measuring loop 39. This coupling takes place with an angle error of 90 °. That to the root of the power of the leading high-frequency signal proportional measuring voltage, which has a forward damping on average of 57.5 dB, for example, is greatly disturbed by the induced voltage. The proportional to the root of the power of the returning high-frequency signal measurement voltage, which has a return loss on average of, for example 95 dB, is superimposed by the induced voltage such that it can no longer be measured.

Auch bei Anschluss der Signalquelle an den Eingangsanschluss 13 der zweiten Messeinheit 23 und der komplexen Last an den Eingangsanschluss 13 der ersten Messeinheit 22 erfolgt die parasitäre Einkopplung gemäß dem dargestellten Sachverhalt.Even when the signal source is connected to the input terminal 13 of the second measuring unit 23 and the complex load is applied to the input terminal 13 of the first measuring unit 22, the parasitic coupling ensues according to the situation described.

Fig. 2B zeigt im Folgenden die erfindungsgemäß bevorzugte Lösung zur Vermeidung von parasitären Einkopplungen in die Messschleife. Der Aufbau und die Stromrichtung sind im Wesentlichen gleich wie bei Fig. 2A, weshalb hier auf die Beschreibung von Fig. 2A verwiesen wird. Beide Widerstände 4 und 6 des Spannungsteilers sollten daher nicht auf der gleichen Seite der Platine 30 angeordnet sein. Deshalb wird der Widerstand 6 des Spannungsteilers nicht mehr auf der ersten Seite 31 Platine 30, sondern auf der dem Eingangsanschluss 13 abgewandten Seite 32 der Platine 30 angeordnet, wo auch der Widerstand 8 angeordnet ist. Die Signalleitung vom Knoten 12 zur Koaxialsteckverbindung 60 liegt auf der zweiten Seite 32 Platine 30 und wurde nur zur Verdeutlichung beabstandet von der Platine 30 eingezeichnet. Diese Art der Anordnung führt dazu, dass sich über den Außenleiter keine geschlossene Messschleife aufbaut, über die durch ein Magnetfeld eine Spannung induziert werden kann. Alle Widerstände 4,6,8,11 und/oder Kondensatoren 7,9,10 einer Messeinheit 22,23 werden dabei auf einer Platine 30 angeordnet. Fig. 2B below shows the preferred solution according to the invention for avoiding parasitic couplings into the measuring loop. The structure and the current direction are essentially the same as in Fig. 2A , so here's the description of Fig. 2A is referenced. Both resistors 4 and 6 of the voltage divider should therefore not be arranged on the same side of the board 30. Therefore, the resistor 6 of the voltage divider is no longer arranged on the first side 31 of the circuit board 30, but on the side facing away from the input terminal 13 side 32 of the board 30, where the resistor 8 is arranged. The signal line from the node 12 to the coaxial connector 60 is located on the second side 32 of the circuit board 30 and has been drawn only for clarity spaced from the board 30. This type of arrangement means that no closed measuring loop builds up over the outer conductor, via which a voltage can be induced by a magnetic field. All resistors 4,6,8,11 and / or Capacitors 7, 9, 10 of a measuring unit 22, 23 are arranged on a circuit board 30.

Fig. 3A zeigt die erste Seite 31 der Platine 30. Die Platine 30 weist in der Mitte eine kreisrunde Aussparung 40 auf, durch die der Innenleiter 1 hindurchgeführt ist. Der Innenleiter 1 wird über eine Lötverbindung 37 und/oder eine Schraubverbindung derart mit der ersten Seite 31 Platine 30 verbunden, dass ein niederohmiger elektrischer Kontakt zwischen dem Innenleiter 1 und der Leiterbahn 41 hergestellt ist. Diese Leiterbahn 41 verbindet den ersten Anschluss des Widerstands 4 galvanisch mit dem Innenleiter 1. Der zweite Anschluss des Widerstands 4 ist mit den ersten Anschlüssen der Trimmkondensatoren 7 und 10 verbunden. Zwischen den ersten Anschlüssen der Trimmkondensatoren 7 und 10 befindet sich die Durchkontaktierung 37, die die erste Seite 31 mit der zweiten Seite 32 der Platine 30 verbindet. Der zweite Anschluss des Kondensators 10 ist mit Masse verbunden. Der zweite Anschluss des Kondensators 7 wird über eine weitere Durchkontaktierung, die nicht dargestellt ist, mit dem zweiten Anschluss des Widerstands 6 verbunden. Fig. 3A shows the first side 31 of the board 30. The board 30 has in the middle of a circular recess 40 through which the inner conductor 1 is passed. The inner conductor 1 is connected via a solder connection 37 and / or a screw connection with the first side 31 of the circuit board 30 in such a way that a low-resistance electrical contact between the inner conductor 1 and the conductor 41 is produced. This conductor 41 electrically connects the first terminal of the resistor 4 to the inner conductor 1. The second terminal of the resistor 4 is connected to the first terminals of the trim capacitors 7 and 10. Between the first terminals of the trim capacitors 7 and 10 is the via 37, which connects the first side 31 with the second side 32 of the board 30. The second terminal of the capacitor 10 is connected to ground. The second terminal of the capacitor 7 is connected via a further via, which is not shown, to the second terminal of the resistor 6.

Fig. 3B zeigt die zweite Seite 32, bzw. die dem Eingangsanschluss 13 abgewandte Seite 32 der Platine 30. Der Innenleiter 1 wird auf der zweiten Seite 32 durch die Aussparung 40 der Platine 30 geführt. Zu erkennen sind zwei Ringe 42 und 43. Die Fläche 44 zwischen beiden Ringen zeigt die Auflagefläche des Federelements 45, welches mit der zweiten Seite 32 der Platine 30 über die Auflagefläche derart verbunden ist, dass ein niederohmiger elektrischer Kontakt zwischen dem Federelement 45 und der Platine 30 hergestellt ist. Dies geschieht vorteilhafterweise durch einen Lötprozess. Das Federelement 45 wird zusätzlich über nicht dargestellte Löcher in der Platine 30 mit dieser verankert, so dass das Federelement 45 auch bei radialen Kräften fest mit der Platine 30 verbunden bleibt. Ringförmig sind um das Federelement 45 verschiedene Bauteile angeordnet. Der Widerstand 8 aus Fig. 1 setzt sich dabei aus einer Vielzahl von einzelnen parallel geschalteten Widerständen zusammen, die ringförmig um das Federelement 45 angeordnet sind und dieses kontaktieren. Bei den Widerständen handelt es sich im Ausführungsbeispiel um 42 einzelne Widerstände 81 bis 842. Ihr zweiter Anschluss ist mit dem äußeren Außenleiter 38 des Breitbandrichtkopplers verbunden. Der Widerstandsring, welcher aus den ringförmig angeordneten Widerständen besteht, ist an dem Auskoppelanschluss unterbrochen, wodurch ein Ringsegment mit zwei Enden entsteht. Wünschenswert ist, dass der Strom auf dem inneren Außenleiter 3 gleichmäßig über alle Widerstände 81 bis 842 gegen den äußeren Außenleiter 38 abfließt. Fig. 3B shows the second side 32, and the input terminal 13 facing away from the side 32 of the board 30. The inner conductor 1 is guided on the second side 32 through the recess 40 of the board 30. The surface 44 between the two rings shows the bearing surface of the spring element 45, which is connected to the second side 32 of the board 30 via the support surface such that a low-resistance electrical contact between the spring element 45 and the board 30 is made. This is advantageously done by a soldering process. The spring element 45 is additionally over not shown holes in the board 30 anchored with this, so that the spring element 45 remains fixed to the board 30 even with radial forces. Annularly 45 different components are arranged around the spring element. The resistor 8 off Fig. 1 is composed of a plurality of individual resistors connected in parallel, which are arranged in a ring around the spring element 45 and contact this. The resistors in the exemplary embodiment are 42 individual resistors 8 1 to 8 42 . Its second terminal is connected to the outer outer conductor 38 of the Breitbandrichtkopplers. The resistance ring, which consists of the annularly arranged resistors, is interrupted at the decoupling connection, whereby a ring segment with two ends is formed. It is desirable that the current on the inner outer conductor 3 flows evenly across all resistors 8 1 to 8 42 against the outer outer conductor 38.

Jeder Widerstand weist einen Widerstandswert von im Ausführungsbeispiel ungefähr 12,1 Ohm auf, wobei der nominelle Widerstandswert prinzipbedingt zu den Enden des Widerstandrings hin abnimmt. Die Widerstände 81 und 842 weisen einen Widerstandswert von 10 Ohm auf. Die mit jedem Widerstand einhergehende Induktivität soll sich durch die Parallelschaltung derart verkleinern, dass sich keine Phasenfehler in den Messwert ergeben. Allerdings unterscheidet sich die Induktivität der parallel geschalteten Widerstände 81 bis 842 in der Realität derart von dem berechneten Modell, dass eine zusätzliche Kompensation sinnvoll ist. Hierzu wird die Kapazität 9 aus Fig. 1 aus bis zu vier einzelnen Kondensatoren 91 bis 94 gebildet, von denen jeweils zwei Kondensatoren mit ihren Anschlüssen parallel an jedes Ende des Widerstandrings geschaltet sind. Die Kapazität der parallel geschalteten Kondensatoren 91 bis 94 wird so gewählt, dass die Induktivität der parallel geschalteten Widerstände 81 bis 842 z.B. bei einer Frequenz von 250 MHz kompensiert wird.Each resistor has a resistance value of about 12.1 ohms in the embodiment, with the nominal resistance decreasing in principle toward the ends of the resistor ring. The resistors 8 1 and 8 42 have a resistance of 10 ohms. The inductance associated with each resistor should be reduced by the parallel circuit so that no phase errors in the measured value arise. However, the inductance of the resistors 8 1 to 8 42 connected in parallel differs in reality from the calculated model such that additional compensation makes sense. For this purpose, the capacity 9 is off Fig. 1 formed from up to four individual capacitors 9 1 to 9 4 , of which two capacitors with their terminals in parallel to each end of the resistor ring are switched. The capacitance of the parallel-connected capacitors 9 1 to 9 4 is selected so that the inductance of the resistors 8 1 to 8 42 connected in parallel is compensated, for example, at a frequency of 250 MHz.

Zwischen den beiden Enden des Widerstandrings befindet sich der Widerstand 6 des Spannungsteilers. Unmittelbar daneben und über seinen ersten Anschluss mit dem ersten Anschluss des Widerstands 6 verbunden liegt der Widerstand 11, an dessen zweiten Anschluss eine Messspannung abgegriffen ist, die zu der Wurzel der Leistung des vorlaufenden oder rücklaufenden Hochfrequenzsignals proportional ist. Der Widerstand 11 weist im Ausführungsbeispiel einen Widerstandwert von ungefähr 160 Ohm auf. Diese Messspannung wird mit einem Koaxialstecker, vorzugsweise einer SMP- oder SMA-Koaxialsteckverbindung, aus dem Breitbandrichtkoppler geführt, welcher am Auskoppelanschluss 15 angebracht ist.Between the two ends of the resistor ring is the resistor 6 of the voltage divider. Immediately adjacent and connected via its first terminal to the first terminal of the resistor 6 is the resistor 11, at the second terminal of a measuring voltage is tapped, which is proportional to the root of the power of the leading or returning high-frequency signal. The resistor 11 has a resistance value of about 160 ohms in the embodiment. This measuring voltage is conducted with a coaxial connector, preferably a SMP or SMA coaxial connector, from the broadband directional coupler, which is attached to the coupling-out connection 15.

Fig. 4 zeigt den Gehäusekörper 38 des erfindungsgemäßen Breitbandrichtkopplers. Der Gehäusekörper 38 besteht aus einem massiven leitfähigen Metall, vorzugsweise Aluminium. In diesem massiven leitfähigen Gehäusekörper 38 sind jeweils links- und rechtsseitig zwei zylinderförmige Ausnehmungen ausgebildet, deren Wandungen einen inneren 3 und einen äußeren Außenleiter 38 bilden. Der äußere Außenleiter 38 liegt auf dem gleichen Potential wie der Gehäusekörper 38 und weist deshalb das gleiche Bezugszeichen auf. Diese zylinderförmigen Ausnehmungen weisen einen inneren Radius 58 und einen äußeren Radius 57 auf. Der äußere Radius 57 ist geringfügig größer als der äußere Radius des als Hohlzylinder ausgeführten Ringbandkerns 2. Der innere Radius 58 ist geringfügig kleiner als der innere Radius des als Hohlzylinder ausgeführten Ringbandkerns 2. Dadurch kann der Ringbandkern 2 in den Gehäusekörper 38 des Breitbandrichtkopplers eingeführt werden. Fig. 4 shows the housing body 38 of the Breitbandrichtkoppler invention. The housing body 38 is made of a solid conductive metal, preferably aluminum. In this solid conductive housing body 38, two cylindrical recesses are formed on the left and right sides, the walls of which form an inner 3 and an outer outer conductor 38. The outer outer conductor 38 is at the same potential as the housing body 38 and therefore has the same reference numerals. These cylindrical recesses have an inner radius 58 and an outer radius 57. The outer radius 57 is slightly larger than the outer radius of the ring band core 2 designed as a hollow cylinder. The inner radius 58 is slightly smaller than the inner radius of the hollow cylinder As a result, the toroidal core 2 can be inserted into the housing body 38 of the broadband directional coupler.

Entlang der Längsachse 51 des Gehäusekörpers 38 bleibt nach der ersten Ausnehmung noch ein Vollzylinder mit einem Außenradius stehen, der dem inneren Radius 58 der ersten zylinderförmigen Ausnehmung entspricht. Die erste Ausnehmung, die auf beiden Seiten des Gehäusekörpers 38 vorgenommen wird, darf nur so tief sein, dass der Ringbandkern 2 gerade eingeführt werden kann und gleichzeitig die Platine auf beide Enden des Gehäusekörpers 38 geschraubt werden kann. Die ersten links- und rechtsseitigen Ausnehmungen sind dabei durch eine metallische Trennwand 71 getrennt. Die Ausnehmung selbst kann vorzugsweise durch eine Fräsung geschehen.Along the longitudinal axis 51 of the housing body 38 remains after the first recess still a solid cylinder with an outer radius, which corresponds to the inner radius 58 of the first cylindrical recess. The first recess, which is made on both sides of the housing body 38 may only be so deep that the toroidal core 2 can be inserted straight and at the same time the board can be screwed onto both ends of the housing body 38. The first left and right recesses are separated by a metallic partition 71. The recess itself can preferably be done by a milling.

Der Vollzylinder und damit der innere Außenleiter 3, welcher entlang der Längsachse 51 des Gehäusekörpers 38 stehen bleibt, wird durch eine weitere links- und rechtsseitige zylinderförmige Ausnehmung zum Hohlzylinder erweitert. Der innere Radius des Hohlzylinders muss so groß sein, dass ein Innenleiter 1 eingeführt werden kann, ohne dass es zu einem Kontakt des Innenleiters 1 mit dem inneren Außenleiter 3 kommt, sei es durch direkte Berührung oder infolge eines Überschlags aufgrund zu hoher elektrischer Feldstärken. Diese zweite Ausnehmung verläuft im Gegensatz zu der ersten Ausnehmung entlang der Längsachse 51 durch den gesamten Gehäusekörper 38. Die Ausnehmung erfolgt vorteilhafterweise durch eine Bohrung oder Fräsung. Dadurch werden zwei unabhängige Messeinheiten 22 und 23 für das vorlaufende und das rücklaufende Hochfrequenzsignal gebildet.The solid cylinder and thus the inner outer conductor 3, which remains standing along the longitudinal axis 51 of the housing body 38 is extended by a further left and right cylindrical recess to the hollow cylinder. The inner radius of the hollow cylinder must be so large that an inner conductor 1 can be inserted without causing contact of the inner conductor 1 with the inner outer conductor 3, either by direct contact or due to a flashover due to excessive electric field strengths. This second recess extends in contrast to the first recess along the longitudinal axis 51 through the entire housing body 38. The recess is advantageously carried out by a bore or milling. As a result, two independent measuring units 22 and 23 are formed for the leading and the returning high-frequency signal.

Der Innenleiter 1 kann an seinen Enden mit einer Gewindebohrung versehen sein, damit er an die Platine 30 geschraubt werden kann. Ein Teil einer Schraube 53 ist exemplarisch in Fig. 4 eingezeichnet. Der Gehäusekörper 38 weist an jedem Ende vier Gewindebohrungen 54 auf, die jeweils denselben Abstand zu einer Ecke haben. Über diese Gewindebohrungen 54 wird auf jedes Ende des Gehäusekörpers 38 des Breitbandrichtkopplers eine Platine 30 und ein Gehäusedeckel 62 geschraubt, wobei die Platinen 30 bevorzugt identisch aufgebaut sind. Der Gehäusekörper 38 weist weiterhin seitlich eine Einbuchtung 52 auf, die derart ausgeformt ist, dass sie sich an eine SMP- oder SMA-Koaxialsteckverbindung die an der Platine 30 befestigt ist, anpasst. Mittig an der Oberseite weist der Gehäusekörper 38 am Rand jeweils eine Ausnehmung 55 auf, deren Form einem halben Vollzylinder entspricht. Am Boden dieser Ausnehmung 55 ist jeweils eine weitere Gewindebohrung 56 ausgebildet. Über diese Gewindebohrung 56 kann der Gehäusekörper 38 des Breitbandrichtkopplers dauerhaft in einem weiteren Gehäuse oder Gerät fixiert werden.The inner conductor 1 may be provided at its ends with a threaded hole so that it can be screwed to the circuit board 30. A part of a screw 53 is exemplified in Fig. 4 located. The housing body 38 has four threaded holes 54 at each end, each having the same distance to a corner. About these threaded holes 54, a circuit board 30 and a housing cover 62 is screwed onto each end of the housing body 38 of the Breitbandrichtkopplers, the boards 30 are preferably constructed identically. The housing body 38 further includes a side indentation 52 that is shaped to mate with an SMP or SMA coaxial connector secured to the circuit board 30. Centered at the top of the housing body 38 at the edge in each case a recess 55, whose shape corresponds to half a solid cylinder. At the bottom of this recess 55 each have a further threaded bore 56 is formed. About this threaded hole 56, the housing body 38 of the Breitbandrichtkopplers be permanently fixed in another housing or device.

Fig. 5 zeigt die Innenansicht des Breitbandrichtkopplers ohne den Gehäusekörper 38. Zu sehen sind die beiden Ringbandkerne 2, die durch eine nicht dargestellte metallische Trennwand 71 voneinander beabstandet in der Mitte des Breitbandrichtkopplers um den in Fig. 5 nicht dargestellten inneren Außenleiter 3 angeordnet sind. Der Innenleiter 1 besteht je nach Ausführungsform aus einem durchgehenden Leiter, wie in Fig. 5 dargestellt, oder aus Leitersegmenten, in deren Ende jeweils ein Gewinde ausgebildet ist, über welches zwei Leiter mit einer entsprechenden Schraube 53 verbunden werden können. Der Innenleiter 1 ist dabei aus drei Leitersegmenten aufgebaut, wobei sich ein Leitersegment jeweils auf der ersten Seite 31 der Platine 30 einer jeden Messeinheit 22,23 befindet. Ein weiteres Leitersegment verbindet die zweite Seite 32 der ersten Platine 30 der ersten Messeinheit 22 mit der zweiten Seite 32 der zweiten Platine 30 der zweiten Messeinheit 23. Der Innenleiter 1 wird dabei konzentrisch durch die links- und rechtsseitige Ausnehmung geführt. Der Durchmesser des Innenleiters 1 ist dabei derart angepasst, dass ein Wellenwiderstand des Breitbandkopplers auf einen Systemwellenwiderstand von insbesondere 50 Ohm angepasst ist. Hierzu kann sich der Durchmesser des Innenleiters 1 mehrfach ändern. Dies ist sowohl bei einem durchgehenden Innenleiter 1, als auch bei einem aus mehreren Innenleitersegmenten bestehenden Innenleiter 1 möglich. Fig. 5 shows the interior view of the Breitbandrichtkoppler without the housing body 38. To see are the two annular band cores 2, which are spaced apart by a metallic partition 71, not shown, in the middle of the Breitbandrichtkopplers to the in Fig. 5 not shown inner outer conductor 3 are arranged. The inner conductor 1, depending on the embodiment of a continuous conductor, as in Fig. 5 represented, or from conductor segments, in each end a thread is formed, via which two conductors can be connected to a corresponding screw 53. The inner conductor 1 is made of three conductor segments constructed, with a conductor segment is located in each case on the first side 31 of the board 30 of each measuring unit 22,23. Another conductor segment connects the second side 32 of the first circuit board 30 of the first measuring unit 22 with the second side 32 of the second circuit board 30 of the second measuring unit 23. The inner conductor 1 is guided concentrically through the left- and right-side recess. The diameter of the inner conductor 1 is adapted such that a characteristic impedance of the broadband coupler is adapted to a system impedance of, in particular, 50 ohms. For this purpose, the diameter of the inner conductor 1 may change several times. This is possible both with a continuous inner conductor 1, as well as with an inner conductor 1 consisting of a plurality of inner conductor segments.

Weiterhin ist in Fig. 5 das Federelement 45 zu sehen, welches auf der zweiten Seite 32 der Platine 30 angeordnet ist. Das Federelement 45 besteht aus einzelnen voneinander getrennten Federsegmenten, die unter Einwirkung einer Kraft nach radial außen gebogen werden können. Das Federelement 45 ist auf der dem Eingangsanschluss 13 abgewandten Seite der Platinen 30 dabei so angeordnet, dass es den inneren Außenleiter 3 derart umschließt, dass ein niederohmiger elektrischer Kontakt hergestellt ist und gleichzeitig keinerlei radiale Bewegungen des inneren Außenleiters 3 mehr möglich sind.Furthermore, in Fig. 5 to see the spring element 45, which is arranged on the second side 32 of the board 30. The spring element 45 consists of individual separate spring segments, which can be bent radially outward under the action of a force. The spring element 45 is arranged on the side facing away from the input terminal 13 side of the boards 30 so that it surrounds the inner outer conductor 3 such that a low-resistance electrical contact is made and at the same time no radial movements of the inner outer conductor 3 are possible.

Weiterhin sind mehrere Befestigungselemente 61, vorzugsweise Schrauben, zu sehen, die den Gehäusedeckel 62 mit der Platine 30 und dem Gehäusekörper 38 derart verbinden, dass ein niederohmiger elektrischer Kontakt und damit ein durchgehender äußerer Außenleiter 38 hergestellt ist. Weiterhin weist jede Platine 30 zumindest eine SMP-oder SMA-Koaxialsteckverbindung 60 auf, die mit dem Auskoppelanschluss 15 und dem äußeren Außenleiter 38 verbunden ist. Hierzu werden im Gehäusedeckel 62 und im Gehäusekörper 38 entsprechende Aussparungen 52 vorgenommen.Furthermore, a plurality of fastening elements 61, preferably screws, can be seen, which connect the housing cover 62 with the circuit board 30 and the housing body 38 such that a low-resistance electrical contact and thus a continuous outer outer conductor 38 is produced. Furthermore, each board 30 has at least one SMP or SMA coaxial connector 60, which is connected to the Auskoppelanschluss 15 and the outer outer conductor 38. For this purpose, corresponding recesses 52 are made in the housing cover 62 and in the housing body 38.

Fig. 6 zeigt den zeigt den vollständigen Breitbandrichtkoppler bestehend aus dem Gehäusedeckel 62, der Platine 30 und dem Gehäusekörper 38. Der Gehäusekörper weist, wie in Fig. 4 dargestellt, zwei Ausnehmungen 55 auf, die je über eine Gewindebohrung 56 verfügen. Der Gehäusedeckel 62 weist an den Ecken vier gesenkte Gewindebohrungen auf, so dass der Gehäusedeckel 62 mit den Schrauben 61 zusammen mit der Platine 30 an den Gehäusekörper 38 fest fixiert werden kann. Eine weitere Bohrung im Gehäusedeckel 62 dient dazu, dass der Innenleiter 1 aus dem Breitbandrichtkoppler geführt werden kann. An die Enden des Innenleiters 1 kann eine Koaxialsteckverbindung angebracht werden. Fig. 6 shows the shows the complete broadband directional coupler consisting of the housing cover 62, the board 30 and the housing body 38. The housing body has, as in Fig. 4 shown, two recesses 55, which each have a threaded bore 56. The housing cover 62 has at the corners four lowered threaded holes, so that the housing cover 62 can be firmly fixed together with the screws 61 together with the board 30 to the housing body 38. Another bore in the housing cover 62 serves to allow the inner conductor 1 to be guided out of the broadband directional coupler. At the ends of the inner conductor 1, a Koaxialsteckverbindung can be attached.

Fig. 7 zeigt zur Verdeutlichung des Aufbaus einen Schnitt entlang der Längsachse 51 durch den erfindungsgemäßen Breitbandrichtkoppler. Die einzelnen Bestandteile des Breitbandrichtkopplers, bestehend aus dem Gehäusedeckel 62, der Platine 30 und dem Gehäusekörper 38, welche über die Schrauben 61 fest miteinander verbunden sind, sind hier besonders gut zu erkennen. Der Innenleiter 1 wird durch die durchgehende Bohrung durch den Breitbandrichtkoppler geführt. Die nicht leitfähigen Zentrierelemente 70 dienen dazu, den Innenleiter 1 in Position zu halten. Über eine nicht dargestellte Lötverbindung 37 wird der Widerstand 4 des Spannungsteilers mit dem Innenleiter 1 galvanisch verbunden. Gut zu sehen sind neben dem spiegelsymmetrischen Aufbau der Anordnung entlang der Achse 21 auch die zylinderförmigen Ausnehmungen auf der linken und der rechten Seite, in welche die Ringbandkerne 2 eingeführt sind. Fig. 7 shows to illustrate the structure of a section along the longitudinal axis 51 through the broadband directional coupler according to the invention. The individual components of the broadband directional coupler, consisting of the housing cover 62, the circuit board 30 and the housing body 38, which are firmly connected to one another via the screws 61, can be seen particularly well here. The inner conductor 1 is passed through the through hole through the broadband directional coupler. The non-conductive centering elements 70 serve to keep the inner conductor 1 in position. About a solder joint 37, not shown, the resistor 4 of the voltage divider to the inner conductor 1 is electrically connected. Good to see next to the mirror-symmetrical structure of the arrangement along the axis 21 and the cylindrical recesses on the left and the right side, in which the toroidal cores 2 are inserted.

Durch die metallische Trennwand 71 sind zum einen die zylinderförmigen Ausnehmungen voneinander getrennt, wodurch sich zwei unabhängige Messeinheiten 22 und 23 für das vorlaufende und das rücklaufende Hochfrequenzsignal bilden und zum anderen ist über diese metallische Trennwand 71 der innere Außenleiter 3 mit dem äußeren Außenleiter 38 und damit mit dem Gehäusekörper 38 verbunden. Gut zu erkennen ist das bereits anhand von Fig. 3B und Fig. 5 beschriebene Federelement 45, durch welches der innere Außenleiter 3 elektrisch niederohmig mit der Platine 30 kontaktiert wird. Das Federelement 45 dient gleichzeitig zur Fixierung der Ringbandkerne 2, so dass keine Bewegungen in axialer Richtung mehr möglich sind. Über die Platine 30 fließt der Strom über den Widerstand 8 vom inneren Außenleiter 3 zurück zum äußeren Außenleiter 38. Die Platine 30 ist im Bereich des äußeren Außenleiters 38 beidseitig z.B. mit Kupfer beschichtet und mehrfach durchkontaktiert. Über die fest angezogene Schraubverbindung 61 wird der äußere Außenleiter 38 über die Platine 30 elektrisch niederohmig mit dem Gehäusedeckel verbunden.On the one hand, the cylindrical recesses are separated from one another by the metallic dividing wall 71, whereby two independent measuring units 22 and 23 form for the leading and the returning high-frequency signal and, on the other hand, the inner outer conductor 3 with the outer outer conductor 38 and thus via this metallic dividing wall 71 connected to the housing body 38. This can already be clearly recognized by means of Fig. 3B and Fig. 5 described spring element 45 through which the inner outer conductor 3 is contacted electrically low resistance to the board 30. The spring element 45 serves at the same time for fixing the ring band cores 2, so that no movements in the axial direction are possible. Via the circuit board 30, the current flows through the resistor 8 from the inner outer conductor 3 back to the outer outer conductor 38. The board 30 is in the region of the outer outer conductor 38 coated on both sides with copper and repeatedly plated through. About the tightened screw 61, the outer outer conductor 38 is electrically connected via the circuit board 30 with low impedance to the housing cover.

Wird das Ende des Innenleiters 1 der ersten Messeinheit 22 mit dem Ausgang eines Leistungsverstärkers und das zweite Ende des Innenleiters 1 der zweiten Messeinheit 23 mit einer komplexen Last verbunden, so stellt sich bei einer positiven Halbwelle des Hochfrequenzsignals und unter der Bedingung, dass die Leistung ausschließlich vom Leistungsverstärker in die komplexe Last übertragen wird und keine Reflexionen stattfinden, ein Stromverlauf entsprechend der Pfeilrichtung 72 auf dem Innenleiter 1 ein. In diesem Anschlussbeispiel steht am Auskoppelanschluss 15 der ersten Messeinheit 22 eine Messspannung bereit, die proportional zur Wurzel der Leistung des vorlaufenden Hochfrequenzsignals ist, und am Auskoppelanschluss 15 der zweiten Messeinheit 23 steht eine Messspannung bereit, die proportional zur Wurzel der Leistung des rücklaufenden Hochfrequenzsignals ist.When the end of the inner conductor 1 of the first measuring unit 22 is connected to the output of a power amplifier and the second end of the inner conductor 1 of the second measuring unit 23 is connected to a complex load, the power is positive at a positive half-wave of the high-frequency signal and under the condition that the power is exclusive from the power amplifier to the complex load and no reflections take place, a current profile corresponding to the direction of the arrow 72 on the inner conductor 1 a. In this connection example, a measuring voltage which is proportional to the root of the power of the leading high-frequency signal is available at the coupling-out terminal 15 of the first measuring unit 22, and a measuring voltage which is proportional to the root of the power of the returning high-frequency signal is available at the coupling-out terminal 15 of the second measuring unit 23.

Die über dem Spannungsteiler einer jeden Messeinheit 22 und 23 abfallende Messspannung ist gleich groß und in diesem Beispiel positiv. Der Stromverlauf des in diesem Beispiel über den Gehäusedeckel 62, die Platine 30 und den Gehäusekörper 38 zurückfließenden Stroms entspricht der Pfeilrichtung 73. Am Eingang der zweiten Messeinheit 23 teilt sich der Strom auf, wobei nur ein kleiner Teil entlang des äußeren Außenleiters 38 zum Leistungsverstärker zurück fließt. Der größte Teil fließt über den Widerstand 8 der zweiten Messeinheit 23 gegen den inneren Außenleiter 3 der zweiten Messeinheit 23 ab. Entsprechend dem Schaltplan aus Fig. 1 fällt in diesem Fall über dem Widerstand 8 der zweiten Messeinheit 23 eine negative Spannung ab. Diese Spannung wird am Knoten 12 der zweiten Messeinheit 23 der positiven Spannung des Spannungsteilers zugeführt. Beide Spannungen haben dieselbe Amplitude, allerdings unterschiedliche Vorzeichen. Am Auskoppelanschluss 15 der zweiten Messeinheit 23 wird in diesem Fall keine Spannung gemessen.The voltage drop across the voltage divider of each measuring unit 22 and 23 is the same and in this example positive. The current flow of the current flowing back in this example via the housing cover 62, the board 30 and the housing body 38 corresponds to the direction of arrow 73. At the input of the second measuring unit 23, the current splits, with only a small part along the outer outer conductor 38 back to the power amplifier flows. The largest part flows via the resistor 8 of the second measuring unit 23 against the inner outer conductor 3 of the second measuring unit 23. According to the wiring diagram Fig. 1 In this case, a negative voltage drops across the resistor 8 of the second measuring unit 23. This voltage is supplied to the node 12 of the second measuring unit 23 of the positive voltage of the voltage divider. Both voltages have the same amplitude, but different signs. At the coupling-out connection 15 of the second measuring unit 23 no voltage is measured in this case.

Es fließt ein Teil des Stroms vom inneren Außenleiter 3 der zweiten Messeinheit 23 über die metallische Trennwand 71 zurück in den äußeren Außenleiter 38. Ein Teil des Stroms vom inneren Außenleiter 3 der zweiten Messeinheit 23 fließt zusammen mit einem Teil des Stroms, kommend vom äußeren Außenleiter 38, in den inneren Außenleiter 3 der ersten Messeinheit 22. Dieser Strom fließt über den Widerstand 8 der ersten Messeinheit 22 zurück auf den äußeren Außenleiter 38. Entsprechend dem Schaltplan aus Fig. 1 fällt in diesem Fall über dem Widerstand 8 der ersten Messeinheit 22 eine positive Spannung ab. Diese Spannung wird am Knoten 12 der ersten Messeinheit 22 zu der positiven Spannung des Spannungsteilers addiert. Beide Spannungen haben dieselbe Amplitude, und dasselbe Vorzeichen. Am Auskoppelanschluss 15 der ersten Messeinheit 22 wird in diesem Fall eine Spannung gemessen, die proportional zur Wurzel der Leistung des vorlaufenden Hochfrequenzsignals ist.A portion of the current flows from the inner outer conductor 3 of the second measuring unit 23 via the metallic partition wall 71 back into the outer outer conductor 38. A part of Current from the inner outer conductor 3 of the second measuring unit 23 flows together with part of the current coming from the outer outer conductor 38, into the inner outer conductor 3 of the first measuring unit 22. This current flows through the resistor 8 of the first measuring unit 22 back to the outer outer conductor 38th According to the wiring diagram Fig. 1 In this case, a positive voltage drops across the resistor 8 of the first measuring unit 22. This voltage is added to the node 12 of the first measuring unit 22 to the positive voltage of the voltage divider. Both voltages have the same amplitude, and the same sign. At the coupling-out connection 15 of the first measuring unit 22, a voltage is measured in this case which is proportional to the root of the power of the leading high-frequency signal.

Dasselbe gilt für die negative Halbwelle des Hochfrequenzsignals, nur dass in diesem Fall die Vorzeichen bei Spannung und Strom vertauscht sind. Selbiges gilt für den Fall, dass die Signalquelle an den Eingangsanschluss 13 der zweiten Messeinheit 23 angeschlossen ist und die komplexe Last mit dem Eingangsanschluss 13 der ersten Messeinheit 22 verbunden ist.The same applies to the negative half-wave of the high-frequency signal, except that in this case the signs for voltage and current are reversed. The same applies to the case where the signal source is connected to the input terminal 13 of the second measuring unit 23 and the complex load is connected to the input terminal 13 of the first measuring unit 22.

Bei einem Stehwellenverhältnis größer als eins, kann an beiden Auskoppelanschlüssen 15 eine Spannung gemessen werden. Aus diesen beiden Spannungen lässt sich die Leistung des vorlaufenden und des rücklaufenden Hochfrequenzsignals berechnen. Die hochpermeablen Ringbandkerne 2 sorgen dafür, dass der Großteil des Stroms über den Widerstand 8 fließt. Ohne die Ringbandkerne 2 würde sich in der dann leeren zylinderförmigen Ausnehmung eine Induktivität aufbauen, über die der Widerstand 8 kurzgeschlossen würde. Dadurch könnte kein nennenswerter Spannungsabfall über dem Widerstand 8 gemessen werden. Die Permeabilität des Ringbandkerns 2 bestimmt dabei die untere Arbeitsfrequenz des Breitbandrichtkopplers.With a standing wave ratio greater than one, a voltage can be measured at both outcoupling connections 15. From these two voltages, the power of the leading and the returning high-frequency signal can be calculated. The high permeability annular band cores 2 ensure that the majority of the current flows through the resistor 8. Without the toroidal cores 2, an inductance would build up in the then empty cylindrical recess, via which the resistor 8 would be shorted. As a result, no appreciable voltage drop across the resistor 8 could be measured. The permeability of the toroidal core 2 determines the lower operating frequency of the Breitbandrichtkopplers.

Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt. Alle beschriebenen und/oder gezeichneten Elemente sind im Rahmen der Erfindung beliebig miteinander kombinierbar.The invention is not limited to the illustrated embodiment. All described and / or drawn elements can be combined with one another in the context of the invention as desired.

Claims (14)

  1. Broadband directional coupler for measuring the power of a forward and/or a return high-frequency signal on a line,
    wherein the broadband directional coupler exhibits a voltage divider which is connected with an inner conductor (1) of the line, and exhibits a first resistor (8) the first connection of which is connected directly or indirectly with an outer conductor of the line and the second connection of which is connected with ground, wherein the voltage divider exhibits ohmic resistors, wherein a first connection of a second resistor (4) is connected with the inner conductor (1) of the line and wherein a second connection of the second resistor (4) is connected with a first connection of a third resistor (6),
    wherein a second connection of the third resistor (6) is connected with the first connection of the first resistor (8),
    and wherein a voltage to be measured is tapped at the second connection of the second resistor (4) or at the first connection of the third resistor (6), characterised in that
    all the resistors (4, 6, 8) are mounted on a circuit board (3) and
    in that the second and the third resistor (4, 6) are not arranged on the same side of the circuit board (30), in that the third resistor (6) is arranged on the same side of the circuit board (30) as the first resistor (8), and in that the broadband directional coupler exhibits a conducting housing body (38) in which in each case two cylindrical recesses are formed on the left-hand side and the right-hand side, the walls of which form an internal and an external outer conductor (3, 38) between which is arranged at least one highly permeable toroidal tape core (2).
  2. Broadband directional coupler according to claim 1,
    characterised in that
    at least one capacitor (9, 7) is connected parallel to the connections of the first and/or of the third resistor (8, 6) and/or in that a second connection of the first resistor (8) is connected with ground.
  3. Broadband directional coupler according to one of claims 1 to 2,
    characterised in that
    a first connection of a further capacitor (10) and a first connection of a first resistor (11) are connected with the second connection of the second resistor (4) and with the first connection of the third resistor (6) respectively,
    in that a second connection of the further capacitor (10) is connected with ground and
    in that a signal to be measured is made available at a second connection of the fourth resistor (11).
  4. Broadband directional coupler according to claim 1,
    characterised in that
    the inner conductor (1) is soldered and/or screwed to the circuit board (30).
  5. Broadband directional coupler according to one of claims 1 to 4,
    characterised in that
    the line is a coaxial line.
  6. Broadband directional coupler according to one of claims 1 to 5,
    characterised in that
    two cylindrical recesses are separated by a metal dividing wall (71), through which two independent measuring units (22, 23) are formed for the forward and the return high-frequency signal.
  7. Broadband directional coupler according to claim 6,
    characterised in that
    each measuring unit (22, 23) has at least one input connection (13) and at least one decoupling connection (15) and each input connection (13) can be connected with a source or with a load and
    in that a signal to be measured proportional to the root of the power of the forward high-frequency signal or a signal to be measured proportional to the root of the power of the return high-frequency signal is present at the decoupling connection (15).
  8. Broadband directional coupler according to one of claims 1 to 7,
    characterised in that
    a circuit board (30) and a housing cover (62) are mounted on each of the two ends of the housing body (38) of the broadband directional coupler and
    in that the circuit boards (30) are identical in construction.
  9. Broadband directional coupler according to one of claims 1 to 8,
    characterised in that
    the inner conductor (1) is guided concentrically through two cylindrical recesses of the housing body (38), its diameter being adjusted so that a wave resistance of the broadband coupler is matched to a predetermined system wave resistance of in particular 50 Ohms.
  10. Broadband directional coupler according to claim 7,
    characterised in that
    arranged on the side (32) of the circuit board (30) remote from the input connection (13) there is in each case a spring element (45) which surrounds the internal outer conductor (3) in such a way that an electrical contact is produced and at the same time no further radial movements of the internal outer conductor (3) are possible any more.
  11. Broadband directional coupler according to claim 10,
    characterised in that
    the first resistor (8) consists of a plurality of individual parallel connected separate Ohmic resistors which are arranged in the form of a ring around the spring element (45) and contact the latter.
  12. Broadband directional coupler according to claim 11,
    characterised in that
    a ring of resistors consisting of the separate resistors arranged in the form of a ring is interrupted at the decoupling connection (15) and as a result a ring segment is produced with two ends and at least one capacitor (9) is connected in parallel at each end.
  13. Broadband directional coupler according to claim 12,
    characterised in that
    the third resistor (6) is arranged centrally at a point of interruption of the ring of resistors.
  14. Broadband directional coupler according to claim 2,
    characterised in that
    the capacitor (7) which is connected parallel to the connections of the third resistor (6) is a trimming capacitor (7) the capacitance of which is set in such a way that a time constant is obtained from the capacitance of the trimming capacitor (7) and the resistance value of the third resistor (6) which is at least approximately the same as a further time constant which is obtained from the resistance value of the second resistor (4) together with its cap capacitance (5).
EP10793148.7A 2009-12-23 2010-11-24 Broadband directional coupler Not-in-force EP2517300B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009060157 2009-12-23
DE102010009227A DE102010009227A1 (en) 2009-12-23 2010-02-25 Breitbandrichtkoppler
PCT/EP2010/007136 WO2011076328A1 (en) 2009-12-23 2010-11-24 Broadband directional coupler

Publications (2)

Publication Number Publication Date
EP2517300A1 EP2517300A1 (en) 2012-10-31
EP2517300B1 true EP2517300B1 (en) 2016-01-27

Family

ID=43598540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10793148.7A Not-in-force EP2517300B1 (en) 2009-12-23 2010-11-24 Broadband directional coupler

Country Status (4)

Country Link
US (1) US9105954B2 (en)
EP (1) EP2517300B1 (en)
DE (1) DE102010009227A1 (en)
WO (1) WO2011076328A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211738A1 (en) 2012-04-02 2013-10-02 Rohde & Schwarz Gmbh & Co. Kg Breitbandrichtkoppler
CN105164850B (en) 2013-05-06 2019-03-12 罗德施瓦兹两合股份有限公司 Directional coupler
DE102013213981A1 (en) 2013-07-17 2015-01-22 Rohde & Schwarz Gmbh & Co. Kg Coil for switching device with high RF power
US9461755B2 (en) 2014-01-17 2016-10-04 Viasat, Inc. Enhanced voltage standing wave ratio measurement
CN109004322B (en) * 2018-07-09 2023-10-03 北京格润海泰科技有限公司 Small-size high-power bent coupler in severe environment
EP3787105A1 (en) * 2019-08-30 2021-03-03 Rohde & Schwarz GmbH & Co. KG Wideband coupler
CN115458895B (en) * 2022-10-20 2024-01-30 成都华络通信科技有限公司 High-power high-directionality double directional coupler
CN117393981B (en) * 2023-12-12 2024-03-22 西南应用磁学研究所(中国电子科技集团公司第九研究所) Low-frequency high-power high-reliability double directional coupler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050264374A1 (en) * 2004-06-01 2005-12-01 Podell Allen F Resistive voltage divider

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066994A (en) 1998-05-18 2000-05-23 Amplifier Research Corporation Broadband directional coupler including amplifying, sampling and combining circuits
KR100841616B1 (en) * 2001-12-31 2008-06-27 엘지디스플레이 주식회사 Driving apparatus and its driving method of liquid crystal panel
DE10352784A1 (en) * 2003-11-12 2005-06-16 Rohde & Schwarz Gmbh & Co. Kg Directional coupler in coaxial line technology
DE102012211738A1 (en) * 2012-04-02 2013-10-02 Rohde & Schwarz Gmbh & Co. Kg Breitbandrichtkoppler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050264374A1 (en) * 2004-06-01 2005-12-01 Podell Allen F Resistive voltage divider

Also Published As

Publication number Publication date
EP2517300A1 (en) 2012-10-31
US20120262249A1 (en) 2012-10-18
WO2011076328A8 (en) 2011-10-06
US9105954B2 (en) 2015-08-11
WO2011076328A1 (en) 2011-06-30
DE102010009227A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
EP2517300B1 (en) Broadband directional coupler
DE102006061923A1 (en) Rogowski sensor and method for measuring a current
DE102013213981A1 (en) Coil for switching device with high RF power
DE102011108316A1 (en) RF power divider
DE102010021958A1 (en) Through capacitor arrangements
EP1743396B1 (en) Broadband balance-to-unbalance transformer
WO2013149930A1 (en) Broadband directional coupler
DE112013004185B4 (en) directional coupler
DE112017007128B4 (en) ELECTROMAGNETIC FIELD PROBE
DE102015201963B4 (en) magnetic resonance apparatus
DE2227076A1 (en) PROBE ARRANGEMENT FOR IMPEDANCE MEASUREMENT
DE102005005751B4 (en) Test device with reflection-poor signal distribution
EP1250721B1 (en) Circuit for dividing or bringing together high-frequency performances
EP2122745B1 (en) High-performance coupler
DE19810837C2 (en) High frequency antenna for a magnetic resonance device
EP2438645B1 (en) Forward coupler comprising strip conductors
EP1885016B1 (en) Overvoltage protection for a coax cable
EP2438646B1 (en) Measuring coupler using strip conductor technology
DE102023119685A1 (en) CURRENT MONITORING THAT COMBINES A SHUNT RESISTOR WITH A ROGOWSKI COIL
DE202014106223U1 (en) High-frequency test probe
WO2004102729A1 (en) Symmetrizing arrangement
DE102012213324A1 (en) Circuit board arrangement structure has defect ground structures which are arranged directly below inductors which are inserted into electrical supply conduits
WO2019211425A1 (en) Current sensor
DE19836082A1 (en) Converter device for protective devices and circuit breaker devices
DE20316584U1 (en) Reduced-size, full-wave quad antenna, includes additional wire and capacitor connected across its geometric center, and is fed by quarter wave coaxial transformer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130822

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150706

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 773087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011014

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160428

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160527

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011014

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 773087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101124

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191127

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010011014

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601