EP2477735A2 - Photoreactor - Google Patents

Photoreactor

Info

Publication number
EP2477735A2
EP2477735A2 EP10752577A EP10752577A EP2477735A2 EP 2477735 A2 EP2477735 A2 EP 2477735A2 EP 10752577 A EP10752577 A EP 10752577A EP 10752577 A EP10752577 A EP 10752577A EP 2477735 A2 EP2477735 A2 EP 2477735A2
Authority
EP
European Patent Office
Prior art keywords
reactor
treated
stream
reactor according
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10752577A
Other languages
German (de)
French (fr)
Inventor
Grigorios Kolios
Florina Corina Patcas
Götz-Peter SCHINDLER
Alexandra Seeber
Gerrit Waters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10752577A priority Critical patent/EP2477735A2/en
Publication of EP2477735A2 publication Critical patent/EP2477735A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/28Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/003Wastewater from hospitals, laboratories and the like, heavily contaminated by pathogenic microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3228Units having reflectors, e.g. coatings, baffles, plates, mirrors

Definitions

  • the present invention relates to a reactor for the photocatalytic treatment of liquid or gaseous streams, comprising a pipe through which flows the current to be treated, wherein in the tube at least one light source, at least one provided with at least one photocatalytically active material, areal means M1 and at least one of the light radiation radiated by the at least one light source reflecting reflective surface M2 are arranged, wherein the reflective surface of the at least one means M2 and the inner wall of the tube an angle greater than or equal to 0 °, so that emanating from the light source Light from which at least one means M2 is reflected onto the photocatalytically active material, and a method for the photocatalytic treatment of liquid or gaseous streams by irradiation with light, which is carried out in such a reactor.
  • US 2001/0007507 A1 describes a reactor for carrying out photocatalytic reactions, wherein the side surfaces of UV-conductive plates are coated with photocatalytically active material. Parallel to at least one of these plates, the liquid to be cleaned or the gas is arranged.
  • UV radiation is now radiated parallel to the plates from the edge surface of the plates. By a total reflection between the two side surfaces of the plates, this UV radiation is deflected in the direction of the liquid to be purified, or of the gas to be cleaned by the catalyst coating. The fact that the light is to penetrate the plate and the catalyst coating up to the contact points with the medium to be cleaned, it loses increasing intensity and the photocatalytic effect is reduced.
  • No. 5,683,589 discloses a reactor for carrying out photocatalytic reactions. It comprises two concentrically arranged tubes, wherein a UV light source is present in the inner tube. In the area between the inner and outer tube conical perforated plates are arranged, on which a photocatalyst is mounted. Due to the conical arrangement of the sheets whose surface is irradiated with UV radiation. US 5,683,589 further discloses that the inside of the outer tube may be reflective coated. In the arrangement described, the mutual shading of the conical catalyst Even in the case of a reflective coating of the outer tube plates mainly irradiated the inner surface of the Koni and the catalytic surface is insufficiently utilized.
  • EP 1 946 781 A1 discloses a reactor for the sterilization of liquids or gases.
  • the reactor consists of a tube through which the liquid or the gas flows. At an angle of 70 to 1 10 ° to the flow direction of the liquid, or the gas, baffles are arranged in the tube, which have a photocatalytically active material. On the outer sides of the tube UV light sources are arranged, which irradiate the deflector plates with UV radiation.
  • EP 1 946 781 A1 does not disclose that reflective surfaces are arranged in the reactor.
  • the reactors described in the prior art for carrying out photocatalytic reactions, in particular for the photocatalytic purification of liquids, have the disadvantage that the photocatalytically active material is not fully utilized, since it can not be guaranteed that the liquid to be purified to be degraded substance, the photocatalytically active material and the UV radiation meet in a sufficiently high mass.
  • the photocatalytically active material is not fully utilized, since it can not be guaranteed that the liquid to be purified to be degraded substance, the photocatalytically active material and the UV radiation meet in a sufficiently high mass.
  • the object of the present application is thus to provide a reactor for carrying out photocatalytic reactions in which the photocatalytically active material and the light from the light source are utilized to the fullest extent possible. Another object is to provide a reactor in which, even with a small size, a large amount of treated stream can be treated. This is to be achieved according to the invention in that as far as possible the entire photocatalytically active material present in the reactor is achieved by the generated radiation, in particular UV radiation.
  • a reactor for the photocatalytic treatment of liquid or gaseous streams comprising a tube through which the current to be treated flows, wherein in the tube at least one light source, at least one provided with at least one photocatalytically active material, areal means M1 and at least one planar means M2 reflecting the radiation emitted by the at least one light source is arranged, wherein the reflective surface of the at least one means M2 and the inner wall of the Tube to describe an angle greater than or equal to 0 °, so that the light emanating from the light source is reflected by the at least one means M2 on the photocatalytically active material.
  • the stream to be treated in the reactor according to the invention may be selected from all liquids or gases known to those skilled in the art.
  • the present invention relates to the reactor according to the invention, wherein the stream to be treated is a liquid. Furthermore, in a further embodiment, the present invention relates to the reactor according to the invention, wherein the stream to be treated is a gas. In the reactor according to the invention, it is particularly preferred to treat pollutant-containing water or polluted gas. Most preferably, the treatment comprises a purification.
  • the term "photocatalytic treatment of streams, in particular liquids or gases” is understood to mean that wastewaters or waste gases in which disruptive or toxic substances are present are cleaned in the reactor according to the invention
  • the pollutant-containing stream to be treated may be, for example, industrial plants, for example oil refineries, paper mills, mines, in the food industry or in the chemical industry, the private sector, for example sports facilities, restaurants
  • waste gases as a pollutant-containing stream to be treated, these can also originate from incinerators or internal combustion engines
  • the interfering substances that are removed from the waste water or the exhaust gas w earth selected from organic or inorganic substances, which, if they remained in the waste water or exhaust gas, unfold a disturbing effect, for example, by a toxic effect, odor, color of the waste water or exhaust gas, etc.
  • the purification is carried out by chemical degradation of organic or inorganic compounds, for example, organic acids, halogenated organic substances, aromatic or aliphatic organic substances, amines, oligomeric or polymeric materials, alcohols, ethers, esters, sugars , biologically or non-biodegradable substances, surfactants, ammonia, carbon monoxide, nitrogen oxides, salts, metal salts, heavy metals and mixtures thereof.
  • organic acids for example, organic acids, halogenated organic substances, aromatic or aliphatic organic substances, amines, oligomeric or polymeric materials, alcohols, ethers, esters, sugars , biologically or non-biodegradable substances, surfactants, ammonia, carbon monoxide, nitrogen oxides, salts, metal salts, heavy metals and mixtures thereof.
  • organic acids selected from the group consisting of organic acids, halogenated organic substances, aromatic or aliphatic organic substances, amines, oligomeric or polymeric materials, alcohols, ethers, esters, sugars, biologically or non-biodegradable substances, surfactants, carbon monoxide, nitrogen oxides and mixtures thereof.
  • the reactor according to the invention comprises a tube.
  • this tube can have any base area known to the person skilled in the art, for example round, angular, oval, asymmetrical, etc.
  • the reactor according to the invention is a tube with preferably round cross-section, ie. H. around a cylinder. It is according to the invention also possible that two or more of these tubes, preferably in parallel, are operated side by side, for example as a tube bundle. In a particularly preferred embodiment of the reactor according to the invention, it is continuously passed through by the stream to be treated.
  • the diameter of the reactor is generally 50 mm to 500 mm, preferably 80 mm to 300 mm, particularly preferably 100 mm to 200 mm.
  • the length of the reactor is generally dependent on the amount of the stream to be treated, or the length of the UV sources which are introduced therein. In general, the length of the reactor according to the invention is 10 cm to 500 cm, preferably 40 cm to 300 cm.
  • the diameter and the length of the reactor according to the invention can be selected by the skilled person so that a sufficiently high treatment efficiency of the reactor is achieved. Several such reactors can be connected in series and / or in parallel as desired, in order to treat certain amounts of the stream to be treated up to the desired degree of treatment, in particular the degree of purity.
  • the reactor according to the invention generally has all the necessary for operation connections, such as inlets and outlets, which are necessary for the operation of the reactor.
  • the reactor according to the invention has at least one inlet through which the stream to be treated is fed to the reactor.
  • the reactor according to the invention has at least one outlet through which the purified stream is removed from the reactor.
  • the reactor according to the invention may also comprise other conventional devices known to the person skilled in the art, for example measuring sensors for determining various process parameters such as pressure, temperature, flow rate, pH, radiation intensity.
  • the stream to be treated in the reactor according to the invention generally has a flow rate in the reactor which allows as complete a treatment as possible, for example 0.001 m / s to 10 m / s, preferably 0.01 m / s to 0.1 m / s.
  • the at least one light source preferably a UV light source
  • the at least one light source can be mounted in the reactor according to the invention at any point within the tube.
  • the at least one light source is arranged in the middle of the tube, in particular parallel to the tube.
  • "in the middle of the pipe” means the area which is at a distance of about 40 and 60% of the pipe diameter, viewed from one side of the pipe.
  • Deviation in the context of the present invention means that the in Having the tube arranged light source at each point of its longitudinal extent substantially equidistant from the tube walls. According to the invention, however, it is possible that deviations of up to 10%, based on the distance between the light source and the tube wall, are present. This may be the case, for example, in that the at least one light source is not completely rectilinear, or that it is not aligned completely parallel in the reactor. According to the invention, one light source or two or more light sources can be used.
  • UV light sources which emit radiation in the desired wavelength range which is suitable for the activation of the photocatalytically active material.
  • the "UV radiation” which is preferably used is electromagnetic radiation having a wavelength of 150 to 400 nm In a preferred embodiment, therefore, a UV light source is used which emits UV radiation of wavelength 150 to 400 nm.
  • a light source is also understood as meaning a light source which emits not only UV radiation but also electromagnetic radiation with other wavelengths, for example light with a wavelength ⁇ of 200 to 800 nm, for example a medium or high pressure mercury lamp, black light lamps , Deuterium or xenon lamps, daylight lamps etc or mixtures thereof.
  • the inventively used at least one UV light source generally has a light intensity at 365 nm, measured at a distance of 3 mm, from 0.01 to 1000 mW / cm 2 , preferably 0.1 to 500 mW / cm 2 , on.
  • the shape of the at least one UV light source is not defined according to the invention.
  • the at least one UV source is shaped such that the critical regions of the reactor according to the invention, preferably completely, are irradiated with UV radiation.
  • the UV light source is rod-shaped, the base being round, oval, angular or asymmetrical can.
  • a rod-shaped, round UV light source is used.
  • the UV light source is surrounded by at least one material which separates the UV light source from the contaminant-containing stream to be cleaned and at the same time is permeable to UV radiation, for example quartz, plastic or combinations thereof.
  • the reactor according to the invention for the photocatalytic treatment of streams comprises not only the at least one light source but also at least one planar means M1 provided with at least one photocatalytically active material.
  • the reactor contains at least one areal means M1, preferably the reactor according to the invention contains a plurality of areal means M1.
  • “flat” is understood to mean that the width and the length of the corresponding means are significantly greater in comparison with the height.
  • the number of means M1 present in the reactor is dependent on the length of the reactor or on the degree of soiling, the amount and / or the flow rate of the stream to be treated.
  • so many means M1, in particular parallel to one another, are arranged in the reactor tube such that a distance of preferably 0.1 to 500 cm, particularly preferably 1 to 100 cm, is present between two means M1.
  • the two-dimensional means M1 are provided with at least one photocatalytically active material.
  • the at least one planar means M1 is in the form of photocatalytically active moldings in all forms known to those skilled in the art, for example ball, monolith, extrudates or tablets, or before, or the planar means M1 is on the surface with at least one corresponding photocatalytic provided active material, for example coated.
  • the entire surface of the at least one means M1 is provided with at least one photocatalytic material.
  • only part of the surface of the at least one means M1 is provided with at least one photocatalytically active material, for example 5 to 100%, preferably 50 to 100%, of the surface.
  • plates for example made of metal, for example iron, stainless steel, are used whose surface is coated at least partially with photocatalytically active material.
  • honeycombs or foam bodies coated with photocatalytic material are known in the art, for example, dip coating, spray coating etc.
  • the present invention also relates to a reactor according to the invention wherein as a means M1 sheets are used, the surface of which is coated at least partially with photocatalytically active material.
  • the present invention preferably relates to the reactor according to the invention reactor, wherein as the means M1 photocatalytically active monoliths, networks with enclosed extrudates of photocatalytic material or coated with photocatalytic material honeycomb or foam bodies are used.
  • the at least one means M1 has pores.
  • the means M1 can be flowed through during operation of the reactor according to the invention of the current to be treated.
  • An example of this embodiment according to the invention is a porous, for example a perforated sheet, which is at least partially coated with at least one photocatalytically active material.
  • a preferred example of this embodiment is a channeled plate that is sawn from a ceramic or metallic honeycomb monolith so that the arrangement of the channels allows flow of the contaminant-containing stream.
  • the plate preferably consists of at least one photocatalytically active material or is coated with at least one photocatalytically active material.
  • Another preferred example of this embodiment is a plate made of a porous, solid foam or sponge, made of ceramic, metal or plastic of a photocatalytically active material or which is coated with a photocatalytically active material.
  • the preferred pore size and number depend on the amount, degree of soiling and flow rate of the stream to be treated, and can be readily determined by those skilled in the art.
  • the pores have a size of 0.1 to 10 mm, particularly preferably 1 to 5 mm.
  • the volume of the pores, based on the total volume of the agent M1, is less than 90%, more preferably less than 70%.
  • the at least one agent M1 present according to the invention can generally be arranged at any position which appears appropriate to the person skilled in the art in the reactor according to the invention.
  • the at least one means M1 is arranged with a flat side at an angle of 60 to 130 °, preferably 80 to 100 ° to the flow direction of the stream to be treated.
  • the at least one light source is arranged in a preferred embodiment of the reactor according to the invention parallel to the reactor tube, the at least one means M1 in a preferred embodiment with a flat side at an angle of 60 to 130 °, preferably 80 to 100 ° to the at least arranged a light source.
  • the means M1 may have a straight surface or a curved, for example convex or concave, surface.
  • the means M1 may be of any suitable size, the maximum size of the means M1 being determined by the size of the reactor.
  • the means M1 have a size which corresponds to the diameter of the reactor.
  • the at least one means M1 is arranged perpendicular to the flow direction over the entire diameter of the reactor. This particularly preferred arrangement of the at least one agent in the reactor ensures that the means M1 come into sufficient contact with the stream to be treated. Particularly in this embodiment, it must be ensured that the current to be treated can flow through the at least one means M1, preferably by the above-mentioned preferred embodiments.
  • the present invention relates to a reactor according to the invention, wherein the at least one means M1 is flowed through by the stream to be treated.
  • photocatalytically active materials known to those skilled in the art may be used according to the invention, for example metal or semimetal oxides selected from the group consisting of modified or unmodified titanium dioxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), and Mixtures thereof.
  • modified or unmodified titanium dioxide (TiO 2 ) is used as the photocatalytically active material in the reactor according to the invention.
  • modified or unmodified titanium dioxide is used which is essentially in the anatase modification.
  • substantially in the context of the present invention Invention that at least 50%, more preferably at least 60% of the titanium dioxide in the anatase modification, based on the XRD measuring method known in the art, are present.
  • the remainder of the titanium dioxide consists of amorphous metal oxide, brookite or rutile modification, titanium dioxide, or a mixture thereof.
  • the titanium dioxide used is determined by XRD> 70%, in the anatase modification.
  • grids made in a planar manner are used as means M1 in which photocatalytically active material, for example in the form of tablets or strands, is present.
  • means M1 with embedded extrudates of photocatalytic material or honeycombs or foam bodies coated with photocatalytic material are used as means M1.
  • a strand-shaped titanium dioxide photocatalyst can be used in the reactor according to the invention.
  • This strand-shaped titanium dioxide photocatalyst preferably has specific characteristics with regard to BET surface area, pore volume, mean pore diameter and geometry of the individual catalyst particles. These specific features, in particular the combination of these features results in a particularly high activity, and a particularly long life of the photocatalyst used with consistently high activity.
  • strand-shaped means that the photocatalyst used preferably has an oval or round base surface. The diameter of this round base area or an oval base area in the largest dimension is generally 0.2 to 10 mm, preferably 0.5 to 3.0 mm.
  • the strand-shaped titanium dioxide photocatalyst generally has a length of 0.5 to 10 mm, preferably 0.8 to 8 mm, particularly preferably 1, 0 to 5.0 mm.
  • the ratio of length to diameter of the strand-form photocatalyst according to the invention is generally 0.05 to 50, preferably 1, 0 to 10.
  • the preferably used strand-shaped photocatalyst essentially contains titanium dioxide as the photocatalytically active material, ie, the photocatalyst used is generally at least 90% by weight, preferably at least 95% by weight, in particular preferably 97%, containing titanium dioxide. The remainder are inorganic or organic additives, or a mixture thereof.
  • the titanium dioxide photocatalyst contains at least one additive, more preferably selected from the groups 1, 4, 8, 9, 10, 11, 13, 14, 15 of the Periodic Table of the Elements (new IU-PAC nomenclature) or the lanthanides, for example selected from the group consisting of sodium, potassium, zirconium, cobalt, zinc, iron, copper, silver, gold, palladium, platinum, gallium, nitrogen, carbon, sulfur, fluorine, ytterbium, erbium, thulium , Neodymium and mixtures thereof, in elemental or oxidic form. It is also possible for there to be combinations of two or more of the additives mentioned.
  • the at least one additive is preferably present in the preferred strand-like titanium dioxide photocatalyst used according to the invention in an amount of 0.001 to 5% by weight, particularly preferably 0.01 to 3% by weight. If two or more of the additives mentioned are present at the same time in the photocatalyst used according to the invention, the stated quantities relate to this mixture.
  • the strand-shaped titanium dioxide photocatalyst preferably used according to the invention generally has a BET surface area of 20 to 200 m 2 / g, preferably 30 to 180 m 2 / g, particularly preferably 40 to 150 m 2 / g.
  • the BET surface area can be determined by methods known to the person skilled in the art, for example according to DIN 66 131.
  • the strand-shaped titanium dioxide photocatalyst used according to the invention preferably has a pore volume of from 0.1 to 1, 00 ml / g, preferably from 0.2 to 0.7 ml / g, particularly preferably from 0.25 to 0.75 ml / g, on.
  • the pore volume can be determined by methods known to those skilled in the art.
  • the strand-type titanium dioxide photocatalyst used according to the invention preferably has a mean pore diameter of 0.001 to 0.050 ⁇ m, preferably 0.005 to 0.030 ⁇ m, particularly preferably 0.010 to 0.025 ⁇ m.
  • the mean pore diameter can be determined by methods known to the person skilled in the art.
  • the strand-shaped titanium dioxide photocatalyst which is preferably used according to the invention can be prepared by processes known to the person skilled in the art.
  • the photocatalyst used according to the invention is preferably obtained by mixing the appropriate amounts of titanium dioxide and at least one organic binder, preferably selected from sugar derivatives.
  • This mixture is mixed by conventional methods known in the art in conventional devices, for example, gekollert.
  • the resulting mixture can then be extruded to the corresponding strand-form photocatalysts.
  • the thus prepared extrudate is preferably dried at a temperature of at most 120 ° C, and the resulting strands are then preferably calcined at a temperature of 300 to 500 ° C in an air atmosphere to the inventive combination of BET surface area, pore volume and to obtain average pore diameter.
  • At least one radiation, preferably UV radiation, reflecting surface means M2 is arranged in the reactor according to the invention, and that the surface of this at least one planar means M2 with the inner wall of the tube an angle greater or equal to 0 °, preferably greater than 0 °, describes.
  • the wording that describes the two components mentioned an angle greater than 0 °, means that the at least one means M2 according to the invention is not carried out so that the smooth inner wall of the tube is provided with a reflective layer.
  • the at least one planar means M2 is preferably attached to the inside of the tube, and its reflecting surface describes with the inner wall of the reactor the above-mentioned angle greater than or equal to, preferably greater, 0 °.
  • the angle between the reflective surface of the at least one means M2 and the inner wall of the reactor according to the invention is 5 to 85 °, preferably 20 to 70 °, particularly preferably 30 to 50 °.
  • all surface agents which are able to reflect radiation preferably UV radiation, preferably completely, can be used as the means M2.
  • Such means M2 are, for example, sheets or differently shaped ring bodies, for example of metal, glass, plastic, which are at least partially coated with a reflector, preferably a UV reflector.
  • Means preferred M2 are coated with a gold or silver layer iron-glass, plastic sheets or ring body.
  • the surface of the at least one means M2 may be straight or curved, for example convex or concave.
  • the shape and angle of the reflective surfaces should be adapted to the shape, size and / or spacing of the surface, photocatalytically active means M1 so that the light from the (the) light source (s) as completely as possible, particularly preferably as evenly as possible the entire catalytic area of the agent (s) M1 is distributed.
  • each means M1 is assigned at least one means M2, which reflects the light radiation emitted by the at least one light source onto the corresponding means M1.
  • a means M2 is associated with each individual means M1, wherein the means M2 is preferably arranged so that it has at least one side contact with the inner wall of the reactor tube and two further sides contact the corresponding Means M1 and with a second, adjacent means M1 or the end of the reactor tube, d.
  • the means M2 preferably serves as a spacer between two adjacent means M1 or between a means M1 and the end of the reactor tube.
  • the angle between the reflective surface of the means M1 and the corresponding M2 is generally 5 to 85 °, preferably 20 to 70 °.
  • At least one oxidizing agent may be added to the reactor according to the invention, in particular during operation.
  • suitable oxidizing agents are liquid or gaseous and, for example, selected from the group consisting of oxygen optionally oxygen-containing mixtures, for example air, hydrogen peroxide, ozone, peroxydisulfate, nitrates, nitric acid, nitrogen oxides, chlorine oxide, chlorine and mixtures thereof.
  • oxygen optionally oxygen-containing mixtures
  • oxygen for example air, hydrogen peroxide, ozone, peroxydisulfate, nitrates, nitric acid, nitrogen oxides, chlorine oxide, chlorine and mixtures thereof.
  • phenolic impurities in the stream to be treated causes the addition of oxidizing agents, in particular hydrogen peroxide, an improvement in the cleaning performance of the reactor according to the invention.
  • the present invention also relates in particular to a reactor according to the invention, wherein at least one oxidizing agent is added to the contaminant-containing stream to be purified.
  • the reactor according to the invention has devices known to the person skilled in the art, for example valves, feed devices, connections, etc.
  • the present invention also relates to a process for the photocatalytic treatment of currents by irradiation with light, wherein it is carried out in a reactor according to the invention.
  • Processes for the photocatalytic treatment of liquid or gaseous streams, in particular for the photocatalytic purification of waste gases or wastewaters contaminated with organic and / or inorganic substances, are known to the person skilled in the art in principle.
  • the present invention relates to the process according to the invention, wherein the stream to be treated is water containing pollutants.
  • the present invention relates to the process according to the invention, wherein at least one oxidizing agent is added to the stream to be treated.
  • the process according to the invention is generally carried out at the temperature relevant for the treatment to be carried out, for example for the photocatalytic purification of waters at temperatures of 4 to 80 ° C., preferably 15 to 50 ° C. Further process parameters are known to the person skilled in the art.
  • FIG. 1 A particularly preferred embodiment of the present invention will be explained by FIG. 1
  • the reference numerals have the following meanings:
  • the reactor is 510 mm long and 168 mm wide with a reactor volume of 8 L.
  • the lamp is a medium-pressure lamp with maximum light output of 4.5kW.
  • the lamp is dimmable.
  • Means M1 are 1.5 mm Ti0 2 strands encapsulated in PVDF inserts. The total active surface is 3600 cm 2 . The strands are fastened by a shrinkable net. Ten funds M1 are used.
  • Means M2 sit on the outer reactor wall between the means M1, reflect the incident light and are 28 mm high, 12 mm wide at the bottom and 8 mm wide at the top. Eleven means M2 are used. The distance between the means M1 is equal to the thickness of means M2 (28 mm).
  • the reactor is vertical.
  • the stream to be treated flows from a 50 L storage vessel via the means M1 from bottom to top and back into the storage vessel at a flow rate of 1 m 3 / h.
  • the stream to be treated is cooled to ⁇ 40 ° C in the storage vessel.
  • a passive air exchange can take place in the storage vessel.
  • the stream to be treated is demineralised water with 0.5 g / L dichloroacetic acid (DCA).
  • the pH of the DCA solution is adjusted to pH 3.
  • the photocatalytic purification of the current is defined by the amount of degraded DCA after 24h reaction time in g / h and is determined by pH measurements.
  • the DCA solution is pumped for> 8 h without exposure through the reactor, after which the lamp is turned on and driven with 400 W light output. After 24 h, the photocatalytic degradation rate is 0.46 g DCA / h.
  • Example 2 The reactor of Example 1 is used.
  • the stream to be treated is demineralised water with 1.0 g / l dichloroacetic acid (DCA).
  • the pH of the DCA solution is adjusted to pH 3.
  • the photocatalytic purification of the current is defined by the amount of degraded DCA in g / h and is determined by pH measurements.
  • the DCA solution is pumped for> 8 h without exposure through the reactor, after which the lamp is switched on and driven with 400 W light output. After 24 h, the photocatalytic degradation rate is 0.81 g D cA h.
  • the reactor of Example 1 is used.
  • the stream to be treated is demineralised water with 2.2 g / L dichloroacetic acid (DCA).
  • the pH of the DCA solution is adjusted to pH 3.
  • the photocatalytic purification of the current is determined by the amount of degraded DCA is defined in g / h and determined by pH measurements.
  • the DCA solution is pumped over> 8 h without exposure through the reactor, after which the lamp is turned on and driven with 400 W light output. After 24 h, the photocatalytic degradation rate is 1.70 g D cA / h.
  • the reactor of Example 1 is used.
  • the stream to be treated is demineralised water with 2.2 g / L dichloroacetic acid (DCA).
  • the pH of the DCA solution is adjusted to pH 3.
  • the photocatalytic purification of the current is defined by the amount of degraded DCA in g / h and is determined by pH measurements.
  • the DCA solution is pumped over> 8 h without exposure through the reactor, after which the lamp is turned on and driven with 400 W light output. Air is fed into the gas space of the storage vessel (10 l / h). After 24 h, the photocatalytic degradation rate is 2.41 g DCA / h.
  • the reactor of Example 1 is used.
  • the stream to be treated is demineralised water with 2.2 g / L dichloroacetic acid (DCA).
  • the pH of the DCA solution is adjusted to pH 3.
  • the photocatalytic purification of the current is defined by the amount of degraded DCA in g / h and is determined by pH measurements.
  • the DCA solution was pumped for> 8 h without exposure through the reactor, after which the lamp was switched on and run with 800 W light output. After 24 h, the photocatalytic degradation rate is 4.64 gDCA h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The present invention relates to a reactor for the photocatalytic treatment of liquid or gas currents, comprising a pipe which the current to be treated flows through. At least one light source, at least one planar means M1 and at least one planar means M2 are arranged inside said pipe, wherein M1 has at least one photocatalytically active material and M2 reflects the light radiation emitted from the at least one light source. The reflective surface of the at least one means M2 and the inner wall of the pipe together form an angle that is greater than or equal to 0°, such that the light emitted from the light source is reflected from the at least one means M2 onto the photocatalytically active material. The invention further relates to a method for the photocatalytic treatment of liquid or gas currents by irradiation of light in the reactor according to the invention.

Description

Photoreaktor  photoreactor
Beschreibung Die vorliegende Erfindung betrifft einen Reaktor zur photokatalytischen Behandlung von flüssigen oder gasförmigen Strömen, umfassend ein Rohr, durch das der zu behandelnde Strom fließt, wobei in dem Rohr wenigstens eine Lichtquelle, wenigstens ein mit wenigstens einem photokatalytisch aktiven Material versehenes, flächiges Mittel M1 und wenigstens ein die von der wenigstens einen Lichtquelle ausgestrahlte Lichtstrah- lung reflektierendes, flächiges Mittel M2 angeordnet sind, wobei die reflektierende Fläche des wenigstens eines Mittels M2 und die Innenwand des Rohres einen Winkel größer oder gleich 0° beschreiben, so dass das von der Lichtquelle ausgehende Licht von dem wenigstens einen Mittel M2 auf das photokatalytisch aktive Material reflektiert wird, sowie ein Verfahren zur photokatalytischen Behandlung von flüssigen oder gas- förmigen Strömen durch Bestrahlung mit Licht, welches in einem solchen Reaktor durchgeführt wird. The present invention relates to a reactor for the photocatalytic treatment of liquid or gaseous streams, comprising a pipe through which flows the current to be treated, wherein in the tube at least one light source, at least one provided with at least one photocatalytically active material, areal means M1 and at least one of the light radiation radiated by the at least one light source reflecting reflective surface M2 are arranged, wherein the reflective surface of the at least one means M2 and the inner wall of the tube an angle greater than or equal to 0 °, so that emanating from the light source Light from which at least one means M2 is reflected onto the photocatalytically active material, and a method for the photocatalytic treatment of liquid or gaseous streams by irradiation with light, which is carried out in such a reactor.
Reaktoren, in denen photokatalytische Reaktionen, insbesondere die photokatalytische Behandlung von Flüssigkeiten oder Gasen, durchgeführt werden, sind aus dem Stand der Technik bereits bekannt. Reactors in which photocatalytic reactions, in particular the photocatalytic treatment of liquids or gases are carried out, are already known from the prior art.
US 2001/0007507 A1 beschreibt einen Reaktor zur Durchführung von photokatalytischen Reaktionen, wobei die Seitenflächen von UV-leitenden Platten mit photokatalytisch aktivem Material beschichtet sind. Parallel zu mindestens einer dieser Platten ist die zu reinigende Flüssigkeit bzw. das Gas angeordnet. Mittels einer UV-Lichtquelle wird nun von der Kantfläche der Platten UV-Strahlung parallel zu den Platten eingestrahlt. Durch eine Totalreflektion zwischen den beiden Seitenflächen der Platten wird diese UV-Strahlung in die Richtung der zu reinigenden Flüssigkeit, bzw. des zu reinigenden Gases durch die Katalysatorbeschichtung umgelenkt. Dadurch, dass das Licht die Platte und die Katalysatorbeschichtung bis zu den Kontaktstellen mit der zu reinigendem Medium durchdringen soll, verliert es zunehmend an Intensität und die photokatalytische Wirkung wird gemindert. US 2001/0007507 A1 describes a reactor for carrying out photocatalytic reactions, wherein the side surfaces of UV-conductive plates are coated with photocatalytically active material. Parallel to at least one of these plates, the liquid to be cleaned or the gas is arranged. By means of a UV light source, UV radiation is now radiated parallel to the plates from the edge surface of the plates. By a total reflection between the two side surfaces of the plates, this UV radiation is deflected in the direction of the liquid to be purified, or of the gas to be cleaned by the catalyst coating. The fact that the light is to penetrate the plate and the catalyst coating up to the contact points with the medium to be cleaned, it loses increasing intensity and the photocatalytic effect is reduced.
US 5,683,589 offenbart einen Reaktor, um photokatalytische Reaktionen durchzufüh- ren. Dieser umfasst zwei konzentrisch angeordnete Rohre, wobei in dem inneren Rohr eine UV-Lichtquelle vorhanden ist. In dem Bereich zwischen innerem und äußerem Rohr sind konische, mit Löchern versehene Bleche angeordnet, auf denen ein Photokatalysator angebracht ist. Durch die konische Anordnung der Bleche wird deren Oberfläche mit UV-Strahlung bestrahlt. US 5,683,589 offenbart des Weiteren, dass die In- nenseite des äußeren Rohres reflektierend beschichtet sein kann. In der beschriebenen Anordnung wird durch die gegenseitige Beschattung der konischen Katalysator- bleche auch im Falle einer reflektierenden Beschichtung des äußeren Rohres hauptsächlich die Innenfläche der Koni bestrahlt und die katalytische Oberfläche wird nur unzureichend ausgenutzt. EP 1 946 781 A1 offenbart einen Reaktor zur Sterilisation von Flüssigkeiten bzw. Gasen. Der Reaktor besteht aus einem Rohr, durch das die Flüssigkeit, bzw. das Gas fließt. In einem Winkel von 70 bis 1 10° zu der Flussrichtung der Flüssigkeit, bzw. des Gases, sind in dem Rohr Ablenkplatten angeordnet, die ein photokatalytisch aktives Material aufweisen. An den Außenseiten des Rohres sind UV-Lichtquellen angeordnet, die die Ablenkplatten mit UV-Strahlung bestrahlen. EP 1 946 781 A1 offenbart nicht, dass in dem Reaktor reflektierende Oberflächen angeordnet sind. No. 5,683,589 discloses a reactor for carrying out photocatalytic reactions. It comprises two concentrically arranged tubes, wherein a UV light source is present in the inner tube. In the area between the inner and outer tube conical perforated plates are arranged, on which a photocatalyst is mounted. Due to the conical arrangement of the sheets whose surface is irradiated with UV radiation. US 5,683,589 further discloses that the inside of the outer tube may be reflective coated. In the arrangement described, the mutual shading of the conical catalyst Even in the case of a reflective coating of the outer tube plates mainly irradiated the inner surface of the Koni and the catalytic surface is insufficiently utilized. EP 1 946 781 A1 discloses a reactor for the sterilization of liquids or gases. The reactor consists of a tube through which the liquid or the gas flows. At an angle of 70 to 1 10 ° to the flow direction of the liquid, or the gas, baffles are arranged in the tube, which have a photocatalytically active material. On the outer sides of the tube UV light sources are arranged, which irradiate the deflector plates with UV radiation. EP 1 946 781 A1 does not disclose that reflective surfaces are arranged in the reactor.
Die im Stand der Technik beschriebenen Reaktoren zur Durchführung von photokataly- tischen Reaktionen, insbesondere zur photokatalytischen Reinigung von Flüssigkeiten, weisen den Nachteil auf, dass das photokatalytisch aktive Material nicht vollständig ausgenutzt wird, da nicht gewährleistet werden kann, dass die in der zu reinigenden Flüssigkeit abzubauende Substanz, das photokatalytisch aktive Material und die UV- Strahlung in einem genügend hohen Masse aufeinander treffen. Durch die aus dem Stand der Technik bekannte Bauweise der Reaktoren ist es beispielsweise nicht möglich, dass die gesamte, von der UV-Lichtquelle ausgehende UV-Strahlung auf das photokatalytisch aktive Material trifft. Nur wenn der Kontakt zwischen der aus dem zu reinigenden Strom abzubauenden Substanz, dem photokatalytisch aktiven Material und der UV-Strahlung möglichst intensiv ist, kann eine hohe Abbaurate bezüglich der abzubauenden Substanz(en) erzielt werden. The reactors described in the prior art for carrying out photocatalytic reactions, in particular for the photocatalytic purification of liquids, have the disadvantage that the photocatalytically active material is not fully utilized, since it can not be guaranteed that the liquid to be purified to be degraded substance, the photocatalytically active material and the UV radiation meet in a sufficiently high mass. By known from the prior art construction of the reactors, for example, it is not possible that the entire, emanating from the UV light source UV radiation strikes the photocatalytically active material. Only when the contact between the substance to be degraded from the current to be purified, the photocatalytically active material and the UV radiation is as intense as possible, a high degradation rate with respect to the substance (s) to be degraded can be achieved.
Aufgabe der vorliegenden Anmeldung ist es somit, einen Reaktor zur Durchführung von photokatalytischen Reaktionen bereitzustellen, bei dem das photokatalytisch aktive Material und das Licht von der Lichtquelle möglichst vollständig ausgenutzt werden. Eine weitere Aufgabe ist es, einen Reaktor bereitzustellen, in dem selbst bei einer kleinen Baugröße eine große Menge zu behandelndem Strom behandelt werden kann. Dies soll erfindungsgemäß dadurch erzielt werden, dass möglichst das gesamte in dem Reaktor vorhandene photokatalytisch aktive Material von der erzeugten Strahlung, insbesondere UV-Strahlung, erreicht wird. Diese Aufgaben werden erfindungsgemäß gelöst durch einen Reaktor zur photokatalytischen Behandlung von flüssigen oder gasförmigen Strömen, umfassend ein Rohr, durch das der zu behandelnde Strom fließt, wobei in dem Rohr wenigstens eine Lichtquelle, wenigstens ein mit wenigstens einem photokatalytisch aktiven Material versehenes, flächiges Mittel M1 und wenigstens ein die von der wenigstens einen Lichtquel- le ausgestrahlte Strahlung reflektierendes, flächiges Mittel M2 angeordnet sind, wobei die reflektierende Fläche des wenigstens eines Mittels M2 und die Innenwand des Rohres einen Winkel größer oder gleich 0° beschreiben, so dass das von der Lichtquelle ausgehende Licht von dem wenigstens einen Mittel M2 auf das photokatalytisch aktive Material reflektiert wird. Der in dem erfindungsgemäßen Reaktor zu behandelnde Strom kann aus allen dem Fachmann bekannten Flüssigkeiten oder Gasen ausgewählt sein. The object of the present application is thus to provide a reactor for carrying out photocatalytic reactions in which the photocatalytically active material and the light from the light source are utilized to the fullest extent possible. Another object is to provide a reactor in which, even with a small size, a large amount of treated stream can be treated. This is to be achieved according to the invention in that as far as possible the entire photocatalytically active material present in the reactor is achieved by the generated radiation, in particular UV radiation. These objects are achieved according to the invention by a reactor for the photocatalytic treatment of liquid or gaseous streams, comprising a tube through which the current to be treated flows, wherein in the tube at least one light source, at least one provided with at least one photocatalytically active material, areal means M1 and at least one planar means M2 reflecting the radiation emitted by the at least one light source is arranged, wherein the reflective surface of the at least one means M2 and the inner wall of the Tube to describe an angle greater than or equal to 0 °, so that the light emanating from the light source is reflected by the at least one means M2 on the photocatalytically active material. The stream to be treated in the reactor according to the invention may be selected from all liquids or gases known to those skilled in the art.
Daher betrifft die vorliegende Erfindung in einer Ausführungsform den erfindungsgemäßen Reaktor, wobei der zu behandelnde Strom eine Flüssigkeit ist. Des Weiteren betrifft die vorliegende Erfindung in einer weiteren Ausführungsform den erfindungsgemäßen Reaktor, wobei der zu behandelnde Strom ein Gas ist. Besonders bevorzugt wird in dem erfindungsgemäßen Reaktor schadstoffhaltiges Wasser oder schadstoff- haltiges Gas behandelt. Besonders bevorzugt umfasst die Behandlung eine Reinigung. Daher wird erfindungsgemäß bevorzugt unter „photokatalytischer Behandlung von Strömen, insbesondere Flüssigkeiten oder Gasen" verstanden, dass Abwässer oder Abgase, in denen störende, bzw. toxische Substanzen vorliegen, gereinigt werden. In dem erfindungsgemäßen Reaktor wird das Abwasser oder das Abgas gereinigt, d. h. nach der Reinigung ist die Konzentration an störenden Substanzen geringer als vorher. Im Rahmen der vorliegenden Erfindung kann der zu behandelnde schadstoffhaltige Strom beispielsweise aus industriellen Anlagen, beispielsweise Ölraffinerien, Papierfabriken, Minen, im Lebensmittelbereich oder in der Chemieindustrie, dem privaten Bereich, beispielsweise Sportsanlagen, Restaurants, Krankenhäuser oder natürlichen Ursprungs sein. Im Fall von Abgasen als zu behandelnder schadstoffhaltiger Strom können diese auch aus Verbrennungsanlagen oder Verbrennungsmotoren stammen. Im Allgemeinen sind die störenden Substanzen, die aus dem Abwasser bzw. dem Abgas entfernt werden sollen, ausgewählt aus organischen oder anorganischen Substanzen, die, würden sie im Abwasser oder Abgas verbleiben, eine störende Wirkung entfalten, beispielsweise durch eine toxische Wirkung, Geruchsbelästigung, Färbung des Abwassers oder Abgases, etc. Therefore, in one embodiment, the present invention relates to the reactor according to the invention, wherein the stream to be treated is a liquid. Furthermore, in a further embodiment, the present invention relates to the reactor according to the invention, wherein the stream to be treated is a gas. In the reactor according to the invention, it is particularly preferred to treat pollutant-containing water or polluted gas. Most preferably, the treatment comprises a purification. Therefore, according to the invention, the term "photocatalytic treatment of streams, in particular liquids or gases" is understood to mean that wastewaters or waste gases in which disruptive or toxic substances are present are cleaned in the reactor according to the invention For the purposes of the present invention, the pollutant-containing stream to be treated may be, for example, industrial plants, for example oil refineries, paper mills, mines, in the food industry or in the chemical industry, the private sector, for example sports facilities, restaurants In the case of waste gases as a pollutant-containing stream to be treated, these can also originate from incinerators or internal combustion engines In general, the interfering substances that are removed from the waste water or the exhaust gas w earth, selected from organic or inorganic substances, which, if they remained in the waste water or exhaust gas, unfold a disturbing effect, for example, by a toxic effect, odor, color of the waste water or exhaust gas, etc.
In einer bevorzugten Ausführungsform des vorliegenden Erfindung erfolgt die Reinigung durch chemischen Abbau von organischen oder anorganischen Verbindungen beispielsweise von organischen Säuren, halogenierten organischen Substanzen, aro- matischen oder aliphatischen organischen Substanzen, Aminen, oligo- oder polymeren Materialien, Alkoholen, Ethern, Estern, Zuckern, biologisch oder nicht-biologisch abbaubaren Substanzen, Tensiden, Ammoniak, Kohlenstoffmonoxid, Stickstoffoxiden, Salzen, Metallsalzen, Schwermetallen und Mischungen davon. Bevorzugt sind die Substanzen, die erfindungsgemäß aus dem schadstoffhaltigen Strom entfernt werden können, ausgewählt aus organischen Verbindungen, ausge- wählt aus der Gruppe bestehend aus organischen Säuren, halogenierten organischen Substanzen, aromatischen oder aliphatischen organischen Substanzen, Aminen, oligo- oder polymeren Materialien, Alkoholen, Ethern, Estern, Zuckern, biologisch oder nichtbiologisch abbaubaren Substanzen, Tensiden, Kohlenstoffmonoxid, Stickstoffoxiden und Mischungen davon. In a preferred embodiment of the present invention, the purification is carried out by chemical degradation of organic or inorganic compounds, for example, organic acids, halogenated organic substances, aromatic or aliphatic organic substances, amines, oligomeric or polymeric materials, alcohols, ethers, esters, sugars , biologically or non-biodegradable substances, surfactants, ammonia, carbon monoxide, nitrogen oxides, salts, metal salts, heavy metals and mixtures thereof. Preference is given to the substances which, according to the invention, can be removed from the pollutant-containing stream selected from organic compounds. selected from the group consisting of organic acids, halogenated organic substances, aromatic or aliphatic organic substances, amines, oligomeric or polymeric materials, alcohols, ethers, esters, sugars, biologically or non-biodegradable substances, surfactants, carbon monoxide, nitrogen oxides and mixtures thereof.
Im Allgemeinen umfasst der erfindungsgemäße Reaktor ein Rohr. Dieses Rohr kann im Allgemeinen jede dem Fachmann bekannte Grundfläche aufweisen, beispielsweise rund, eckig, oval, asymmetrisch usw. In einer bevorzugten Ausführungsform handelt es sich bei dem erfindungsgemäßen Reaktor um ein Rohr mit bevorzugt rundem Querschnitt, d. h. um einen Zylinder. Es ist erfindungsgemäß auch möglich, dass zwei oder mehr dieser Rohre, bevorzugt parallel, nebeneinander, beispielsweise als Rohrbündel betrieben werden. In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Reaktors wird dieser kontinuierlich von dem zu behandelnden Strom durch- strömt. In general, the reactor according to the invention comprises a tube. In general, this tube can have any base area known to the person skilled in the art, for example round, angular, oval, asymmetrical, etc. In a preferred embodiment, the reactor according to the invention is a tube with preferably round cross-section, ie. H. around a cylinder. It is according to the invention also possible that two or more of these tubes, preferably in parallel, are operated side by side, for example as a tube bundle. In a particularly preferred embodiment of the reactor according to the invention, it is continuously passed through by the stream to be treated.
Der Durchmesser des Reaktors beträgt im Allgemeinen 50 mm bis 500 mm, bevorzugt 80 mm bis 300 mm, besonders bevorzugt 100 mm bis 200 mm. Die Länge des Reaktors ist im Allgemeinen abhängig von der Menge des zu behandelnden Stromes, bzw. der Länge der UV-Quellen die darin eingebracht werden. Im Allgemeinen beträgt die Länge des erfindungsgemäßen Reaktors 10 cm bis 500 cm, bevorzugt 40 cm bis 300 cm. Der Durchmesser und die Länge des erfindungsgemäßen Reaktors können durch den Fachmann so gewählt werden, dass eine ausreichend hohe Behandlungsleistung des Reaktors erzielt wird. Mehreren solchen Reaktoren können seriell und/oder parallel beliebig geschaltet werden, um bestimmte Mengen an zu behandelndem Strom bis zum gewünschten Behandlungsgrad, insbesondere Reinheitsgrad, zu behandeln. The diameter of the reactor is generally 50 mm to 500 mm, preferably 80 mm to 300 mm, particularly preferably 100 mm to 200 mm. The length of the reactor is generally dependent on the amount of the stream to be treated, or the length of the UV sources which are introduced therein. In general, the length of the reactor according to the invention is 10 cm to 500 cm, preferably 40 cm to 300 cm. The diameter and the length of the reactor according to the invention can be selected by the skilled person so that a sufficiently high treatment efficiency of the reactor is achieved. Several such reactors can be connected in series and / or in parallel as desired, in order to treat certain amounts of the stream to be treated up to the desired degree of treatment, in particular the degree of purity.
Der erfindungsgemäße Reaktor weist im Allgemeinen über alle zum Betrieb notwenigen Anschlüsse, beispielsweise Zu- und Abläufe, auf, die für den Betrieb des Reaktors notwendig sind. Insbesondere weist der erfindungsgemäße Reaktor wenigstens einen Zulauf auf, durch den der zu behandelnde Strom dem Reaktor zugeführt wird. Des Weiteren weist der erfindungsgemäße Reaktor wenigstens einen Ablauf auf, durch den der gereinigte Strom aus dem Reaktor abgeführt wird. Der erfindungsgemäße Reaktor kann auch weitere übliche und dem Fachmann bekannte Vorrichtungen aufweisen, beispielsweise Messfühler zur Bestimmung verschiedener Verfahrensparameter wie Druck, Temperatur, Fließgeschwindigkeit, pH-Wert, Strahlungsintensität. The reactor according to the invention generally has all the necessary for operation connections, such as inlets and outlets, which are necessary for the operation of the reactor. In particular, the reactor according to the invention has at least one inlet through which the stream to be treated is fed to the reactor. Furthermore, the reactor according to the invention has at least one outlet through which the purified stream is removed from the reactor. The reactor according to the invention may also comprise other conventional devices known to the person skilled in the art, for example measuring sensors for determining various process parameters such as pressure, temperature, flow rate, pH, radiation intensity.
Der in dem erfindungsgemäßen Reaktor zu behandelnde Strom weist im Allgemeinen eine Fließgeschwindigkeit in dem Reaktor auf, die eine möglichst vollständige Behand- lung ermöglicht, beispielsweise 0,001 m/s bis 10 m/s, bevorzugt 0,01 m/s bis 0,1 m/s. Im Allgemeinen kann die wenigstens eine Lichtquelle, bevorzugt eine UV-Lichtquelle, in dem erfindungsgemäßen Reaktor an jeder beliebigen Stelle innerhalb des Rohres angebracht sein. In einer bevorzugten Ausführungsform ist die wenigstens eine Lichtquelle in der Mitte des Rohres, insbesondere parallel zum Rohr, angeordnet. Erfin- dungsgemäß bedeutet„in der Mitte des Rohres" der Bereich, der sich in einem Abstand von etwa 40 und 60% des Rohrdurchmessers, betrachtet von einer Seite des Rohres, befindet.„Parallel" bedeutet im Rahmen der vorliegenden Erfindung, dass die in dem Rohr angeordnete Lichtquelle an jeder Stelle ihrer Längsausdehnung im Wesentlichen einen gleichen Abstand von den Rohrwänden aufweist. Erfindungsgemäß ist es jedoch möglich, dass Abweichungen von bis zu 10%, bezogen auf den Abstand zwischen der Lichtquelle und der Rohrwand, vorliegen. Dies kann beispielsweise dadurch der Fall sein, dass die wenigstens eine Lichtquelle nicht vollständig geradlinig ausgeformt ist, oder dass sie nicht vollständig parallel in dem Reaktor ausgerichtet ist. Erfindungsgemäß kann eine Lichtquelle oder zwei oder mehr Lichtquellen eingesetzt werden. The stream to be treated in the reactor according to the invention generally has a flow rate in the reactor which allows as complete a treatment as possible, for example 0.001 m / s to 10 m / s, preferably 0.01 m / s to 0.1 m / s. In general, the at least one light source, preferably a UV light source, can be mounted in the reactor according to the invention at any point within the tube. In a preferred embodiment, the at least one light source is arranged in the middle of the tube, in particular parallel to the tube. According to the invention, "in the middle of the pipe" means the area which is at a distance of about 40 and 60% of the pipe diameter, viewed from one side of the pipe. "Parallel" in the context of the present invention means that the in Having the tube arranged light source at each point of its longitudinal extent substantially equidistant from the tube walls. According to the invention, however, it is possible that deviations of up to 10%, based on the distance between the light source and the tube wall, are present. This may be the case, for example, in that the at least one light source is not completely rectilinear, or that it is not aligned completely parallel in the reactor. According to the invention, one light source or two or more light sources can be used.
Erfindungsgemäß können alle dem Fachmann bekannten Lichtquellen, bevorzugt UV- Lichtquellen, eingesetzt werden, die eine Strahlung im gewünschten Wellenlängebe- reich ausstrahlen, die für die Aktivierung des photokatalytisch aktiven Materials geeignet ist. Erfindungsgemäß wird unter der bevorzugt eingesetzten„UV-Strahlung" elektromagnetische Strahlung mit einer Wellenlänge von 150 bis 400 nm verstanden. In einer bevorzugten Ausführungsform wird daher eine UV-Lichtquelle eingesetzt, die eine UV-Strahlung der Wellenlänge 150 bis 400 nm ausstrahlt. According to the invention, it is possible to use all light sources known to the person skilled in the art, preferably UV light sources, which emit radiation in the desired wavelength range which is suitable for the activation of the photocatalytically active material. According to the invention, the "UV radiation" which is preferably used is electromagnetic radiation having a wavelength of 150 to 400 nm In a preferred embodiment, therefore, a UV light source is used which emits UV radiation of wavelength 150 to 400 nm.
Erfindungsgemäß wird unter einer Lichtquelle auch eine solche Lichtquelle verstanden, die nicht ausschließlich UV-Strahlung, sondern auch elektromagnetische Strahlung mit anderen Wellenlängen ausstrahlt, beispielsweise Licht mit einer Wellenlänge λ von 200 bis 800 nm, beispielsweise eine Quecksilber Mittel- oder Hochdrucklampe, Schwarz- lichtlampen, Deuterium oder Xenon-Strahler, Tageslichtlampen etc oder Mischungen davon. According to the invention, a light source is also understood as meaning a light source which emits not only UV radiation but also electromagnetic radiation with other wavelengths, for example light with a wavelength λ of 200 to 800 nm, for example a medium or high pressure mercury lamp, black light lamps , Deuterium or xenon lamps, daylight lamps etc or mixtures thereof.
Die erfindungsgemäß eingesetzte wenigstens eine UV-Lichtquelle weist im Allgemeinen eine Lichtintensität bei 365 nm, gemessen im Abstand von 3 mm, von 0,01 bis 1000 mW/cm2, bevorzugt 0,1 bis 500 mW/cm2, auf. The inventively used at least one UV light source generally has a light intensity at 365 nm, measured at a distance of 3 mm, from 0.01 to 1000 mW / cm 2 , preferably 0.1 to 500 mW / cm 2 , on.
Die Form der wenigstens einen UV-Lichtquelle ist erfindungsgemäß nicht festgelegt. Im Allgemeinen ist die wenigstens eine UV-Quelle so ausgeformt, dass die entscheidenden Bereiche des erfindungsgemäßen Reaktors, bevorzugt vollständig, mit UV- Strahlung bestrahlt werden. In einer bevorzugten Ausführungsform ist die UV- Lichtquelle stabförmig, wobei die Grundfläche rund, oval, eckig oder asymmetrisch sein kann. In einer besonders bevorzugten Ausführungsform wird eine stabförmige, runde UV-Lichtquelle verwendet. Die UV-Lichtquelle ist in einer bevorzugten Ausführungsform mit wenigstens einem Material umgeben, welches die UV-Lichtquelle von dem zu reinigenden schadstoffhaltigen Strom abtrennt und gleichzeitig für UV-Strahlung durch- lässig ist, beispielsweise Quarz, Kunststoff oder Kombinationen davon. The shape of the at least one UV light source is not defined according to the invention. In general, the at least one UV source is shaped such that the critical regions of the reactor according to the invention, preferably completely, are irradiated with UV radiation. In a preferred embodiment, the UV light source is rod-shaped, the base being round, oval, angular or asymmetrical can. In a particularly preferred embodiment, a rod-shaped, round UV light source is used. In a preferred embodiment, the UV light source is surrounded by at least one material which separates the UV light source from the contaminant-containing stream to be cleaned and at the same time is permeable to UV radiation, for example quartz, plastic or combinations thereof.
Der erfindungsgemäße Reaktor zur photokatalytischen Behandlung von Strömen um- fasst neben der wenigstens einen Lichtquelle auch wenigstens ein mit wenigstens einem photokatalytisch aktiven Material versehenes, flächiges Mittel M1 . The reactor according to the invention for the photocatalytic treatment of streams comprises not only the at least one light source but also at least one planar means M1 provided with at least one photocatalytically active material.
Erfindungsgemäß enthält der Reaktor wenigstens ein flächiges Mittel M1 , bevorzugt enthält der erfindungsgemäße Reaktor mehrere flächige Mittel M1. Unter„flächig" wird im Rahmen der vorliegenden Erfindung verstanden, dass die Breite und die Länge der entsprechenden Mittel im Vergleich zur Höhe deutlich größer sind. According to the invention, the reactor contains at least one areal means M1, preferably the reactor according to the invention contains a plurality of areal means M1. In the context of the present invention, "flat" is understood to mean that the width and the length of the corresponding means are significantly greater in comparison with the height.
Die Anzahl der in dem Reaktor vorliegenden Mittel M1 ist abhängig von der Länge des Reaktors, bzw. von dem Verschmutzungsgrad, der Menge und/oder der Fließgeschwindigkeit des zu behandelnden Stromes. In einer bevorzugten Ausführungsform sind in dem Reaktorrohr so viele Mittel M1 , insbesondere parallel zueinander, ange- ordnet, dass zwischen zwei Mitteln M1 ein Abstand von bevorzugt 0,1 bis 500 cm, besonders bevorzugt 1 bis 100 cm, vorliegt. The number of means M1 present in the reactor is dependent on the length of the reactor or on the degree of soiling, the amount and / or the flow rate of the stream to be treated. In a preferred embodiment, so many means M1, in particular parallel to one another, are arranged in the reactor tube such that a distance of preferably 0.1 to 500 cm, particularly preferably 1 to 100 cm, is present between two means M1.
Erfindungsgemäß sind die flächigen Mitteln M1 mit wenigstens einem photokatalytisch aktiven Material versehen. In möglichen Ausführungsformen liegt das wenigstens eine flächige Mittel M1 in Form von photokatalytisch aktiven Formkörpern in allen dem Fachmann bekannten Formen, zum Beispiel Kugel, Monolith, Extrudate oder Tablette, oder vor, oder das flächige Mittel M1 ist auf der Oberfläche mit wenigstens einem entsprechenden photokatalytisch aktiven Material versehen, beispielsweise beschichtet. Bei dieser Ausführungsform ist es erfindungsgemäß möglich, dass die gesamte Ober- fläche des wenigstens einen Mittels M1 mit wenigstens einem photokatalytischen Material versehen ist. Es ist des Weiteren erfindungsgemäß auch möglich, dass lediglich ein Teil der Oberfläche des wenigstens einen Mittels M1 mit wenigstens einem photokatalytisch aktiven Material versehen ist, beispielsweise sind 5 bis 100%, bevorzugt 50 bis 100% der Oberfläche. According to the invention, the two-dimensional means M1 are provided with at least one photocatalytically active material. In possible embodiments, the at least one planar means M1 is in the form of photocatalytically active moldings in all forms known to those skilled in the art, for example ball, monolith, extrudates or tablets, or before, or the planar means M1 is on the surface with at least one corresponding photocatalytic provided active material, for example coated. In this embodiment, it is possible according to the invention that the entire surface of the at least one means M1 is provided with at least one photocatalytic material. Furthermore, it is also possible according to the invention that only part of the surface of the at least one means M1 is provided with at least one photocatalytically active material, for example 5 to 100%, preferably 50 to 100%, of the surface.
Beispielsweise werden als Mittel M1 in dem erfindungsgemäßen Reaktor Bleche, beispielsweise aus Metall, beispielsweise Eisen, Edelstahl, eingesetzt, deren Oberfläche mit photokatalytisch aktivem Material zumindest teilweise beschichtet ist. Des Weiteren können auch mit photokatalytischem Material beschichtete Waben oder Schaumkörper eingesetzt werden. Verfahren zur Beschichtung entsprechender flächiger Mittel mit photokatalytischem Material sind dem Fachmann bekannt, beispielsweise Dipcoating, Spraycoating etc. For example, as means M1 in the reactor according to the invention plates, for example made of metal, for example iron, stainless steel, are used whose surface is coated at least partially with photocatalytically active material. Furthermore, it is also possible to use honeycombs or foam bodies coated with photocatalytic material. Process for coating corresponding flat media with photocatalytic material are known in the art, for example, dip coating, spray coating etc.
Daher betrifft die vorliegende Erfindung auch einen erfindungsgemäßen Reaktor wobei als Mittel M1 Bleche eingesetzt werden, deren Oberfläche mit photokatalytisch aktivem Material zumindest teilweise beschichtet ist. Therefore, the present invention also relates to a reactor according to the invention wherein as a means M1 sheets are used, the surface of which is coated at least partially with photocatalytically active material.
Es ist erfindungsgemäß auch möglich, dass als Mittel M1 flächig ausgeführte Gitternetze, beispielsweise aus Metalldraht, Kunststoff-, Glass- oder Keramikfasergewebe oder -Gestricke, eingesetzt werden, die einen Hohlraum bilden, in denen photokatalytisch aktives Material, beispielsweise in Form von Tabletten oder Strängen, vorliegt. Die tragende Gewebe oder Gitter können zur Steigerung der Reaktoreffizienz selbst mit photokatalytisch aktiven Beschichtungen versehen werden. Daher betrifft die vorliegende Erfindung bevorzugt den erfindungsgemäßen Reaktor, Reaktor wobei als Mittel M1 photokatalytisch aktive Monolithe, Netze mit eingeschlossenen Extrudaten aus photokatalytischem Material oder mit photokatalytischem Material beschichteten Waben oder Schaumkörpern eingesetzt werden. In einer weiteren bevorzugten Ausführungsform weist das wenigstens eine Mittel M1 Poren auf. In dieser Ausführungsform kann das Mittel M1 beim Betrieb des erfindungsgemäßen Reaktors von dem zu behandelnden Strom durchströmt werden. Ein Beispiel für diese erfindungsgemäße Ausführungsform ist ein poröses, beispielsweise ein gelochtes Blech, welches zumindest teilweise mit wenigstens einem photokatalytisch ak- tiven Material beschichtet ist. Ein bevorzugtes Beispiel für diese Ausführungsform ist eine mit Kanälen versehene Platte, die aus einem keramischen oder metallischen Wa- benkörpermonolith so gesägt wird, dass die Anordnung der Kanäle das Fließen des schadstoffhaltigen Stromes ermöglicht. Die Platte besteht bevorzugt aus mindestens einem photokatalytisch aktiven Material oder wird mit mindestens einem photokataly- tisch aktiven Material beschichtet. Ein weiteres bevorzugtes Beispiel dieser Ausführung ist eine Platte aus einem porösen, festen Schaum oder Schwamm, aus Keramik, Metall oder Kunststoff aus einem photokatalytisch aktiven Material oder welches mit einem photokatalytisch aktiven Material beschichtet ist. Die bevorzugte Porengröße und -anzahl ist abhängig von der Menge, dem Verschmutzungsgrad und der Fließgeschwindigkeit des zu behandelnden Stromes, und kann durch den Fachmann leicht ermittelt werden. In einer bevorzugten Ausführungsform weisen die Poren eine Größe von 0,1 bis 10 mm, insbesondere bevorzugt 1 bis 5 mm, auf. In einer bevorzugten Ausführungsform beträgt das Volumen der Poren, bezogen auf das Gesamtvolumen des Mittels M1 weniger als 90%, besonders bevorzugt weniger als 70%. Das erfindungsgemäß vorliegende wenigstens eine Mittel M1 kann im Allgemeinen an jeder dem Fachmann als geeignet erscheinenden Position in dem erfindungsgemäßen Reaktor angeordnet sein. In einer bevorzugten Ausführungsform ist das wenigstens eine Mittel M1 mit einer flächigen Seite in einem Winkel von 60 bis 130°, bevorzugt 80 bis 100° zur Fließrichtung des zu behandelnden Stromes angeordnet. Da die wenigstens eine Lichtquelle in einer bevorzugten Ausführungsform des erfindungsgemäßen Reaktors parallel zu dem Reaktorrohr angeordnet ist, ist das wenigstens eine Mittel M1 in einer bevorzugten Ausführungsform mit einer flächigen Seite in einem Winkel von 60 bis 130°, bevorzugt 80 bis 100° zu der wenigstens einen Lichtquelle angeordnet. It is also possible according to the invention that meshes, for example made of metal wire, plastic, glass or ceramic fiber fabric or knitted fabric, which form a cavity in which photocatalytically active material, for example in the form of tablets or strands, are used as means M1 , is present. The supporting webs or screens may themselves be provided with photocatalytically active coatings to increase reactor efficiency. Therefore, the present invention preferably relates to the reactor according to the invention reactor, wherein as the means M1 photocatalytically active monoliths, networks with enclosed extrudates of photocatalytic material or coated with photocatalytic material honeycomb or foam bodies are used. In a further preferred embodiment, the at least one means M1 has pores. In this embodiment, the means M1 can be flowed through during operation of the reactor according to the invention of the current to be treated. An example of this embodiment according to the invention is a porous, for example a perforated sheet, which is at least partially coated with at least one photocatalytically active material. A preferred example of this embodiment is a channeled plate that is sawn from a ceramic or metallic honeycomb monolith so that the arrangement of the channels allows flow of the contaminant-containing stream. The plate preferably consists of at least one photocatalytically active material or is coated with at least one photocatalytically active material. Another preferred example of this embodiment is a plate made of a porous, solid foam or sponge, made of ceramic, metal or plastic of a photocatalytically active material or which is coated with a photocatalytically active material. The preferred pore size and number depend on the amount, degree of soiling and flow rate of the stream to be treated, and can be readily determined by those skilled in the art. In a preferred embodiment, the pores have a size of 0.1 to 10 mm, particularly preferably 1 to 5 mm. In a preferred embodiment, the volume of the pores, based on the total volume of the agent M1, is less than 90%, more preferably less than 70%. The at least one agent M1 present according to the invention can generally be arranged at any position which appears appropriate to the person skilled in the art in the reactor according to the invention. In a preferred embodiment, the at least one means M1 is arranged with a flat side at an angle of 60 to 130 °, preferably 80 to 100 ° to the flow direction of the stream to be treated. Since the at least one light source is arranged in a preferred embodiment of the reactor according to the invention parallel to the reactor tube, the at least one means M1 in a preferred embodiment with a flat side at an angle of 60 to 130 °, preferably 80 to 100 ° to the at least arranged a light source.
Die erfindungsgemäßen Mittel M1 können eine gerade Oberfläche oder eine gebogene, beispielsweise konvex oder konkav, Oberfläche aufweisen. Im Allgemeinen können die Mittel M1 in jeder geeigneten Größe vorliegen, wobei die maximale Größe der Mittel M1 durch die Größe des Reaktors festgelegt ist. In einer besonders bevorzugten Ausführungsform weisen die Mittel M1 eine Größe auf, die dem Durchmesser des Reaktors entspricht. In Verbindung mit dem oben genannten Winkel des Mittels M1 zur Fließrichtung des zu behandelnden Stromes ergibt sich in einer besonders bevorzugten Ausführungsform, dass das wenigstens eine Mittel M1 senkrecht zur Fließrichtung über den gesamten Durchmesser des Reaktors angeordnet ist. Durch diese besonders bevorzugte Anordnung des wenigstens einen Mittels im Reaktor wird gewährleistet, dass die Mittel M1 in ausreichenden Kontakt mit dem zu behandelnden Strom treten. Besonders in dieser Ausführungsform muss gewährleistet sein, dass der zu behandelnde Strom das wenigstens eine Mittel M1 durchströmen kann, bevorzugt durch die oben genannten bevorzugten Ausführungsformen. The means M1 according to the invention may have a straight surface or a curved, for example convex or concave, surface. In general, the means M1 may be of any suitable size, the maximum size of the means M1 being determined by the size of the reactor. In a particularly preferred embodiment, the means M1 have a size which corresponds to the diameter of the reactor. In connection with the abovementioned angle of the means M1 to the flow direction of the stream to be treated, it results in a particularly preferred embodiment that the at least one means M1 is arranged perpendicular to the flow direction over the entire diameter of the reactor. This particularly preferred arrangement of the at least one agent in the reactor ensures that the means M1 come into sufficient contact with the stream to be treated. Particularly in this embodiment, it must be ensured that the current to be treated can flow through the at least one means M1, preferably by the above-mentioned preferred embodiments.
Daher betrifft die vorliegende Erfindung in einer bevorzugten Ausführungsform einen erfindungsgemäßen Reaktor, wobei das wenigstens eine Mittel M1 von dem zu behan- delnden Strom durchströmt wird. Therefore, in a preferred embodiment, the present invention relates to a reactor according to the invention, wherein the at least one means M1 is flowed through by the stream to be treated.
Erfindungsgemäß können im Allgemeinen alle dem Fachmann bekannten photokataly- tisch aktiven Materialien eingesetzt werden, beispielsweise Metall- oder Halbmetalloxide ausgewählt aus der Gruppe bestehend aus modifziertem oder nicht-modifiziertem Titandioxid (Ti02), Zinkoxid (ZnO), Wolframoxid (W03), und Mischungen davon. In einer bevorzugten Ausführungsform wird in dem erfindungsgemäßen Reaktor modifzier- tes oder nicht-modifiziertes Titandioxid (Ti02) als photokatalytisch aktives Material eingesetzt. In einer bevorzugten Ausführungsform des erfindungsgemäßen Reaktors wird modif- ziertes oder nicht-modifiziertes Titandioxid eingesetzt, welches im Wesentlichen in der Anatas-Modifikation vorliegt.„Im Wesentlichen" bedeutet im Rahmen der vorliegenden Erfindung, dass wenigstens 50%, besonders bevorzugt wenigstens 60% des Titandioxids in der Anatas-Modifikation, auf Basis dem Fachmann bekannten XRD- Messmethode, vorliegen. Der Rest des Titandioxides besteht aus amorphem Metalloxid, Brookit- oder Rutil-Modifikation Titandioxid oder eine Mischung davon. In einer ganz besonders bevorzugten Ausführungsform liegt das eingesetzte Titandioxid durch XRD bestimmt >70%, in der Anatas-Modifikation vor. In general, all photocatalytically active materials known to those skilled in the art may be used according to the invention, for example metal or semimetal oxides selected from the group consisting of modified or unmodified titanium dioxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), and Mixtures thereof. In a preferred embodiment, modified or unmodified titanium dioxide (TiO 2 ) is used as the photocatalytically active material in the reactor according to the invention. In a preferred embodiment of the reactor according to the invention, modified or unmodified titanium dioxide is used which is essentially in the anatase modification. "Substantially" in the context of the present invention Invention that at least 50%, more preferably at least 60% of the titanium dioxide in the anatase modification, based on the XRD measuring method known in the art, are present. The remainder of the titanium dioxide consists of amorphous metal oxide, brookite or rutile modification, titanium dioxide, or a mixture thereof. In a very particularly preferred embodiment, the titanium dioxide used is determined by XRD> 70%, in the anatase modification.
In einer bevorzugten Ausführungsform werden somit in dem erfindungsgemäßen Reaktor flächige Mittel M1 eingesetzt, die aus Titandioxid, bevorzugt in den genannten be- vorzugten Ausführungsformen, bestehen, oder es werden zumindest teilweise mit Titandioxid beschichtete Bleche eingesetzt. In one preferred embodiment, areal agents M1 which consist of titanium dioxide, preferably in the cited preferred embodiments, are thus used in the reactor according to the invention, or sheets which are at least partially coated with titanium dioxide are used.
In einer weiteren bevorzugten Ausführungsform werden als Mittel M1 flächig ausgeführte Gitternetze eingesetzt werden, in denen photokatalytisch aktives Material, bei- spielsweise in Form von Tabletten oder Strängen, vorliegt. In a further preferred embodiment, grids made in a planar manner are used as means M1 in which photocatalytically active material, for example in the form of tablets or strands, is present.
In einer weiteren bevorzugten Ausführungsform werden in dem erfindungsgemäßen Reaktor als Mittel M1 Netze mit eingeschlossenen Extrudaten aus photokatalytischem Material oder mit photokatalytischem Material beschichteten Waben oder Schaumkör- pern eingesetzt. In a further preferred embodiment, in the reactor according to the invention, means M1 with embedded extrudates of photocatalytic material or honeycombs or foam bodies coated with photocatalytic material are used as means M1.
Beispielsweise kann in dem erfindungsgemäßen Reaktor ein strangförmiger Titandioxid-Photokatalysator eingesetzt werden. Bevorzugt weist dieser strangförmige Titandioxid-Photokatalysator spezifische Merkmale bezüglich BET-Oberfläche, Porenvolu- men, mittlerem Porendurchmesser und Geometrie der einzelnen Katalysatorteilchen auf. Diese spezifischen Merkmale, insbesondere die Kombination dieser Merkmale ergibt eine besonders hohe Aktivität, sowie eine besonders lange Lebensdauer des eingesetzten Photokatalysators mit gleich bleibend hoher Aktivität. Strangförmig bedeutet im Rahmen der vorliegenden Erfindung, dass der eingesetzte Photokatalysator bevorzugt eine ovale oder runde Grundfläche aufweist. Der Durchmesser dieser runden Grundfläche bzw. einer ovalen Grundfläche in der größten Ausdehnung beträgt im Allgemeinen 0,2 bis 10 mm, bevorzugt 0,5 bis 3,0 mm. Der strangförmige Titandioxid-Photokatalysator weist im Allgemeinen eine Länge von 0,5 bis 10 mm, bevorzugt 0,8 bis 8 mm, besonders bevorzugt 1 ,0 bis 5,0 mm, auf. Das Verhältnis von Länge zu Durchmesser des erfindungsgemäßen strangformigen Photokatalysators beträgt im Allgemeinen 0,05 bis 50, bevorzugt 1 ,0 bis 10. For example, a strand-shaped titanium dioxide photocatalyst can be used in the reactor according to the invention. This strand-shaped titanium dioxide photocatalyst preferably has specific characteristics with regard to BET surface area, pore volume, mean pore diameter and geometry of the individual catalyst particles. These specific features, in particular the combination of these features results in a particularly high activity, and a particularly long life of the photocatalyst used with consistently high activity. In the context of the present invention, strand-shaped means that the photocatalyst used preferably has an oval or round base surface. The diameter of this round base area or an oval base area in the largest dimension is generally 0.2 to 10 mm, preferably 0.5 to 3.0 mm. The strand-shaped titanium dioxide photocatalyst generally has a length of 0.5 to 10 mm, preferably 0.8 to 8 mm, particularly preferably 1, 0 to 5.0 mm. The ratio of length to diameter of the strand-form photocatalyst according to the invention is generally 0.05 to 50, preferably 1, 0 to 10.
Der bevorzugt eingesetzte strangförmige Photokatalysator enthält als photokatalytisch aktives Material im Wesentlichen Titandioxid, d.h., dass der eingesetzte Photokatalysator im Allgemeinen wenigstens 90 Gew.-%, bevorzugt wenigstens 95 Gew.-%, beson- ders bevorzugt 97%, Titandioxid enthält. Der Rest sind anorganische oder organische Additive, oder eine Mischung davon. The preferably used strand-shaped photocatalyst essentially contains titanium dioxide as the photocatalytically active material, ie, the photocatalyst used is generally at least 90% by weight, preferably at least 95% by weight, in particular preferably 97%, containing titanium dioxide. The remainder are inorganic or organic additives, or a mixture thereof.
In einer weiteren bevorzugten Ausführungsform enthält der Titandioxid- Photokatalysator wenigstens ein Additiv, besonders bevorzugt ausgewählt aus den Gruppen 1 , 4, 8, 9, 10, 1 1 , 13, 14, 15 der Periodensystems der Elemente (neue IU- PAC-Nomenklatur) oder den Lanthanoiden, beispielsweise ausgewählt aus der Gruppe bestehend aus Natrium, Kalium, Zirkonium, Kobalt, Zink, Eisen, Kupfer, Silber, Gold, Palladium, Platinum, Gallium, Stickstoff, Kohlenstoff, Schwefel, Fluor, Ytterbium, Erbi- um, Thulium, Neodym und Mischungen davon, in elementarer oder in oxidischer Form. Bevorzugt können auch Kombinationen von zwei oder mehr der genannten Additive vorliegen. In a further preferred embodiment, the titanium dioxide photocatalyst contains at least one additive, more preferably selected from the groups 1, 4, 8, 9, 10, 11, 13, 14, 15 of the Periodic Table of the Elements (new IU-PAC nomenclature) or the lanthanides, for example selected from the group consisting of sodium, potassium, zirconium, cobalt, zinc, iron, copper, silver, gold, palladium, platinum, gallium, nitrogen, carbon, sulfur, fluorine, ytterbium, erbium, thulium , Neodymium and mixtures thereof, in elemental or oxidic form. It is also possible for there to be combinations of two or more of the additives mentioned.
Das wenigstens eine Additiv liegt in dem erfindungsgemäß bevorzugten eingesetzten strangförmigen Titandioxid-Photokatalysator bevorzugt in einer Menge von 0,001 bis 5 Gew.-%, besonders bevorzugt 0,01 bis 3 Gew.-%, vor. Liegen zwei oder mehr der genannten Additive gleichzeitig in dem erfindungsgemäß eingesetzten Photokatalysator vor, so betreffen die genannten Mengenangaben diese Mischung. Der erfindungsgemäß bevorzugt eingesetzte strangförmige Titandioxid- Photokatalysator weist im Allgemeinen eine BET-Oberfläche von 20 bis 200 m2/g, bevorzugt 30 bis 180 m2/g, besonders bevorzugt 40 bis 150 m2/g auf. Die BET- Oberfläche kann nach dem Fachmann bekannten Verfahren bestimmt werden, beispielsweise nach DIN 66 131. The at least one additive is preferably present in the preferred strand-like titanium dioxide photocatalyst used according to the invention in an amount of 0.001 to 5% by weight, particularly preferably 0.01 to 3% by weight. If two or more of the additives mentioned are present at the same time in the photocatalyst used according to the invention, the stated quantities relate to this mixture. The strand-shaped titanium dioxide photocatalyst preferably used according to the invention generally has a BET surface area of 20 to 200 m 2 / g, preferably 30 to 180 m 2 / g, particularly preferably 40 to 150 m 2 / g. The BET surface area can be determined by methods known to the person skilled in the art, for example according to DIN 66 131.
Der erfindungsgemäß bevorzugt eingesetzte strangförmige Titandioxid- Photokatalysator weist im Allgemeinen ein Porenvolumen von 0,1 bis 1 ,00 ml/g, bevorzugt 0,2 bis 0,7 ml/g, besonders bevorzugt 0,25 bis 0,75 ml/g, auf. Das Porenvolumen kann nach dem Fachmann bekannten Verfahren bestimmt werden. The strand-shaped titanium dioxide photocatalyst used according to the invention preferably has a pore volume of from 0.1 to 1, 00 ml / g, preferably from 0.2 to 0.7 ml / g, particularly preferably from 0.25 to 0.75 ml / g, on. The pore volume can be determined by methods known to those skilled in the art.
Der erfindungsgemäß bevorzugt eingesetzte strangförmige Titandioxid- Photokatalysator weist im Allgemeinen einen mittleren Porendurchmesser von 0,001 bis 0,050 μηι, bevorzugt 0,005 bis 0,030 μηι, besonders bevorzugt 0,010 bis 0,025 μηι, auf. Der mittlere Porendurchmesser kann nach dem Fachmann bekannten Verfahren bestimmt werden. The strand-type titanium dioxide photocatalyst used according to the invention preferably has a mean pore diameter of 0.001 to 0.050 μm, preferably 0.005 to 0.030 μm, particularly preferably 0.010 to 0.025 μm. The mean pore diameter can be determined by methods known to the person skilled in the art.
Der erfindungsgemäß bevorzugt eingesetzte strangförmige Titandioxid- Photokatalysator kann nach dem Fachmann bekannten Verfahren hergestellt werden. In einer bevorzugten Ausführungsform wird der erfindungsgemäß bevorzugt eingesetz- te Photokatalysator durch Mischen der entsprechenden Mengen an Titandioxid und wenigstens einem organischen Bindemittel, bevorzugt ausgewählt aus Zuckerderiva- ten, beispielsweise Tylose, Stärkelösungen, beispielsweise Speisestärken, Cellulosen wie zum Beispiel Methylcellulose und/oder wenigstens einer Fettsäure, beispielsweise Stearinsäure, Polymeren wie zum Beispiel Polyethylenoxid und wenigstens einer Säure, beispielsweise Mineralsäure wie verdünnte Salpetersäure oder Salzsäure oder or- ganische Säure wie Armeisensäure, erhalten. Diese Mischung wird nach dem Fachmann bekannten Verfahren in üblichen Vorrichtungen vermischt, beispielsweise gekollert. Die erhaltene Mischung kann dann zu den entsprechenden strangförmigen Photokatalysatoren extrudiert werden. Das so hergestellte Extrudat wird bevorzugt bei einer Temperatur von höchstens 120 °C getrocknet, und die erhaltenen Stränge werden dann bevorzugt bei einer Temperatur von 300 bis 500 °C in einer Luft-Atmosphäre kalziniert, um die erfindungsgemäße Kombination von BET-Oberfläche, Porenvolumen und mittlerem Porendurchmesser zu erhalten. The strand-shaped titanium dioxide photocatalyst which is preferably used according to the invention can be prepared by processes known to the person skilled in the art. In a preferred embodiment, the photocatalyst used according to the invention is preferably obtained by mixing the appropriate amounts of titanium dioxide and at least one organic binder, preferably selected from sugar derivatives. For example, tyloses, starch solutions, for example cornflours, celluloses such as methylcellulose and / or at least one fatty acid, for example stearic acid, polymers such as polyethylene oxide and at least one acid, for example mineral acid such as dilute nitric acid or hydrochloric acid or organic acid such as formic acid, receive. This mixture is mixed by conventional methods known in the art in conventional devices, for example, gekollert. The resulting mixture can then be extruded to the corresponding strand-form photocatalysts. The thus prepared extrudate is preferably dried at a temperature of at most 120 ° C, and the resulting strands are then preferably calcined at a temperature of 300 to 500 ° C in an air atmosphere to the inventive combination of BET surface area, pore volume and to obtain average pore diameter.
Gerade die Verwendung von Tylose und Stearinsäure bei der Herstellung des erfin- dungsgemäß eingesetzten Titandioxids bewirkt, dass das erhaltene Titandioxid die erfindungsgemäße Kombination von hoher Aktivität und hoher Stabilität mit anhaltender hoher Aktivität über einen langen Zeitraum aufweist Especially the use of tylose and stearic acid in the preparation of the titanium dioxide used according to the invention has the effect that the titanium dioxide obtained has the combination according to the invention of high activity and high stability with sustained high activity over a long period of time
Kennzeichnend für die vorliegende Erfindung ist, dass in dem erfindungsgemäßen Re- aktor auch wenigstens ein Strahlung, bevorzugt UV-Strahlung, reflektierendes, flächiges Mittel M2 angeordnet ist, und dass die Fläche dieses wenigstens einen flächigen Mittels M2 mit der Innenwand des Rohres einen Winkel größer oder gleich 0°, bevorzugt größer 0°, beschreibt. Die Formulierung, dass die beiden genannten Komponenten einen Winkel größer 0° beschreiben, bedeutet, dass das wenigstens eine Mittel M2 erfindungsgemäß nicht so ausgeführt ist, dass die glatte Innenwand des Rohres mit einer reflektierenden Schicht versehen ist. It is characteristic of the present invention that at least one radiation, preferably UV radiation, reflecting surface means M2 is arranged in the reactor according to the invention, and that the surface of this at least one planar means M2 with the inner wall of the tube an angle greater or equal to 0 °, preferably greater than 0 °, describes. The wording that describes the two components mentioned an angle greater than 0 °, means that the at least one means M2 according to the invention is not carried out so that the smooth inner wall of the tube is provided with a reflective layer.
In dem erfindungsgemäßen Reaktor ist das wenigstens eine flächige Mittel M2 bevorzugt an der Innenseite des Rohres angebracht, und seine reflektierende Fläche be- schreibt mit der Innenwand des Reaktors den oben genannten Winkel größer oder gleich, bevorzugt größer, 0°. In the reactor according to the invention, the at least one planar means M2 is preferably attached to the inside of the tube, and its reflecting surface describes with the inner wall of the reactor the above-mentioned angle greater than or equal to, preferably greater, 0 °.
In einer bevorzugten Ausführungsform beträgt der Winkel zwischen der reflektierenden Fläche des wenigstens einen Mittel M2 und der Innenwand des erfindungsgemäßen Reaktors 5 bis 85°, bevorzugt 20 bis 70°, besonders bevorzugt 30 bis 50°. In a preferred embodiment, the angle between the reflective surface of the at least one means M2 and the inner wall of the reactor according to the invention is 5 to 85 °, preferably 20 to 70 °, particularly preferably 30 to 50 °.
Als Mittel M2 können erfindungsgemäß alle flächigen Mittel eingesetzt werden, die in der Lage sind Strahlung, bevorzugt UV-Strahlung, bevorzugt vollständig, zu reflektieren. Solche Mittel M2 sind beispielsweise Bleche oder verschieden geformte Ringkör- per, beispielsweise aus Metall, Glas, Kunststoff, die mit einem Reflektor, bevorzugt einem UV-Reflektor, zumindest teilweise beschichtet sind. Erfindungsgemäße beson- ders bevorzugte Mittel M2 sind mit einer Gold- oder Silberschicht schicht beschichtete Eisen- Glas, Kunststoff bleche oder -Ringkörper. According to the invention, all surface agents which are able to reflect radiation, preferably UV radiation, preferably completely, can be used as the means M2. Such means M2 are, for example, sheets or differently shaped ring bodies, for example of metal, glass, plastic, which are at least partially coated with a reflector, preferably a UV reflector. According to the invention Means preferred M2 are coated with a gold or silver layer iron-glass, plastic sheets or ring body.
Die Oberfläche des wenigstens eine Mittels M2 kann gerade oder gebogen, beispiels- weise konvex oder konkav, sein. Die Form und Winkel der reflektierenden Flächen soll an die Form, Größe und/oder den Abstand der flächigen, photokatalytisch aktiven Mittel M1 so angepasst werden, dass das Licht von der (den) Lichtquelle(n) möglichst vollständig, besonders bevorzugt möglichst gleichmäßig, auf die gesamte katalytische Fläche des (der) Mittels (Mittel) M1 verteilt wird. The surface of the at least one means M2 may be straight or curved, for example convex or concave. The shape and angle of the reflective surfaces should be adapted to the shape, size and / or spacing of the surface, photocatalytically active means M1 so that the light from the (the) light source (s) as completely as possible, particularly preferably as evenly as possible the entire catalytic area of the agent (s) M1 is distributed.
In dem erfindungsgemäßen Reaktor sind im Allgemeinen so viele Mittel M2 angeordnet, dass die von der wenigstens einen Lichtquellen ausgesandte Strahlung in genügendem Maße auf die Mittel M1 reflektiert werden. In einer bevorzugten Ausführungsform ist jedem Mittel M1 wenigstens ein Mittel M2 zugeordnet, welches die von der wenigstens einen Lichtquelle ausgestrahlte Lichtstrahlung auf das entsprechende Mittel M1 reflektiert. Durch diese erfindungsgemäße Anordnung der Mittel M2 gelingt es in dem erfindungsgemäßen Reaktor, die von der Lichtquelle ausgestrahlte Lichtstrahlung, bevorzugt vollständig, auf das photokatalytisch aktive Material zu lenken. Die Bestrahlung der in Fließrichtung gesehen ersten und letzten Mittel M1 kann davon in einer be- vorzugten Ausführungsform ausgenommen werden. In the reactor according to the invention, in general, so many means M2 are arranged that the radiation emitted by the at least one light source is reflected to a sufficient extent on the means M1. In a preferred embodiment, each means M1 is assigned at least one means M2, which reflects the light radiation emitted by the at least one light source onto the corresponding means M1. By means of this arrangement according to the invention of the means M2, it is possible in the reactor according to the invention to direct the light radiation emitted by the light source, preferably completely, onto the photocatalytically active material. The irradiation of the first and last means M1 seen in the flow direction can be excluded therefrom in a preferred embodiment.
In einer besonders bevorzugten Ausführungsform ist in dem erfindungsgemäßen Reaktor jedem einzelnen Mittel M1 ein Mittel M2 zugeordnet, wobei das Mittel M2 bevorzugt so angeordnet ist, dass es mit wenigstens einer Seite Kontakt zu der Innenwand des Reaktorrohres aufweist und mit zwei weiteren Seiten Kontakt zu dem entsprechenden Mittel M1 und mit einem zweiten, benachbarten Mittel M1 oder dem Ende des Reaktorrohres hat, d. h. das Mittel M2 dient bevorzugt als Distanzhalter zwischen zwei benachbarten Mittel M1 oder zwischen einem Mittel M1 und dem Ende des Reaktorrohres. Der Winkel zwischen der reflektierenden Fläche des Mittels M1 und dem entspre- chenden M2 beträgt dabei im Allgemeinen 5 bis 85°, bevorzugt 20 bis 70°. In a particularly preferred embodiment, in the reactor according to the invention a means M2 is associated with each individual means M1, wherein the means M2 is preferably arranged so that it has at least one side contact with the inner wall of the reactor tube and two further sides contact the corresponding Means M1 and with a second, adjacent means M1 or the end of the reactor tube, d. H. the means M2 preferably serves as a spacer between two adjacent means M1 or between a means M1 and the end of the reactor tube. The angle between the reflective surface of the means M1 and the corresponding M2 is generally 5 to 85 °, preferably 20 to 70 °.
Dem erfindungsgemäßen Reaktor kann, insbesondere während des Betriebs, gegebenenfalls wenigstens ein Oxidationsmittel zugesetzt werden. Durch Zugabe des wenigstens einen Oxidationsmittels kann die Reinigungsleistung des Reaktors weiter erhöht werden. Erfindungsgemäß geeignete Oxidationsmittel sind flüssig oder gasförmig und beispielsweise ausgewählt aus der Gruppe bestehend aus Sauerstoff ggf. sauerstoffhaltigen Gemischen, beispielsweise Luft, Wasserstoffperoxid, Ozon, Peroxidisulfat, Nitrate, Salpetersäure, Stickstoffoxide, Chloroxid, Chlor und Mischungen davon. Gerade im Fall von phenolischen Verunreinigungen in dem zu behandelnden Strom bewirkt die Zugabe von Oxidationsmitteln, insbesondere Wasserstoffperoxid, eine Verbesserung der Reinigungsleistung des erfindungsgemäßen Reaktors. Daher betrifft die vorliegende Erfindung insbesondere auch einen erfindungsgemäßen Reaktor, wobei dem zu reinigenden schadstoffhaltigen Strom wenigstens ein Oxidati- onsmittel zugesetzt wird. Der erfindungsgemäße Reaktor weist für die Zugabe des wenigstens einen Oxidati- onsmittels dem Fachmann bekannte Vorrichtungen auf, beispielsweise Ventile, Zulaufvorrichtungen, Anschlüsse etc. If appropriate, at least one oxidizing agent may be added to the reactor according to the invention, in particular during operation. By adding the at least one oxidizing agent, the cleaning performance of the reactor can be further increased. According to the invention suitable oxidizing agents are liquid or gaseous and, for example, selected from the group consisting of oxygen optionally oxygen-containing mixtures, for example air, hydrogen peroxide, ozone, peroxydisulfate, nitrates, nitric acid, nitrogen oxides, chlorine oxide, chlorine and mixtures thereof. Especially in the case of phenolic impurities in the stream to be treated causes the addition of oxidizing agents, in particular hydrogen peroxide, an improvement in the cleaning performance of the reactor according to the invention. Therefore, the present invention also relates in particular to a reactor according to the invention, wherein at least one oxidizing agent is added to the contaminant-containing stream to be purified. For the addition of the at least one oxidizing agent, the reactor according to the invention has devices known to the person skilled in the art, for example valves, feed devices, connections, etc.
Die vorliegende Erfindung betrifft auch ein Verfahren zur photokatalytischen Behand- lung von Strömen durch Bestrahlung mit Licht, wobei es in einem erfindungsgemäßen Reaktor durchgeführt wird. Verfahren zur photokatalytischen Behandlung von flüssigen oder gasförmigen Strömen, insbesondere zur photokatalytischen Reinigung von mit organischen und/oder anorganischen Substanzen verunreinigten Abgasen oder Abwässern sind dem Fachmann im Prinzip bekannt. The present invention also relates to a process for the photocatalytic treatment of currents by irradiation with light, wherein it is carried out in a reactor according to the invention. Processes for the photocatalytic treatment of liquid or gaseous streams, in particular for the photocatalytic purification of waste gases or wastewaters contaminated with organic and / or inorganic substances, are known to the person skilled in the art in principle.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung das erfindungsgemäße Verfahren, wobei der zu behandelnde Strom schadstoffhaltiges Wasser ist. In a preferred embodiment, the present invention relates to the process according to the invention, wherein the stream to be treated is water containing pollutants.
In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung das erfindungsgemäße Verfahren, wobei dem zu behandelnden Strom wenigstens ein Oxi- dationsmittel zugesetzt wird. In a further preferred embodiment, the present invention relates to the process according to the invention, wherein at least one oxidizing agent is added to the stream to be treated.
Bezüglich des erfindungsgemäßen Verfahrens gilt das bezüglich des erfindungsgemäßen Reaktors Gesagte. With regard to the method according to the invention, what has been said with regard to the reactor according to the invention applies.
Das erfindungsgemäße Verfahren wird im Allgemeinen bei der für die durchzuführende Behandlung relevanten Temperatur, zum Beispiel für die photokatalytische Reinigung von Wässern bei Temperaturen von 4 bis 80 °C, bevorzugt 15 bis 50 °C, durchgeführt. Weitere Verfahrensparameter sind dem Fachmann bekannt. The process according to the invention is generally carried out at the temperature relevant for the treatment to be carried out, for example for the photocatalytic purification of waters at temperatures of 4 to 80 ° C., preferably 15 to 50 ° C. Further process parameters are known to the person skilled in the art.
Eine besonders bevorzugte Ausführungsform der vorliegenden Erfindung soll durch Figur 1 erläutert werden. In der Figur 1 haben die Bezugszeichen die folgenden Bedeutungen: A particularly preferred embodiment of the present invention will be explained by FIG. In the figure 1, the reference numerals have the following meanings:
Rohr  pipe
2 UV-Lichtquelle  2 UV light source
3 Einlass  3 inlet
4 Auslass  4 outlet
5 mit Titandioxidsträngen gefüllte Netze  5 networks filled with titanium dioxide strands
6 Reflektoren  6 reflectors
7 Winkel zwischen Rohr und Reflektoroberfläche Beispiele 7 angle between tube and reflector surface Examples
Beispiel 1 example 1
Der Reaktor ist 510 mm lang und 168 mm breit mit einem Reaktorvolumen von 8L. Die Lampe ist ein Mitteldruckstrahler mit maximaler Lichtleistung von 4,5kW. Die Lampe ist dimmbar. Mittel M1 sind in PVDF-Einlagen encapsulierte 1 ,5 mm Ti02-Stränge. Die gesamte aktive Oberfläche beträgt 3600 cm2. Die Stränge werden durch ein schrumpfbares Netz befestigt. Zehn Mittel M1 werden eingesetzt. Mittel M2 sitzen an der äußeren Reaktorwand zwischen den Mittel M1 , reflektieren das eingestrahlte Licht und sind 28 mm hoch, am Boden 12 mm breit und oben 8 mm breit. Elf Mittel M2 werden eingesetzt. Der Abstand zwischen den Mittel M1 gleicht der Dicke von Mittel M2 (28 mm). Der Reaktor steht senkrecht. Der zu behandelnde Strom fließt aus einem 50 L Vorratsgefäß über die Mittel M1 von unten nach oben und zurück in das Vorratsgefäß mit einer Durchflussrate von 1 m3/h. Der zu behandelnde Strom wird im Vorratsgefäß auf < 40 °C gekühlt. Im Vorratsgefäß kann ein passiver Luftaustausch stattfinden. The reactor is 510 mm long and 168 mm wide with a reactor volume of 8 L. The lamp is a medium-pressure lamp with maximum light output of 4.5kW. The lamp is dimmable. Means M1 are 1.5 mm Ti0 2 strands encapsulated in PVDF inserts. The total active surface is 3600 cm 2 . The strands are fastened by a shrinkable net. Ten funds M1 are used. Means M2 sit on the outer reactor wall between the means M1, reflect the incident light and are 28 mm high, 12 mm wide at the bottom and 8 mm wide at the top. Eleven means M2 are used. The distance between the means M1 is equal to the thickness of means M2 (28 mm). The reactor is vertical. The stream to be treated flows from a 50 L storage vessel via the means M1 from bottom to top and back into the storage vessel at a flow rate of 1 m 3 / h. The stream to be treated is cooled to <40 ° C in the storage vessel. A passive air exchange can take place in the storage vessel.
Der zu behandelnde Strom ist VE-Wasser mit 0,5 g/L Dichloressigsäure (DCA). Der pH-Wert der DCA-Lösung wird auf pH 3 eingestellt. Die photokatalytische Reinigung des Stroms wird über die Menge an abgebauter DCA nach 24h Reaktionszeit in g/h definiert und wird über pH-Messungen bestimmt. Die DCA-Lösung wird über > 8 h ohne Belichtung durch den Reaktor umgepumpt, wonach die Lampe angeschaltet und mit 400 W Lichtleistung gefahren wurde. Nach 24 h ist die photokatalytische Abbaurate 0,46gDCA/h. The stream to be treated is demineralised water with 0.5 g / L dichloroacetic acid (DCA). The pH of the DCA solution is adjusted to pH 3. The photocatalytic purification of the current is defined by the amount of degraded DCA after 24h reaction time in g / h and is determined by pH measurements. The DCA solution is pumped for> 8 h without exposure through the reactor, after which the lamp is turned on and driven with 400 W light output. After 24 h, the photocatalytic degradation rate is 0.46 g DCA / h.
Beispiel 2 Der Reaktor aus Beispiel 1 wird verwendet. Der zu behandelnde Strom ist VE-Wasser mit 1 ,0 g/L Dichloressigsäure (DCA). Der pH-Wert der DCA-Lösung wird auf pH 3 eingestellt. Die photokatalytische Reinigung des Stroms wird über die Menge an abgebauter DCA in g/h definiert und wird über pH-Messungen bestimmt. Die DCA-Lösung wird über > 8 h ohne Belichtung durch den Reaktor umgepumpt, wonach die Lampe ange- schaltet und mit 400 W Lichtleistung gefahren wird. Nach 24 h ist die photokatalytische Abbaurate 0,81 gDcA h. Example 2 The reactor of Example 1 is used. The stream to be treated is demineralised water with 1.0 g / l dichloroacetic acid (DCA). The pH of the DCA solution is adjusted to pH 3. The photocatalytic purification of the current is defined by the amount of degraded DCA in g / h and is determined by pH measurements. The DCA solution is pumped for> 8 h without exposure through the reactor, after which the lamp is switched on and driven with 400 W light output. After 24 h, the photocatalytic degradation rate is 0.81 g D cA h.
Beispiel 3 Example 3
Der Reaktor aus Beispiel 1 wird verwendet. Der zu behandelnde Strom ist VE-Wasser mit 2,2 g/L Dichloressigsäure (DCA). Der pH-Wert der DCA-Lösung wird auf pH 3 eingestellt. Die photokatalytische Reinigung des Stroms wird über die Menge an abgebau- ter DCA in g/h definiert und wird über pH-Messungen bestimmt. Die DCA-Lösung wird über > 8 h ohne Belichtung durch den Reaktor umgepumpt, wonach die Lampe angeschaltet und mit 400 W Lichtleistung gefahren wird. Nach 24 h ist die photokatalytische Abbaurate 1 ,70gDcA/h. The reactor of Example 1 is used. The stream to be treated is demineralised water with 2.2 g / L dichloroacetic acid (DCA). The pH of the DCA solution is adjusted to pH 3. The photocatalytic purification of the current is determined by the amount of degraded DCA is defined in g / h and determined by pH measurements. The DCA solution is pumped over> 8 h without exposure through the reactor, after which the lamp is turned on and driven with 400 W light output. After 24 h, the photocatalytic degradation rate is 1.70 g D cA / h.
Beispiel 4 Example 4
Der Reaktor aus Beispiel 1 wird verwendet. Der zu behandelnde Strom ist VE-Wasser mit 2,2 g/L Dichloressigsäure (DCA). Der pH-Wert der DCA-Lösung wird auf pH 3 eingestellt. Die photokatalytische Reinigung des Stroms wird über die Menge an abgebauter DCA in g/h definiert und wird über pH-Messungen bestimmt. Die DCA-Lösung wird über > 8 h ohne Belichtung durch den Reaktor umgepumpt, wonach die Lampe angeschaltet und mit 400 W Lichtleistung gefahren wird. Luft wird in den Gasraum des Vor- ratgefäßes eingespeist (10 l/h). Nach 24 h ist die photokatalytische Abbaurate 2,41 gDCA/h. The reactor of Example 1 is used. The stream to be treated is demineralised water with 2.2 g / L dichloroacetic acid (DCA). The pH of the DCA solution is adjusted to pH 3. The photocatalytic purification of the current is defined by the amount of degraded DCA in g / h and is determined by pH measurements. The DCA solution is pumped over> 8 h without exposure through the reactor, after which the lamp is turned on and driven with 400 W light output. Air is fed into the gas space of the storage vessel (10 l / h). After 24 h, the photocatalytic degradation rate is 2.41 g DCA / h.
Beispiel 5 Example 5
Der Reaktor aus Beispiel 1 wird verwendet. Der zu behandelnde Strom ist VE-Wasser mit 2,2 g/L Dichloressigsäure (DCA). Der pH-Wert der DCA-Lösung wird auf pH 3 eingestellt. Die photokatalytische Reinigung des Stroms wird über die Menge an abgebauter DCA in g/h definiert und wird über pH-Messungen bestimmt. Die DCA-Lösung wur- de über > 8 h ohne Belichtung durch den Reaktor umgepumpt, wonach die Lampe angeschaltet und mit 800 W Lichtleistung gefahren wird. Nach 24 h ist die photokatalytische Abbaurate 4,64 gDCA h. The reactor of Example 1 is used. The stream to be treated is demineralised water with 2.2 g / L dichloroacetic acid (DCA). The pH of the DCA solution is adjusted to pH 3. The photocatalytic purification of the current is defined by the amount of degraded DCA in g / h and is determined by pH measurements. The DCA solution was pumped for> 8 h without exposure through the reactor, after which the lamp was switched on and run with 800 W light output. After 24 h, the photocatalytic degradation rate is 4.64 gDCA h.

Claims

Patentansprüche claims
1 . Reaktor zur photokatalytischen Behandlung von flüssigen oder gasförmigen Strömen, umfassend ein Rohr, durch das der zu behandelnde Strom fließt, wobei in dem Rohr wenigstens eine Lichtquelle, wenigstens ein mit wenigstens einem photokatalytisch aktiven Material versehenes, flächiges Mittel M1 und wenigstens ein die von der wenigstens einen Lichtquelle ausgestrahlte Lichtstrahlung reflektierendes, flächiges Mittel M2 angeordnet sind, dadurch gekennzeichnet, dass die reflektierende Fläche des wenigstens eines Mittels M2 und die Innenwand des Rohres einen Winkel größer oder gleich 0° beschreiben, so dass das von der1 . A reactor for the photocatalytic treatment of liquid or gaseous streams, comprising a tube through which flows the stream to be treated, wherein in the tube at least one light source, at least one provided with at least one photocatalytically active material, areal means M1 and at least one of the at least a reflective surface of the at least one means M2 and the inner wall of the tube an angle greater than or equal to 0 ° describe, so that the of the
Lichtquelle ausgehende Licht von dem wenigstens einen Mittel M2 auf das photokatalytisch aktive Material reflektiert wird. Light source outgoing light from the at least one means M2 is reflected onto the photocatalytically active material.
2. Reaktor nach Anspruch 1 , dadurch gekennzeichnet, dass die wenigstens eine Lichtquelle in der Mitte des Rohres angeordnet ist. 2. Reactor according to claim 1, characterized in that the at least one light source is arranged in the middle of the tube.
3. Reaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das wenigstens eine Mittel M1 mit einer flächigen Seite in einem Winkel von 60 bis 130° zur Fließrichtung des zu behandelnden Stromes angeordnet ist. 3. Reactor according to claim 1 or 2, characterized in that the at least one means M1 is arranged with a flat side at an angle of 60 to 130 ° to the flow direction of the stream to be treated.
4. Reaktor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das wenigstens eine Mittel M1 von dem zu behandelnden Strom durchströmt wird. 4. Reactor according to one of claims 1 to 3, characterized in that the at least one means M1 is flowed through by the stream to be treated.
5. Reaktor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass modi- fiziertes oder nicht modifiziertes Titandioxid (Ti02) als photokatalytisch aktives5. Reactor according to one of claims 1 to 4, characterized in that modified or unmodified titanium dioxide (Ti0 2 ) as photocatalytically active
Material eingesetzt wird. Material is used.
6. Reaktor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Mittel M1 photokatalytisch aktive Monolithe, Netze mit eingeschlossenen Extru- daten aus photokatalytischem Material oder mit photokatalytischem Material beschichteten Waben oder Schaumkörpern eingesetzt werden. 6. Reactor according to one of claims 1 to 5, characterized in that are used as means M1 photocatalytically active monoliths, nets with enclosed extruded data from photocatalytic material or coated with photocatalytic material honeycomb or foam bodies.
7. Reaktor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass dem zu behandelnden Strom wenigstens ein Oxidationsmittel zugesetzt wird. 7. Reactor according to one of claims 1 to 6, characterized in that the stream to be treated at least one oxidizing agent is added.
8. Reaktor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der zu behandelnde Strom eine schadstoffhaltige Flüssigkeit ist. 8. Reactor according to one of claims 1 to 7, characterized in that the stream to be treated is a pollutant-containing liquid.
9. Reaktor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der zu behandelnde Strom ein schadstoffhaltiges Gas ist. 9. Reactor according to one of claims 1 to 7, characterized in that the stream to be treated is a pollutant-containing gas.
10. Verfahren zur photokatalytischen Behandlung von flüssigen oder gasförmigen Strömen durch Bestrahlung mit Licht, dadurch gekennzeichnet, dass es in einem Reaktor gemäß einem der Ansprüche 1 bis 9 durchgeführt wird. 10. A process for the photocatalytic treatment of liquid or gaseous streams by irradiation with light, characterized in that it is carried out in a reactor according to one of claims 1 to 9.
1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der zu behandelnde Strom aufzubereitendes Wasser ist. 1 1. A method according to claim 10, characterized in that the stream to be treated is water to be treated.
Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, dass dem behandelnden Strom wenigstens ein Oxidationsmittel zugesetzt wird. A method according to claim 10 or 1 1, characterized in that the treating stream at least one oxidizing agent is added.
EP10752577A 2009-09-15 2010-09-13 Photoreactor Withdrawn EP2477735A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10752577A EP2477735A2 (en) 2009-09-15 2010-09-13 Photoreactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09170285 2009-09-15
PCT/EP2010/063349 WO2011032900A2 (en) 2009-09-15 2010-09-13 Photoreactor
EP10752577A EP2477735A2 (en) 2009-09-15 2010-09-13 Photoreactor

Publications (1)

Publication Number Publication Date
EP2477735A2 true EP2477735A2 (en) 2012-07-25

Family

ID=43736125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10752577A Withdrawn EP2477735A2 (en) 2009-09-15 2010-09-13 Photoreactor

Country Status (6)

Country Link
US (1) US8673157B2 (en)
EP (1) EP2477735A2 (en)
JP (1) JP2013504420A (en)
CN (1) CN102574093A (en)
TW (1) TW201117879A (en)
WO (1) WO2011032900A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011050758A1 (en) 2011-05-31 2012-12-06 Fritz Nauer Ag Optofluidics reactor
WO2013146363A1 (en) * 2012-03-30 2013-10-03 宇部興産株式会社 Purification device, photocatalytic filter cartridge for purification device used therein, and multistage photocatalytic filter cartridge
CN103570086A (en) * 2012-07-22 2014-02-12 成都易生玄科技有限公司 Indoor bathing pool capable of realizing collection and transmission of light
CN103572988A (en) * 2012-07-22 2014-02-12 成都易生玄科技有限公司 Polycondensation transmission light ray purifying swimming pool
JP5981799B2 (en) * 2012-08-03 2016-08-31 田中貴金属工業株式会社 Wastewater treatment method
GB2543245B (en) * 2015-01-30 2018-04-11 Catalysystems Ltd Improved Photocatalytic Reactor
CN106957080B (en) * 2016-01-08 2022-03-22 松下知识产权经营株式会社 Water treatment method and water treatment apparatus
WO2018165006A1 (en) * 2017-03-05 2018-09-13 Corning Incorporated Flow reactor for photochemical reactions
JP6892788B2 (en) * 2017-05-26 2021-06-23 ウシオ電機株式会社 Sterilization method, sterilization equipment
US11779898B2 (en) 2017-06-27 2023-10-10 Syzygy Plasmonics Inc. Photocatalytic reactor system
CA3067806C (en) * 2017-06-27 2023-08-08 Syzygy Plasmonics Inc. Photocatalytic reactor cell
CN108298632B (en) * 2018-01-28 2021-10-22 嘉兴市盛翔织造有限公司 Nano TiO (titanium dioxide)2Process for degrading dye wastewater by using photocatalyst
CN108862543B (en) * 2018-09-20 2021-06-22 天津工业大学 Method for strengthening iron-activated persulfate degradation dye by using polydopamine composite non-woven fabric
DE102019125125A1 (en) * 2019-09-18 2021-03-18 Maximilian Blomeier Reactor module and oxidation reactor
CN112191203A (en) * 2020-03-13 2021-01-08 上海合全药业股份有限公司 LED light source photocatalysis tubular reactor and application thereof
WO2022049048A1 (en) * 2020-09-03 2022-03-10 Signify Holding B.V. A light emitting device for disinfection of objects
WO2022097704A1 (en) * 2020-11-05 2022-05-12 パナソニックIpマネジメント株式会社 Food processing device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318036A (en) * 1994-05-26 1995-12-08 Hitachi Ltd Waste gas purifying method
US5564065A (en) * 1995-01-19 1996-10-08 Chelsea Group Ltd. Carbon monoxide air filter
US5683589A (en) * 1995-03-13 1997-11-04 University Of Western Ontario Photocatalytic reactor
US6238630B1 (en) 1998-09-02 2001-05-29 Keiji Iimura Photocatalyst device and photocatalyst reactor
JPH10337579A (en) * 1997-06-04 1998-12-22 Kubota Corp Method and apparatus for treatment of wastewater
CA2268469C (en) * 1998-04-10 2004-03-23 University Of Central Florida Apparatus and method for photocatalytic and thermocatalytic pollution control
CN2378113Y (en) * 1999-05-11 2000-05-17 中国科学院广州能源研究所 Photocatalysis air processing device
JP2002301378A (en) * 2001-04-04 2002-10-15 Mitsui Eng & Shipbuild Co Ltd Photocatalyst module, method for producing the same and photocatalytic reactor
JP2004024461A (en) 2002-06-25 2004-01-29 Denso Corp Air cleaner
JP2004283185A (en) * 2003-03-19 2004-10-14 Atom Kankyo Science Kk Deodorizer
WO2007022709A1 (en) 2005-08-22 2007-03-01 Solar City Limited A combined labyrinthine fluid sterilizing apparatus
US20110042326A1 (en) 2008-05-02 2011-02-24 Basf Se Photocatalytically active tio2-molded bodies
WO2010149682A1 (en) 2009-06-24 2010-12-29 Basf Se Method for photocatalytic water purification
WO2011000885A1 (en) 2009-07-01 2011-01-06 Basf Se Method for producing a photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011032900A2 *

Also Published As

Publication number Publication date
WO2011032900A3 (en) 2011-05-26
US20120168300A1 (en) 2012-07-05
CN102574093A (en) 2012-07-11
JP2013504420A (en) 2013-02-07
US8673157B2 (en) 2014-03-18
TW201117879A (en) 2011-06-01
WO2011032900A2 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
WO2011032900A2 (en) Photoreactor
Gao et al. Filtration-enhanced highly efficient photocatalytic degradation with a novel electrospun rGO@ TiO2 nanofibrous membrane: Implication for improving photocatalytic efficiency
EP2178638B1 (en) Catalyst, production method therefor and use thereof for decomposing n2o
US20140076404A1 (en) Ir-activated photoelectric systems
DE1619923A1 (en) Method and device for separating sulfur oxides from a gas mixture
DE102005028660A1 (en) Process for photocatalytic air and wastewater treatment
WO2013092544A1 (en) Multi-barrier system for water treatment
WO1989002418A1 (en) Process and device for purifying liquids
DE102016118664A1 (en) Catalytic oxidation of aqueous organic contaminants
DE60118244T2 (en) DEVICE AND METHOD FOR EXHAUST GAS CLEANING
DE10049595A1 (en) Cleaning assembly, for incinerator exhaust gas emissions, is cylinder structure with photo catalyst balls in contact with the gas flow which are excited by light to destroy hazardous matter in gas
WO2009133165A1 (en) Photocatalytically active tio2-molded bodies
EP1646408B1 (en) Device for purifying used air containing harmful substances
WO2010149682A1 (en) Method for photocatalytic water purification
EP2875859B1 (en) Catalyst support body
DE4307204A1 (en) Arrangement for purifying liquids and/or gases
DE102006023069B4 (en) Plasma reactor and process for the purification of airborne pollutants and germs, as well as bulk material for filling the plasma reactor
KR20170125214A (en) Photocatalyst for water treatment containing graphene oxide supported with Ag doped zinc oxide, preparation method thereof and using thereof
DE19515828A1 (en) Integrated filter and photocatalysis device for removing contaminants from liquids
WO2017194537A1 (en) Photocatalytic oxidation of hydrogen chloride with oxygen
Rouibah et al. Photoactivity Performance of TiO2/cellulose and ZnO/polystyrene; Intensified Effect of Oxidants on Degradation Efficiency of Acetaminophen
DE10210465A1 (en) Photocatalytic element for decomposing hydrogen-containing compounds, especially for supplying hydrogen to fuel cells, comprises a thin photocatalytic layer on a support with an open pore structure
DE102015116547B4 (en) Photocatalytic filter for mixing gas breakdown and manufacturing process therefor
AT503936B1 (en) CLEANING DEVICE WITH POROUS, PHOTOCATALYTICALLY ACTIVE BULK
Carabineiro et al. Titanium dioxide–based materials for photocatalytic conversion of water pollutants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120416

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150401