EP2490185B1 - Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten - Google Patents

Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten Download PDF

Info

Publication number
EP2490185B1
EP2490185B1 EP12001199.4A EP12001199A EP2490185B1 EP 2490185 B1 EP2490185 B1 EP 2490185B1 EP 12001199 A EP12001199 A EP 12001199A EP 2490185 B1 EP2490185 B1 EP 2490185B1
Authority
EP
European Patent Office
Prior art keywords
laser diodes
illumination pattern
given
illumination
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12001199.4A
Other languages
English (en)
French (fr)
Other versions
EP2490185A3 (de
EP2490185A2 (de
Inventor
Wolfgang Deckenbach
Michael Bloss
Martin Clara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP2490185A2 publication Critical patent/EP2490185A2/de
Publication of EP2490185A3 publication Critical patent/EP2490185A3/de
Application granted granted Critical
Publication of EP2490185B1 publication Critical patent/EP2490185B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon

Definitions

  • the present invention relates to a device and a method for optically examining documents of value.
  • Documents of value are understood to mean objects in the form of cards or, in particular, objects in the form of sheets which, for example, represent a monetary value or an authorization and/or should not be able to be produced by unauthorized persons at will. They therefore have features that are not easy to produce, in particular to copy, the presence of which is an indication of authenticity, i.e. production by an authorized body.
  • Important examples of such documents of value are chip cards, coupons, vouchers, checks and, in particular, banknotes.
  • Documents of value are often optically examined to identify their type and/or their condition and/or to check for authenticity.
  • the ambient light could be used for the examination, but such examinations are subject to large errors due to the fluctuations in the properties of the ambient light.
  • Devices are therefore used for the examination, which have an illumination device for illuminating at least a part of a section of a document of value given by a detection area of the device with optical radiation of predetermined properties and a detection device for detecting optical radiation from the detection area, in particular one illuminated by the illumination device Document of value, comes, owns.
  • light sources such as halogen lamps can be used for illumination, these consume a lot of power compared to the radiant power emitted in a desired spectral range and therefore require adequate cooling. They also have the disadvantage that they do not have a very long service life. In addition, these light sources have a not inconsiderable space requirement.
  • DE 10 2004 914 541 B3 describes an optical system for generating an illuminated structure with a length on a surface of a material that is moved relative to the structure, at least part of the surface of the material being reflective, with an illumination device having a plurality of lines arranged next to one another at a distance from the surface of the material
  • Light sources emit light to generate the structure, wherein a detection device with at least one detector arranged at a distance from the surface of the material detects light reflected from the surface of the material, the structure as an illumination strip with a length orthogonal to the surface of the material extending width is formed, wherein the lighting strip is arranged outside of a lying in the direct or in the deflected beam path focal point of the light emitted by the light sources, wherein the lighting device consists of several together rows of modules, each with several light sources arranged side by side.
  • EP1 501162 A2 describes a phased array of oxide-confined VCSELs and a method of forming the phased array of oxide-confined VCSELs.
  • VCSELs in the array are designed to be addressed simultaneously, so radiation from multiple VCSELs can be used to increase the light intensity at a point.
  • high gain coupling regions disrupt the continuity of the oxide wall surrounding each VCSEL opening. The high gain coupling regions connect adjacent VCSELs in the VCSEL array, allowing mode locking between adjacent lasers and the output of a coherent light beam.
  • the present invention is therefore based on the object of creating a device for the optical examination of documents of value which, with a compact design, allows good illumination of a document of value to be examined, and to specify a corresponding method.
  • the object is also achieved by a method having the features of claim 13 and in particular a method for optically examining a document of value in a detection area, in which the document of value is illuminated with at least one surface-emitting laser diode.
  • optical radiation can be detected from at least part of the detection area, which is caused by the illumination of the value document occurs.
  • This can in particular be luminescence radiation excited in the value document, from the value document act reflected or passed through this optical radiation.
  • the detection device can be arranged relative to the illumination device and the detection area in particular in such a way that its radiation entrance is on the same side of the value document from which it is illuminated, or on the opposite side.
  • the detection device can be arranged in such a way that an examination with reflected or transmitted light or in reflection or transmission is possible.
  • the examination can take place when the document of value is stationary relative to the examination device and in particular the illumination device.
  • the value document can also be moved during the illumination.
  • the invention therefore also relates to a device for processing documents of value, also referred to below as a document of value processing device, with an examination device according to the invention and a transport device for moving a document of value through the detection area at a predetermined transport speed.
  • the transport speed can be specified in particular as a function of properties of the examination device or the transport device. In the case of a sequential detection, an image of the section of the document of value moved through the detection area can thus be obtained.
  • the invention turns away from the conventional types of lighting. So while it is conceivable for lighting instead of halogen lamps to use conventional edge-emitting laser diodes (so-called “edge emitting laser diodes”), but radiate this optical radiation with a very inhomogeneous and not simply symmetrical intensity distribution. This can affect the examination of the document of value.
  • a surface-emitting laser diode is understood more precisely as a vertically surface-emitting laser diode or in particular a semiconductor component also known as a “vertical cavity surface emitting laser” (VCSEL), the laser resonator of which can be coupled out with its coupling-out direction in the radiation from the laser resonator is aligned at least approximately orthogonally to the surface of the component or chip.
  • VCSEL vertical cavity surface emitting laser
  • the laser resonator of such surface-emitting laser diodes can have reflection devices running at least approximately parallel to the surface, for example reflection layers or layer systems.
  • these can be manufactured with large exit windows compared to edge-emitting laser diodes, so that the emitted beam is little or not affected by diffraction at the edges.
  • surface-emitting laser diodes have a beam profile that is, to a good approximation, rotationally symmetrical, resulting in beam shaping is made much easier with simple optical elements compared to edge-emitting laser diodes.
  • the emission wavelength range is determined more strongly by the laser resonator than in the case of edge-emitting laser diodes. This permits narrower emission wavelength ranges and leads to greater thermal stability of the emission wavelength range.
  • the full width at half maximum (FWHM) of the emission spectrum is less than 1 nm.
  • the spatial coherence of the emitted radiation is also lower than in the case of edge-emitting laser diodes, so that speckle patterns can be largely or completely avoided on a document of value illuminated with the laser diode.
  • the surface-emitting laser diodes Due to the favorable beam shape of the surface-emitting laser diodes, they can advantageously be combined with one another for lighting purposes, so that in the method, at least one further surface-emitting laser diode is used for lighting in addition to the laser diode. It is therefore provided in the examination apparatus that the illumination device for generating a predetermined illumination pattern in the detection area has at least one additional surface-emitting laser diode and the control device is designed to drive the additional laser diode.
  • the laser diodes are formed in a device or chip. Such training is only at Surface-emitting laser diodes easily possible and has the advantage that the production of a large array of laser diodes can be done easily. A further advantage can be seen in the fact that only one component needs to be handled as the radiation source when assembling the examination device, which considerably simplifies production.
  • More than 50 laser diodes are particularly preferably arranged on a component.
  • the laser diodes can be actuated by means of the control device in different ways.
  • the lighting device has at least two groups of surface-emitting laser diodes, which include the aforementioned surface-emitting laser diodes, and the laser diodes in each group can be controlled independently of those in the other group.
  • the control device is designed to control one group of laser diodes separately from the control of the other groups of laser diodes.
  • the document of value can then be illuminated with at least two groups of surface-emitting laser diodes that contain the laser diode, the laser diodes of one group being driven separately from those of the other group. In this way, a temporal and spatial variation of the illumination pattern is possible by controlling the groups, which offers the advantage of greater variability of the illumination.
  • the laser diodes allow such a control.
  • the control device must be able to drive the groups independently of one another, it being possible for the two groups of laser diodes to be driven coupled, of course, for example by programming the control device.
  • the arrangement of the laser diodes and their control can largely determine the shape of the illumination pattern if only simple illumination optics, i.e. in particular illumination optics with at least approximately an optical axis folded by deflection elements in the area of the beam path, are rotationally symmetrical optical components such as example lenses, is used.
  • the use of only one such illumination optics simplifies and reduces the cost of manufacture of the illumination device.
  • An illumination device with a plurality of surface-emitting laser diodes formed in a chip or component can advantageously be used to generate an areal illumination pattern due to the shape of the beam profile of the laser diodes.
  • the examination device is preferably designed to illuminate a predetermined area with an illumination pattern whose location-dependent intensity variation over the area illuminated by the laser diodes is less than 20% of the maximum intensity of the illumination pattern.
  • the laser diodes can be controlled in such a way that the laser diodes illuminate a given area of the document of value with an illumination pattern whose location-dependent intensity variation over the area is less than 20% of the maximum intensity of the illumination pattern.
  • Such illumination is particularly homogeneous and thus facilitates reliable detection of features.
  • the predetermined area preferably has a content greater than 0.5 mm 2 .
  • this homogeneity can be achieved by using suitable optical components or homogenization devices in the examination device.
  • the surface emitting laser diodes are arranged relative to one another to illuminate a given area with an illumination pattern such that the illumination pattern produced thereby has a location-dependent intensity variation over the area of less than 20% of the maximum intensity of the illumination pattern.
  • the use of special optical components and in particular the use of homogenization devices such as diffusers, diffractive optical elements or light guides, which reduce the intensity of the emitted optical radiation, can be avoided.
  • the examination device therefore particularly preferably has no homogenization elements such as, for example, diffusers, light guides or microlens arrangements for homogenization.
  • the center-to-center spacing of the next-neighboring surface-emitting laser diodes of the illumination device is preferably less than 150 ⁇ m
  • the laser diodes can be arranged in matrix form in the examination device. In particular, they are then arranged on the grid points of a rectangular or square grid. This allows a particularly simple production of a laser diode array on a chip, in particular since the corresponding signal connections can be easily designed if the laser diodes can be driven individually. In addition, a particularly simple control can take place with this arrangement.
  • the laser diodes are arranged on the points of a hexagonal point lattice. This arrangement has the advantage that a particularly dense arrangement of the laser diodes can be achieved in a simple manner, thus enabling a particularly homogeneous illumination pattern.
  • the illumination pattern in the detection area or on the document of value can be determined, at least in terms of its shape, essentially by the arrangement of the emitting laser diodes.
  • the control device is therefore preferably designed to control only a portion of the laser diodes to emit optical radiation in order to generate a predetermined illumination pattern.
  • the laser diodes are preferably driven to emit optical radiation, so that a predetermined illumination pattern is generated.
  • This embodiment has the advantage that, depending on the design, the illumination pattern changes only a change of the control device is necessary. If this is programmable, which is preferred, only the program needs to be changed.
  • the control device is designed to control the laser diodes as a function of a signal or data stored in the control device in such a way that the same illumination pattern is applied in the detection area depending on the signal or the data different predetermined locations can be generated.
  • the laser diodes can then be controlled as a function of a signal or data in such a way that the same illumination pattern can be generated at one of at least two different locations as a function of the signal or the data.
  • the signal can, for example, be read in by an external data input device via an interface or transmitted by a device of the value-document processing device that contains the examination device.
  • the activation of the laser diodes can consist in particular in that only some of the laser diodes are switched on or off.
  • the control device can control the surface-emitting laser diodes in such a way that an extension of a detection area of the detection device in the transport direction is smaller than the extension of the illumination pattern in the transport direction and that the illumination pattern, viewed in the transport direction, extends further in relation to the detection area than against the transport direction.
  • the detection area is understood to mean that section of the detection area from which, in particular apart from scattered radiation alone, the detection device can receive optical radiation for detection.
  • a signal or data about the transport direction can be made available to the control device in the manner specified above, which controls the laser diodes as a function of the signal or the data. In this way, two things can be achieved at the same time.
  • the setting of the examination device can be set automatically when installed in the value-document processing device as a function of the transport device by transmitting corresponding signals, for example from a drive of the transport device or another device of the value-document processing device to the control device or entered manually via an interface.
  • the examination device can therefore be designed and used as an easily configurable module.
  • control can be switchable in particular between two or more illumination pattern positions.
  • control device in the examination apparatus can be designed to control the laser diodes in such a way that an illumination pattern that changes over time during illumination is generated in the detection area. With the procedure it is it is then preferred that the laser diodes be driven to produce a time-varying illumination pattern during illumination.
  • the change over time can in particular be predetermined, for example by a corresponding design and/or programming of the control device.
  • the illumination pattern can be changed in any way, in particular the shape of the illumination pattern can be changed.
  • the laser diodes are driven in such a way that a predetermined illumination pattern is moved in a predetermined direction at a predetermined speed.
  • the control device is then designed to control the laser diodes in such a way that a predetermined illumination pattern is moved in a predetermined direction at a predetermined speed. The movement only needs to take place for a predetermined period of time, for example until the detection area has been swept over once by the illumination pattern. It is further assumed that the laser diodes are suitably arranged to produce the illumination pattern. This embodiment has a number of advantages since it can be used for different purposes.
  • this embodiment makes it possible to capture a one-dimensional or two-dimensional image sequentially.
  • the detection device of the examination device only needs to be designed in such a way that it detects optical radiation coming from the detection area integrally or only one-dimensionally in a direction transverse to the direction of movement of the illumination pattern.
  • An integral detection is understood to mean a detection that is not spatially resolving at a given point in time.
  • the examination device can be designed in particular to generate a rectangular, in particular linear, illumination pattern.
  • the examination device can be used in particular for detecting one- or two-dimensional barcodes by moving the illumination pattern.
  • the document of value can rest during the detection.
  • the movement speed of the illumination pattern can differ from the transport speed.
  • the document of value is preferably moved in a transport direction at a transport speed, the direction being the transport direction and the speed being the transport speed.
  • the processing device for processing documents of value is then the Transport device designed to move a document of value through the detection area at a predetermined transport speed, and the control device is designed to control the laser diodes in such a way that the illumination pattern is moved at the transport speed in the transport direction.
  • this embodiment allows an area of the document of value examined, in particular an optical security feature, to be tracked during the detection, so that an examination is possible even at very high transport speeds.
  • the examination device for the control device to be designed to generate an illumination pattern in a predetermined part of the detection area as a function of position signals from a position detection device.
  • the laser diodes are controlled in such a way that an illumination pattern is generated in a predetermined part of the detection area as a function of position signals from a position detection device.
  • This embodiment has the advantage that a device for determining the position of a document of value or the position of a feature to be examined optically can be used to generate the position signal reflecting the position, in particular relative to the examination device, and that precisely this feature can be determined as a function of this position signal can be illuminated and examined.
  • the amount of data occurring when the entire document of value is examined can be greatly reduced, so that an examination can be carried out more quickly and an evaluation device for evaluating the detection results can be constructed more simply.
  • the detection device for spatially resolved detection of optical radiation is formed in at least one predetermined spectral range, a considerable reduction in data and an increase in data processing speed can be achieved when tracking the feature.
  • the detection device in the examination apparatus can be designed for spatially resolved detection of optical radiation in at least one predetermined spectral range and the control device can be designed to control the laser diodes in such a way that a variation in sensitivity of the detection device for the optical Radiation in the spectral range is at least partially compensated depending on the location.
  • the laser diodes are controlled in such a way that a variation in sensitivity of a detection device for spatially resolved detection of optical radiation in at least one predetermined spectral range as a function of location is at least partially compensated. In this way, even after a long period of time, the illuminance can be adjusted locally to the sensitivity of the detection device, so that a precise optical examination is also made possible over the long term.
  • the laser diodes can be operated as continuously luminous or pulsed radiation sources, for which purpose the control device is then designed accordingly.
  • a value document processing device 10 in 1 which includes a device for the optical examination of documents of value 12, in the example of banknotes, has an input compartment 14 for the input of documents of value 12 to be processed, a singler 16, which can access documents of value 12 in the input compartment 14, a transport device 18 with a switch 20, and along a transport path 22 given by the transport device 18, a device 24 for examining documents of value arranged in front of the switch 20, and after the switch 20 a first output compartment 26 for documents of value recognized as genuine and a second output compartment 28 for documents of value recognized as not genuine recognized documents of value.
  • a central control and evaluation device 30 is connected at least to the examination device 24 and the switch 20 via signal connections and is used to control the examination device 24, the Evaluation of test signals from the examination device 24 and for controlling at least the switch 20 depending on the result of the evaluation of the test signals.
  • the examination device 24 in connection with the control and evaluation device 30 serves to detect optical properties of the documents of value 12 and to form test signals reflecting these properties.
  • the examination devices 24 While a document of value 12 is being transported past at a specified transport speed in a transport direction T specified by the transport path 22, the examination devices 24 detect optical property values of the document of value, with the corresponding test signals being formed.
  • the central control and evaluation device 30 uses a test signal evaluation to determine whether or not the document of value is recognized as authentic according to a predetermined authenticity criterion for the test signals.
  • the central control and evaluation device 30 has a processor 32 and a memory 34 connected to the processor 32, in which at least one computer program with program code is stored, and when the processor 32 controls the device or evaluates the test signals and controls the transport device 18 according to the evaluation.
  • the central control and evaluation device 30, more precisely the processor 32 therein can check an authenticity criterion which, for example, includes reference data for a document of value to be regarded as genuine, which data are specified and stored in the memory 34.
  • the central control and evaluation device 30, in particular the processor 32 therein controls the transport device 18, more precisely the switch 20, in such a way that the document of value 12, according to its determined authenticity, is deposited in the first output compartment 26 for documents of value recognized as genuine or into the second storage compartment 28 for documents of value recognized as not genuine.
  • the examination device 24 is in 2 shown in more detail. It comprises an illumination device 36 for illuminating at least part of a flat detection area 38 in the transport path 22, into which documents of value 12 to be examined arrive via the transport path 22, and a detection device 40.
  • a control device 42 for controlling the illumination device 36 and an evaluation device 44 for evaluation of signals from detection device 40 are combined in a programmed data processing device 46, which in this example has a processor (not shown) and a memory (not shown) in which a program that can be executed by the processor for controlling lighting device 36 and for evaluating the signals from detection device 40 is stored , includes.
  • the control and evaluation device 42 and 44 are connected to the central control and evaluation device 30 via a signal connection.
  • the lighting device 36 has a semiconductor component or a semiconductor chip 48, in which a matrix-shaped arrangement of at least 50 surface-emitting laser diodes 50 for emitting optical Radiation are formed in a given spectral range (cf. 7 ), and illumination optics 52.
  • the latter has beam-focusing optics 54 along an illumination beam path, a deflection element 56 for deflecting the optical radiation emerging from the beam-focusing optics into the detection area 38, and focusing optics 58 for focusing the deflected illumination radiation as an illumination pattern 60 onto an illumination field 62 in the detection area 38.
  • the spectral range is given by the type of value documents to be examined, more precisely security features formed on them.
  • luminescence properties of the documents of value are to be examined.
  • the spectral range is selected in such a way that the excitation radiation for luminescence of a genuine document of value lies within the spectral range.
  • the deflection element 56 deflects the excitation radiation, but is transparent to a good approximation for the luminescence radiation, so that it can pass through the deflection element 56 without deflection.
  • Optical radiation i.e. detection radiation
  • emanating from the detection region 38 or from a value document 12 therein is imaged to infinity by the focusing optics 58 and passes through the deflection element 56 without deflection into the detection device 40, which in the example has a detection optics 64, a detection optics by means of the detection optics 64 illuminated spectrographic device 66, for example an imaging optical grating, and detection elements 68 for detecting the intensity of generated by the spectrographic device 66 spatially separated spectral components of the detection radiation.
  • the detection elements 68 are for transmitting detection signals, which reflect the intensity of the spectral components impinging on them, to the evaluation device 44 connected to this via signal connections.
  • the detection device 40 therefore does not detect the detection radiation in a spatially resolved manner, so that there is an integral detection of the detection radiation.
  • the surface-emitting laser diodes 50 are arranged in parallel rows and columns running orthogonally to the rows in the semiconductor component 48 of the illumination device 36, the distance between next-neighboring laser diodes being 110 ⁇ m directly in front of the respective laser diode.
  • a schematic top view of a semiconductor component 70 with an edge emitting laser diode is shown.
  • a resonator 72 is formed parallel to the surface of the semiconductor component 70 or the wafer for the production of the semiconductor component, which is partially reflective at its edges 74 and 74' along a low-index lattice plane for the laser radiation to be generated and in which the laser active zone, ie a pn junction, the laser diode is located.
  • the decoupled laser radiation is, as in 3 indicated, orthogonal to edges 74 and 74' and parallel to the surface.
  • the beam profile ie the intensity distribution across a plane perpendicular to the beam direction, is in 4 shown schematically as a contour plot where x and y are in-plane Cartesian coordinates and the lines represent lines of equal intensity.
  • a saddle shape of the distribution can be clearly seen, which is therefore not rotationally symmetrical.
  • a surface-emitting laser diode 76 is shown schematically, in which a resonator 80 is arranged on a substrate 78, the is given by reflection structures or reflection layer structures 84, 84' running parallel to the substrate 78 and the wafer surface 82, for example in the form of interference layers.
  • the laser radiation is now emitted orthogonally to the surface 82 of the wafer or the substrate 78 .
  • the electrodes and the distribution of the current-carrying layers are not shown explicitly.
  • In 6 is in one 4 corresponding representation shown the beam profile of the laser beam emitted by the surface emitting laser diode. To a good approximation, it is rotationally symmetrical about the beam direction and is therefore very well suited for further beam shaping with simple illumination optics with spherical and planar optical elements, as in this exemplary embodiment.
  • the surface-emitting laser diodes 50 are formed and contacted in the semiconductor component 48 in such a way that they can be controlled individually and independently of one another.
  • the number, arrangement and area of the surface-emitting semiconductor diodes 50 and the illumination optics 52 are selected such that a coherent, planar illumination field with a surface area of at least 0.5 mm 2 is homogeneous in the detection region 38, i.e. with an intensity fluctuation based on the maximum intensity in the illumination area less than 20% can be illuminated.
  • the control device 42 is used for the separate activation of the laser diodes 50.
  • the examination device 24 is designed as a module for installation in a value-document processing device, which is constructed in such a way that, in principle, the documents of value 12 can be fed to it from opposite directions.
  • the control device 42 controls the laser diodes 50 in such a way that an illumination field 62 or an illumination pattern 60 is generated in the detection region 38, which spreads further across in the opposite direction to the transport direction T a detection field 86 (cf. 8 ) extends beyond than in the transport direction T.
  • the detection field 86 is defined in that, apart from scattered radiation, only optical radiation from the detection field 86 can reach the detection device 40 . What is thereby achieved is that an area on the document of value is exposed to the illumination or excitation radiation for a time which is longer than the time in which it lies in the detection field 86 . As a result, increased luminescence radiation can be achieved, which facilitates the detection of the luminescence.
  • the control device 42 is set up, here by appropriate programming, in such a way that, in response to a signal from the central control and evaluation device 30, which reflects the transport direction T in relation to the position of the examination device 24, it controls the laser diodes 50 in such a way that, depending on the transport direction T or the signal reflecting this of one of the two in 8 illustrated illumination pattern 60 or 61 is generated by the laser beams 88 in the detection area 38 . These are shifted relative to the chip 48 so that the effect described above occurs. For this purpose, only part of the laser diodes 50 is switched on, namely those in 8 left (a)) or right (b)) laser diodes, the others remain switched off. For the sake of clarity, the illumination optics 52 and their influence on the beam path are not shown in the figure. "Switched on” is understood to mean that these are operated either continuously or in a pulsed manner.
  • Another value document processing device in 9 differs from the first exemplary embodiment in that an image sensor 90 is now arranged along the transport path 22 upstream of an inspection device 24', which is used to capture images of value documents supplied and transmits the images via an image signal connection to a central control and evaluation device 30'. All other components are unchanged, so that the same reference numerals are used for these as in the first exemplary embodiment and the explanations for the first exemplary embodiment also apply here accordingly.
  • the central control and evaluation device 30' differs from the central control and evaluation device 30 in that it has an in 9 has an interface (not shown) for capturing the image data of the image sensor 90 and is designed, in the example by a corresponding program module, to determine from the image data the position of an area of the document of value to be examined more closely with the optical examination device 24', for example a specific feature area and output to the inspection device 24'.
  • the image sensor 90 therefore represents a position detection device in conjunction with the central control and evaluation device 30'.
  • the examination device 24 ′ differs from the examination device 24 of the first exemplary embodiment solely in that the control device is now different from the control device 42 . More precisely, the control device is designed to drive the laser diodes 50 differently than the control device 42. As in FIG 10 in a time sequence a), b), c) schematically in one 8 shown in a corresponding manner, the control device controls the laser diodes 50 in such a way that in the transport direction T progressively in the transport direction, front laser diodes 92 are switched on and rear laser diodes 94 are switched off in the transport direction.
  • the image sensor 90 can also be replaced by other devices by means of which the position of specific features to be examined can be identified.
  • a signal from an edge detector for detecting a leading edge of the document of value in the transport direction for example a light barrier or an ultrasonic sensor, can be used in conjunction with the known transport speed and the known position of the feature on the document of value to determine a suitable to generate a position signal.
  • a further value-document processing device differs from the first embodiment in that the value-document is now completely stopped for examining a value-document and, after stopping in the detection area, a start signal is sent to an examining device 24" is delivered, for which purpose the central control and evaluation device 30 is modified accordingly.
  • the examination device 24" distinguishes differs from the examination device 24 of the first exemplary embodiment solely by the design or programming of the control and evaluation device 42 or 44. The same reference symbols are therefore used for all other components as in the first exemplary embodiment and the explanations relating to these also apply here accordingly .
  • the control device is designed to control the laser diodes 50 in such a way that they produce an illumination pattern that changes over time during the illumination. More precisely, the laser diodes are controlled in such a way that the same illumination pattern 60" is moved over the document of value 12 at a constant speed in the example, as is shown in FIG 10 in the representation corresponding 11 in a time sequence a), b), c) is illustrated.
  • the reflected detection radiation is recorded by the detection device 40 and the evaluation device 44 at constant time intervals, with pulsed activation of the laser diodes, synchronously with the pulses, and stored in the evaluation device 44 according to the chronological order and thus the location on the document of value or sent directly to the transfer central control and evaluation.
  • an image of the document of value is obtained.
  • the corresponding image data possibly after intermediate storage in the evaluation device, are transmitted to the central control and evaluation device 30 and further evaluated there.
  • the illumination pattern 60" is included, as in 11 illustrated, rectangular slit-shaped.
  • the illumination pattern 60" is preferably so narrow that it can serve as a "virtual" entrance slit for the detection device or the spectrographic device, which then no longer needs to have an entrance slit.
  • Such an examination device can also be used advantageously for recognizing barcodes.
  • the detection device then needs to have only one detection element, but no spectrographic device.
  • a row of detection elements can be provided in the detection device, by means of which areas in the detection or detection area can be detected with spatial resolution along a row transverse to the direction of movement of the illumination pattern.
  • Such an examination device can in particular also be used to record two-dimensional barcodes.
  • the examination device differs from the examination device of the first exemplary embodiment by having a different detection device 40′′′ and a different control and evaluation device.
  • the detection device 40′′′ (cf. 12
  • the Detection elements 102 can have different sensitivities for optical radiation in the same spectral range, for example due to fluctuations in production or due to different aging.
  • the control device 42 is modified in relation to the control device 42, ie it is designed in such a way that it controls the laser diodes 50 in accordance with the Sensitivity of the detection elements 102 controls so that the differences in sensitivity are compensated. More precisely, this means that the laser diodes 50 are driven in such a way that all detection elements 102 emit the same detection signals.
  • the evaluation device 44" is designed to acquire the detection signals of the detection elements 102.
  • control device is designed to detect the detection signals of the detection elements for a given activation of the laser diodes by means of the evaluation device and to automatically change the activation of the laser diodes so that all detection elements emit the same detection signal.
  • this corresponds to a calibration of the examination device.
  • this process can be carried out automatically at predetermined intervals during the operating time of the examination device or each time the examination device is switched on or off, for which the control device can be designed accordingly, for example by appropriate programming.
  • Yet another exemplary embodiment differs from the first exemplary embodiment only in that the surface-emitting laser diodes 50 are formed and contacted in the semiconductor component in such a way that they can be controlled separately or independently of one another in at least two groups, in this exemplary embodiment line by line.
  • the control device 42 is modified in such a way that the groups, ie the rows here, are driven individually separately from one another, whereby the same illumination pattern as in the first exemplary embodiment can be obtained.
  • FIG. 13 the surface-emitting laser diodes 50 are now (cf. 13 ) are arranged on the lattice points of a hexagonal point lattice with a distance between nearest neighbors of less than 120 ⁇ m, in the example 100 ⁇ m, which means that an even greater homogeneity of the illumination pattern can be achieved.
  • the lighting device does not have the deflection element 56, so that a rectilinear lighting beam path is achieved.
  • the detection device is designed and arranged for the detection of optical radiation after transmission through the document of value. It has its own optics, which have the same properties as the focusing optics, for imaging at least one section of the document of value from the side not illuminated by the illumination device.
  • the document of value can also be illuminated at angles deviating from 90°, in which case the detection device may then be designed and arranged accordingly.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Radiation-Therapy Devices (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zur optischen Untersuchung von Wertdokumenten.
  • Unter Wertdokumenten werden dabei karten- oder insbesondere blattförmige Gegenstände verstanden, die beispielsweise einen monetären Wert oder eine Berechtigung repräsentieren und/oder nicht beliebig durch Unbefugte herstellbar sein sollen. Sie weisen daher nicht einfach herzustellende, insbesondere zu kopierende Merkmale auf, deren Vorhandsein ein Indiz für die Echtheit, d.h. die Herstellung durch eine dazu befugten Stelle, ist. Wichtige Beispiele für solche Wertdokumente sind Chipkarten, Coupons, Gutscheine, Schecks und insbesondere Banknoten.
  • Wertdokumente werden vielfach zur Erkennung ihres Typs und/ihres Zustands und/oder zur Prüfung auf Echtheit optisch untersucht. Prinzipiell könnte zur Untersuchung zwar das Umgebungslicht verwendet werden, jedoch sind solche Untersuchungen bedingt durch die Schwankungen in den Eigenschaften des Umgebungslichtes mit zu großen Fehlern behaftet.
  • Zur Untersuchung werden daher Vorrichtungen verwendet, die eine Beleuchtungseinrichtung zur Beleuchtung wenigstens eines Teils eines durch einen Erfassungsbereich der Vorrichtung gegebenen Abschnitt eines Wertdokuments mit optischer Strahlung vorgegebener Eigenschaften und eine Detektionseinrichtung zur Detektion von optischer Strahlung, die aus dem Erfassungsbereich, insbesondere einem von der Beleuchtungseinrichtung beleuchteten Wertdokument, kommt, besitzt.
  • Zur Beleuchtung können zwar Lichtquellen wie beispielsweise Halogenlampen eingesetzt werden, doch verbrauchen diese verglichen mit der in einem gewünschten Spektralbereich abgegebenen Strahlungsleistung viel Leistung und erfordern daher eine hinreichende Kühlung. Weiter haben sie den Nachteil, daß sie keine sehr große Lebensdauer besitzen. Darüber hinaus haben diese Lichtquellen einen nicht unerheblichen Platzbedarf.
  • In DE 10 2004 914 541 B3 ist ein optisches System zur Erzeugung eines beleuchteten Gebildes mit einer Länge auf einer Oberfläche eines relativ zum Gebilde bewegten Materials beschrieben, wobei zumindest ein Teil der Oberfläche des Materials reflektiv ist, wobei eine Beleuchtungseinrichtung mit mehreren zeilenförmig nebeneinander in einem Abstand von der Oberfläche des Materials angeordneten Lichtquellen Licht zur Erzeugung des Gebildes emittiert, wobei eine Erfassungseinrichtung mit mindestens einem in einem Abstand von der Oberfläche des Materials angeordneten Detektor von der Oberfläche des Materials remittiertes Licht erfasst, wobei das Gebilde als ein Beleuchtungsstreifen mit einer sich auf der Oberfläche des Materials orthogonal zur Länge erstreckenden Breite ausgebildet ist, wobei der Beleuchtungsstreifen außerhalb eines im direkten oder im umgelenkten Strahlengang liegenden Brennpunktes des von den Lichtquellen emittierten Lichts angeordnet ist, wobei die Beleuchtungseinrichtung aus mehreren aneinander gereihten Modulen jeweils mit mehreren nebeneinander angeordneten Lichtquellen besteht.
  • In EP 1 501162 A2 sind ein Phasenarray von oxidumgrenzten VCSELn und ein Verfahren zum Bilden des Phasenarrays von oxidumgrenzten VCSELn beschrieben. VCSEL in dem Array sind so ausgelegt, dass sie gleichzeitig adressiert werden, sodass die Strahlung mehrerer VCSELs verwendet werden kann, um die Lichtintensität an einem Punkt zu erhöhen. In Anwendungen, bei denen Strahlkohärenz von der VCSEL-Anordnung erwünscht ist, unterbrechen Kopplungsbereiche mit hoher Verstärkung die Kontinuität der Oxidwand, die jede VCSEL-Öffnung umgibt. Die Kopplungsbereiche mit hoher Verstärkung verbinden benachbarte VCSEL in dem VCSEL-Array, wodurch eine Modenkopplung zwischen benachbarten Lasern und der Ausgabe eines kohärenten Lichtstrahls ermöglicht wird.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung zur optischen Untersuchung von Wertdokumenten zu schaffen, die bei kompaktem Aufbau eine gute Beleuchtung eines zu untersuchenden Wertdokuments erlaubt, sowie ein entsprechendes Verfahren anzugeben.
  • Die Aufgabe wird gelöst durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 und insbesondere eine Vorrichtung zur optischen Untersuchung wenigstens eines Wertdokuments in einem Erfassungsbereich der Vorrichtung, mit einer Beleuchtungseinrichtung zur Beleuchtung des Wertdokuments in wenigstens einem Teil des Erfassungsbereichs, die wenigstens eine oberflächenemittierende Laserdiode besitzt, einer Steuereinrichtung zur Ansteuerung der Laserdiode, und einer Detektionseinrichtung zur Erfassung von optischer Strahlung aus wenigstens einem Teil des Erfassungsbereichs.
  • Die Aufgabe wird weiterhin gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 13 und insbesondere ein Verfahren zur optischen Untersuchung eines Wertdokuments in einem Erfassungsbereich, bei dem das Wertdokument mit wenigstens einer oberflächenemittierenden Laserdiode beleuchtet wird.
  • Bei dem Verfahren kann vorzugsweise optische Strahlung aus wenigstens einem Teil des Erfassungsbereichs erfaßt werden, die durch das Beleuchten des Wertdokuments auftritt. Dabei kann es sich insbesondere um in dem Wertdokument angeregte Lumineszenzstrahlung, von dem Wertdokument zurückgeworfene oder durch dieses hindurchgegangene optische Strahlung handeln.
  • Die Detektionseinrichtung kann dementsprechend relativ zu der Beleuchtungseinrichtung und dem Erfassungsbereich insbesondere so angeordnet sein, daß deren Strahlungseintritt sich auf der gleichen Seite des Wertdokuments befindet, von der es beleuchtet wird, oder auf der gegenüberliegenden Seite. Das heißt, daß die Detektionseinrichtung so angeordnet sein kann, daß eine Untersuchung mit Auf- oder Durchlicht bzw. in Reflexion oder Transmission möglich ist.
  • Die Untersuchung kann prinzipiell erfolgen, wenn das Wertdokument relativ zu der Untersuchungsvorrichtung und insbesondere der Beleuchtungseinrichtung ruht. Insbesondere bei Verwendung in einer Wertdokumentbearbeitungsvorrichtung, in der nacheinander Wertdokumente automatisch untersucht werden, kann das Wertdokument jedoch auch während der Beleuchtung bewegt sein. Gegenstand der Erfindung ist daher auch eine Vorrichtung zur Bearbeitung von Wertdokumenten, im Folgenden auch als Wertdokumentbearbeitungsvorrichtung bezeichnet, mit einer erfindungsgemäßen Untersuchungsvorrichtung und einer Transporteinrichtung zur Bewegung eines Wertdokuments durch den Erfassungsbereich mit einer vorgegebenen Transportgeschwindigkeit. Die Transportgeschwindigkeit kann dabei insbesondere in Abhängigkeit von Eigenschaften der Untersuchungsvorrichtung oder der Transporteinrichtung vorgegeben sein. Bei einer sequentiellen Detektion kann so ein Bild des durch den Erfassungsbereich bewegten Abschnitts des Wertdokuments erhalten werden.
  • Die Erfindung wendet sich völlig ab von den konventionellen Arten der Beleuchtung. So ist es zwar denkbar, zur Beleuchtung statt Halogenlampen konventionelle kantenemittierende Laserdioden (sog. "edge emitting laser diodes") einzusetzen, doch strahlen diese optische Strahlung mit einer sehr inhomogenen und nicht einfach symmetrischen Intensitätsverteilung ab. Dies kann die Untersuchung des Wertdokuments beeinträchtigen.
  • Erfindungsgemäß werden zur Beleuchtung oberflächenemittierende Laserdioden verwendet. Unter einer oberflächenemittierenden Laserdiode wird im Rahmen der vorliegenden Erfindung genauer eine vertikal oberflächenemitterende Laserdiode bzw. insbesondere ein im Englischen auch als "vertical cavity surface emitting laser" (VCSEL) bezeichnetes Halbleiterbauelement verstanden, dessen Laserresonator mit seiner Auskoppelrichtung, in der Strahlung aus dem Laserresonator auskoppelbar ist, wenigstens näherungsweise orthogonal zu der Oberfläche des Bauelements bzw. Chips ausgerichtet ist. Insbesondere kann der Laserresonator solcher oberflächenemittierender Laserdioden über wenigstens näherungsweise parallel zu der Oberfläche verlaufende Reflexionseinrichtungen, beispielsweise Reflexionsschichten bzw. -schichtsysteme verfügen.
  • Die Verwendung solcher oberflächenemittierender Laserdioden bietet überraschenderweise für die Verwendung in einer Vorrichtung zur Untersuchung von Wertdokumenten, im Folgenden auch Untersuchungsvorrichtung genannt, gleich mehrere Vorteile.
  • Weiter können diese mit, verglichen mit kantenemittierenden Laserdioden, großen Austrittsfenstern hergestellt werden, so daß der abgestrahlte Strahl durch Beugung an den Rändern nur wenig oder nicht beeinflußt wird.
  • Darüber hinaus verfügen oberflächenemittierende Laserdioden über ein in guter Näherung rotationssymmetrisches Strahlprofil, wodurch eine Strahlformung mit einfachen optischen Elementen gegenüber kantenemittierenden Laserdioden wesentlich erleichtert wird.
  • Weiter wird bei oberflächenemittierende Laserdioden der Emissionswellenlängenbereich stärker durch den Laserresonator bestimmt, als bei kantenemittierenden Laserdioden. Dies läßt schmalere Emissionswellenlängenbereiche zu und führt zu einer höheren thermischen Stabilität des Emissionswellenlängenbereichs.
  • Vorzugsweise beträgt die die Halbwertsbreite (FWHM) des Emissionsspektrums weniger als 1 nm.
  • Auch ist die räumliche Kohärenz der abgegebenen Strahlung geringer als bei kantenemittierenden Laserdioden, so daß auf einem mit der Laserdiode beleuchteten Wertdokument Speckle-Muster weitgehend oder ganz vermieden werden können.
  • Bedingt durch die günstige Strahlform der oberflächenemittierenden Laserdioden können diese in vorteilhafter Weise zu Beleuchtungszwecken miteinander kombiniert werden, daß also bei dem Verfahren neben der Laserdiode wenigstens eine weitere oberflächenemittierende Laserdiode zur Beleuchtung eingesetzt wird. Es ist daher bei der Untersuchungsvorrichtung vorgesehen, daß die Beleuchtungseinrichtung zur Erzeugung eines vorgegebenen Beleuchtungsmusters im Erfassungsbereich wenigstens eine weitere oberflächenemittierende Laserdiode besitzt und die Steuereinrichtung zur Ansteuerung der weiteren Laserdiode ausgebildet ist.
  • Die Laserdioden sind in einem Bauelement oder Chip ausgebildet. Eine solche Ausbildung ist nur bei oberflächenemittierenden Laserdioden einfach möglich und hat den Vorteil, daß die Herstellung auch einer großen Anordnung von Laserdioden einfach erfolgen kann. Ein weiterer Vorteil ist darin zu sehen, daß beim Zusammenbau der Untersuchungsvorrichtung nur ein Bauteil als Strahlungsquelle gehandhabt zu werden braucht, was die Herstellung wesentlich vereinfacht.
  • Besonders bevorzugt sind auf einem Bauelement mehr als 50 Laserdioden angeordnet.
  • Die Ansteuerung der Laserdioden mittels der Steuereinrichtung kann auf unterschiedliche Art und Weise erfolgen.
  • Die Beleuchtungseinrichtung verfügt über wenigstens zwei Gruppen von oberflächenemittierenden Laserdioden, die die zuvor genannten oberflächenemittierenden Laserdioden umfassen, und die Laserdioden jeweils einer Gruppe sind unabhängig von denen der anderen Gruppe ansteuerbar. Die Steuereinrichtung ist zur Ansteuerung der einen Gruppe von Laserdioden getrennt von der Ansteuerung der anderen Gruppen von Laserdioden ausgebildet. Bei dem Verfahren kann dann das Wertdokument mit wenigstens zwei Gruppen von oberflächenemittierenden Laserdioden beleuchtet werden, die die Laserdiode enthalten, wobei die Laserdioden der einen Gruppe getrennt von denen der anderen Gruppe angesteuert werden. Damit ist durch Ansteuerung der Gruppen insbesondere eine zeitliche und räumliche Variation des Beleuchtungsmusters möglich, was den Vorteil einer größeren Variabilität der Beleuchtung bietet. Unter einer getrennten oder unabhängigen Ansteuerung oder Ansteuerbarkeit wird hierbei verstanden, daß die Laserdioden eine solche Ansteuerung erlauben. Weiterhin muß die Steuereinrichtung die Gruppen unabhängig voneinander ansteuern können, wobei natürlich, beispielsweise durch eine Programmierung der Steuereinrichtung, eine Kopplung der Ansteuerung der beiden Gruppen von Laserdioden erfolgen kann.
  • Durch die Anordnung der Laserdioden und deren Ansteuerung kann das Beleuchtungsmuster in seiner Form weitgehend bestimmt sein, wenn nur eine einfache Beleuchtungsoptik, d.h. insbesondere eine Beleuchtungsoptik mit wenigstens näherungsweise um eine, gegebenenfalls durch Umlenkelemente gefaltete, optische Achse im Bereich des Strahlengangs rotationssymmetrischen optischen Bauelementen wie zum Beispiel Linsen, verwendet wird. Die Verwendung nur einer solchen Beleuchtungsoptik vereinfacht und verbilligt die Herstellung der Beleuchtungseinrichtung.
  • Eine Beleuchtungseinrichtung mit mehreren in einem Chip bzw. Bauelement ausgebildeten oberflächenemittierenden Laserdioden kann aufgrund der Form des Strahlprofils der Laserdioden vorteilhaft zur Erzeugung eines flächigen Beleuchtungsmusters verwendet werden. Hierzu ist die Untersuchungsvorrichtung vorzugsweise dazu ausgebildet, eine vorgegebene Fläche mit einem Beleuchtungsmuster zu beleuchten, dessen ortsabhängige Intensitätsvariation über die von den Laserdioden beleuchtete Fläche kleiner als 20% der maximalen Intensität des Beleuchtungsmusters ist. Bei dem Verfahren können die Laserdioden so angesteuert werden, daß mit den Laserdioden eine vorgegebene Fläche des Wertdokuments mit einem Beleuchtungsmuster beleuchtet wird, dessen ortsabhängige Intensitätsvariation über die Fläche kleiner als 20% der maximalen Intensität des Beleuchtungsmusters ist. Eine solche Beleuchtung ist besonders homogen und erleichtert so eine sichere Detektion von Merkmalen. Vorzugsweise besitzt dabei die vorgegebene Fläche einen Inhalt größer als 0,5 mm2.
  • Prinzipiell kann diese Homogenität durch Verwendung geeigneter optischer Bauelemente oder Homogenisierungseinrichtungen in der Untersuchungsvorrichtung erzielt werden. Vorzugsweise sind die oberflächenemittierenden Laserdioden jedoch relativ zueinander dazu angeordnet, eine vorgegebene Fläche mit einem Beleuchtungsmuster zu beleuchten, daß das mit diesen erzeugte Beleuchtungsmuster eine ortsabhängige Intensitätsvariation über die Fläche kleiner als 20% der maximalen Intensität des Beleuchtungsmusters aufweist. Hierdurch kann die Verwendung besonderer optischer Bauelemente und insbesondere die von Homogenisierungseinrichtungen wie beispielsweise Streuscheiben, diffraktiv optischen Elementen oder Lichtleiter, die die Intensität der abgegebenen optischen Strahlung herabsetzen, vermieden werden. Besonders bevorzugt besitzt die Untersuchungsvorrichtung daher keine Homogenisierungselemente wie beispielsweise Streuscheiben, Lichtleiter oder Mikrolinsenanordnungen zur Homogenisierung.
  • Der Mittenabstand nächstbenachbarter oberflächenemittierender Laserdioden der Beleuchtungseinrichtung ist hierzu vorzugsweise kleiner als 150 µm
  • Gemäß einer ersten Variante können bei der Untersuchungsvorrichtung die Laserdioden in Matrixform angeordnet sein. Insbesondere sind sie dann auf den Gitterpunkten eines Rechteck- oder Quadratgitters angeordnet. Dies erlaubt eine besonders einfache Herstellung eines Laserdiodenfeldes auf einem Chip, insbesondere, da bei einer Einzelansteuerbarkeit der Laserdioden die entsprechenden Signalverbindungen einfach ausgelegt werden können. Darüber hinaus kann bei dieser Anordnung eine besonders einfache Ansteuerung erfolgen.
  • Bei einer zweiten Variante der Untersuchungsvorrichtung sind die Laserdioden auf den Punkten eines hexagonalen Punktgitters angeordnet. Diese Anordnung hat den Vorteil, daß auf einfache Weise eine besonders dichte Anordnung der Laserdioden erreicht und damit ein besonders homogenes Beleuchtungsmuster ermöglicht wird.
  • Wie bereits ausgeführt, kann das Beleuchtungsmuster im Erfassungsbereich bzw. auf dem Wertdokument zumindest in seiner Form im Wesentlichen durch die Anordnung der abstrahlenden Laserdioden bestimmt sein. Bei der Untersuchungsvorrichtung ist daher die Steuereinrichtung vorzugsweise dazu ausgebildet, jeweils nur einen Teil der Laserdioden zur Abgabe optischer Strahlung anzusteuern, um ein vorgegebenes Beleuchtungsmuster zu erzeugen. Dementsprechend werden bei dem Verfahren vorzugsweise die Laserdioden zur Abgabe optischer Strahlung angesteuert, so daß ein vorgegebenes Beleuchtungsmuster erzeugt wird. Diese Ausführungsform hat den Vorteil, daß je nach Ausbildung zu einer Änderung des Beleuchtungsmusters nur eine Änderung der Steuereinrichtung notwendig ist. Ist diese programmierbar, was bevorzugt ist, braucht sogar nur das Programm geändert zu werden.
  • Ein höhere Flexibilität wird erreicht, wenn bei einer bevorzugten Ausführungsform der Untersuchungsvorrichtung die Steuereinrichtung dazu ausgebildet ist, in Abhängigkeit von einem Signal oder in der Steuereinrichtung gespeicherter Daten die Laserdioden so anzusteuern, daß in Abhängigkeit von dem Signal oder den Daten in dem Erfassungsbereich dasselbe Beleuchtungsmuster an verschiedenen vorgegebenen Orten erzeugbar ist. Bei dem Verfahren können dann die Laserdioden so in Abhängigkeit von einem Signal oder Daten angesteuert werden, daß in Abhängigkeit von dem Signal oder den Daten dasselbe Beleuchtungsmuster an einem von wenigstens zwei verschiedenen Orten erzeugbar ist. Das Signal kann beispielsweise über eine Schnittstelle von einem externen Dateneingabegerät eingelesen oder von einer Einrichtung der Wertdokumentbearbeitungsvorrichtung, die die Untersuchungsvorrichtung enthält, übermittelt werden. Die Ansteuerung der Laserdioden kann insbesondere darin bestehen, daß nur ein Teil der Laserdioden ein- oder ausgeschaltet wird.
  • So kann bei einer Ausführungsform der Untersuchungsvorrichtung insbesondere die Steuereinrichtung die oberflächenemittierenden Laserdioden so ansteuern, daß eine Ausdehnung eines Detektionsbereichs der Detektionseinrichtung in Transportrichtung kleiner als die Ausdehnung des Beleuchtungsmusters in Transportrichtung ist und daß sich das Beleuchtungsmuster in Transportrichtung gesehen in Bezug auf den Detektionsbereich weiter erstreckt als gegen die Transportrichtung. Unter dem Detektionsbereich wird dabei derjenige Abschnitt des Erfassungsbereichs verstanden, aus dem, insbesondere bis auf Streustrahlung allein, die Detektionseinrichtung optische Strahlung zur Detektion empfangen kann. Ein Signal oder Daten über die Transportrichtung kann bzw. können der Steuereinrichtung in den oben angegebenen Weisen zur Verfügung gestellt werden, die die Ansteuerung der Laserdioden in Abhängigkeit von dem Signal oder den Daten vornimmt. Damit kann gleichzeitig zweierlei erreicht werden. Erstens kann durch die größere Erstreckung des Beleuchtungsmusters in Transportrichtung bei einer Untersuchung, insbesondere einer Lumineszenzuntersuchung, auf einen vorgegebenen Bereich des Wertdokuments, beispielsweise eine Spur mit Merkmalsstoffen, eine größere Menge optischer Strahlung, d.h. mehr Energie, gestrahlt werden, so daß die Stärke der Detektionsstrahlung erhöht werden kann. Zweitens kann die Einstellung der Untersuchungsvorrichtung, genauer der Lage des Beleuchtungsmusters relativ zu dem Detektionsbereich, bei Einbau in die Wertdokumentbearbeitungsvorrichtung in Abhängigkeit von der Transporteinrichtung automatisch eingestellt werden, indem entsprechende Signale beispielsweise von einem Antrieb der Transporteinrichtung oder einer anderen Einrichtung der Wertdokumentbearbeitungsvorrichtung an die Steuereinrichtung übermittelt oder über eine Schnittstelle manuell eingegeben werden. Die Untersuchungsvorrichtung kann daher als einfach konfigurierbares Modul ausgelegt und eingesetzt werden.
  • Bei der soeben geschilderten Ausführungsform kann die Ansteuerung insbesondere zwischen zwei oder mehr Beleuchtungsmusterlagen umschaltbar sein.
  • Alternativ oder in Kombination kann bei der Untersuchungsvorrichtung die Steuereinrichtung dazu ausgebildet sein, die Laserdioden so anzusteuern, daß in dem Erfassungsbereich ein sich während der Beleuchtung mit der Zeit änderndes Beleuchtungsmuster erzeugt wird. Bei dem Verfahren ist es dann bevorzugt, daß die Laserdioden so angesteuert werden, daß ein sich während der Beleuchtung mit der Zeit änderndes Beleuchtungsmuster erzeugt wird. Die zeitliche Änderung kann dabei insbesondere vorgegeben sein, beispielsweise durch eine entsprechende Ausbildung und/oder Programmierung der Steuereinrichtung.
  • Das Beleuchtungsmuster kann dabei in beliebiger Art und Weise geändert werden, insbesondere kann die Form des Beleuchtungsmusters verändert werden. Es ist jedoch für viele Anwendungen bevorzugt, daß die Laserdioden so angesteuert werden, daß ein vorgegebenes Beleuchtungsmuster in einer vorgegebenen Richtung mit einer vorgegebenen Geschwindigkeit bewegt wird. Bei der Untersuchungsvorrichtung ist dann die Steuereinrichtung dazu ausgebildet, die Laserdioden so anzusteuern, daß ein vorgegebenes Beleuchtungsmuster in einer vorgegebenen Richtung mit einer vorgegebenen Geschwindigkeit bewegt wird. Die Bewegung braucht dabei nur für eine vorgegebene Zeitspanne zu erfolgen, beispielsweise solange, bis der Erfassungsbereich von dem Beleuchtungsmuster einmal überstrichen wurde. Weiter wird vorausgesetzt, daß die Laserdioden zur Erzeugung des Beleuchtungsmusters geeignet angeordnet sind. Diese Ausführungsform hat eine Reihe von Vorteilen, da sie zu unterschiedlichen Zwecken einsetzbar ist.
  • Diese Ausführungsform ermöglicht es insbesondere, sequentiell ein ein- oder zweidimensionales Bild zu erfassen. Insbesondere braucht in diesem Fall bei der Untersuchungsvorrichtung die Detektionseinrichtung nur so ausgebildet zu sein, daß sie aus dem Erfassungsbereich kommende optische Strahlung integral oder nur eindimensional in einer Richtung quer zur Bewegungsrichtung des Beleuchtungsmusters detektiert. Unter einer integralen Detektion wird dabei eine zu einem vorgegebenen Zeitpunkt nicht ortsauflösende Detektion verstanden. Durch aufeinanderfolgende Beleuchtung verschiedener Orte bei der Bewegung des Beleuchtungsmusters und eine entsprechende sequentielle Detektion kann so ein Bild erzeugt werden, indem die bei jeder Einzeldetektion erfaßten Daten oder Signale zu dem Bild zusammengesetzt werden.
  • Um eine möglichst einfach zu erzeugende, vollständige Beleuchtung zu ermöglichen, kann die Untersuchungsvorrichtung insbesondere dazu ausgebildet sein, ein rechteckiges, insbesondere linienförmiges Beleuchtungsmuster zu erzeugen.
  • Die Untersuchungsvorrichtung kann insbesondere zur Erfassung von ein- oder zweidimensionalen Barcodes durch Bewegung des Beleuchtungsmusters verwendet werden.
  • Prinzipiell kann das Wertdokument bei der Erfassung ruhen. Zur schnelleren Untersuchung einer größeren Anzahl von Wertdokumenten mit nur einer Untersuchungsvorrichtung ist es jedoch bei dem Verfahren bevorzugt, daß das Wertdokument während der Beleuchtung in einer vorgegebenen Transportrichtung und mit einer vorgegebenen Transportgeschwindigkeit bewegt wird.
  • Die Bewegungsgeschwindigkeit des Beleuchtungsmusters kann sich dabei prinzipiell von der Transportgeschwindigkeit unterscheiden.
  • Bei dem Verfahren wird jedoch vorzugsweise das Wertdokument in einer Transportrichtung mit einer Transportgeschwindigkeit bewegt, wobei die Richtung die Transportrichtung und die Geschwindigkeit die Transportgeschwindigkeit ist. Bei einer besonders bevorzugten Ausführungsform der Bearbeitungsvorrichtung zur Bearbeitung von Wertdokumenten ist dann die Transporteinrichtung zur Bewegung eines Wertdokuments durch den Erfassungsbereich mit einer vorgegebenen Transportgeschwindigkeit ausgebildet, und die Steuereinrichtung ist dazu ausgebildet, die Laserdioden so anzusteuern, daß das Beleuchtungsmuster mit der Transportgeschwindigkeit in Transportrichtung bewegt wird. Diese Ausführungsform erlaubt in besonders vorteilhafter Weise eine Verfolgung eines Bereichs des untersuchten Wertdokuments, insbesondere eines optischen Sicherheitsmerkmals, während der Detektion, so daß eine Untersuchung auch bei sehr hohen Transportgeschwindigkeiten möglich ist.
  • Allgemein, aber insbesondere auch in Verbindung mit der zuletzt beschriebenen Ausführungsform, ist es bei der Untersuchungsvorrichtung möglich, daß die Steuereinrichtung dazu ausgebildet ist, in Abhängigkeit von Lagesignalen einer Lagedetektionseinrichtung ein Beleuchtungsmuster in einem vorgegebenen Teil des Erfassungsbereichs zu erzeugen. Bei dem Verfahren ist es dementsprechend bevorzugt, daß die Laserdioden so angesteuert werden, daß in Abhängigkeit von Lagesignalen einer Lagedetektionseinrichtung ein Beleuchtungsmuster in einem vorgegebenen Teil des Erfassungsbereichs erzeugt wird. Diese Ausführungsform hat den Vorteil, daß mittels einer Einrichtung zur Bestimmung der Lage eines Wertdokuments bzw. der Lage eines optisch zu untersuchenden Merkmals das die Lage, insbesondere relativ zu der Untersuchungsvorrichtung, wiedergebende Lagesignal erzeugt werden kann und daß in Abhängigkeit von diesem Lagesignal genau dieses Merkmal beleuchtet und untersucht werden kann. Dadurch kann die bei einer Untersuchung des gesamten Wertdokuments anfallende Menge an Daten stark reduziert werden, so daß eine Untersuchung schneller erfolgen kann und eine Auswerteeinrichtung zur Auswertung der Detektionsergebnisse einfacher aufgebaut sein kann. Insbesondere in dem Fall, daß die Detektionseinrichtung zur ortsaufgelösten Erfassung von optischer Strahlung in wenigstens einem vorgegebenen Spektralbereich ausgebildet ist, kann bei der Verfolgung des Merkmals eine erhebliche Datenreduktion und eine Erhöhung der Datenverarbeitungsgeschwindigkeit erzielt werden.
  • Alternativ zu oder in Kombination mit den zuvor beschriebenen Ausführungsformen können bei der Untersuchungsvorrichtung die Detektionseinrichtung zur ortsaufgelösten Erfassung von optischer Strahlung in wenigstens einem vorgegebenen Spektralbereich ausgebildet und die Steuereinrichtung dazu ausgebildet sein, die Laserdioden so anzusteuern, daß eine Variation einer Empfindlichkeit der Detektionseinrichtung für die optische Strahlung in dem Spektralbereich in Abhängigkeit vom Ort wenigstens teilweise kompensiert wird. Bei dem Verfahren ist es entsprechend bevorzugt, daß die Laserdioden so angesteuert werden, daß eine Variation einer Empfindlichkeit einer Detektionseinrichtung zur ortsaufgelösten Erfassung von optischer Strahlung in wenigstens einem vorgegebenen Spektralbereich in Abhängigkeit vom Ort wenigstens teilweise kompensiert wird. Auf diese Weise kann, selbst nach längerer Zeit, eine örtliche Anpassung der Beleuchtungsstärke an die Empfindlichkeit der Detektionseinrichtung erfolgen, so daß auch dauerhaft eine genaue optische Untersuchung ermöglicht wird.
  • Im Rahmen der Erfindung können die Laserdioden als kontinuierlich leuchtende oder gepulste Strahlungsquellen betrieben werden, wozu dann die Steuereinrichtung entsprechend ausgebildet ist.
  • Die Erfindung wird im folgenden noch näher beispielhaft anhand der Zeichnungen erläutert. Es zeigen:
  • Fig. 1
    eine schematische Darstellung einer Wertdokumentbearbeitungsvorrichtung nach einer ersten bevorzugten Ausführungsform;
    Fig. 2
    eine schematische Darstellung einer Untersuchungsvorrichtung der Wertdokumentbearbeitungsvorrichtung in Fig. 1,
    Fig. 3
    eine schematische Draufsicht auf eine kantenemittierende Laserdiode,
    Fig. 4
    eine schematische Darstellung eines Strahlprofils der kantenemittierenden Laserdiode in Fig. 3 in Form eines Konturdiagramms
    Fig. 5
    eine schematische seitlichen Schnittansicht einer oberflächenemittierenden Laserdiode,
    Fig. 6
    eine schematische Darstellung eines Strahlprofils der oberflächenemittierenden Laserdiode in Fig. 5 in Form eines Konturdiagramms,
    Fig. 7
    eine schematische Draufsicht auf einen Chip der Untersuchungsvorrichtung in Fig. 2 mit einer matrixförmigen Anordnung von oberflächenemittierenden Laserdioden,
    Fig. 8
    eine seitliche Ansicht und eine Draufsicht für zwei mögliche Beleuchtungen durch Ansteuerungen der Laserdioden in Fig. 7,
    Fig. 9
    eine schematische Darstellung einer anderen Wertdokumentbearbeitungsvorrichtung
    Fig. 10
    eine schematische Darstellung einer zeitlichen Entwicklung einer Beleuchtung eines in der Wertdokumentbearbeitungsvorrichtung in Fig. 9 transportierten Wertdokuments, bei der das Beleuchtungsmuster dem Wertdokument nachgeführt wird, in einer seitlichen Ansicht und einer Draufsicht,
    Fig. 11
    eine schematische Darstellung einer zeitlichen Entwicklung einer Beleuchtung eines ruhenden Wertdokuments, bei der das Beleuchtungsmuster über das Wertdokument geführt wird, in einer seitlichen Ansicht und einer Draufsicht,
    Fig. 12
    eine schematische Darstellung eines Teils einer Detektionseinrichtung einer Untersuchungsvorrichtung nach einer weiteren Ausführungsform der Erfindung, und
    Fig. 13
    eine schematische Draufsicht auf einen Chip der Untersuchungsvorrichtung in Fig. 2 mit einer Anordnung von oberflächenemittierenden Laserdioden auf Gitterpunkten eines hexagonalen Punktgitters.
  • Eine Wertdokumentbearbeitungsvorrichtung 10 in Fig. 1, die eine Vorrichtung zur optischen Untersuchung von Wertdokumenten 12, im Beispiel von Banknoten umfaßt, verfügt über ein Eingabefach 14 für die Eingabe von zu bearbeitenden Wertdokumenten 12, einen Vereinzler 16, der auf Wertdokumente 12 in dem Eingabefach 14 zugreifen kann, eine Transporteinrichtung 18 mit einer Weiche 20, und entlang eines durch die Transporteinrichtung 18 gegebenen Transportpfades 22 eine vor der Weiche 20 angeordnete Vorrichtung 24 zur Untersuchung von Wertdokumenten, sowie nach der Weiche 20 ein erstes Ausgabefach 26 für als echt erkannte Wertdokumente und ein zweites Ausgabefach 28 für als nicht echt erkannte Wertdokumente. Eine zentrale Steuer- und Auswerteeinrichtung 30 ist wenigstens mit der Untersuchungsvorrichtung 24 und der Weiche 20 über Signalverbindungen verbunden und dient zur Ansteuerung der Untersuchungsvorrichtung 24, der Auswertung von Prüfsignalen der Untersuchungsvorrichtung 24 sowie zur Ansteuerung wenigstens der Weiche 20 in Abhängigkeit von dem Ergebnis der Auswertung der Prüfsignale.
  • Die Untersuchungsvorrichtung 24 in Verbindung mit der Steuer- und Auswerteeinrichtung 30 dient zur Erfassung von optischen Eigenschaften der Wertdokumente 12 und Bildung von diese Eigenschaften wiedergebenden Prüfsignalen.
  • Während des Vorbeitransports eines Wertdokuments 12 mit einer vorgegebenen Transportgeschwindigkeit in einer durch den Transportpfad 22 vorgegebenen Transportrichtung T erfaßt die Untersuchungsvorrichtungen 24 optische Eigenschaftswerte des Wertdokuments, wobei die entsprechenden Prüfsignale gebildet werden.
  • Aus den Prüfsignalen der Untersuchungsvorrichtung 24 ermittelt die zentrale Steuer- und Auswerteeinrichtung 30 bei einer Prüfsignalauswertung, ob das Wertdokument nach einem vorgegebenen Echtheitskriterium für die Prüfsignale als echt erkannt wird oder nicht.
  • Die zentrale Steuer- und Auswerteeinrichtung 30 verfügt dazu insbesondere neben entsprechenden Schnittstellen für die Sensoren über einen Prozessor 32 und einen mit dem Prozessor 32 verbundenen Speicher 34, in dem wenigstens ein Computerprogramm mit Programmcode gespeichert ist, bei dessen Ausführung der Prozessor 32 die Vorrichtung steuert bzw. die Prüfsignale auswertet und entsprechende der Auswertung die Transporteinrichtung 18 ansteuert.
  • Insbesondere kann die zentrale Steuer- und Auswerteeinrichtung 30, genauer der Prozessor 32 darin, ein Echtheitskriterium prüfen, in das beispielsweise Referenzdaten für ein als echt anzusehendes Wertdokument eingehen, die vorgegeben und in dem Speicher 34 gespeichert sind. In Abhängigkeit von der ermittelten Echtheit oder Nichtechtheit steuert die zentrale Steuer- und Auswerteeinrichtung 30, insbesondere der Prozessor 32 darin, die Transporteinrichtung 18, genauer die Weiche 20, so an, daß das Wertdokument 12 entsprechend seiner ermittelten Echtheit zur Ablage in das erste Ausgabefach 26 für als echt erkannte Wertdokumente oder in das zweite Ablagefach 28 für als nicht echt erkannte Wertdokumente transportiert wird.
  • Die Untersuchungsvorrichtung 24 ist in Fig. 2 genauer dargestellt. Sie umfaßt eine Beleuchtungseinrichtung 36 zur Beleuchtung wenigstens eines Teils eines ebenen Erfassungsbereichs 38 in dem Transportpfad 22, in den über den Transportpfad 22 zu untersuchende Wertdokumente 12 gelangen, und eine Detektionseinrichtung 40. Eine Steuereinrichtung 42 zur Ansteuerung der Beleuchtungseinrichtung 36 und eine Auswerteinrichtung 44 zur Auswertung von Signalen der Detektionseinrichtung 40 sind in einer programmierten Datenverarbeitungseinrichtung 46 zusammengefaßt, die in diesem Beispiel einen nicht gezeigten Prozessor und einen nicht gezeigten Speicher, in dem ein von dem Prozessor ausführbares Programm zur Steuerung der Beleuchtungseinrichtung 36 und zur Auswertung der Signale der Detektionseinrichtung 40 gespeichert ist, umfaßt. Die Steuer- und die Auswerteeinrichtung 42 bzw. 44 sind über eine Signalverbindung mit der zentralen Steuer- und Auswerteeinrichtung 30 verbunden.
  • Die Beleuchtungseinrichtung 36 verfügt über ein Halbleiterbauelement bzw. einen Halbleiterchip 48, in dem eine matrixförmige Anordnung von wenigstens 50 oberflächenemittierenden Laserdioden 50 zur Abgabe optischer Strahlung in einem vorgegebenen Spektralbereich ausgebildet sind (vgl. Fig. 7), und eine Beleuchtungsoptik 52. Letztere besitzt entlang eines Beleuchtungsstrahlengangs eine strahlbündelnde Optik 54, ein Umlenkelement 56 zur Umlenkung der aus der strahlbündelnden Optik austretenden optischen Strahlung in den Erfassungsbereich 38 und eine Fokussieroptik 58 zu Fokussierung der umgelenkten Beleuchtungsstrahlung als Beleuchtungsmuster 60 auf ein Beleuchtungsfeld 62 in dem Erfassungsbereich 38.
  • Der Spektralbereich ist durch die Art der zu untersuchenden Wertdokumente, genauer auf diesen gebildete Sicherheitsmerkmale, gegeben. In diesem Beispiel sollen Lumineszenzeigenschaften der Wertdokumente untersucht werden. Dazu ist der Spektralbereich so gewählt, daß die Anregungsstrahlung für Lumineszenz eines echten Wertdokuments innerhalb des Spektralbereichs liegt. Das Umlenkelement 56 ist für die Anregungsstrahlung umlenkend, jedoch für die Lumineszenzstrahlung in guter Näherung transparent, so daß diese durch das Umlenkelement 56 ohne Umlenkung hindurchtreten kann.
  • Aus dem Erfassungsbereich 38 bzw. von einem Wertdokument 12 darin ausgehende optische Strahlung, d.h. Detektionsstrahlung, wird durch die Fokussieroptik 58 ins Unendliche abgebildet und gelangt durch das Umlenkelement 56 ohne Umlenkung in die Detektionseinrichtung 40, die im Beispiel eine Detektionsoptik 64, eine mittels der Detektionsoptik 64 beleuchtete spektrographische Einrichtung 66, beispielsweise ein abbildendes optisches Gitter, und Detektionselemente 68 zur Erfassung der Intensität von durch die spektrographische Einrichtung 66 erzeugten räumlich getrennten Spektralkomponenten der Detektionsstrahlung umfaßt. Die Detektionselemente 68 sind zur Übermittlung von Detektionssignalen, die die Intensität der auf sie auftreffenden Spektralkomponenten wiedergeben, an die Auswerteeinrichtung 44 mit dieser über Signalverbindungen verbunden. Die Detektionseinrichtung 40 erfaßt die Detektionsstrahlung daher nicht ortsaufgelöst, so daß eine integrale Erfassung der Detektionsstrahlung gegeben ist.
  • Wie in Fig. 7 veranschaulicht sind in dem Halbleiterbauelement 48 der Beleuchtungseinrichtung 36 die oberflächenemittierenden Laserdioden 50 in parallelen Zeilen und zu den Zeilen orthogonal verlaufenden Spalten angeordnet, wobei der Abstand nächstbenachbarter Laserdioden 110 µm unmittelbar vor der jeweiligen Laserdiode beträgt.
  • Zur klaren Unterscheidung von herkömmlichen kantenemittierenden Laserdioden ist in Fig. 3 eine schematische Draufsicht auf ein Halbleiterbauelement 70 mit einer kantenemittierenden Laserdiode gezeigt. In dem Halbleiterbauelement 70 ist einem parallel zu der Oberfläche des Halbleiterbauelements 70 bzw. des Wafers zur Herstellung des Halbleiterbauelements ein Resonator 72 ausgebildet, der an seinen Kanten 74 und 74' entlang einer niedrig indizierten Gitterebene für die zu erzeugende Laserstrahlung teilweise reflektierend ist und in dem die laseraktive Zone, d.h. ein pn-Übergang, der Laserdiode liegt. Die ausgekoppelte Laserstrahlung wird, wie in Fig. 3 angedeutet, orthogonal zu den Kanten 74 und 74' und parallel zur Oberfläche abgegeben. Das Strahlprofil, d.h. die Intensitätsverteilung über eine Ebene quer zur Strahlrichtung ist in Fig. 4 schematisch als Konturdiagramm dargestellt, in dem x und y kartesische Koordinaten in der Ebene sind und die Linien Linien gleicher Intensität darstellen. Es ist deutlich eine Sattelform der Verteilung zu erkennen, die daher nicht rotationssymmetrisch ist.
  • In Fig. 5 ist dagegen eine oberflächenemittierende Laserdiode 76 schematisch gezeigt, bei der auf einem Substrat 78 ein Resonator 80 angeordnet ist, der durch parallel zu dem Substrat 78 und der Waferoberfläche 82 verlaufende Reflexionsstrukturen bzw. Reflexionssschichtstrukturen 84, 84', beispielsweise in Form von Interferenzschichten, gegeben ist. Die Laserstrahlung wird nun orthogonal zu der Oberfläche 82 des Wafers bzw. dem Substrat 78 abgegeben. Der Einfachheit halber sind die Elektroden und die Verteilung der stromführenden Schichten nicht explizit gezeigt.
  • In Fig. 6 ist in einer Fig. 4 entsprechenden Darstellung das Strahlprofil des von der oberflächenemittierenden Laserdiode abgegebenen Laserstrahls gezeigt. Es ist in guter Näherung rotationssymmetrisch um die Strahlrichtung und eignet sich daher sehr gut zur weiteren Strahlformung mit einer einfachen Beleuchtungsoptik mit sphärischen und planaren optischen Elementen wie in diesem Ausführungsbeispiel.
  • Die oberflächenemittierenden Laserdioden 50 sind so in dem Halbleiterbauelement 48 ausgebildet und kontaktiert, daß sie einzeln unabhängig voneinander ansteuerbar sind.
  • Anzahl, Anordnung und Fläche der oberflächenemittierenden Halbleiterdioden 50 und die Beleuchtungsoptik 52 sind so gewählt, daß in dem Erfassungsbereich 38 ein zusammenhängendes flächiges Beleuchtungsfeld mit einem Flächeninhalt von wenigstens 0,5 mm2 homogen, d.h. mit einer Intensitätsschwankung bezogen auf die maximale Intensität in der Beleuchtungsfläche kleiner als 20 %, beleuchtet werden kann.
  • Die Steuereinrichtung 42 dient zur getrennten Ansteuerung der Laserdioden 50. In diesem Ausführungsbeispiel ist die Untersuchungsvorrichtung 24 als Modul zum Einbau in eine Wertdokumentbearbeitungsvorrichtung ausgelegt, das so aufgebaut ist, daß ihm prinzipiell die Wertdokumente 12 aus entgegengesetzten Richtungen zuführbar sind.
  • Um eine möglichst lange Beleuchtung von lumineszierenden Stoffen in einem zu untersuchenden Wertdokument zu erhalten, steuert die Steuereinrichtung 42 die Laserdioden 50 so an, daß in dem Erfassungsbereich 38 ein Beleuchtungsfeld 62 bzw. ein Beleuchtungsmuster 60 erzeugt wird, das sich entgegen der Transportrichtung T weiter über ein Detektionsfeld 86 (vgl. Fig. 8) hinaus erstreckt als in Transportrichtung T. Das Detektionsfeld 86 ist dabei dadurch definiert, daß bis auf Streustrahlung nur optische Strahlung aus dem Detektionsfeld 86 in die Detektionseinrichtung 40 gelangen kann. Dadurch wird erreicht, daß ein Bereich auf dem Wertdokument für eine Zeit der Beleuchtungs- bzw. Anregungsstrahlung ausgesetzt ist, die länger ist als die Zeit, in der er in dem Detektionsfeld 86 liegt. Dadurch kann eine erhöhte Lumineszenzstrahlung erreicht werden, die die Detektion der Lumineszenz erleichtert.
  • Die Steuereinrichtung 42 ist, hier durch entsprechende Programmierung, so eingerichtet, daß sie auf ein Signal der zentralen Steuer- und Auswerteeinrichtung 30, das die Transportrichtung T in Bezug auf die Lage der Untersuchungsvorrichtung 24 wiedergibt, die Laserdioden 50 so ansteuert, daß in Abhängigkeit von der Transportrichtung T bzw. dem diese wiedergebenden Signal eines der beiden in Fig. 8 dargestellten Beleuchtungsmuster 60 bzw. 61 durch die Laserstrahlen 88 in dem Erfassungsbereich 38 erzeugt wird. Diese sind relativ zu dem Chip 48 verschoben, so daß der oben geschilderte Effekt eintritt. Dazu wird nur ein Teil der Laserdioden 50 eingeschaltet, nämlich die in Fig. 8 linken (a)) bzw. rechten (b)) Laserdioden, die anderen bleiben ausgeschaltet. In der Figur ist dabei der Übersichtlichkeit halber die Beleuchtungsoptik 52 bzw. deren Einfluß auf den Strahlengang nicht dargestellt. Unter "angeschaltet" wird dabei verstanden, daß diese entweder kontinuierlich oder auch gepulst betrieben werden.
  • Eine andere Wertdokumentbearbeitungsvorrichtung in Fig. 9 unterscheidet sich von dem ersten Ausführungsbeispiel dadurch, daß nun entlang des Transportpfades 22 stromaufwärts einer Untersuchungsvorrichtung 24' ein Bildsensor 90 angeordnet ist, der zur Erfassung von Bildern zugeführter Wertdokumente dient und die Bilder über eine Bildsignalverbindung an eine zentrale Steuer- und Auswerteeinrichtung 30' überträgt. Alle anderen Bauteile sind unverändert, so daß für diese die gleichen Bezugszeichen wie im ersten Ausführungsbeispiel verwendet werden und die Erläuterungen zu dem ersten Ausführungsbeispiel entsprechend auch hier gelten.
  • Die zentrale Steuer- und Auswerteeinrichtung 30' unterscheidet sich von der zentralen Steuer- und Auswerteeinrichtung 30 dadurch, daß sie eine in Fig. 9 nicht gezeigte Schnittstelle zum Erfassung der Bilddaten des Bildsensors 90 aufweist und, im Beispiel durch ein entsprechendes Programmmodul, dazu ausgebildet ist, aus den Bilddaten die Lage eines mit der optischen Untersuchungsvorrichtung 24' genauer zu untersuchenden Bereichs des Wertdokuments, beispielsweise eines bestimmten Merkmalsbereichs, zu ermitteln und an die Untersuchungsvorrichtung 24' auszugeben. Der Bildsensor 90 stellt daher in Verbindung mit der zentralen Steuer- und Auswerteeinrichtung 30' eine Lagedetektionseinrichtung dar.
  • Die Untersuchungsvorrichtung 24' unterscheidet sich von der Untersuchungsvorrichtung 24 des ersten Ausführungsbeispiels allein dadurch, daß die Steuereinrichtung nun gegenüber der Steuereinrichtung 42 geändert ist. Die Steuereinrichtung ist genauer dazu ausgebildet, die Laserdioden 50 anders anzusteuern als die Steuereinrichtung 42. Wie in Fig. 10 in einer Zeitfolge a), b), c) schematisch in einer Fig. 8 entsprechenden Weise dargestellt, steuert die Steuereinrichtung die Laserdioden 50 so an, daß in zeitlicher Folge jeweils in Transportrichtung T fortschreitend in Transportrichtung vordere Laserdioden 92 ein- und in Transportrichtung hintere Laserdioden 94 abgeschaltet werden. Dies erfolgt so, daß dasselbe Beleuchtungsmuster 60' bzw. -feld 62', das aus Laserstrahlen 88 der vor Wertdokumentbearbeitungsvorrichtung deren Laserdioden erzeugt wird, mit der Transportgeschwindigkeit T in Transportrichtung T auf den ausgewählten Bereich 98 gerichtet mitgeführt wird. Im Ergebnis wird also der nur der ausgewählte Bereich 98 beleuchtet, während er durch das Detektionsfeld 86 hindurchtransportiert wird. Damit kann die Erzeugung von Streustrahlung oder störender Strahlung aus anderen Bereichen des Wertdokuments 12 effektiv reduziert werden.
  • In anderen Wertdokumentbearbeitungsvorrichtungen kann gegenüber der letzten Wertdokumentbearbeitungsvorrichtung der Bildsensor 90 auch durch andere Einrichtungen ersetzt sein, mittels derer die Lage bestimmter zu untersuchender Merkmale erkennbar ist. Beispielsweise kann, je nach Merkmal, auch ein Signal eines Kantendetektors zur Erkennung einer in Transportrichtung vorderen Kante des Wertdokuments, beispielsweise eine Lichtschranke oder ein Ultraschallsensor, in Verbindung mit der bekannten Transportgeschwindigkeit und der bekannten Lage des Merkmals auf dem Wertdokument dazu verwendet werden, ein geeignetes Lagesignal zu erzeugen.
  • Eine weitere Wertdokumentbearbeitungsvorrichtung unterscheidet sich von dem ersten Ausführungsbeispiel dadurch, daß nun zur Untersuchung eines Wertdokuments das Wertdokument vollständig angehalten wird und nach Anhalten in dem Erfassungsbereich ein Startsignal an eine Untersuchungsvorrichtung 24" abgegeben wird, wozu die zentrale Steuer- und Auswerteeinrichtung 30 entsprechend modifiziert ist. Die Untersuchungsvorrichtung 24" unterscheidet sich von der Untersuchungsvorrichtung 24 des ersten Ausführungsbeispiels allein durch die Ausbildung bzw. Programmierung der Steuer- und der Auswerteeinrichtung 42 bzw. 44. Für alle anderen Bauteile werden daher die gleichen Bezugszeichen wie im ersten Ausführungsbeispiel verwendet und es gelten die Erläuterungen zu diesen entsprechend auch hier.
  • Die Steuereinrichtung ist dazu ausgebildet, die Laserdioden 50 so anzusteuern, daß diese ein sich während der Beleuchtung zeitlich änderndes Beleuchtungsmuster erzeugen. Genauer werden die Laserdioden so angesteuert, daß das gleiche Beleuchtungsmuster 60" mit im Beispiel konstanter Geschwindigkeit über das Wertdokument 12 bewegt wird, wie dies in der Fig. 10 in der Darstellung entsprechenden Fig. 11 in einer Zeitfolge a), b), c) veranschaulicht ist. Gleichzeitig wird in konstanten Zeitabständen, bei gepulster Ansteuerung der Laserdioden, synchron zu den Pulsen, die zurückgeworfenen Detektionsstrahlung von der Detektionseinrichtung 40 und der Auswerteeinrichtung 44 erfaßt und entsprechend der zeitlichen Reihenfolge und damit dem Ort auf dem Wertdokument in der Auswerteeinrichtung 44 abgespeichert oder direkt an die zentrale Steuer- und Auswerteeinrichtung übertragen. Dadurch wird ein Bild des Wertdokuments erhalten. Die entsprechenden Bilddaten werden, ggf. nach der Zwischenspeicherung in der Auswerteeinrichtung, in der zentralen Steuer- und Auswerteeinrichtung 30 übertragen und dort weiter ausgewertet.
  • Das Beleuchtungsmuster 60" ist dabei, wie in Fig. 11 veranschaulicht, rechteckig schlitzförmig. Vorzugsweise ist das Beleuchtungsmuster 60" so schmal, daß es als "virtueller" Eintrittsspalt für die Detektionseinrichtung bzw. die spektrographische Einrichtung dienen kann, die dann keinen Eintrittsspalt mehr aufzuweisen braucht.
  • Eine solche Untersuchungsvorrichtung kann auch vorteilhaft zur Erkennung von Barcodes verwendet werden. Insbesondere in diesem Fall braucht die Detektionseinrichtung dann nur ein Detektionselement, aber keine spektrographische Einrichtung, aufzuweisen.
  • Bei einer anderen Variante kann statt des nur einen Detektionselements eine Zeile von Detektionselementen in der Detektionseinrichtung vorgesehen sein, mittels derer entlang einer Zeile quer zur Bewegungsrichtung des Beleuchtungsmusters Bereiche in dem Erfassungs- bzw. Detektionsbereich ortsaufgelöst erfaßbar sind. Eine solche Untersuchungsvorrichtung kann insbesondere auch zur Erfassung von zweidimensionalen Barcodes dienen.
  • Bei einem weiteren Ausführungsbeispiel unterscheidet sich die Untersuchungsvorrichtung von der Untersuchungsvorrichtung des ersten Ausführungsbeispiels durch eine andere Detektionseinrichtung 40‴ sowie eine andere Steuer- und Auswerteeinrichtung.
  • Die Detektionseinrichtung 40‴ (vgl. Fig. 12) verfügt nun über ein Feld 100 mit einer zweidimensionalen Anordnung von Detektionselementen 102 zur ortsaufgelösten Detektion von aus dem Erfassungsbereich 38 bzw. dem Detektionsfeld 86 kommender optischer Strahlung sowie einer Abbildungsoptik 104 zur Fokussierung des Unendlichstrahlengangs nach der Fokussieroptik 58 auf die Anordnung von Detektionselementen 102. Die Detektionselemente 102 können, beispielsweise durch Schwankungen bei der Herstellung oder durch unterschiedliche Alterung unterschiedliche Empfindlichkeiten für optische Strahlung in demselben Spektralbereich aufweisen.
  • Die Steuereinrichtung 42" ist dahingehend gegenüber der Steuereinrichtung 42 geändert, d.h. ausgebildet, daß sie die Laserdioden 50 entsprechend der Empfindlichkeit der Detektionselemente 102 so ansteuert, daß die Unterschiede in der Empfindlichkeit ausgeglichen werden. Genauer bedeutet dies, daß die Laserdioden 50 so angesteuert werden, daß alle Detektionselemente 102 die gleichen Detektionssignale ausgeben.
  • Auf diese Weise können auch Fehler in der Abbildungsoptik ausgeglichen werden.
  • Die Auswerteeinrichtung 44" ist zur Erfassung der Detektionssignale der Detektionselemente 102 ausgebildet.
  • In einer besonders bevorzugten Ausführungsform ist die Steuereinrichtung dazu ausgebildet, für eine gegebene Ansteuerung der Laserdioden mittels der Auswerteeinrichtung die Detektionssignale der Detektionselemente zu erfassen, und automatische die Ansteuerung der Laserdioden so zu verändern, daß alle Detektionselemente das gleiche Detektionssignal abgeben.
  • Dies entspricht in gewissem Sinne einer Kalibrierung der Untersuchungsvorrichtung. Dieser Vorgang kann je nach Ausführungsform in jeweils vorgegebenen Intervallen der Betriebsdauer der Untersuchungsvorrichtung oder bei jedem An- oder Abschalten der Untersuchungsvorrichtung automatisch ausgeführt werden, wozu die Steuereinrichtung, beispielsweise durch entsprechende Programmierung entsprechend ausgebildet sein kann.
  • Noch ein weiteres Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel nur darin, daß die oberflächenemittierenden Laserdioden 50 so in dem Halbleiterbauelement ausgebildet und kontaktiert sind, daß sie in wenigstens zwei Gruppen, in diesem Ausführungsbeispiel zeilenweise, getrennt bzw. unabhängig voneinander ansteuerbar sind. Entsprechend ist die Steuereinrichtung 42 dahingehend modifiziert, die Gruppen, d.h. hier die Zeilen, einzeln getrennt voneinander anzusteuern, wobei das gleiche Beleuchtungsmuster wie im ersten Ausführungsbeispiel erhalten werden kann.
  • Weitere Ausführungsbeispiele unterscheiden sich von den zuvor beschriebenen Ausführungsbeispielen nur durch die Anordnung der Laserdioden 50 in dem Halbleiterbauelement 48'. Alle anderen Teile sind unverändert. In dem Halbleiterbauelement 48' sind die oberflächenemittierenden Laserdioden 50 nun (vgl. Fig. 13) auf den Gitterpunkten eines hexagonalen Punktgitters mit einem Abstand nächster Nachbarn kleiner als 120 µm, im Beispiel 100 µm, angeordnet, wodurch sich eine nochmals erhöhte Homogenität des Beleuchtungsmusters erzielen läßt.
  • Bei noch weiteren Ausführungsformen verfügt die Beleuchtungseinrichtung nicht über das Umlenkelement 56, so daß ein geradliniger Beleuchtungsstrahlengang erreicht wird. Die Detektionseinrichtung ist zur Detektion von optischer Strahlung nach Transmission durch das Wertdokument ausgebildet und angeordnet. Sie verfügt über eine eigene, der Fokussieroptik in ihren Eigenschaften entsprechende Optik zur Abbildung wenigstens eines Abschnitts des Wertdokuments von der nicht durch die Beleuchtungseinrichtung beleuchteten Seite.
  • In anderen Ausführungsbeispielen kann die Beleuchtung des Wertdokuments auch in von 90° abweichenden Winkeln erfolgen, wobei dann gegebenenfalls die Detektionseinrichtung entsprechend ausgebildet und angeordnet ist.

Claims (21)

  1. Vorrichtung zur optischen Untersuchung wenigstens eines in einer vorgegebenen Transportrichtung und mit einer vorgegebenen Transportgeschwindigkeit einzeln transportierten Wertdokuments (12) in einem Erfassungsbereich (38) der Vorrichtung, mit
    einer Beleuchtungseinrichtung (36) zur Beleuchtung des Wertdokuments (12) in wenigstens einem Teil des Erfassungsbereichs (38), die wenigstens eine Laserdiode (50; 76) besitzt,
    einer Steuereinrichtung (42) zur Ansteuerung der Laserdiode (50; 76), und
    einer Detektionseinrichtung (40; 40‴) zur Erfassung von optischer Strahlung aus wenigstens einem Teil des Erfassungsbereichs (38),
    dadurch gekennzeichnet,
    dass die wenigstens eine Laserdiode (50; 76) eine oberflächenemittierende Laserdiode ist und die Beleuchtungseinrichtung (36) zur Erzeugung eines vorgegebenen Beleuchtungsmusters im Erfassungsbereich wenigstens eine weitere vertikal oberflächenemittierende Laserdiode (50; 76) besitzt, dass die Steuereinrichtung (42) auch zur Ansteuerung der weiteren Laserdiode (50; 76) ausgebildet ist, und
    dass die Beleuchtungseinrichtung (36) wenigstens zwei Gruppen von oberflächenemittierenden Laserdioden (50; 76) aufweist, die die Laserdioden (50; 76) umfassen, bei der die Laserdioden (50; 76) jeweils einer Gruppe unabhängig von denen der anderen Gruppe ansteuerbar sind, und die Steuereinrichtung (42) zur Ansteuerung der einen Gruppe von Laserdioden (50; 76) getrennt von der Ansteuerung der anderen Gruppen von Laserdioden (50; 76) ausgebildet ist, und dass die Laserdioden (50; 76) in ein und demselben Chip (48) ausgebildet und in Matrixform auf den Gitterpunkten eines Rechteck- oder Quadratgitters oder auf den Punkten eines hexagonalen Punktgitters angeordnet sind, und
    dass eine Ausdehnung eines Detektionsbereichs der Detektionseinrichtung (40; 40‴) in Transportrichtung kleiner als die Ausdehnung des Beleuchtungsmusters in Transportrichtung ist und dass sich das Beleuchtungsmuster gegen die Transportrichtung gesehen in Bezug auf den Detektionsbereich weiter erstreckt als in Transportrichtung.
  2. Vorrichtung nach Anspruch 1, bei der die Laserdioden (50; 76) einzeln ansteuerbar sind und die Steuereinrichtung (42) dazu ausgebildet ist, die Laserdioden (50; 76) einzeln anzusteuern.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, die dazu ausgebildet ist, eine vorgegebene Fläche mit einem Beleuchtungsmuster (60) zu beleuchten, dessen ortsabhängige Intensitätsvariation über die von den Laserdioden (50; 76) beleuchtete Fläche kleiner als 20% der maximalen Intensität des Beleuchtungsmusters (60) ist.
  4. Vorrichtung nach Anspruch 3, bei der die vorgegebene Fläche (62) einen Inhalt größer als 0,5 mm2 besitzt.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Steuereinrichtung (42) dazu ausgebildet ist, in Abhängigkeit von einem Signal oder in der Steuereinrichtung (42) gespeicherter Daten die Laserdioden (50; 76) so anzusteuern, daß in Abhängigkeit von dem Signal oder den Daten in dem Erfassungsbereich (38) dasselbe Beleuchtungsmuster (60) an verschiedenen vorgegebenen Orten erzeugbar ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Steuereinrichtung (42) dazu ausgebildet ist, die Laserdioden (50; 76) so anzusteuern, daß in dem Erfassungsbereich (38) ein sich während der Beleuchtung mit der Zeit änderndes Beleuchtungsmuster (60) erzeugt wird.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Steuereinrichtung (42) dazu ausgebildet ist, die Laserdioden (50; 76) so anzusteuern, daß ein vorgegebenes Beleuchtungsmuster (60) in einer vorgegebenen Richtung mit einer vorgegebenen Geschwindigkeit bewegt wird.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, die dazu ausgebildet ist, ein rechteckiges, insbesondere linienförmiges Beleuchtungsmuster (60) zu erzeugen.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Detektionseinrichtung (40) aus dem Erfassungsbereich (38) kommende optische Strahlung integral detektiert oder bei der die Detektionseinrichtung (40‴) zur ortsaufgelösten Erfassung von optischer Strahlung in wenigstens einem vorgegebenen Spektralbereich ausgebildet ist, und bei der die Steuereinrichtung (42) dazu ausgebildet ist, die Laserdioden (50; 76) so anzusteuern, daß eine Variation einer Empfindlichkeit der Detektionseinrichtung (40‴) für die optische Strahlung in dem Spektralbereich in Abhängigkeit vom Ort wenigstens teilweise kompensiert wird.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Steuereinrichtung (42) dazu ausgebildet ist, in Abhängigkeit von Lagesignalen einer Lagedetektionseinrichtung (30', 90) ein Beleuchtungsmuster (60) in einem vorgegebenen Teil des Erfassungsbereichs (38) zu erzeugen.
  11. Vorrichtung zur Bearbeitung von Wertdokumenten (12) mit einer Untersuchungsvorrichtung (24) nach einem der vorhergehenden Ansprüche, und einer Transporteinrichtung (18) zum Bewegen eines vereinzelten Wertdokuments (12) durch den Erfassungsbereich (38), mit der vorgegebenen Transportgeschwindigkeit.
  12. Vorrichtung nach Anspruch 11, bei der die Transporteinrichtung (18) zur Bewegung eines vereinzelten Wertdokuments (12) durch den Erfassungsbereich (38) ausgebildet ist, und bei der die Steuereinrichtung (42) dazu ausgebildet ist, die Laserdioden (50; 76) so anzusteuern, daß das Beleuchtungsmuster (60) mit der Transportgeschwindigkeit in Transportrichtung bewegt wird.
  13. Verfahren zur optischen Untersuchung eines in einer vorgegebenen Transportrichtung und mit einer vorgegebenen Transportgeschwindigkeit einzeln transportierten Wertdokuments (12) in einem Erfassungsbereich (38), bei dem das Wertdokument (12) mit wenigstens einer vertikal oberflächenemittierenden Laserdiode (50; 76) beleuchtet wird,
    dadurch gekennzeichnet,
    dass die wenigstens eine Laserdiode (50, 76) eine vertikal oberflächenemittierende Laserdiode (50; 76) ist und dass das Wertdokument mit weiteren vertikal oberflächenemittierenden Laserdioden (50; 76) beleuchtet wird, und
    dass das Wertdokument (12) mit wenigstens zwei Gruppen von vertikal oberflächenemittierenden Laserdioden (50; 76) beleuchtet wird, die die Laserdioden (50; 76) enthalten, wobei die Laserdioden (50; 76) der einen Gruppe getrennt von denen der anderen Gruppe angesteuert werden, dass die Laserdioden in ein und demselben Chip ausgebildet und in Matrixform auf den Gitterpunkten eines Rechteck- oder Quadratgitters oder auf den Punkten eines hexagonalen Punktgitters angeordnet sind, und dass eine Ausdehnung eines Detektionsbereichs einer Detektionseinrichtung (40; 40‴) zur Erfassung von optischer Strahlung aus wenigstens einem Teil des Erfassungsbereichs (38) in Transportrichtung kleiner als die Ausdehnung des Beleuchtungsmusters in Transportrichtung ist und dass sich das Beleuchtungsmuster gegen die Transportrichtung gesehen in Bezug auf den Detektionsbereich weiter erstreckt als in Transportrichtung.
  14. Verfahren nach Anspruch 13, bei dem die Laserdioden (50; 76) einzeln angesteuert werden.
  15. Verfahren nach einem der Ansprüche 13 oder 14, bei dem die Laserdioden (50; 76) so angesteuert werden, daß mit den Laserdioden (50; 76) eine vorgegebene Fläche des Wertdokuments mit einem Beleuchtungsmuster (60; 61) beleuchtet wird, dessen ortsabhängige Intensitätsvariation über die Fläche kleiner als 20 % der maximalen Intensität des Beleuchtungsmusters ist.
  16. Verfahren nach einem der Ansprüche 13 bis 15, bei dem die Laserdioden (50; 76) so in Abhängigkeit von einem Signal oder Daten angesteuert werden, daß in Abhängigkeit von dem Signal oder den Daten dasselbe Beleuchtungsmuster (60; 61) an einem von wenigstens zwei verschiedenen Orten erzeugbar ist.
  17. Verfahren nach einem der Ansprüche 13 bis 16, bei dem die Laserdioden (50; 76) so angesteuert werden, daß ein sich während der Beleuchtung mit der Zeit änderndes Beleuchtungsmuster (60') erzeugt wird.
  18. Verfahren nach einem der Ansprüche 13 bis 17, bei dem die Laserdioden (50; 76) so angesteuert werden, daß ein vorgegebenes Beleuchtungsmuster (60') in einer vorgegebenen Richtung mit einer vorgegebenen Geschwindigkeit bewegt wird.
  19. Verfahren nach Anspruch 18, bei dem das Wertdokument (12) während der Beleuchtung in der vorgegebenen Transportrichtung und mit der vorgegebenen Transportgeschwindigkeit vereinzelt bewegt wird, und bei dem vorzugsweise die Richtung die Transportrichtung und die Geschwindigkeit die Transportgeschwindigkeit ist.
  20. Verfahren nach einem der Ansprüche 13 bis 19, bei dem die Laserdioden (50; 76) so angesteuert werden, daß eine Variation einer Empfindlichkeit einer Detektionseinrichtung (40‴) zur ortsaugelösten Erfassung von optischer Strahlung in wenigstens einem vorgegebenen Spektralbereich in Abhängigkeit vom Ort wenigstens teilweise kompensiert wird.
  21. Verfahren nach einem der Ansprüche 13 bis 20, bei dem die Laserdioden (50; 76) so angesteuert werden, daß in Abhängigkeit von Lagesignalen einer Lagedetektionseinrichtung (30'; 90) ein Beleuchtungsmuster (60') in einem vorgegebenen Teil des Erfassungsbereichs (38) erzeugt wird.
EP12001199.4A 2006-09-27 2007-09-26 Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten Active EP2490185B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006045626A DE102006045626A1 (de) 2006-09-27 2006-09-27 Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten
EP07818466A EP2070058A1 (de) 2006-09-27 2007-09-26 Vorrichtung und verfahren zur optischen untersuchung von wertdocumenten
PCT/EP2007/008383 WO2008037457A1 (de) 2006-09-27 2007-09-26 Vorrichtung und verfahren zur optischen untersuchung von wertdocumenten

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP07818466.0 Division 2007-09-26
EP07818466A Division EP2070058A1 (de) 2006-09-27 2007-09-26 Vorrichtung und verfahren zur optischen untersuchung von wertdocumenten

Publications (3)

Publication Number Publication Date
EP2490185A2 EP2490185A2 (de) 2012-08-22
EP2490185A3 EP2490185A3 (de) 2012-10-31
EP2490185B1 true EP2490185B1 (de) 2022-04-20

Family

ID=38984136

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07818466A Ceased EP2070058A1 (de) 2006-09-27 2007-09-26 Vorrichtung und verfahren zur optischen untersuchung von wertdocumenten
EP12001199.4A Active EP2490185B1 (de) 2006-09-27 2007-09-26 Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07818466A Ceased EP2070058A1 (de) 2006-09-27 2007-09-26 Vorrichtung und verfahren zur optischen untersuchung von wertdocumenten

Country Status (13)

Country Link
US (1) US8115910B2 (de)
EP (2) EP2070058A1 (de)
CN (1) CN101542543B (de)
AU (1) AU2007302243B2 (de)
CA (1) CA2664416C (de)
DE (1) DE102006045626A1 (de)
ES (1) ES2913454T3 (de)
HK (1) HK1136378A1 (de)
IL (1) IL197848A (de)
RU (1) RU2421817C2 (de)
TW (1) TWI365425B (de)
UA (1) UA94767C2 (de)
WO (1) WO2008037457A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2358882C1 (ru) 2008-04-18 2009-06-20 Общество С Ограниченной Ответственностью "Новые Энергетические Технологии" Устройство проверки подлинности документов
DE102008028689A1 (de) * 2008-06-17 2009-12-24 Giesecke & Devrient Gmbh Sensoreinrichtung zur spektral aufgelösten Erfassung von Wertdokumenten und ein diese betreffendes Verfahren
DE102008028690A1 (de) * 2008-06-17 2009-12-24 Giesecke & Devrient Gmbh Sensoreinrichtung zur spektral aufgelösten Erfassung von Wertdokumenten und ein diese betreffendes Verfahren
DE102010014912A1 (de) * 2010-04-14 2011-10-20 Giesecke & Devrient Gmbh Sensor zur Prüfung von Wertdokumenten
AT514660B1 (de) * 2013-07-16 2021-02-15 Ait Austrian Inst Tech Gmbh Verfahren zur Prüfung eines Gegenstands auf Echtheit
CN103700181A (zh) * 2013-12-12 2014-04-02 中国科学院长春光学精密机械与物理研究所 基于垂直腔面发射半导体激光器的荧光防伪标识检验装置
DE102015105149B4 (de) * 2015-04-02 2018-10-11 Sick Ag Optoelektronischer Sensor
DE102015105150A1 (de) * 2015-04-02 2016-10-06 Sick Ag Verfahren zum Betrieb eines optoelektronischen Sensors und optoelektronischer Sensor
CN110769746B (zh) 2017-06-21 2024-04-16 皇家飞利浦有限公司 用于早期龋齿检测的方法和设备
DE102019111175A1 (de) * 2019-04-30 2020-11-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Anordnung und Verfahren zur Herstellung einer Anordnung sowie eines Bauteils
RU2735071C1 (ru) * 2019-07-29 2020-10-27 Екатерина Олеговна Конкина Устройство контроля параметров бумаги по её структуре методами гранулометрии с использованием методов лазерной спекл-фотографии при фиксации изображения структуры
WO2022098545A2 (en) * 2020-11-04 2022-05-12 Verifyme, Inc. Remote infrared ink reader and authenticator

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031187A (en) * 1990-02-14 1991-07-09 Bell Communications Research, Inc. Planar array of vertical-cavity, surface-emitting lasers
US5325386A (en) 1992-04-21 1994-06-28 Bandgap Technology Corporation Vertical-cavity surface emitting laser assay display system
US6744525B2 (en) * 1997-11-25 2004-06-01 Spectra Systems Corporation Optically-based system for processing banknotes based on security feature emissions
DE19840345B4 (de) * 1998-09-04 2004-09-30 Dräger Medical AG & Co. KGaA Verfahren und Vorrichtung zum quantitativen Aufspüren eines vorgegebenen Gases
US6473165B1 (en) * 2000-01-21 2002-10-29 Flex Products, Inc. Automated verification systems and methods for use with optical interference devices
CN1311436A (zh) * 2000-03-01 2001-09-05 上海和泰光电科技有限公司 旋转平台上的生物芯片荧光图象的读取
US6456375B1 (en) * 2001-02-20 2002-09-24 Honeywell International Inc. Focused laser light turbidity sensor apparatus and method for measuring very low concentrations of particles in fluids
US6549687B1 (en) * 2001-10-26 2003-04-15 Lake Shore Cryotronics, Inc. System and method for measuring physical, chemical and biological stimuli using vertical cavity surface emitting lasers with integrated tuner
JP2003182149A (ja) * 2001-12-18 2003-07-03 Fuji Xerox Co Ltd 画像形成装置
US6838687B2 (en) * 2002-04-11 2005-01-04 Hewlett-Packard Development Company, L.P. Identification of recording media
US6967986B2 (en) 2002-10-16 2005-11-22 Eastman Kodak Company Light modulation apparatus using a VCSEL array with an electromechanical grating device
DE10314101A1 (de) * 2003-03-27 2004-10-14 Ose, Christian Erkennungsgerät für fluoriszierende und phosphoriszierende Medien
US7257141B2 (en) * 2003-07-23 2007-08-14 Palo Alto Research Center Incorporated Phase array oxide-confined VCSELs
DE102004014541B3 (de) * 2004-03-23 2005-05-04 Koenig & Bauer Ag Optisches System zur Erzeugung eines Beleuchtungsstreifens
DE102004035494A1 (de) 2004-07-22 2006-02-09 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur Prüfung von Wertdokumenten
CN101080733A (zh) 2004-10-15 2007-11-28 田纳西州特莱科产品公司 具有vcsel二极管阵列的对象检测***
JP2006294782A (ja) * 2005-04-08 2006-10-26 Hitachi Ltd 半導体光源装置
CA2510943A1 (en) * 2005-06-28 2006-12-28 Cashcode Company Inc. Method and apparatus for detecting overlapped substrates

Also Published As

Publication number Publication date
EP2070058A1 (de) 2009-06-17
CN101542543B (zh) 2015-03-18
DE102006045626A1 (de) 2008-04-03
CA2664416A1 (en) 2008-04-03
TWI365425B (en) 2012-06-01
IL197848A0 (en) 2009-12-24
AU2007302243B2 (en) 2013-09-05
ES2913454T3 (es) 2022-06-02
RU2009115781A (ru) 2010-11-10
US8115910B2 (en) 2012-02-14
CA2664416C (en) 2015-06-23
IL197848A (en) 2014-11-30
TW200836132A (en) 2008-09-01
CN101542543A (zh) 2009-09-23
EP2490185A3 (de) 2012-10-31
UA94767C2 (ru) 2011-06-10
US20100060880A1 (en) 2010-03-11
EP2490185A2 (de) 2012-08-22
RU2421817C2 (ru) 2011-06-20
WO2008037457A1 (de) 2008-04-03
AU2007302243A1 (en) 2008-04-03
HK1136378A1 (en) 2010-06-25

Similar Documents

Publication Publication Date Title
EP2490185B1 (de) Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten
EP2304697B1 (de) Sensoreinrichtung zur spektral aufgelösten erfassung von wertdokumenten und ein diese betreffendes verfahren
EP2304696B1 (de) Sensoreinrichtung zur spektral aufgelösten erfassung von wertdokumenten und ein diese betreffendes verfahren
EP0778459B1 (de) Spektrometervorrichtung
DE10149780B4 (de) Einrichtung zur Beleuchtung einer Messfläche und Vorrichtung und Verfahren zur Bestimmung der visuellen Eigenschaften von Körpern
EP2513873B1 (de) Sensor zur prüfung von wertdokumenten
DE102009050711A1 (de) Verfahren und Vorrichtung zur Detektion von Rissen in Halbleitersubstraten
EP2011092B1 (de) Vorrichtung und verfahren zur optischen untersuchung von wertdokumenten
EP2513875B1 (de) Spektralsensor zur prüfung von wertdokumenten
WO2007051567A1 (de) Messsystem zur vermessung von grenz- oder oberflächen von werkstücken
EP0762174A2 (de) Vorrichtung zur linienförmigen Beleuchtung von Blattgut, wie z.B. Banknoten oder Wertpapiere
EP2513874B1 (de) Sensor zur prüfung von wertdokumenten
WO2011082766A1 (de) Vorrichtung für die untersuchung eines gegenstands, vorzugsweise eines wertdokuments, unter verwendung optischer strahlung
EP2773928B1 (de) Sensor zur prüfung von wertdokumenten
EP3614130A1 (de) Vorrichtung zur ermittlung optischer eigenschaften von proben
EP1279988B1 (de) Laserbeleuchtungsvorrichtung zur Beleuchtung eines streifen- oder linienförmigen Bereichs
EP3538945A1 (de) Bilderzeugungseinrichtung
DE102012215092A1 (de) Messung der Lichtstrahlung von Leuchtdioden
WO2010085940A1 (de) Vorrichtung und verfahren zur berührungslosen messung eines abstands und/oder eines profils
DE102020102247A1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
WO2024002420A1 (de) Vorrichtung und verfahren zur prüfung von flächigen proben
WO2021013706A1 (de) Photolumineszenz-sensorvorrichtung zum erkennen eines sicherheitsmerkmals eines sich relativ zu der sensorvorrichtung bewegenden objekts
DE102022134547A1 (de) Vorrichtung und Verfahren zur Probeanalyse
DE102016226212A1 (de) Analyseeinrichtung
DE102016221933A1 (de) Bilderzeugungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2070058

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: G07D 7/12 20060101AFI20120927BHEP

17P Request for examination filed

Effective date: 20130502

17Q First examination report despatched

Effective date: 20140416

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2070058

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016976

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1485800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2913454

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220602

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220822

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016976

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

26N No opposition filed

Effective date: 20230123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220926

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220926

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230915

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230930

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231019

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420