EP2493643A1 - Verfahren und vorrichtung zur herstellung eines bauteils einer strömungsmaschine - Google Patents

Verfahren und vorrichtung zur herstellung eines bauteils einer strömungsmaschine

Info

Publication number
EP2493643A1
EP2493643A1 EP10784661A EP10784661A EP2493643A1 EP 2493643 A1 EP2493643 A1 EP 2493643A1 EP 10784661 A EP10784661 A EP 10784661A EP 10784661 A EP10784661 A EP 10784661A EP 2493643 A1 EP2493643 A1 EP 2493643A1
Authority
EP
European Patent Office
Prior art keywords
component
laser
layer
zone
joining zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10784661A
Other languages
English (en)
French (fr)
Inventor
Erwin Bayer
Karl-Hermann Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP2493643A1 publication Critical patent/EP2493643A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/005Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a refractory metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/007Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of copper or another noble metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for producing a component of a turbomachine, in particular a hollow structural component of a turbine or a compressor.
  • the invention further relates to an apparatus for producing a component of a turbomachine, in particular a hollow structural component of a turbine or a compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst: a) Schichtweiser Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff (16) auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone (14), wobei der Auftrag entsprechend der Schichtinformation des herzustellenden Bauteils (10) erfolgt; b) Schichtweises und lokales Verschmelzen oder Versintern des Bauteilwerkstoffs (16) mittels zugeführter Energie im Bereich der Aufbau- und Fügezone (14), wobei die Aufbau- und Fügezone (14) auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs (16) erwärmt ist; c) Schichtweises Absenken der Bauteilplattform um eine vordefinierte Schichtdicke; und d) Wiederholen der Schritte a) bis c) bis zur Fertigstellung des Bauteils (10). Die Erfindung betrifft weiterhin eine Vorrichtung (30) zur Herstellung eines Bauteils (10) einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters.

Description

Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters. Die Erfindung betrifft weiterhin eine Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters.
Komplexe hohle, insbesondere metallische oder zumindest teilweise metallische Strukturbauteile für den Hochtemperatureinsatz, wie zum Beispiel Hochdruckturbinenschaufeln werden in der Regel mittels Feinguss mit einer gerichtet erstarrten oder einkristallinen Struktur hergestellt. Zweck des gerichteten Erstarrens ist die Vermeidung von Korngrenzen, die senkrecht zur Wirkrichtung der Zentrifugalkraft verlaufen, da diese das Kriechverhalten des Bauteils nachteilig beeinflussen. Einkristallgefüge weisen überhaupt keine Korngrenzen auf, deshalb sind ihre Kriecheigenschaften optimal. Allerdings wird die Feinheit der Hohlraumstruktur durch den Gießpro- zess, den Gusskern und dessen Entfernung begrenzt. So beschränken zum Beispiel bei der Gieß- technik nach der Wachsausschmelzmethode die Herstellung der keramischen Kerne und deren Auslaugbarkeit die Feinheit der inneren Strukturen des herzustellenden hohlen Strukturbauteils und damit die Steifigkeit des Bauteils sowie dessen Kühlwirkung. Die Vergrößerung der inneren Oberflächen, zum Beispiel das Ausbilden einer Gitterstruktur zur Vergrößerung der Steifigkeit und zum verbesserten Wärmeaustausch ist ohne Massenaufwuchs mit den bisherigen Gusstechniken nicht mehr möglich.
Es ist daher Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine der eingangs genannten Art bereit zu stellen, welches die Herstellung von feinststrukturierten Bauteilen, insbesondere von hohlen Strukturbauteilen einer Turbine oder eines Verdichters ermöglicht.
Es ist weiterhin Aufgabe der vorliegenden Erfindung eine Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine bereit zu stellen, welche die Herstellung von feinststrukturierten Bauteilen, insbesondere von hohlen Strukturbauteilen einer Turbine oder eines Verdichters ermöglicht. Die der Erfindung zu Grunde liegenden Aufgaben werden wird durch ein Verfahren mit den im Anspruch 1 dargelegten Merkmalen sowie durch die im Anspruch 14 dargestellten Vorrichtung gelöst.
Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben, wobei vorteilhafte Ausgestaltungen des Verfahrens als vorteilhafte Ausgestaltungen der Vorrichtung und umgekehrt - soweit zweckmäßig - anzusehen sind.
Ein erfindungsgemäßes Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters, umfasst folgende Schritte: a) Schichtweiser Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone, wobei der Auftrag entsprechend der Schichtinformation des herzustellenden Bauteils erfolgt; b) Schichtweises und lokales Verschmelzen oder Vereintem des Bauteilwerkstoffs mittels zugeführter Energie im Bereich der Aufbau- und Fügezone, wobei die Umgebung der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs erwärmt ist; c) Schichtweises Absenken der Bauteilplattform um eine vordefinierte Schichtdicke; und d) Wiederholen der Schritte a) bis c) bis zur Fertigstellung des Bauteils. Durch die Verwendung eines generativen Fertigungsverfahrens ist es möglich, feinststrukturierte Bauteile, insbesondere hohle Strukturbauteile einer Turbine oder eines Verdichters, herzustellen. Dabei können Bauteile hergestellt werden, die gusstechnisch nicht mehr herstellbar sind, wie zum Beispiel Strukturbauteile mit Gitterstrukturen zur Erhöhung der Strukturfestigkeit bei geringem Eigengewicht und zur deutlichen Erhöhung der inneren Oberflächen zur Verbesserung der Kühleffizienz. Zudem ist es möglich, Bohrungen zur Ausleitung der Kühlluft aus dem Bauteil mittels des generativen Aufbauverfahrens direkt mit in die Struktur einzubauen. Durch das Aufheizen der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb des Schmelzpunkts des Bauteilwerkstoffs kann zudem die Kjistallstruktur des entstehenden Bauteils beeinflusst und gesteuert werden. Dabei wird als generative Fertigungsverfahren insbesondere ein Rapid-Prototyping- oder Rapid-Manufacturing- Verfahren wie zum Beispiel είη Laserstrahlauftragsschweißen oder ein Elektronenstrahl-(EB-)Pulverauftragsschweißen verwendet. Der pulverförmige Bauteilwerkstoff kann dabei aus Metall, einer Metall-Legierung, Keramik, Silikat oder einer Mischung davon bestehen. Wird als generatives Fertigungsverfahren das Laserauftragsschweißen verwendet, so kann insbesondere ein C02-, Nd: YAG-, Yb-Faserlaser oder ein Diodenlaser verwendet werden. Alternative kann auch ein EB-Strahl verwendet werden.
In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird eine erste Schicht des pulverförmigen Bauteilwerkstoffs im Verfahrensschritt a) derart aufgebracht und im Verfahrensschritt b) derart verfestigt, dass mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils auf der Bauteilplattform ausgebildet wird. Es ist aber auch möglich, dass vor dem schichtweisen Auftrag des pulverförmigen Bauteilwerkstoffs gemäß Verfahrensschritt a) mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils auf die Bauteilplattform aufgebracht wird, wobei die Kontur des Basiskörpers der Grundkontur des Bauteils in diesem Bauteilabschnitt entspricht. Der Basiskörper ist Voraussetzung für die Ausgestaltung eines gerichtet erstarrten oder einkristallinen Bauteils. Derartige Bauteile weisen optimale Kriecheigenschaften auf. Insbesondere werden die auf dem Basiskörper aufgetragenen weiteren Schichten des pulverförmigen Bauteilwerkstoffs im Verfahrensschritt a) derart aufgebracht, dass das gerichtet erstarrte oder einkristalline Bauteil ausgebildet wird. Die aufgetragenen weiteren Schichten wachsen auf dem Basiskörper epitaktisch auf und weisen die kristallographische Orientierung des Basiskörpers auf. Beim Auftrag des pulverförmigen Bauteilwerkstoffs kann das Wachstum des Bauteils zum Beispiel mittels der Parameter Laserleistung, Vorschubgeschwindigkeit, Pulverkorndurchmesser und/oder Pulverfördermenge gesteuert werden. Dabei richten sich die Prozessparameter nach den verwendeten Bauteilwerkstoffen.
In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt synchron zu dem Auftrag oder unmittelbar nach dem Auftrag einer Schicht des Bauteilwerkstoffs ein Laserabtragen bzw. EB- Abtragen von Werkstoffüberständen zur Anpassung des jeweiligen Bau- teilabschnitts an eine vorgegebene Bauteilkontur in diesem Bereich. Durch diesen Verfahrensschritt lässt sich der Feinheitsgrad der Strukturen nochmals deutlich verbessern, da das Überschussmaterial mit einem Abtraglaser oder EB-Strahl entfernt wird. Des Weiteren besteht die Möglichkeit, dass das genannte Abtragen, insbesondere das Laserabtragen, in Abhängigkeit von durch mindestens ein optisches Messsystem aufgenommenen und verarbeiteten Messdaten der Konturen des Bauteils in dem jeweiligen Bauteilabschnitt erfolgt. Für das Laserabtragen kann insbesondere ein Kurzpulslaser verwendet werden. In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird die Form und der Materialaufbau des Bauteils als computergeneriertes Modell bestimmt und die daraus generierten Schichtinformationen zur Steuerung von mindestens einer Pulveizuführung, der Bauteilplattform, des mindestens einen Auftraglasers oder der mindestens einen Elektronenstrahl- (EB-)Pulveraufitragsvorrichtung verwendet. Damit sind automatisierte und computergesteuerte Herstellungsabläufe möglich.
In weiteren vorteilhaften Ausgestaltungen des erfindungsgemäßen Verfahrens erfolgt die Erwärmung der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs in einer Hochtemperaturzone eines Zonenofens. Der Zonenofen ist besonders vorteilhaft bei der Herstellung von Bauteilen mit gerichtet erstarrter oder einkristalliner Kristallstruktur, da durch den Zonenofen ein vorbestimmter Temperaturgradient senkrecht zur Erstarrungsfront aufrechterhalten werden kann. Hierzu kann insbesondere das herzustellende Bauteil von der Hochtemperaturzone des Zonenofens mittels der Bauteilplattform zu mindestens einer Zone mit einer niedrigeren Temperatur bewegt werden.
Eine erfindungsgemäße Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters, umfasst mindestens eine Pulverzufuhrung zum Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone, Mittel zum Aufheizen der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs sowie mindestens eine Strahlenquelle für ein schichtweises und lokales Verschmelzen oder Versintern des Bauteilwerkstoffs mittels zugeführter Energie im Bereich der Aufbau- und Fügezone. Die erfindungsgemäße Vorrichtung ermöglicht die Herstellung von feinststrukturierten Bauteilen, insbesondere von hohlen Strukturbauteilen einer Turbine oder eines Verdichters einer Strömungsmaschine. Dies ist insbesondere dadurch bedingt, dass die Vorrichtung zur Durchführung eines generativen Fertigungsverfahrens, wie zum Beispiel eines Ra- pid-Prototyping- oder Rapid-Manufacturing- Verfahrens, insbesondere eines Laserstrahlauftragsschweißens, eines Elektronenstrahl-(EB-)Pulverauftragsschweißens oder Auftragschweißen mit Draht ausgerichtet ist. Im Vergleich zu bekannten Gießverfahren können sehr viel kleinere und fein ausgebildete Strukturen hergestellt werden. Durch das Aufheizen der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb des Schmelzpunkts des Bauteilwerkstoffs kann zudem die Kristallstruktur des entstehenden Bauteils beeinflusst und gesteuert werden. Als Strahlenquelle für den Energieeintrag in die Aufbau- und Fügezone kann zum Beispiel ein Laser oder eine Elektronenstrahlvorrichtung vorgesehen sein. Bei der Verwendung eines Lasers kommt insbesondere ein C02-, Nd: YAG-, Yb-Faserl oder ein Diodenlaser zur Anwendung. Der pulverförmi- ge Bauteilwerkstoff kann wiederum aus Metall, einer Metall-Legierung, Keramik, Silikat oder einer Mischung davon bestehen.
In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung ist die Pulverzuführung oder Antragschweißen mit Draht koaxial oder seitlich zur Strahlenquelle angeordnet. Damit kann die Vorrichtung an die für die jeweilige Aufgabe zur Verfügung stehenden Platzverhältnisse optimal angepasst werden.
In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung umfassen die Mittel zum Aufheizen der Aufbau- und Fügezone einen Zonenofen. Durch die Verwendung eines Zonenofens kann ein vorbestimmter Temperaturgradient senkrecht zur Erstarrungsfront des wachsenden Bauteils aufrechterhalten werden, so dass zum Beispiel Bauteile mit einer gerichtet erstarrten oder einkristallinen Kristallslruktur hergestellt werden können.
In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung sind die Mittel zum Aufheizen der Aufbau- und Fügezone zumindest teilweise evakuierbar oder mit einem Schutzgas flutbar ausgebildet. Dadurch lässt sich die Schweißqualität deutlich verbessern.
In weiteren vorteilhaften Ausgestaltungen der erfindungsgemäßen Vorrichtung umfasst diese mindestens einen Abtraglaser für ein Laserabtragen von Werkstoffüberständen zur Anpassung eines Bauteilabschnitts an eine vorgegebene Bauteilkontur. Dabei kann der Abtragslaser mit mindestens einem optischen Messsystem gekoppelt sein. Das Laserabtragen erfolgt dabei in Abhängigkeit von durch das optische Messsystem aufgenommenen und verarbeiteten Messdaten der Konturen des Bauteils in dem jeweiligen Bauteilabschnitt. Durch den Vergleich der gemessenen Konturen mit einer vorgegebenen Endkontur kann der Abtragslaser entsprechend gesteuert werden, so dass Überschussmaterial von dem Bauteil entfernt wird. Dadurch ist eine weitere Verbesserung der Qualität der Feinststrukturen des Bauteils möglich. Als Abtraglaser wird üblicherweise ein Kurzpulslaser verwendet. Es ist aber auch denkbar, dass mit dem Elektronenstrahl das Abtragen von Überschussmaterial durchgeführt wird. Verwendung findet das im Vorhergehenden beschriebene erfindungsgemäße Verfahren und die ebenfalls im Vorhergehenden beschriebene erfindungsgemäße Vorrichtung zur Herstellung von Triebwerksbauteilen aus Nickel- oder Titanbasislegierungen, insbesondere zur Herstellung von Verdichter- oder Turbinenschaufeln.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines zeichnerisch dargestellten Ausführungsbeispiels. Dabei zeigt die Figur eine schematische Darstellung einer Vorrichtung 30 zur Herstellung eines Bauteils 10 einer Strömungsmaschine. Bei dem Bauteil 10 handelt es sich in dem dargestellten Ausführungsbeispiel um eine Laufschaufel einer Hochdruckturbine. Die Vorrichtung 30 umfasst dabei eine Strahlenquelle 18, nämlich einen Laser für den Auftrag eines pulverförmigen Bauteilwerkstoffs 16. Als Laser wird in dem dargestellten Ausführungsbeispiel ein Nd:YAG-Laser verwendet. Die Laserleistung liegt je nach Bauteiltyp, insbesondere Schaufeltyp, insbesondere zwischen 400 bis 1000 W. Die mittlere Korngröße des verwendeten pulverförmigen Bauteilwerkstoffs 16 beträgt ca. 10 bis 100 μπι. Der Bauteilwerkstoff 16 besteht dabei insbesondere aus einer Titan- oder Nickellegierung. Des Weiteren weist die Vorrichtung 30 eine Pulverzuführung 24 zum Auftrag des pulverförmigen Bauteilwerkstoffs 16 sowie eine Bauteilplattform (nicht dargestellt) im Bereich einer Aufbau- und Fügezone 14 auf. Die Aufbau- und Fügezone 14 ist innerhalb eines Zonenofens 26 ausgebildet. Das Bauteil 10 wird mittels der Bauteilplattform durch den Zonenofen 26 geführt. Zum Aufheizen der Aufbau- und Fügezone 14 auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs 16 ist die Aufbau- und Fügezone 14 von einer Induktionsspule 32 des Zonenofens 26 umgeben. Zudem befindet sich die Aufbau- und Fügezone 14 in einer Hochtemperaturzone 28 des Zonenofens 26. Das herzustellende Bauteil 10 wird dabei während der Herstellung von der Hochtemperaturzone 28 mittels der Bauteilplattform zu mindestens einer Zone mit einer niedrigeren Temperatur bewegt (vergleiche Pfeildarstellung).
Man erkennt, dass in dem dargestellten Beispiel die Pulverzuführung 24 koaxial zur Strahlenquelle 18, nämlich dem Laser angeordnet ist. Der erzeugte Laser- und Pulverstrahl 12 wird im Bereich der Aufbau- und Fügezone 14 zu einer Bauteilschicht verschmolzen beziehungsweise versintert. Die Vorrichtung 30 weist zudem eine zweite Strahlenquelle, nämlich einen Abtraglaser 20 für ein Laserabtragen von Werkstoffüberständen zur Anpassung des jeweiligen Bauteilabschnitts an eine vorgegebene Bauteilkontur auf. Das Abtragen von Überschussmaterial erfolgt dabei durch den durch den Abtraglaser 20 erzeugten Laserstrahl 22 in Abhängigkeit der von ei- nem optischen Messsystem (nicht dargestellt) ermittelten und verarbeiteten Messdaten der jeweiligen Bauteilkontur. Die gemessenen Daten werden mit gespeicherten Daten der Endkontur des Bauteils 10 in dem jeweiligen Schichtabschnitt verglichen, wobei die möglichen Abweichungen von der Endkontur durch den Abtraglaser 20 entfernt werden. In dem dargestellten Ausführungsbeispiel ist der Abtraglaser 20 ein Kurzpulslaser. Das optische Messsystem kann separat oder in den Abtraglaser 20 integriert ausgebildet sein.
Des Weiteren ist der Zonenofen 26 der Vorrichtung 30 zumindest teilweise evakuierbar oder mit einem Schutzgas flutbar ausgebildet. Dadurch erhöht sich die Qualität der Schweißvorgänge.
Die Fertigung des Bauteils 10 wird im Folgenden beispielhaft beschrieben:
Zunächst werden die Form und der Materialaufbau des Bauteils 10 als computergeneriertes Modell (CAD-Modell) in einem Computer bestimmt. Die daraus generierten Schichtinformationen werden als entsprechende Daten in einen Steuerrechner (nicht dargestellt) der Vorrichtung 30 eingegeben. Diese Daten dienen zur Steuerung der Pulverzuführung 24, der Bauteilplattform, des Auftraglasers 18 und des Abtraglasers 20. Der genannte Computer kann dabei auch als Steuerrechner der Vorrichtung 30 verwendet werden.
In weiteren Herstellungsschritten erfolgt gemäß einem ersten Verfahrensschritt a) ein schichtweiser Auftrag des pulverformigen Bauteilwerkstoffs 16 auf die Bauteilplattform im Bereich der Aufbau- und Fügezone 14. In einem nächsten Verfahrensschritt b) erfolgt ein schichtweises und lokales Verschmelzen oder Vereintem des Bauteilwerkstoffs 16 mittels Laserenergie im Bereich der Aufbau- und Fügezone 14. Schließlich erfolgt in einem weiteren Verfahrensschritt c) ein schichtweises Absenken der Bauteilplattform innerhalb des Zonenofens 26 um jeweils eine vordefinierte Schichtdicke. Die Verfahrensschritte a) bis c) werden bis zur Fertigstellung des Bauteils 10 wiederholt. Der Auftragslaser 18 und der Abtragslaser 20 werden jeweils entsprechend der Schichtinformation des herzustellenden Bauteils 10 geführt. Für die Herstellung eines Bauteils 10 mit einer gerichtet erstarrten oder einkristallinen Kristallstruktur erfolgt der Pulverauftrag epitaktisch, das heißt, dass mindestens eine erste Schicht des pulverformigen Bauteilwerkstoffs 16 im Verfahrensschritt a) derart aufgebracht und im Verfahrensschritt b) der verfestigt wird, dass mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils 10 auf der Bauteilform ausgebildet wird. Es ist aber auch möglich, dass vor dem schichtwei- sen Auftrag der pulverförmigen Bauteilwerkstoffs 16 gemäß Verfahrensschritt a) mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils 10 auf die Bauteilplattform aufgebracht wird, wobei die Kontur des Basiskörpers der Grundkontur des Bauteils 10 in diesem Bauteilabschnitt entspricht. Die anschließend auf dem Basiskörper aufgetragenen Schichten des pulverförmigen Bauteilwerkstoffs 16 werden im Verfahrensschritt a) dann derart aufgebracht und im Verfahrensschritt b) derart verfestigt, dass ein gerichtet erstarrter oder einkristallines Bauteil 10 ausgebildet wird.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
a) Schichtweiser Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff (16) auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone (14), wobei der Auftrag entsprechend der Schichtinformation des herzustellenden Bauteils (10) erfolgt;
b) Schichtweises und lokales Verschmelzen oder Vereintem des Bauteilwerkstoffs (16) mittels zugeführter Energie im Bereich der Aufbau- und Fügezone (14), wobei die Aufbau- und Fügezone (14) auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteil Werkstoffs (16) erwärmt ist;
c) Schichtweises Absenken der Bauteilplattform um eine vordefinierte Schichtdicke; und d) Wiederholen der Schritte a) bis c) bis zur Fertigstellung des Bauteils (10).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Verfahren ein Rapid- Prototyping- oder Rapid-Manufacturing- Verfahren, insbesondere ein Laserauftragsschweißen oder ein Elektronenstrahl- (EB-)Pulverauftragsschweißen ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der pulverförmige Bauteilwerkstoff (16) aus Metall, einer Metall-Legierung, Keramik, Silikat oder einer Mischung davon besteht.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass für das Laserauftragsschweißen ein Gas-, Festkörper- oder Diodenlaser, vorzugsweise C02-, Nd:YAG-, Yb- Faserlaser oder ein Diodenlaser verwendet wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine erste Schicht des pulverförmigen Bauteil Werkstoffs (16) im Verfahrensschritt a) derart aufgebracht und im Verfahrenschritt b) derart verfestigt wird, dass mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils (10) auf der Bauteilplattform ausgebildet wird.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass vor dem schichtweisen Auftrag des pulverförmigen Bauteilwerkstoffs (16) gemäß Verfahrensschritt a) mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils (10) auf die Bauteilplattform aufgebracht wird, wobei die Kontur des Basiskörpers der Grundkontur des Bauteils (10) in diesem Bauteilabschnitt entspricht.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die auf den Basiskörper aufgetragenen Schichten des pulverförmigen Bauteilwerkstoffs (16) im Verfahrensschritt a) derart aufgebracht und im Verfahrenschritt b) derart verfestigt werden, dass ein gerichtet erstarrter oder einkristallines Bauteil (10) ausgebildet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass synchron zu dem Auftrag oder unmittelbar nach dem Auftrag einer Schicht des Bauteilwerkstoffs (16) ein Laserabtragen von Werkstoffüberständen zur Anpassung des Bauteilabschnitts an eine vorgegebene Bauteilkontur erfolgt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Laserabtragen in Abhängigkeit von durch mindestens ein optisches Messsystem aufgenommenen und verarbeiteten Messdaten der Konturen des Bauteils (10) in dem jeweiligen Bauteilabschnitt erfolgt.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass für das Laserabtragen ein Kurzpulslaser (20) verwendet wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Form und der Materialaufbau des Bauteils (10) als computergeneriertes Modell bestimmt wird und die daraus generierten Schichtinformationen zur Steuerung von mindestens einer Pulverzuführung (24), der Bauteilplattform, des mindestens einen Auftraglasers (18) oder der mindestens einen Elektronenstrahl- (EB-) Pulverauftragsvorrichtung verwendet werden.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Erwärmung der Aufbau- und Fügezone (14) auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs (16) in einer Hochtemperaturzone (28) eines Zonenofens (26) erfolgt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das herzustellende Bauteil (10) von der Hochtemperaturzone (28) des Zonenofens (26) mittels der Bauteilplattform (12) zu mindestens einer Zone mit einer niedrigeren Temperatur bewegt wird.
14. Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters, dadurch gekennzeichnet, dass die Vorrichtung (30) mindestens eine Pulverzuführung (24) zum Auftrag von mindestens einem pulverformigen Bauteil Werkstoff (16) auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone (14), Mittel (26) zum Aufheizen der Aufbau- und Fügezone (14) auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs (16) sowie mindestens eine Strahlenquelle (18) für ein schichtweises und lokales Verschmelzen oder Vereintem des Bauteilwerkstoffs (16) mittels zugeführter Energie im Bereich der Aufbau- und Fügezone (14) umfasst.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Strahlenquelle (18) ein Laser oder eine Elektronenstrahlvorrichtung ist.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass der Laser ein Gas-, Festkörper- oder Diodenlaser, vorzugsweise C02-, Nd:YAG-, Yb-Faserlaser oder ein Diodenlaser ist.
17. Vorrichtung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die Pulverzuführung (24) koaxial oder seitlich zur Strahlenquelle (18) angeordnet ist.
18. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (26) zum Aufheizen der Aufbau- und Fügezone (14) einen Zonenofen umfassen.
19. Vorrichtung nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass die Mittel (26) zum Aufheizen der Aufbau- und Fügezone (14) zumindest teilweise evakuierbar oder mit einem Schutzgas flutbar ausgebildet sind.
Vorrichtung nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, dass die Vorrichtung (30) mindestens einen Abtragslaser (20) für ein Laserabtragen von Werkstoffüberständen zur Anpassung eines Bauteilabschnitts an eine vorgegebene Bauteilkontur umfasst.
1. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass der Abtragslaser (20) mit mindestens einem optischen Messsystem gekoppelt ist.
22. Vorrichtung nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass der Abtragslaser (20) ein Kurzpulslaser ist.
23. Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 13 oder einer Vorrichtung gemäß einem der Ansprüche 14 bis 19 zur Herstellung von Triebwerksbauteilen aus Nickel- oder Titanbasislegierungen, insbesondere zur Herstellung von Verdichter- oder Turbinenschaufeln.
EP10784661A 2009-10-30 2010-09-30 Verfahren und vorrichtung zur herstellung eines bauteils einer strömungsmaschine Withdrawn EP2493643A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009051479A DE102009051479A1 (de) 2009-10-30 2009-10-30 Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
PCT/DE2010/001155 WO2011050765A1 (de) 2009-10-30 2010-09-30 Verfahren und vorrichtung zur herstellung eines bauteils einer strömungsmaschine

Publications (1)

Publication Number Publication Date
EP2493643A1 true EP2493643A1 (de) 2012-09-05

Family

ID=43645606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10784661A Withdrawn EP2493643A1 (de) 2009-10-30 2010-09-30 Verfahren und vorrichtung zur herstellung eines bauteils einer strömungsmaschine

Country Status (4)

Country Link
US (1) US10144062B2 (de)
EP (1) EP2493643A1 (de)
DE (1) DE102009051479A1 (de)
WO (1) WO2011050765A1 (de)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011059A1 (de) * 2010-03-11 2011-09-15 Global Beam Technologies Ag Verfahren und Vorrichtung zur Herstellung eines Bauteils
ES2533351T3 (es) 2011-09-22 2015-04-09 MTU Aero Engines AG Calentamiento de inducción multi-frecuente de componentes creados de manera generativa
US20130101746A1 (en) * 2011-10-21 2013-04-25 John J. Keremes Additive manufacturing management of large part build mass
DE102011087121A1 (de) * 2011-11-25 2013-05-29 Lufthansa Technik Ag Verfahren zum Auftragsschweißen
DE102011089336A1 (de) 2011-12-21 2013-06-27 Mtu Aero Engines Gmbh Generatives Herstellungsverfahren mit angepasster Bestrahlung
US11000899B2 (en) 2012-01-29 2021-05-11 Raytheon Technologies Corporation Hollow airfoil construction utilizing functionally graded materials
DE102012206125A1 (de) 2012-04-13 2013-10-17 MTU Aero Engines AG Verfahren zur Herstellung von Niederdruckturbinenschaufeln aus TiAl
DE102012206122A1 (de) 2012-04-13 2013-10-17 MTU Aero Engines AG Mehrfach-Spulenanordnung für eine Vorrichtung zur generativen Herstellung von Bauteilen und entsprechendes Herstellverfahren
DE102012025140A1 (de) * 2012-12-21 2014-06-26 Eads Deutschland Gmbh Reibrührwerkzeug, Herstellverfahren hierfür und Reibrührverfahren
GB201302931D0 (en) * 2013-02-20 2013-04-03 Rolls Royce Plc A method of manufacturing an article from powder material and an apparatus for manufacturing an article from powder material
WO2014131444A1 (en) * 2013-02-27 2014-09-04 Slm Solutions Gmbh Apparatus and method for producing work pieces having a tailored microstructure
DE102013205956A1 (de) * 2013-04-04 2014-10-30 MTU Aero Engines AG Blisk mit Titanaluminid-Schaufeln und Verfahren zur Herstellung
EP2789413B1 (de) 2013-04-08 2019-01-16 MTU Aero Engines AG Temperaturregelung für eine Vorrichtung zur generativen Herstellung von Bauteilen und entsprechendes Herstellungsverfahren
US9415438B2 (en) * 2013-04-19 2016-08-16 United Technologies Corporation Method for forming single crystal parts using additive manufacturing and remelt
WO2014202415A2 (de) 2013-06-20 2014-12-24 MTU Aero Engines AG Vorrichtung und verfahren zur generativen herstellung zumindest eines bauteilbereichs eines bauteils
CN105555442B (zh) 2013-06-20 2018-07-03 Mtu飞机发动机有限公司 用于附加形成部件的至少一个部件区的装置和方法
JP6245906B2 (ja) * 2013-09-13 2017-12-13 公益財団法人鉄道総合技術研究所 ブレーキディスク及びその製造方法
EP2851146A1 (de) * 2013-09-24 2015-03-25 Siemens Aktiengesellschaft Verfahren zur Herstellung einer Turbinenschaufel und zugehörige Turbinenschaufel
US10259159B2 (en) * 2013-10-18 2019-04-16 Kabushiki Kaisha Toshiba Stack forming apparatus and manufacturing method of stack formation
WO2015119692A2 (en) * 2013-11-14 2015-08-13 General Electric Company Layered manufacturing of single crystal alloy components
DE102013224319A1 (de) 2013-11-27 2015-06-11 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum generativen Herstellen zumindest eines Bauteilbereichs eines Bauteils
DE102013226298A1 (de) 2013-12-17 2015-06-18 MTU Aero Engines AG Belichtung bei generativer Fertigung
DE102014203458A1 (de) 2014-02-26 2015-09-10 Gebr. Brasseler Gmbh & Co. Kg Verfahren zur Herstellung eines medizinischen Instruments mittels eines additiven Verfahrens
DE102014203711A1 (de) 2014-02-28 2015-09-03 MTU Aero Engines AG Erzeugung von Druckeigenspannungen bei generativer Fertigung
DE102014204528A1 (de) * 2014-03-12 2015-09-17 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum selektiven Laserschmelzen
DE102014207624A1 (de) * 2014-04-23 2015-10-29 Siemens Aktiengesellschaft Faserlasersystem mit Zoom-Optiksystem zur Materialbearbeitung
DE102014214943A1 (de) 2014-07-30 2016-03-03 MTU Aero Engines AG Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
DE102014219656A1 (de) * 2014-09-29 2016-03-31 Siemens Aktiengesellschaft Verfahren zur Herstellung von Komponenten für Gasturbinen, sowie deren Produkte
DE102014221501A1 (de) 2014-10-23 2016-04-28 MTU Aero Engines AG Vorrichtung und Verfahren zur Herstellung oder Reparatur eines dreidimensionalen Objekts
EP3015198A1 (de) 2014-10-30 2016-05-04 MTU Aero Engines GmbH Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
EP3015197B1 (de) 2014-10-30 2017-03-08 MTU Aero Engines GmbH Vorrichtung zur Herstellung oder Reparatur eines dreidimensionalen Objekts
DE102014222526A1 (de) 2014-11-05 2016-05-12 MTU Aero Engines AG Verfahren und Vorrichtung zum generativen Herstellen zumindest eines Bauteilbereichs eines Bauteils
US10132185B2 (en) 2014-11-07 2018-11-20 Rolls-Royce Corporation Additive process for an abradable blade track used in a gas turbine engine
DE102014224442A1 (de) * 2014-11-28 2016-06-02 Siemens Aktiengesellschaft Verfahren zum Erzeugen eines Bauteils mit einer eine Vorzugsorientierung des Gefüges hervorrufenden Gefügetextur und Anlage für ein additives pulverbettbasiertes Herstellungsverfahren
DE102015201425B3 (de) 2015-01-28 2016-04-07 MTU Aero Engines AG Vorrichtung und Verfahren zur Herstellung oder Reparatur eines dreidimensionalen Objekts
DE102015201552A1 (de) * 2015-01-29 2016-08-04 Bayerische Motoren Werke Aktiengesellschaft Herstellvorrichtung für die Herstellung von dreidimensionalen Objekten mittels Lasersintern
US10273192B2 (en) 2015-02-17 2019-04-30 Rolls-Royce Corporation Patterned abradable coating and methods for the manufacture thereof
DE102015204801A1 (de) 2015-03-17 2016-09-22 MTU Aero Engines AG Verfahren zur Fertigung eines Bauteils
CN105058793A (zh) * 2015-08-03 2015-11-18 成都顺康三森电子有限责任公司 一种用于生产电子功能器件的3d打印机
DE102015214995A1 (de) 2015-08-06 2017-02-09 MTU Aero Engines AG Vorrichtung und Verfahren zur Herstellung oder Reparatur eines dreidimensionalen Objekts
DE102015214994A1 (de) 2015-08-06 2017-02-09 MTU Aero Engines AG Ein Verfahren zur Herstellung oder Reparatur eines Bauteils und Vorrichtung zur Herstellung und Reparatur eines Bauteils
DE102015215853A1 (de) 2015-08-20 2017-02-23 MTU Aero Engines AG Vorrichtung und Verfahren zur Herstellung oder Reparatur eines dreidimensionalen Objekts
US10443115B2 (en) 2015-08-20 2019-10-15 General Electric Company Apparatus and method for direct writing of single crystal super alloys and metals
DE102015216402A1 (de) 2015-08-27 2017-03-02 MTU Aero Engines AG Vorrichtung und Verfahren zur Herstellung oder Reparatur eines dreidimensionalen Objekts
CH711814A1 (de) * 2015-11-27 2017-05-31 Lakeview Innovation Ltd Verfahren und Vorrichtung zur Herstellung von Freiform-Keramikbauteilen.
US10634143B2 (en) 2015-12-23 2020-04-28 Emerson Climate Technologies, Inc. Thermal and sound optimized lattice-cored additive manufactured compressor components
US10982672B2 (en) 2015-12-23 2021-04-20 Emerson Climate Technologies, Inc. High-strength light-weight lattice-cored additive manufactured compressor components
US10557464B2 (en) 2015-12-23 2020-02-11 Emerson Climate Technologies, Inc. Lattice-cored additive manufactured compressor components with fluid delivery features
EP3199268A1 (de) 2016-01-28 2017-08-02 Siemens Aktiengesellschaft Verfahren zum generativen herstellen von bauteilen mit heizbarer bauplattform und anlage für dieses verfahren
DE102016203901A1 (de) 2016-03-10 2017-09-14 MTU Aero Engines AG Verfahren und Vorrichtung zum Herstellen zumindest eines Bauteilbereichs eines Bauteils
DE102016205259A1 (de) 2016-03-31 2017-10-05 MTU Aero Engines AG Verfahren zum additiven Herstellen zumindest eines Bauteilbereichs eines Bauteils
DE102016205437A1 (de) 2016-04-01 2017-10-05 MTU Aero Engines AG Vorrichtung und Verfahren zur Herstellung oder Reparatur eines dreidimensionalen Objekts
DE102016205782A1 (de) 2016-04-07 2017-10-12 MTU Aero Engines AG Verfahren und Vorrichtung zum Herstellen zumindest eines Bauteilbereichs eines Bauteils
DE102016206558A1 (de) 2016-04-19 2017-10-19 MTU Aero Engines AG Verfahren und Vorrichtung zum Herstellen zumindest eines Bauteilbereichs eines Bauteils
DE102016207112A1 (de) 2016-04-27 2017-11-23 MTU Aero Engines AG Verfahren zum Herstellen zumindest eines Bauteilbereichs eines Bauteils und Induktionshilfsstruktur
US20170355019A1 (en) * 2016-06-14 2017-12-14 Hamilton Sundstrand Corporation Thermal control for additive manufacturing
US10914185B2 (en) * 2016-12-02 2021-02-09 General Electric Company Additive manufactured case with internal passages for active clearance control
CN106903311A (zh) * 2017-03-09 2017-06-30 西安交通大学 一种电磁感应激光选区熔化粉床在线加热***及方法
US10900371B2 (en) 2017-07-27 2021-01-26 Rolls-Royce North American Technologies, Inc. Abradable coatings for high-performance systems
US10858950B2 (en) 2017-07-27 2020-12-08 Rolls-Royce North America Technologies, Inc. Multilayer abradable coatings for high-performance systems
CN108326301B (zh) * 2018-02-24 2020-09-15 深圳意动航空科技有限公司 一种金属增材制造的打印路径生成方法
DE102018203877A1 (de) 2018-03-14 2019-09-19 MTU Aero Engines AG Verfahren zur generativen herstellung von bauteilen aus ausscheidungsgehärteten werkstoffen
DE102018205608A1 (de) 2018-04-13 2019-10-17 MTU Aero Engines AG Verfahren zur Herstellung oder Reparatur eines Gehäusesegments oder eines Gehäuses einer Strömungsmaschine sowie Gehäusesegment und Gehäuse
WO2019206903A1 (en) * 2018-04-23 2019-10-31 Carl Zeiss Industrial Metrology, Llc Method and arrangement for producing a workpiece by using adaptive closed-loop control of additive manufacturing techniques
DE102018212480A1 (de) * 2018-07-26 2020-01-30 Siemens Aktiengesellschaft Additives Herstellungsverfahren mit selektivem Bestrahlen und gleichzeitigem Auftragen sowie Wärmebehandlung
DE102018119608A1 (de) 2018-08-13 2020-02-13 Forschungszentrum Jülich GmbH Bauelement mit einer Haftstruktur für eine Turbomaschine, Verfahren zur Herstellung eines Bauelementes mit einer Haftstruktur für eine Turbomaschine und Turbomaschine mit einem Bauelement mit einer Haftstruktur
US11229952B2 (en) 2018-08-20 2022-01-25 Honeywell International Inc. System and method for forming part from rapidly manufactured article
WO2020058722A1 (en) * 2018-09-20 2020-03-26 Camadd Ltd A powder bed: additive manufacturing
CN114340876A (zh) 2019-07-26 2022-04-12 维勒3D股份有限公司 三维物体形成的质量保证
CN114713848B (zh) * 2022-06-10 2022-09-23 西安赛隆增材技术股份有限公司 一种提升增材制造零件表面质量的方法及增材制造设备
CN115044788B (zh) * 2022-08-12 2022-11-15 中南大学 一种有色金属材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030178395A1 (en) * 2000-05-24 2003-09-25 Duignan Michael T. Method and apparatus for fabrication of miniature structures
US20040112280A1 (en) * 2002-04-15 2004-06-17 Thomas Beck Method for producing monocrystalline structures
US20070038176A1 (en) * 2005-07-05 2007-02-15 Jan Weber Medical devices with machined layers for controlled communications with underlying regions

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038014A (en) * 1989-02-08 1991-08-06 General Electric Company Fabrication of components by layered deposition
US6046426A (en) * 1996-07-08 2000-04-04 Sandia Corporation Method and system for producing complex-shape objects
EP0861927A1 (de) 1997-02-24 1998-09-02 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
DE19903436C2 (de) * 1999-01-29 2001-02-08 Fraunhofer Ges Forschung Verfahren zur Herstellung dreidimensionaler Formkörper
EP1400339A1 (de) * 2002-09-17 2004-03-24 Siemens Aktiengesellschaft Verfahren zum Herstellen eines dreidimensionalen Formkörpers
US6932865B2 (en) * 2003-04-11 2005-08-23 Lockheed Martin Corporation System and method of making single-crystal structures through free-form fabrication techniques
US20050173380A1 (en) * 2004-02-09 2005-08-11 Carbone Frank L. Directed energy net shape method and apparatus
DE202004021233U1 (de) * 2004-07-01 2007-04-05 Cl Schutzrechtsverwaltungs Gmbh Durch einen selektiven Lasersintervorgang (SLS) hergestelltes Bauteil
US7211763B2 (en) * 2004-12-22 2007-05-01 General Electric Company Photon energy material processing using liquid core waveguide and a computer program for controlling the same
DE102006049216A1 (de) * 2006-10-18 2008-04-24 Mtu Aero Engines Gmbh Hochdruckturbinen-Rotor und Verfahren zur Herstellung eines Hochdruckturbinen-Rotors
DE102006049218A1 (de) 2006-10-18 2008-04-30 Mtu Aero Engines Gmbh Verfahren zum Herstellen eines Gasturbinenbauteils
DE102006058949A1 (de) 2006-12-14 2008-06-19 Inno-Shape Gmbh Vorrichtung und Verfahren zur Reparatur oder Herstellung von Schaufelspitzen von Schaufeln einer Gasturbine, insbesondere eines Flugtriebwerkes
AU2010212593B2 (en) * 2009-02-10 2014-05-29 Bae Systems Plc Method of fabricating an object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030178395A1 (en) * 2000-05-24 2003-09-25 Duignan Michael T. Method and apparatus for fabrication of miniature structures
US20040112280A1 (en) * 2002-04-15 2004-06-17 Thomas Beck Method for producing monocrystalline structures
US20070038176A1 (en) * 2005-07-05 2007-02-15 Jan Weber Medical devices with machined layers for controlled communications with underlying regions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEIJER ET AL: "Laser Machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons", CIRP ANNALS, ELSEVIER BV, NL, CH, FR, vol. 51, no. 2, 1 January 2002 (2002-01-01), pages 531 - 550, XP022136741, ISSN: 0007-8506, DOI: 10.1016/S0007-8506(07)61699-0 *
See also references of WO2011050765A1 *

Also Published As

Publication number Publication date
US10144062B2 (en) 2018-12-04
WO2011050765A1 (de) 2011-05-05
US20120213659A1 (en) 2012-08-23
DE102009051479A1 (de) 2011-05-05

Similar Documents

Publication Publication Date Title
EP2493643A1 (de) Verfahren und vorrichtung zur herstellung eines bauteils einer strömungsmaschine
EP2794152B1 (de) Verfahren zur fertigung eines kompakten bauteils sowie mit dem verfahren herstellbares bauteil
EP2099582B1 (de) Vorrichtung und verfahren zur reparatur oder herstellung von schaufelspitzen von schaufeln einer gasturbine, insbesondere eines flugtriebwerks
DE60220930T2 (de) Verfahren zur Herstellung, Modifizierung oder Reparatur von einkristallinen oder gerichtet erstarrten Körpern
DE102009051551A1 (de) Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
EP2836323B1 (de) Mehrfach-spulenanordnung für eine vorrichtung zur generativen herstellung von bauteilen und entsprechendes herstellungsverfahren
EP3235580B1 (de) Verfahren und vorrichtung zum herstellen zumindest eines bauteilbereichs eines bauteils
DE102006049216A1 (de) Hochdruckturbinen-Rotor und Verfahren zur Herstellung eines Hochdruckturbinen-Rotors
DE10319494A1 (de) Verfahren zur Reparatur und/oder Modifikation von Bauteilen einer Gasturbine
DE102014108061A1 (de) Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
CH705662A1 (de) Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).
EP3228415A1 (de) Verfahren zur herstellung eines werkstücks durch beschichten und additives herstellen; entsprechendes werkstück
EP3156164A1 (de) Verfahren zur herstellung eines werkstücks durch generatives herstellen ; entsprechendes werkstück
EP3338918A1 (de) Schichtbauvorrichtung und schichtbauverfahren zum additiven herstellen zumindest eines bauteilbereichs eines bauteils
EP3682988A1 (de) Verfahren zur herstellung von laufschaufeln aus ni - basislegierungen und entsprechend hergestellte laufschaufel
DE102019205587A1 (de) Schichtbauverfahren und Schichtbauvorrichtung zum additiven Herstellen zumindest einer Wand eines Bauteils sowie Computerprogrammprodukt und Speichermedium
DE102016207112A1 (de) Verfahren zum Herstellen zumindest eines Bauteilbereichs eines Bauteils und Induktionshilfsstruktur
DE102014219656A1 (de) Verfahren zur Herstellung von Komponenten für Gasturbinen, sowie deren Produkte
EP3381593B1 (de) Verfahren zum strahlbasierten selektiven schmelzen oder sintern
DE102011089336A1 (de) Generatives Herstellungsverfahren mit angepasster Bestrahlung
EP2161088A1 (de) Verfahren zur Herstellung eines Bauteils und Vorrichtung hierfür
EP3740381A1 (de) Vorrichtung zum erwärmen eines bauteilmaterials, additive herstellungsanlage und verfahren zur additiven herstellung
EP2343143A2 (de) Verfahren zur Fertigung von Bauteilen aus Refraktärmetallen
WO2021094026A1 (de) Verfahren zur schichtweisen additiven herstellung eines verbundwerkstoffs
EP3656490A1 (de) Verfahren zum bereitstellen von daten für eine adaptive temperaturregelung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

17Q First examination report despatched

Effective date: 20171023

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200811