EP2515057B1 - Method and device for regulating the temperature of a fluid medium - Google Patents

Method and device for regulating the temperature of a fluid medium Download PDF

Info

Publication number
EP2515057B1
EP2515057B1 EP12162842.4A EP12162842A EP2515057B1 EP 2515057 B1 EP2515057 B1 EP 2515057B1 EP 12162842 A EP12162842 A EP 12162842A EP 2515057 B1 EP2515057 B1 EP 2515057B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
refrigerant
fluid medium
temperature
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12162842.4A
Other languages
German (de)
French (fr)
Other versions
EP2515057A1 (en
Inventor
Dr. Friedhelm Herzog
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Group GmbH
Original Assignee
Messer Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Group GmbH filed Critical Messer Group GmbH
Publication of EP2515057A1 publication Critical patent/EP2515057A1/en
Application granted granted Critical
Publication of EP2515057B1 publication Critical patent/EP2515057B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Definitions

  • the invention relates to a method for regulating the temperature of a fluid medium by heat exchange with a condensed refrigerant in a heat exchanger, the refrigerant being supplied to the heat exchanger in the liquid state and evaporating during the heat exchange with the fluid medium.
  • the invention further relates to a corresponding device.
  • Apparatus for cooling a gaseous or liquid medium (as in JP02-176363 (gaseous and liquid are summarized below as "fluid") with a condensed but evaporating refrigerant, such as liquid nitrogen, are usually designed as countercurrent devices.
  • the condensed refrigerant and the heat-carrying fluid medium are introduced into the apparatus from below. Due to the counterflow principle, not only the latent cold (enthalpy of vaporization) but also the sensitive cold content (overheating) of the refrigerant can be used well.
  • the refrigerant supply from below makes sense in terms of process technology (as in US2010 / 0044020 disclosed), since there is otherwise the risk that the refrigerant will flow through the apparatus partially unevaporated in unfavorable operating conditions.
  • the problem with apparatuses with a large overall height, to which refrigerant is supplied close to the boiling state, is that the temperature of the coolant changes as a function of the hydrostatic pressure of the liquid column. If, for example, a column of liquid nitrogen of 10 m height is maintained in a heat exchanger, its temperature at the upper end of the liquid column (at a pressure of 1 bar) is minus 196 ° C. On the ground, however, the temperature of the condensed gas is minus 191 ° C due to the additional hydrostatic pressure. As the overall height increases, the lowest temperature to which the fluid medium can still be cooled increases in the case of countercurrent flow in the heat exchanger.
  • the object of the present invention is to provide a method and a device for regulating the temperature of a fluid medium with the aid of a condensed one Specify refrigerant that allows a very precise setting of the temperature of the fluid medium at temperatures as low as possible.
  • the method according to the invention for regulating the temperature of a fluid medium of the type mentioned at the outset is thus characterized in that the fluid medium is passed through the heat exchanger in cocurrent with the refrigerant, and the temperature of the fluid medium is regulated by varying the pressure of the refrigerant in the heat exchanger ,
  • a liquid column of the refrigerant is thus maintained up to a certain level (filling level).
  • a "condensed refrigerant” is understood here to mean a liquefied medium which, however, boils in the heat exchanger, such as, for example, a refrigerated liquefied gas, such as liquid nitrogen, liquid oxygen or a liquid noble gas. Due to the hydrostatic pressure of the liquid column, the evaporating temperature of the condensed refrigerant at the bottom of the heat exchanger is higher than at the surface of the liquid column marked by the level.
  • Both the refrigerant and the fluid medium are fed to the heat exchanger from below; up to the height of the liquid column, the fluid medium exchanges heat with the condensed refrigerant. Due to the direct current flow of refrigerant and the medium to be cooled in the heat exchanger, the temperatures of both media run in the same direction: a higher evaporation temperature in the bottom area contrasts with a lower evaporation temperature in the upper area. As a result, the medium can be cooled to a lower temperature than in a countercurrent flow, if the advantages of an upright heat exchanger, which, for example, consists of a smaller area, should not be foregone.
  • the pressure of the refrigerant in the heat exchanger is set to a value between vacuum, that is to say a low absolute pressure value close to 0, for example a value between 0.001 bar and 0.1 bar. and 20 bar, preferably varied to a value between ambient pressure (about 1 bar) and 10 bar. Since most tank systems are designed for a permissible overpressure of maximum 19 bar (g) and many supply networks operate in the range of maximum 10 bar (g), these pressures determine the limits of the design for the pressure variation in the cases mentioned.
  • the object of the invention is also achieved by a device for regulating the temperature of a fluid medium by heat exchange with a condensed refrigerant, which has the features of patent claim 3.
  • the device according to the invention has a heat exchanger which is flow-connected to a supply line for supplying a refrigerant in the liquid state, a discharge line for discharging evaporated refrigerant and a supply line and a discharge line for a fluid medium.
  • the lines mentioned are arranged on the heat exchanger in such a way that the refrigerant and the fluid medium run through them in cocurrent from bottom to top during operation of the heat exchanger, i.e.
  • the feed lines for the fluid medium and the condensed refrigerant open into the lower region of the heat exchanger a, while the discharge lines for the fluid medium and the evaporated refrigerant are provided in the upper region of the heat exchanger.
  • the discharge lines for the fluid medium and the evaporated refrigerant are provided in the upper region of the heat exchanger.
  • a liquid column inside the heat exchanger of the refrigerant is sufficient to use the evaporation enthalpy of the refrigerant for heat transfer, ie the refrigerant is in the boiling state within the heat exchanger.
  • a device for regulating the pressure of the refrigerant in the heat exchanger is provided, which is operatively connected to a temperature sensor which is integrated in the discharge line for the fluid medium.
  • the temperature of the fluid medium can be regulated very precisely as a function of the measured temperature value to a predetermined value or a predetermined temperature profile over time, by varying the pressure on the refrigerant and thus the temperature of the refrigerant in the heat exchanger accordingly.
  • the device according to the invention provides that the heat exchanger (hereinafter: first heat exchanger) is preceded by a further heat exchanger in the form of a superheater for precooling the fluid medium, in which the fluid medium with vaporized refrigerant from the first heat exchanger before it is fed to the first heat exchanger comes into thermal contact.
  • first heat exchanger the heat exchanger
  • a further heat exchanger in the form of a superheater for precooling the fluid medium, in which the fluid medium with vaporized refrigerant from the first heat exchanger before it is fed to the first heat exchanger comes into thermal contact.
  • the superheater (or precooler) is preferably designed as a countercurrent heat exchanger in order to ensure that the temperatures of the fluid medium to be cooled and the refrigerant also run in the same direction over the longitudinal extent of the superheater.
  • the superheater can also be arranged horizontally, vertically or at an angle in the room.
  • a conveying device for example a vacuum pump or a compressor
  • a negative pressure that is to say a pressure below the ambient pressure.
  • the temperature of the refrigerant can be further reduced, in the most extreme case such that the temperature of the refrigerant is scarce at the upper end of the liquid column is above the melting temperature.
  • the temperature range available for temperature control is expanded considerably, for example the range between minus 210 ° C and minus 196 ° C is included. If a compressor is installed, the gas compressed downstream of the compressor can be fed into a line network and used for further use.
  • the device 1 shown in the drawing is used to regulate the temperature of a fluid medium carried in a circulating stream 2, for example a noble gas, for example helium.
  • the fluid medium is used to cool an apparatus 3, which is likewise arranged in the circulating stream 2.
  • the temperature of the fluid medium supplied is set as precisely as possible (hereinafter: inlet temperature) in the range between minus 210 ° C (the melting temperature of nitrogen) and a higher value, for example minus 180 ° C, is required.
  • the medium in the circulation stream 2 passes through the apparatus 3, a blower or a pump 3 for driving the circulation stream 2 and, via a feed line 5, an essentially vertically arranged heat exchanger 6 in which the temperature of the fluid medium depends on the required input temperature is brought.
  • the heat exchanger 6, which is also the heart of the device 1, is a conventional heat exchanger, for example a tubular heat exchanger, in which the fluid medium flowing through the heat exchanger 6 from the bottom upwards is in thermal contact with a refrigerant, in the exemplary embodiment nitrogen. brought.
  • the nitrogen is brought in from a tank (not shown here) in the cryogenic liquefied state (LIN) via a feed line 7 arranged in the geodetically lower area of the heat exchanger 6 and also passes through the heat exchanger 6 from bottom to top, i.e. in direct current to the fluid medium.
  • the fluid medium cools down and is conveyed back to the apparatus 3 by the pump 4.
  • the liquid nitrogen evaporates when it comes into contact with heat with the fluid medium.
  • the inflow of liquid nitrogen is adjusted so that a liquid column up to a level 8 is formed in the heat exchanger 6.
  • the nitrogen leaves the heat exchanger 6 in gaseous form (GAN) via a discharge line 9 in the geodetically seen upper region of the heat exchanger 6.
  • the level 8 also describes the point of minimum temperature in the heat exchanger 6; in the simplest case, the temperature of the nitrogen corresponds to the evaporation temperature at ambient pressure (1 bar). In the lower area of the heat exchanger 6, the evaporation temperature of the liquid nitrogen is higher than the evaporation temperature at level 8 due to the hydrostatic pressure of the liquid column.
  • the temperatures of the fluid medium and the nitrogen in the heat exchanger 6 therefore run in the same direction: while the fluid medium is at Passing through the heat exchanger 6 is cooled from bottom to top, the temperature of the liquid nitrogen simultaneously drops from the lower end of the heat exchanger 6 to the level 8.
  • the temperature of the fluid medium can be regulated very precisely by means of the device 1.
  • a temperature sensor 10 is provided in the circuit stream 2, downstream of the heat exchanger 6, which detects the temperature of the fluid medium continuously or at predetermined time intervals and supplies it to a control unit 11.
  • the control unit 11 interacts with a fitting 12 for pressure regulation, which is arranged in the discharge line 9. By varying the pressure on the fitting 12, the temperature of the boiling nitrogen at the level 8 is also changed. In this way, the heat transfer in the heat exchanger 6 and thus the temperature of the fluid medium can be controlled very precisely.
  • the control unit 11 determines the pressure value required for cooling the fluid medium to the intended temperature from the temperature value of the fluid medium determined at the temperature sensor 10 and sets this on the valve 12.
  • the temperature of the fluid medium can also be reduced to values below the vaporization temperature of the nitrogen at ambient pressure (1 bar).
  • a compressor 13 is provided in the discharge line 9, by means of which in the discharge line 9 - and thus in the heat exchanger 6 - a negative pressure with respect to the Ambient pressure at level 8 can be generated. Due to the lowering of the boiling point associated with the pressure drop at level 8, the evaporation temperature of the nitrogen in the heat exchanger 6 is lowered; in the extreme case, the temperature can be lowered to just above the melting temperature by lowering the pressure, and the fluid medium in the heat exchanger 6 can thereby be cooled to correspondingly lower temperatures.
  • a further valve 14 for pressure control is provided in this case (the valve 12 remains open in this case), which detects the inflow of liquid nitrogen via the feed line 7 and thus the value of the vacuum at level 8 as a function of that measured at the temperature sensor 10 Regulates the temperature of the fluid medium. If, according to the previously described method, the valve 12 remains open, ie with pressure values that are equal to or greater than the ambient pressure, the valve 14 remains open. The gas compressed to, for example, 10 bar by the compressor 13 can then be fed to a supply network for further use. Instead of a compressor 13, another device for generating a negative pressure in the discharge line 9 can also be provided, for example a vacuum pump.
  • a precooler or superheater 15 is connected upstream of the heat exchanger 6 in order to use the sensitive cold content of the gaseous nitrogen.
  • the medium heated in the apparatus 3 comes into thermal contact with the vaporized nitrogen from the discharge line 9 of the heat exchanger 6 and is subsequently fed to the heat exchanger 6 via the supply line 5.
  • the medium is cooled in the superheater 15 and the evaporated nitrogen is brought to a temperature above its boiling temperature, that is to say overheated.
  • the medium runs through the superheater 15 in countercurrent to the nitrogen, in order to ensure here that the temperatures of the medium and gaseous nitrogen run in the same direction along the superheater 15.
  • the combination of heat exchanger 6 and superheater 15 enables a particularly efficient and energy-saving procedure.
  • Fig. 1 shows both fittings 12, 14; within the scope of the invention it is of course also possible to provide only the valve 12, with the valve 14 and the compressor 13 being eliminated; in this case is only temperature control down to the evaporation temperature of nitrogen corresponding to the ambient pressure is possible. It is also possible to provide only the valve 14 and the pump 12 while the valve 12 is eliminated. In this case, temperatures below the evaporation temperature of nitrogen at ambient pressure can only be set as minimum temperatures.

Description

Die Erfindung betrifft ein Verfahren zum Regeln der Temperatur eines fluiden Mediums durch Wärmetausch mit einem kondensierten Kältemittel in einem Wärmetauscher, wobei das Kältemittel im flüssigen Zustand dem Wärmetauscher zugeführt wird und beim Wärmetausch mit dem fluiden Medium verdampft. Die Erfindung betrifft des Weiteren eine entsprechende Vorrichtung.The invention relates to a method for regulating the temperature of a fluid medium by heat exchange with a condensed refrigerant in a heat exchanger, the refrigerant being supplied to the heat exchanger in the liquid state and evaporating during the heat exchange with the fluid medium. The invention further relates to a corresponding device.

Apparate zur Kühlung eines gasförmigen oder flüssigen Mediums (wie in JP02-176363 gezeigt, gasförmig und flüssig werden im Folgenden als "fluid" zusammengefasst) mit einem kondensierten, jedoch verdampfenden Kältemittel, wie etwa Flüssigstickstoff, werden in der Regel als Gegenstromapparate konzipiert. Dabei wird von unten das kondensierte Kältemittel und von oben das Wärme zuführende fluide Medium in den Apparat eingeleitet. Durch das Gegenstromprinzip lässt sich nicht nur die latente Kälte (Verdampfungsenthalpie) sondern zusätzlich auch der sensible Kälteinhalt (Überhitzung) des Kältemittels gut nutzen. Die Kältemittelzufuhr von unten ist verfahrenstechnisch sinnvoll (wie in US2010/0044020 offenbart), da ansonsten die Gefahr besteht, dass bei ungünstigen Betriebsbedingungen das Kältemittel teilweise unverdampft den Apparat durchströmt. Bei Apparaten mit großer Bauhöhe, denen Kältemittel nahe am Siedezustand zugeführt wird, besteht das Problem, dass sich die Temperatur des Kühlmittels in Abhängigkeit vom hydrostatischen Druck der Flüssigkeitssäule ändert. Wird beispielsweise in einem Wärmetauscher eine Säule aus flüssigem Stickstoff von 10m Höhe aufrecht erhalten, so beträgt dessen Temperatur am oberen Ende der Flüssigkeitssäule (bei einem Druck von 1 bar) minus 196°C. An Boden jedoch beträgt die Temperatur des kondensierten Gases aufgrund des zusätzlich wirkenden hydrostatischen Drucks minus 191 °C. Mit zunehmender Bauhöhe erhöht sich daher bei einer Gegenstromführung im Wärmetauscher die tiefste Temperatur, auf die das fluide Medium noch abgekühlt werden kann.Apparatus for cooling a gaseous or liquid medium (as in JP02-176363 (gaseous and liquid are summarized below as "fluid") with a condensed but evaporating refrigerant, such as liquid nitrogen, are usually designed as countercurrent devices. The condensed refrigerant and the heat-carrying fluid medium are introduced into the apparatus from below. Due to the counterflow principle, not only the latent cold (enthalpy of vaporization) but also the sensitive cold content (overheating) of the refrigerant can be used well. The refrigerant supply from below makes sense in terms of process technology (as in US2010 / 0044020 disclosed), since there is otherwise the risk that the refrigerant will flow through the apparatus partially unevaporated in unfavorable operating conditions. The problem with apparatuses with a large overall height, to which refrigerant is supplied close to the boiling state, is that the temperature of the coolant changes as a function of the hydrostatic pressure of the liquid column. If, for example, a column of liquid nitrogen of 10 m height is maintained in a heat exchanger, its temperature at the upper end of the liquid column (at a pressure of 1 bar) is minus 196 ° C. On the ground, however, the temperature of the condensed gas is minus 191 ° C due to the additional hydrostatic pressure. As the overall height increases, the lowest temperature to which the fluid medium can still be cooled increases in the case of countercurrent flow in the heat exchanger.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren bzw. eine Vorrichtung zum Regeln der Temperatur eines fluiden Mediums mit Hilfe eines kondensierten Kältemittels anzugeben, das bzw. die eine sehr genaue Einstellung der Temperatur des fluiden Mediums bei möglichst tiefen Temperaturen erlaubt.The object of the present invention is to provide a method and a device for regulating the temperature of a fluid medium with the aid of a condensed one Specify refrigerant that allows a very precise setting of the temperature of the fluid medium at temperatures as low as possible.

Gelöst wird die Aufgabe durch ein Verfahren mit den Merkmalen des Patentanspruchs 1.The object is achieved by a method having the features of patent claim 1.

Das erfindungsgemäße Verfahren zum Regeln der Temperatur eines fluiden Mediums der eingangs genannten Art ist also dadurch gekennzeichnet, dass das fluide Medium im Gleichstrom mit dem Kältemittel durch den Wärmetauscher geführt wird und die Regelung der Temperatur des fluiden Mediums durch Variation des Drucks des Kältemittels im Wärmetauscher erfolgt.The method according to the invention for regulating the temperature of a fluid medium of the type mentioned at the outset is thus characterized in that the fluid medium is passed through the heat exchanger in cocurrent with the refrigerant, and the temperature of the fluid medium is regulated by varying the pressure of the refrigerant in the heat exchanger ,

In dem im Wesentlichen aufrecht stehenden Wärmetauscher wird also eine Flüssigkeitssäule des Kältemittels bis zur Höhe eines bestimmten Pegels (Füllhöhe) aufrecht erhalten. Als "kondensiertes Kältemittel" wird hier ein verflüssigtes, jedoch im Wärmetauscher siedendes Medium verstanden, wie beispielsweise ein kälteverflüssigtes Gas, etwa flüssiger Stickstoff, flüssiger Sauerstoff oder ein flüssiges Edelgas. Aufgrund des hydrostatischen Drucks der Flüssigkeitssäule ist die Verdampfungstemperatur des kondensierten Kältemittels am Boden des Wärmetauschers höher als an der durch den Pegel markierten Oberfläche der Flüssigkeitssäule. Sowohl das Kältemittel als auch das fluide Medium werden dem Wärmetauscher von unten zugeführt; bis zur Höhe der Flüssigkeitssäule steht das fluide Medium in Wärmeaustausch mit dem kondensierten Kältemittel. Durch die Gleichstromführung von Kältemittel und zu kühlendem Medium im Wärmetauscher verlaufen die Temperaturen beider Medien somit gleichsinnig: Einer höheren Verdampfungstemperatur im Bodenbereich steht eine niedrigere Verdampfungstemperatur im oberen Bereich gegenüber. Dadurch gelingt insbesondere die Abkühlung des Mediums auf eine tiefere Temperatur als bei einer Gegenstromführung, wenn auf die Vorteile eines aufrecht stehenden Wärmetauschers, die beispielsweise im geringeren Flächenverbrauch bestehen, nicht verzichtet werden soll.In the essentially upright heat exchanger, a liquid column of the refrigerant is thus maintained up to a certain level (filling level). A "condensed refrigerant" is understood here to mean a liquefied medium which, however, boils in the heat exchanger, such as, for example, a refrigerated liquefied gas, such as liquid nitrogen, liquid oxygen or a liquid noble gas. Due to the hydrostatic pressure of the liquid column, the evaporating temperature of the condensed refrigerant at the bottom of the heat exchanger is higher than at the surface of the liquid column marked by the level. Both the refrigerant and the fluid medium are fed to the heat exchanger from below; up to the height of the liquid column, the fluid medium exchanges heat with the condensed refrigerant. Due to the direct current flow of refrigerant and the medium to be cooled in the heat exchanger, the temperatures of both media run in the same direction: a higher evaporation temperature in the bottom area contrasts with a lower evaporation temperature in the upper area. As a result, the medium can be cooled to a lower temperature than in a countercurrent flow, if the advantages of an upright heat exchanger, which, for example, consists of a smaller area, should not be foregone.

Um einen maximalen Kühleffekt zu erzielen empfiehlt es sich grundsätzlich, den Pegel des kondensierten Kältemittels im Bereich des oberen Endes des Wärmetauschers vorzusehen. Es kann fallweise jedoch auch von Vorteil sein, als zusätzlichen Regelungsparameter auch die Füllhöhe des kondensierten Kältemittels im Wärmetauscher zu variieren, um die übertragene Wärmemenge möglichst genau den jeweiligen Erfordernissen anpassen zu können.In order to achieve a maximum cooling effect, it is generally advisable to adjust the level of the condensed refrigerant in the area of the upper end of the To provide heat exchanger. However, it can also be advantageous in some cases to vary the fill level of the condensed refrigerant in the heat exchanger as an additional control parameter in order to be able to adapt the amount of heat transferred as precisely as possible to the respective requirements.

Zur Regelung der Temperatur wird der Druck des Kältemittels im Wärmetauscher, gemessen am oberen Ende der im Wärmetauscher aufrecht erhaltenen Flüssigkeitssäule des Kältemittels auf einen Wert zwischen Vakuum, also einem geringen absoluten Druckwert nahe 0, beispielsweise einem Wert zwischen 0,001 bar und 0,1 bar, und 20 bar, bevorzugt auf einen Wert zwischen Umgebungsdruck (etwa 1 bar) und 10 bar variiert. Da die meisten Tankanlagen für einen zulässigen Überdruck von maximal 19 bar (ü) ausgelegt sind und viele Versorgungsnetze im Bereich von maximal 10 bar (ü) arbeiten, bestimmen diese Drücke in den genannten Fällen die Grenzen der Auslegung für die Druckvariation. Es ist aber im Rahmen der Erfindung auch vorstellbar, durch eine geeignete Apparatur, etwa mittels eines Kompressors, über der Flüssigkeitssäule einen Unterdruck (p < 1 bar) herzustellen, um die Temperatur des Stickstoffs entsprechend auf Werte unterhalb der Verdampfungstemperatur bei Umgebungsdruck abzusenken.To regulate the temperature, the pressure of the refrigerant in the heat exchanger, measured at the upper end of the liquid column of the refrigerant maintained in the heat exchanger, is set to a value between vacuum, that is to say a low absolute pressure value close to 0, for example a value between 0.001 bar and 0.1 bar. and 20 bar, preferably varied to a value between ambient pressure (about 1 bar) and 10 bar. Since most tank systems are designed for a permissible overpressure of maximum 19 bar (g) and many supply networks operate in the range of maximum 10 bar (g), these pressures determine the limits of the design for the pressure variation in the cases mentioned. However, it is also conceivable within the scope of the invention to use a suitable apparatus, for example by means of a compressor, to produce a negative pressure (p <1 bar) above the liquid column in order to correspondingly lower the temperature of the nitrogen to values below the vaporization temperature at ambient pressure.

Die Aufgabe der Erfindung wird auch durch eine Vorrichtung zum Regeln der Temperatur eines fluiden Mediums durch Wärmetausch mit einem kondensierten Kältemittel gelöst, die die Merkmalen des Patentanspruchs 3 aufweist. Dabei weist die erfindungsgemäße Vorrichtung einen Wärmetauscher auf, der mit einer Zuführleitung zum Zuführen eines Kältemittels im flüssigen Zustand, einer Abführleitung zum Abführen von verdampftem Kältemittel sowie mit einer Zuführleitung und einer Abführleitung für ein fluides Medium strömungsverbunden ist. Dabei sind die genannten Leitungen derart am Wärmetauscher angeordnet, dass das Kältemittel und das fluide Medium im Betrieb des Wärmtauschers diesen im Gleichstrom von unten nach oben durchlaufen, d.h. die Zuführleitungen für das fluide Medium und das kondensierte Kältemittel münden in einem unteren Bereich des Wärmetauschers in diesen ein, während die Abführleitungen für das fluide Medium und das verdampfte Kältemittel im oberen Bereich des Wärmetauschers vorgesehen sind. Im Betriebszustand wird innerhalb des Wärmetauschers eine Flüssigkeitssäule des Kältemittels aufreicht erhalten, um die Verdampfungsenthalpie des Kältemittels zu Wärmeübertragung zu nutzen, d.h. innerhalb des Wärmetauschers befindet sich das Kältemittel im Siedezustand. Weiterhin ist eine Einrichtung zum Regeln des Drucks des Kältemittels im Wärmetauscher vorgesehen, der mit einem Temperatursensor, der in der Abführleitung für das fluide Medium integriert ist, wirkverbunden ist. Mittels dieser Einrichtung kann die Temperatur des fluiden Mediums in Abhängigkeit vom gemessenen Temperaturwert sehr genau auf einen vorbestimmten Wert oder einen vorbestimmten zeitlichen Temperaturverlauf geregelt werden, indem der Druck auf das Kältemittel und damit die Temperatur des Kältemittels im Wärmetauscher entsprechend variiert wird.The object of the invention is also achieved by a device for regulating the temperature of a fluid medium by heat exchange with a condensed refrigerant, which has the features of patent claim 3. The device according to the invention has a heat exchanger which is flow-connected to a supply line for supplying a refrigerant in the liquid state, a discharge line for discharging evaporated refrigerant and a supply line and a discharge line for a fluid medium. The lines mentioned are arranged on the heat exchanger in such a way that the refrigerant and the fluid medium run through them in cocurrent from bottom to top during operation of the heat exchanger, i.e. the feed lines for the fluid medium and the condensed refrigerant open into the lower region of the heat exchanger a, while the discharge lines for the fluid medium and the evaporated refrigerant are provided in the upper region of the heat exchanger. In the operating state there is a liquid column inside the heat exchanger of the refrigerant is sufficient to use the evaporation enthalpy of the refrigerant for heat transfer, ie the refrigerant is in the boiling state within the heat exchanger. Furthermore, a device for regulating the pressure of the refrigerant in the heat exchanger is provided, which is operatively connected to a temperature sensor which is integrated in the discharge line for the fluid medium. By means of this device, the temperature of the fluid medium can be regulated very precisely as a function of the measured temperature value to a predetermined value or a predetermined temperature profile over time, by varying the pressure on the refrigerant and thus the temperature of the refrigerant in the heat exchanger accordingly.

Der erfindungsgemäßen Vorrichtung sieht vor, dass dem Wärmetauscher (im Folgenden: Erster Wärmetauscher) zum Vorkühlen des fluiden Mediums ein weiterer Wärmetauscher in Form eines Überhitzers vorgeschaltet ist, in welchem das fluide Medium vor seiner Zuführung an den ersten Wärmetauscher mit verdampftem Kältemittel aus dem ersten Wärmetauscher in thermischen Kontakt kommt. Dadurch wird zum einen die Restkälte des verdampften Kältemittels genutzt, zum anderen wird die Temperaturregelung im ersten Wärmetauscher erleichtert, da die Differenz zwischen den Temperaturen des in den ersten Wärmetauscher eingeleiteten fluiden Mediums und des kondensierten Kältemittels verringert wird.The device according to the invention provides that the heat exchanger (hereinafter: first heat exchanger) is preceded by a further heat exchanger in the form of a superheater for precooling the fluid medium, in which the fluid medium with vaporized refrigerant from the first heat exchanger before it is fed to the first heat exchanger comes into thermal contact. As a result, the residual coldness of the evaporated refrigerant is used, on the other hand, the temperature control in the first heat exchanger is facilitated, since the difference between the temperatures of the fluid medium introduced into the first heat exchanger and the condensed refrigerant is reduced.

Bevorzugt ist der Überhitzer (oder Vorkühler) als Gegenstrom-Wärmetauscher konzipiert, um zu gewährleisten, dass die Temperaturen des zu kühlenden fluiden Mediums und des Kältemittels auch über die Längserstreckung des Überhitzers gleichsinnig zueinander verlaufen. Der Überhitzer kann im Übrigen waagerecht, senkrecht oder schräg im Raum angeordnet sein.The superheater (or precooler) is preferably designed as a countercurrent heat exchanger in order to ensure that the temperatures of the fluid medium to be cooled and the refrigerant also run in the same direction over the longitudinal extent of the superheater. The superheater can also be arranged horizontally, vertically or at an angle in the room.

Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass in der Abführleitung für das verdampfte Kältemittel eine Fördereinrichtung, etwa eine Vakuumpumpe oder ein Kompressor zum Erzeugen eines Unterdrucks, also eines unterhalb des Umgebungsdrucks liegenden Drucks, vorgesehen ist. Auf diese Weise kann die Temperatur des Kältemittels weiter abgesenkt werden, im äußersten Fall derart, dass die Temperatur des Kältemittels am oberen Ende der Flüssigkeitssäule knapp oberhalb der Schmelztemperatur beträgt. Der zur Temperaturregelung zur Verfügung stehende Temperaturbereich wird dadurch erheblich erweitert, beispielsweise wird der Bereich zwischen minus 210°C und minus 196°C einbezogen. Im Falle des Einbaus eines Kompressors kann das stromab zum Kompressor verdichtete Gas in ein Leitungsnetz eingespeist und einer weiteren Verwendung zugeführt werden.An advantageous development of the invention provides that a conveying device, for example a vacuum pump or a compressor, is provided in the discharge line for the evaporated refrigerant to generate a negative pressure, that is to say a pressure below the ambient pressure. In this way, the temperature of the refrigerant can be further reduced, in the most extreme case such that the temperature of the refrigerant is scarce at the upper end of the liquid column is above the melting temperature. The temperature range available for temperature control is expanded considerably, for example the range between minus 210 ° C and minus 196 ° C is included. If a compressor is installed, the gas compressed downstream of the compressor can be fed into a line network and used for further use.

Anhand der Zeichnung soll ein Ausführungsbeispiel der Erfindung näher erläutert werden. In schematischer Ansicht zeigt die einzige Zeichnung (Fig. 1) eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens.An embodiment of the invention will be explained in more detail with reference to the drawing. In a schematic view, the only drawing ( Fig. 1 ) a device for performing the method according to the invention.

Die in der Zeichnung gezeigte Vorrichtung 1 dient der Regelung der Temperatur eines in einem Kreislaufstrom 2 geführten fluiden Mediums, beispielsweise ein Edelgas, z.B. Helium. Das fluide Medium dient in hier nicht weiter interessierender Weise zur Kühlung einer ebenfalls im Kreislaufstrom 2 angeordneten Apparatur 3. In Bezug auf die Apparatur 3 werde beispielhaft angenommen, dass zu deren Kühlung eine möglichst exakt eingestellte Temperatur (im Folgenden: Eingangstemperatur) des zugeführten fluiden Mediums im Bereich zwischen minus 210°C (der Schmelztemperatur von Stickstoff) und einem höheren Wert, beispielsweise minus 180°C, erforderlich ist. Um diese zu erreichen durchläuft das Medium im Kreislaufstrom 2 nacheinander die Apparatur 3, ein Gebläse oder eine Pumpe 3 zum Antreiben des Kreislaufstroms 2 und, über eine Zuleitung 5, einen im Wesentlichen senkrecht angeordneten Wärmetauscher 6, in welchem die Temperatur des fluiden Mediums auf die erforderliche Eingangstemperatur gebracht wird. Beim Wärmetauscher 6, der zugleich das Herzstück der Vorrichtung 1 darstellt, handelt es sich um einen üblichen Wärmetauscher, beispielsweise um einen Röhrenwärmetauscher, in welchem das den Wärmetauscher 6 von unten nach oben durchfließende fluide Medium in thermischen Kontakt mit einem Kältemittel, im Ausführungsbeispiel Stickstoff, gebracht wird. Der Stickstoff wird aus einem hier nicht gezeigten Tank in tiefkalt verflüssigten Zustand (LIN) über eine im - geodätisch gesehen - unteren Bereich des Wärmetauschers 6 angeordnete Zuleitung 7 herangeführt und durchläuft den Wärmetauscher 6 ebenfalls von unten nach oben, also im Gleichstrom zum fluiden Medium. Beim Wärmetausch mit dem flüssigen Stickstoff kühlt sich das fluide Medium ab und wird von der Pumpe 4 zurück zur Apparatur 3 gefördert. Zugleich verdampft der flüssige Stickstoff beim Wärmekontakt mit dem fluiden Medium. Dabei wird der Zulauf an flüssigem Stickstoff so eingestellt, dass sich im Wärmetauscher 6 eine Flüssigkeitssäule bis zur Höhe eines Pegels 8 ausbildet. Der Stickstoff verlässt den Wärmetauscher 6 gasförmig (GAN) über eine Ableitung 9 im - geodätisch gesehen - oberen Bereich des Wärmetauschers 6. Die Höhe des Pegels 8 beschreibt zugleich den Punkt minimaler Temperatur im Wärmetauscher 6; im einfachsten Falle entspricht die Temperatur des Stickstoffs der Verdampfungstemperatur bei Umgebungsdruck (1 bar). Im unteren Bereich des Wärmetauschers 6 ist die Verdampfungstemperatur des flüssigen Stickstoffs aufgrund des hydrostatischen Drucks der Flüssigkeitssäule höher als die Verdampfungstemperatur am Pegel 8. Aufgrund der Gleichstromführung verlaufen somit die Temperaturen des fluiden Mediums und des Stickstoffs im Wärmetauscher 6 gleichsinnig zueinander: Während das fluide Medium beim Durchlaufen des Wärmetauschers 6 von unten nach oben abgekühlt wird, sinkt zugleich die Temperatur des flüssigen Stickstoffs vom unteren Ende des Wärmetauschers 6 bis zur Höhe des Pegels 8.The device 1 shown in the drawing is used to regulate the temperature of a fluid medium carried in a circulating stream 2, for example a noble gas, for example helium. In a manner of no further interest here, the fluid medium is used to cool an apparatus 3, which is likewise arranged in the circulating stream 2. With regard to the apparatus 3, it is assumed, for example, that the temperature of the fluid medium supplied is set as precisely as possible (hereinafter: inlet temperature) in the range between minus 210 ° C (the melting temperature of nitrogen) and a higher value, for example minus 180 ° C, is required. In order to achieve this, the medium in the circulation stream 2 passes through the apparatus 3, a blower or a pump 3 for driving the circulation stream 2 and, via a feed line 5, an essentially vertically arranged heat exchanger 6 in which the temperature of the fluid medium depends on the required input temperature is brought. The heat exchanger 6, which is also the heart of the device 1, is a conventional heat exchanger, for example a tubular heat exchanger, in which the fluid medium flowing through the heat exchanger 6 from the bottom upwards is in thermal contact with a refrigerant, in the exemplary embodiment nitrogen. brought. The nitrogen is brought in from a tank (not shown here) in the cryogenic liquefied state (LIN) via a feed line 7 arranged in the geodetically lower area of the heat exchanger 6 and also passes through the heat exchanger 6 from bottom to top, i.e. in direct current to the fluid medium. During the heat exchange with the liquid nitrogen, the fluid medium cools down and is conveyed back to the apparatus 3 by the pump 4. At the same time, the liquid nitrogen evaporates when it comes into contact with heat with the fluid medium. The inflow of liquid nitrogen is adjusted so that a liquid column up to a level 8 is formed in the heat exchanger 6. The nitrogen leaves the heat exchanger 6 in gaseous form (GAN) via a discharge line 9 in the geodetically seen upper region of the heat exchanger 6. The level 8 also describes the point of minimum temperature in the heat exchanger 6; in the simplest case, the temperature of the nitrogen corresponds to the evaporation temperature at ambient pressure (1 bar). In the lower area of the heat exchanger 6, the evaporation temperature of the liquid nitrogen is higher than the evaporation temperature at level 8 due to the hydrostatic pressure of the liquid column. Because of the direct current flow, the temperatures of the fluid medium and the nitrogen in the heat exchanger 6 therefore run in the same direction: while the fluid medium is at Passing through the heat exchanger 6 is cooled from bottom to top, the temperature of the liquid nitrogen simultaneously drops from the lower end of the heat exchanger 6 to the level 8.

Die Temperatur des fluiden Mediums kann mittels der Vorrichtung 1 sehr genau geregelt werden. Dazu ist im Kreislaufstrom 2, stromab zum Wärmetauscher 6 ein Temperatursensor 10 vorgesehen, der kontinuierlich oder in vorgegebenen Zeitabständen die Temperatur des fluiden Mediums ermittelt und einer Steuereinheit 11 zuleitet. Die Steuereinheit 11 wirkt mit einer Armatur 12 zur Druckregelung zusammen, die in der Ableitung 9 angeordnet ist. Durch Variation des Drucks an der Armatur 12 wird zugleich die Temperatur des siedenden Stickstoffs am Pegel 8 verändert. Auf diese Weise kann die Wärmeübertragung im Wärmetauscher 6 und damit die Temperatur des fluiden Mediums sehr genau geregelt werden. Hierzu ermittelt die Steuereinheit 11 nach einem eingegebenen Programm aus dem am Temperatursensor 10 ermittelten Temperaturwert des fluiden Mediums den zur Kühlung des fluiden Mediums auf die vorgesehene Temperatur erforderlichen Druckwert und stellt diesen an der Armatur 12 ein.The temperature of the fluid medium can be regulated very precisely by means of the device 1. For this purpose, a temperature sensor 10 is provided in the circuit stream 2, downstream of the heat exchanger 6, which detects the temperature of the fluid medium continuously or at predetermined time intervals and supplies it to a control unit 11. The control unit 11 interacts with a fitting 12 for pressure regulation, which is arranged in the discharge line 9. By varying the pressure on the fitting 12, the temperature of the boiling nitrogen at the level 8 is also changed. In this way, the heat transfer in the heat exchanger 6 and thus the temperature of the fluid medium can be controlled very precisely. For this purpose, the control unit 11 determines the pressure value required for cooling the fluid medium to the intended temperature from the temperature value of the fluid medium determined at the temperature sensor 10 and sets this on the valve 12.

Die Temperatur des fluiden Mediums kann auch auf Werte unterhalb der Verdampfungstemperatur des Stickstoffs bei Umgebungsdruck (1 bar) gesenkt werden. Hierzu ist in der Ableitung 9 ein Kompressor 13 vorgesehen, mittels der in der Ableitung 9 - und damit im Wärmetauscher 6 - ein Unterdruck gegenüber dem Umgebungsdruck am Pegel 8 erzeugt werden kann. Durch die mit der Druckabsenkung am Pegel 8 verbundene Siedepunktserniedrigung wird die Verdampfungstemperatur des Stickstoffs im Wärmetauscher 6 abgesenkt, im äußersten Fall kann die Temperatur durch Druckerniedrigung bis knapp oberhalb der Schmelztemperatur abgesenkt und dadurch das fluide Medium im Wärmetauscher 6 auf entsprechend tiefere Temperaturen abgekühlt werden. Zur Regelung ist in diesem Falle eine weitere Armatur 14 zur Druckregelung vorgesehen (die Armatur 12 bleibt in diesem Fall offen), die den Zulauf von Flüssigstickstoff über die Zuleitung 7 und damit den Wert des Unterdrucks am Pegel 8 in Abhängigkeit von der am Temperatursensor 10 gemessenen Temperatur des fluiden Mediums regelt. Wird nach dem zuvor beschriebenen Verfahren mittels der Armatur 12, also mit Druckwerten, die gleich oder größer als der Umgebungsdruck sind, bleibt die Armatur 14 geöffnet. Das durch den Kompressor 13 auf beispielsweise 10 bar verdichtete Gas kann anschließend einem Versorgungsnetz zur weiteren Verwendung zugeführt werden. Anstelle eines Kompressors 13 kann ebenso gut eine andere Einrichtung zur Erzeugung eines Unterdrucks in der Ableitung 9 vorgesehen sein, beispielsweise eine Vakuumpumpe.The temperature of the fluid medium can also be reduced to values below the vaporization temperature of the nitrogen at ambient pressure (1 bar). For this purpose, a compressor 13 is provided in the discharge line 9, by means of which in the discharge line 9 - and thus in the heat exchanger 6 - a negative pressure with respect to the Ambient pressure at level 8 can be generated. Due to the lowering of the boiling point associated with the pressure drop at level 8, the evaporation temperature of the nitrogen in the heat exchanger 6 is lowered; in the extreme case, the temperature can be lowered to just above the melting temperature by lowering the pressure, and the fluid medium in the heat exchanger 6 can thereby be cooled to correspondingly lower temperatures. For control purposes, a further valve 14 for pressure control is provided in this case (the valve 12 remains open in this case), which detects the inflow of liquid nitrogen via the feed line 7 and thus the value of the vacuum at level 8 as a function of that measured at the temperature sensor 10 Regulates the temperature of the fluid medium. If, according to the previously described method, the valve 12 remains open, ie with pressure values that are equal to or greater than the ambient pressure, the valve 14 remains open. The gas compressed to, for example, 10 bar by the compressor 13 can then be fed to a supply network for further use. Instead of a compressor 13, another device for generating a negative pressure in the discharge line 9 can also be provided, for example a vacuum pump.

Dem Wärmetauscher 6 ist im Ausführungsbeispiel ein Vorkühler bzw. Überhitzer 15 vorgeschaltet, um den sensiblen Kälteinhalt des gasförmigen Stickstoffs zu nutzen. Im Überhitzer 15 gelangt das in der Apparatur 3 erwärmte Medium in thermischen Kontakt mit dem verdampften Stickstoff aus der Ableitung 9 des Wärmetauschers 6 und wird im weiteren Verlauf über die Zuleitung 5 dem Wärmetauscher 6 zugeführt. Im Überhitzer 15 wird das Medium gekühlt und der verdampfte Stickstoff auf eine Temperatur oberhalb seiner Siedetemperatur gebracht, also überhitzt. Im Ausführungsbeispiel durchläuft das Medium den Überhitzer 15 im Gegenstrom zum Stickstoff, um auch hier zu gewährleisten, dass die Temperaturen von Medium und gasförmigem Stickstoff längs des Überhitzers 15 gleichsinnig verlaufen. Die Kombination von Wärmetauscher 6 und Überhitzer 15 ermöglicht eine besonders effiziente und energiesparende Verfahrensführung.In the exemplary embodiment, a precooler or superheater 15 is connected upstream of the heat exchanger 6 in order to use the sensitive cold content of the gaseous nitrogen. In the superheater 15, the medium heated in the apparatus 3 comes into thermal contact with the vaporized nitrogen from the discharge line 9 of the heat exchanger 6 and is subsequently fed to the heat exchanger 6 via the supply line 5. The medium is cooled in the superheater 15 and the evaporated nitrogen is brought to a temperature above its boiling temperature, that is to say overheated. In the exemplary embodiment, the medium runs through the superheater 15 in countercurrent to the nitrogen, in order to ensure here that the temperatures of the medium and gaseous nitrogen run in the same direction along the superheater 15. The combination of heat exchanger 6 and superheater 15 enables a particularly efficient and energy-saving procedure.

Das Ausführungsbeispiel nach Fig. 1 zeigt beide Armaturen 12, 14; im Rahmen der Erfindung ist es selbstverständlich ebenso möglich, lediglich die Armatur 12, unter Fortfall der Armatur 14 und des Kompressors 13, vorzusehen; in diesem Falle ist nur eine Temperaturregelung bis hinab auf die dem Umgebungsdruck entsprechende Verdampfungstemperatur des Stickstoffs möglich. Ebenso ist es möglich, unter Fortfall der Armatur 12 nur die Armatur 14 und die Pumpe 12 vorzusehen. In diesem Falle können als minimale Temperaturen nur unterhalb der Verdampfungstemperatur des Stickstoffs bei Umgebungsdruck liegende Temperaturen eingestellt werden.The embodiment according to Fig. 1 shows both fittings 12, 14; within the scope of the invention it is of course also possible to provide only the valve 12, with the valve 14 and the compressor 13 being eliminated; in this case is only temperature control down to the evaporation temperature of nitrogen corresponding to the ambient pressure is possible. It is also possible to provide only the valve 14 and the pump 12 while the valve 12 is eliminated. In this case, temperatures below the evaporation temperature of nitrogen at ambient pressure can only be set as minimum temperatures.

BezuqszeichenlisteLIST OF REFERENCES

11
Vorrichtungcontraption
22
KreislaufstromRecycle stream
33
Apparaturapparatus
44
Pumpepump
55
Zuleitungsupply
66
Wärmetauscherheat exchangers
77
Zuleitungsupply
88th
Pegellevel
99
Ableitungderivation
1010
Temperatursensortemperature sensor
1111
Steuereinheitcontrol unit
1212
Armatur zur DruckregelungValve for pressure control
1313
Kompressorcompressor
1414
Armatur zur DruckregelungValve for pressure control
1515
Überhitzersuperheater

Claims (5)

  1. Method for regulating the temperature of a fluid medium by heat exchange with a condensed refrigerant in a heat exchanger (6), wherein the refrigerant is fed to the heat exchanger (6) in the liquid state and vaporizes while undergoing heat exchange with the fluid medium, wherein the fluid medium is passed through the heat exchanger (6) in co-current flow with the condensed refrigerant, characterized in that the regulating of the temperature of the fluid medium is performed by variation of the pressure of the condensed refrigerant in the heat exchanger (6), wherein the pressure in the heat exchanger (6), measured at the upper end of a liquid column of the refrigerant maintained in the heat exchanger (6), is varied to values between a vacuum and 20 bar, preferably 1 bar to 10 bar.
  2. Method according to Claim 1, characterized in that, for regulating the heat transfer to the refrigerant, the filling height (8) of the condensed refrigerant in the heat exchanger (6) is varied.
  3. Device for regulating the temperature of a fluid medium by heat exchange with a condensed refrigerant, comprising a heat exchanger (6), which is flow-connected to a feed line (7) for feeding a refrigerant in the liquid state, to a discharge line (9) for discharging vaporized refrigerant and also to a feed line (5) and a discharge line (2) for a fluid medium, wherein the lines (2, 5, 7, 9) are arranged at the heat exchanger (6) in such a way that during operation the refrigerant and the fluid medium pass through the heat exchanger (6) in co-current flow, characterized in that a unit (11, 12, 14) that is operatively connected to a temperature sensor (10) integrated in the discharge line (9) for the fluid medium is provided for regulating the pressure of the refrigerant in the heat exchanger (6), wherein the heat exchanger (6) is preceded by a superheater (15), in which vaporized refrigerant from the heat exchanger (6) is brought into thermal contact with the fluid medium before the latter is fed to the heat exchanger (6).
  4. Device according to Claim 3, characterized in that the superheater (15) is designed as a counterflow heat exchanger.
  5. Device according to either of Claims 3 and 4, characterized in that a displacement unit (13) for generating a negative pressure is provided in the discharge line (9) for the vaporized refrigerant.
EP12162842.4A 2011-04-20 2012-04-02 Method and device for regulating the temperature of a fluid medium Active EP2515057B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011018345A DE102011018345B4 (en) 2011-04-20 2011-04-20 Apparatus and method for controlling the temperature of a fluid medium

Publications (2)

Publication Number Publication Date
EP2515057A1 EP2515057A1 (en) 2012-10-24
EP2515057B1 true EP2515057B1 (en) 2020-02-12

Family

ID=46025420

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12162842.4A Active EP2515057B1 (en) 2011-04-20 2012-04-02 Method and device for regulating the temperature of a fluid medium

Country Status (2)

Country Link
EP (1) EP2515057B1 (en)
DE (1) DE102011018345B4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655164B (en) * 2017-09-07 2020-08-04 三菱重工海尔(青岛)空调机有限公司 Method for controlling opening degree of electronic expansion valve of indoor unit of air conditioner of water system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2151714A1 (en) * 1971-10-18 1973-04-26 Sollich Ohg Molten chocolate temp regulation system - using chocolate temp and evaporated refrigerant temp as control parameters
FR2582785B1 (en) * 1985-04-26 1989-04-28 Agliani Philippe SELF-CONTAINED SYSTEM FOR COOLING GAS FLUIDS SUCH AS AIR
JP2834139B2 (en) * 1988-05-11 1998-12-09 株式会社日立製作所 Refrigeration equipment
JPH02176363A (en) * 1988-12-28 1990-07-09 Mitsubishi Electric Corp Heat pump device
JPH0622880U (en) * 1992-08-31 1994-03-25 日本酸素株式会社 Refrigerant cooling device
DE19941545A1 (en) * 1999-09-01 2001-03-15 Messer Griesheim Gmbh Method and device for using the cold of a cryogenic, liquefied gas
DE10129780A1 (en) * 2001-06-20 2003-01-02 Linde Ag Method and device for providing cold
JP2008267496A (en) * 2007-04-20 2008-11-06 Taiyo Nippon Sanso Corp Hydrogen gas cooling device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102011018345B4 (en) 2013-04-25
DE102011018345A1 (en) 2012-10-25
EP2515057A1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
EP0895045B1 (en) Air separation process
EP3017238A1 (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
EP3417213B1 (en) Refrigeration device comprising multiple storage chambers
DE112019005717T5 (en) FLUID BYPASS PROCESS AND SYSTEM FOR CONTROLLING THE TEMPERATURE OF A NON-PETROLEUM FUEL
EP2725313B1 (en) Heat recovery from a tunnel heat exchange process
EP3325806A2 (en) Pump system
DE2100397B2 (en) Air separation system for the production of gaseous and / or liquid nitrogen
WO2017037026A1 (en) Storage device and method for the temporary storage of electrical energy in heat energy
WO2021037391A1 (en) Method for operating a heat exchanger, arrangement with a heat exchanger, and system with a corresponding arrangement
DE102018111704B3 (en) Method and apparatus for evaporative cooling of an engine based on the temperature and the pressure of a coolant
EP2515057B1 (en) Method and device for regulating the temperature of a fluid medium
EP2861400B1 (en) Process to change the temperature of an object
EP1920826A2 (en) Cooling assembly and method for cooling autoclaves
EP2255137A1 (en) Apparatus and method for removing gas from a container
DE112007001460T5 (en) Liquid outlet method and liquid outlet device in a temperature control device
EP2776684B1 (en) Method for controlling a cooling process of turbine components
EP4107422A1 (en) Apparatus and method for generating a temperature-controlled cold gas stream
DE102014007853B3 (en) Method and device for controlling the temperature of a heat exchanger
EP3587971A1 (en) Method for operating a heat exchanger, assembly with a heat exchanger and air processing installation with such an assembly
DE102009014682B4 (en) Heat pump for a water heater
EP1030135B1 (en) Process for controled cooling by evaporating liquid nitrogen
DE19755286A1 (en) Method and device for cooling a heat carrier
DE102011103611A1 (en) Method for decreasing power of thermal loads, involves simulating heat load in refrigeration cycle by introduction of defined heat output, and relaxing of supercritical medium circulating in refrigerant circuit in separator
EP3309478B1 (en) Method for operating a cooling circuit
EP2604373B1 (en) Method of and device for condensing atmospheric impurities in a soldering assembly using a cooling gas for cooling the cooler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130820

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180312

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190809

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232655

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015752

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015752

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200402

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200512

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1232655

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200402

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012015752

Country of ref document: DE

Owner name: MESSER SE & CO. KGAA, DE

Free format text: FORMER OWNER: MESSER GROUP GMBH, 65812 BAD SODEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230309

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230310

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230430

Year of fee payment: 12