EP2468944B1 - Séchoir à linge avec pompe de chaleur pour usage domestique - Google Patents

Séchoir à linge avec pompe de chaleur pour usage domestique Download PDF

Info

Publication number
EP2468944B1
EP2468944B1 EP10197041.6A EP10197041A EP2468944B1 EP 2468944 B1 EP2468944 B1 EP 2468944B1 EP 10197041 A EP10197041 A EP 10197041A EP 2468944 B1 EP2468944 B1 EP 2468944B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
heat exchanger
temperature
pressure
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10197041.6A
Other languages
German (de)
English (en)
Other versions
EP2468944A1 (fr
Inventor
Alberto Bison
Francesco Cavarretta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrolux Home Products Corp NV
Original Assignee
Electrolux Home Products Corp NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP10197041.6A priority Critical patent/EP2468944B1/fr
Application filed by Electrolux Home Products Corp NV filed Critical Electrolux Home Products Corp NV
Priority to US13/997,907 priority patent/US20140082960A1/en
Priority to CN2011800665546A priority patent/CN103348056A/zh
Priority to AU2011351627A priority patent/AU2011351627A1/en
Priority to PCT/EP2011/073604 priority patent/WO2012089585A1/fr
Priority to RU2013135232/12A priority patent/RU2013135232A/ru
Priority to BR112013016443A priority patent/BR112013016443A2/pt
Publication of EP2468944A1 publication Critical patent/EP2468944A1/fr
Application granted granted Critical
Publication of EP2468944B1 publication Critical patent/EP2468944B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a home laundry dryer.
  • the present invention relates to a rotary-drum, heat-pump type, home laundry dryer, to which the following description refers purely by way of example without implying any loss of generality.
  • today's rotary-drum home laundry dryers comprise: a substantially parallelepiped-shaped outer boxlike casing structured for resting on the floor; a substantially cylindrical, hollow revolving drum structured for internally housing the laundry to be dried, and which is housed in axially rotating manner inside the casing to rotate about its horizontally-oriented longitudinal axis, directly facing a laundry loading/unloading through opening realized in the front wall of the casing; a door hinged to the front wall of the casing to rotate to and from a closing position in which the door rests completely against the front wall of the casing to close the laundry loading/unloading opening and airtight seal the revolving drum; and an electrically-powered motor assembly structured for driving into rotation the revolving drum about its longitudinal axis inside the casing.
  • Rotary-drum home laundry dryers of the above type are also provided with a closed-circuit, hot-air generator which is designed to circulate inside the revolving drum a stream of hot air having a low moisture content, and which flows through the revolving drum and over the laundry inside the drum to rapidly dry said laundry; and with an electronic central control unit which controls both the motor assembly and the hot-air generator to perform one of the user-selectable drying cycles stored in the same central control unit.
  • the closed-circuit, hot-air generator comprises an air recirculating conduit having its two ends connected to the revolving drum, on opposite sides of the latter; an electric centrifugal fan located along the air recirculating conduit to produce, inside the latter, an airflow which flows through the revolving drum; and finally a heat-pump assembly having its two heat exchangers located one after the other, along the air recirculating conduit.
  • the heat-pump assembly comprises a first air/refrigerant heat exchanger which provides for rapidly cooling the airflow arriving from the revolving drum to condense and restrain the surplus moisture in the airflow; a second air/refrigerant heat exchanger which provides for rapidly heating the airflow arriving from the first heat exchanger and directed back to the revolving drum, so that the airflow re-entering into the revolving drum is heated rapidly to a temperature higher than or equal to that of the airflow coming out of the drum; and an electrically-powered refrigerant compressing device which is interposed between the refrigerant-outlet of the first air/refrigerant heat exchanger and the refrigerant-inlet of the second air/refrigerant heat exchanger, and it is structured to continuously compress the gaseous-state refrigerant directed towards the second heat exchanger so that refrigerant pressure and temperature are much higher at the refrigerant-inlet of the second heat exchanger than at the refrigerant-out
  • the first air/refrigerant heat exchanger is traditionally called “evaporator”, and it is structured so that the airflow arriving from the revolving drum and the low-pressure and low-temperature refrigerant directed to the suction of the refrigerant compressing device can flow through it simultaneously, allowing the refrigerant having a temperature lower than that of the airflow, to absorb heat from the airflow, thus causing condensation of the surplus moisture in the airflow arriving from the revolving drum;
  • the second air/refrigerant heat exchanger is traditionally called “condenser”, and it is structured so that the airflow directed back into the revolving drum and the high-pressure and high-temperature refrigerant arriving from the delivery of the refrigerant compressing device can flow through it simultaneously, allowing the refrigerant having a temperature greater than that of the airflow to release heat to the airflow, thus rapidly heating the airflow directed back into the drum.
  • the heat-pump assembly is provided with a refrigerant expansion device which is interposed between the refrigerant-outlet of the condenser and the refrigerant-inlet of the evaporator, and it is structured so as to cause a rapid expansion of the refrigerant directed towards the evaporator so that refrigerant pressure and temperature are much higher at the refrigerant-outlet of the condenser than at the refrigerant-inlet of the evaporator.
  • US 2005/198852 discloses a drying machine provided with a housing chamber which houses the matter to be dried, and executing a drying operation of the matter to be dried in the housing chamber comprises: a gas cooler; an evaporator; a blower fan; an air circulation path for discharging air heated by the gas cooler into the housing chamber by the blower fan, sending the air passed through the housing chamber into the evaporator, and circulating the air in the gas cooler; and a closable outside air introduction port for mixing outside air with the air circulating in the air circulation path.
  • EP 1 983 095 discloses a dryer with a controller, and a drum for accommodating clothes to be dried.
  • a process circuit conducts heated process air through the drum for cooling the process air for dewatering and for reheating the process air.
  • a heat pump circuit conducts a medium e.g. liquid medium, through a condenser, a throttle, an evaporator and a compressor. The process air is heatable by the condenser and coolable by the evaporator.
  • a heater is arranged in the heat pump circuit between the evaporator and the compressor.
  • the air dehumidification is very low at beginning of the drying cycle (low moist quantity extracted from the air) and it increases as the drying cycle proceeds, thus it takes a lot of time to the heat-pump assembly to reach the steady-state full-power working condition in which the temperature of the airflow circulating into the revolving drum reaches the highest value and remains substantially constant to said highest value.
  • a second problem correlated to the use of a heat-pump type hot-air generators is the intrinsically unbalanced energy balance between the heat absorbed from the airflow in the evaporator, i.e. in the first air/ refrigerant heat exchanger, and the heat supplied to the airflow in the condenser, i.e. in the second air/ refrigerant heat exchanger, when the hot-air generator is in the steady-state full-power working condition.
  • the air flowing along the air recirculating conduit of the hot-air generator should give off and absorb approximately the same quantity of heat to return at the same temperature as when coming out of revolving drum.
  • the air/refrigerant heat exchange in the condenser i.e. in the second heat exchanger
  • the refrigerant circulates in close loop also in the evaporator, i.e. in the first heat exchanger
  • the reduced air/refrigerant heat exchange capacity leads to a consequent limitation of the air cooling capacity of the refrigerant in the evaporator, where much more energy could be exchanged due to the dehumidification process.
  • the latent condensation heat of the water, i.e. of the moisture in fact is very high.
  • Another applicant solution envisages the use of a third air/refrigerant heat exchanger in series to the second air/refrigerant heat exchanger, i.e. to the condenser, immediately downstream the latter.
  • This third air/refrigerant heat exchanger is cooled by a cold airflow that an auxiliary electric fan draws from the outside of the laundry dryer, so as to slightly cool down the high-temperature and high-pressure refrigerant directed towards the refrigerant expansion device.
  • This second solution significantly increases the air/refrigerant heat exchange capacity at high-pressure side of heat-pump assembly and, as a consequence, significantly increases the available air cooling capacity of the refrigerant in the first heat exchanger, i.e. in the evaporator.
  • the main drawback of this second solution is that the air cooling capacity of the refrigerant in the evaporator, i.e. in the first air/refrigerant heat exchanger, is strictly limited by the fact that the refrigerant must be completely vaporized, i.e. completely in gaseous state, at suction of refrigerant compressing device, and the use of the third air/refrigerant heat exchanger may cause the refrigerant to be still partially in liquid state when coming out of the evaporator, i.e. of the first air/refrigerant heat exchanger, directed to the suction of the refrigerant compressing device, with all problems concerned.
  • the heat absorbed from the airflow arriving from the revolving drum is not enough to completely vaporize the refrigerant flowing along the evaporator.
  • an excessive cooling of the refrigerant at the high-pressure side of the heat-pump assembly can deteriorate the refrigerant "vapor quality" at suction of the refrigerant compressing device, up to irreparably damage the structural integrity of the refrigerant compressing device.
  • a third air/refrigerant heat exchanger that cools down the refrigerant too much, may cause the refrigerant "vapor quality" at suction of the refrigerant compressing device to be below 1.
  • the refrigerant "vapor quality" at suction of the refrigerant compressing device in fact, is the ratio, determined at suction of the refrigerant compressing device, between the amount of refrigerant in gaseous state and the total amount of refrigerant (i.e. both in liquid and gaseous state).
  • a "vapor quality” equal to 1 means that all refrigerant is in gaseous state (saturated vapor refrigerant or superheated refrigerant), whereas a "vapor quality” equal to 0 means that all refrigerant is in liquid state (saturated liquid refrigerant or sub-cooled refrigerant).
  • Aim of the present invention is to improve efficiency and performances of the heat-pump type, hot-air generator of today's rotary-drum home laundry dryers, and to eliminate the drawbacks referred above.
  • a home laundry dryer comprising an outer boxlike casing structured for resting on the floor and, inside the casing, a laundry container structured for housing the laundry to be dried, and a closed-circuit, hot-air generator structured to circulate, through the laundry container, a stream of hot air;
  • the hot-air generator in turn comprising: an air recirculating conduit having its two ends connected to the laundry container; air circulating means structured to produce, inside the air recirculating conduit, an airflow which flows through said laundry container; and a heat-pump assembly structured to cool the airflow coming out from the laundry container for condensing the moisture in said airflow, and then to heat the airflow returning back into the laundry container;
  • said heat-pump assembly comprising: a first air/refrigerant heat exchanger which is located along the air recirculating conduit, and it is structured for transferring heat from the airflow arriving from the laundry container to the refrigerant so as to condense the moisture in the airflow;
  • the said at least one physical quantity is the temperature and/or pressure of the refrigerant at refrigerant-inlet or at refrigerant-outlet of said first air/refrigerant heat exchanger; and/or the temperature rise or drop of the refrigerant flowing through said first air/refrigerant heat exchanger.
  • said at least one physical quantity is the temperature and/or pressure of the refrigerant at low-pressure refrigerant inlet or at low-pressure refrigerant outlet of the low-pressure side of said refrigerant/ refrigerant heat exchanger; and/or the temperature and/or pressure of the refrigerant at high-pressure refrigerant inlet or at high-pressure refrigerant outlet of the high-pressure side of said refrigerant/refrigerant heat exchanger; and/or the temperature rise of the refrigerant flowing through the low-pressure side of said refrigerant/refrigerant heat exchanger; and/or the temperature drop of the refrigerant flowing through the high-pressure side of said refrigerant/refrigerant heat exchanger.
  • said at least one physical quantity is the temperature and/or pressure of the refrigerant at suction and/or at delivery of said refrigerant compressing device.
  • said at least one physical quantity is the temperature and/or pressure of the refrigerant at refrigerant inlet or at refrigerant outlet of said second air/refrigerant heat exchanger.
  • said at least one physical quantity is the temperature and/or moisture degree of the airflow entering into, or coming out of, said laundry container.
  • the central control unit is structured for controlling said refrigerant vapor-quality adjusting means so as to selectively keep said ratio below or equal to 1.
  • the central control unit is structured for controlling said refrigerant vapor-quality adjusting means so as to maintain between 0,80 and 0,99 the ratio, at refrigerant-outlet of said first heat exchanger, between the amount of refrigerant in gaseous state and the whole amount of refrigerant.
  • the refrigerant vapor-quality adjusting means comprise high-pressure refrigerant cooling means which are structured for selectively cooling down the high-pressure refrigerant flowing from the second heat exchanger to the refrigerant expansion device.
  • said high-pressure refrigerant cooling means comprise a third air/refrigerant heat exchanger which is connected in series to the second air/ refrigerant heat exchanger.
  • said high-pressure refrigerant cooling means additionally comprise an auxiliary ventilation device which is structured for channeling a stream of cooling air towards the body of said third air/refrigerant heat exchanger.
  • the refrigerant vapor-quality adjusting means comprise refrigerant flow-rate adjusting means which are structured for varying the flow-rate of the low-pressure refrigerant flowing through the first air/refrigerant heat exchanger.
  • said refrigerant flow-rate adjusting means comprise a variable speed refrigerant compressing device, or an electrically-operated refrigerant expansion valve, or an electrically-operated multiple capillary-tube expansion system.
  • said detecting means comprise sensor means structured for detecting the temperature and/or pressure of the refrigerant at low-pressure refrigerant inlet of said refrigerant/refrigerant heat exchanger, and/or at low-pressure refrigerant outlet of said refrigerant/ refrigerant heat exchanger, and/or at high-pressure refrigerant inlet of said refrigerant/refrigerant heat exchanger, and/or at high-pressure refrigerant outlet of said refrigerant/refrigerant heat exchanger.
  • an operating method of a laundry dryer that comprises an outer boxlike casing structured for resting on the floor and, inside the casing, a laundry container structured for housing the laundry to be dried, and a closed-circuit, hot-air generator structured to circulate through the laundry container a stream of hot air; the hot-air generator being provided with a heat-pump assembly structured to cool the airflow coming out from the laundry container for condensing the moisture in said airflow, and then to heat the airflow returning back into the laundry container; said heat-pump assembly comprising: a first air/refrigerant heat exchanger which is structured for transferring heat from the airflow arriving from the laundry container to a low-pressure refrigerant so as to condense the moisture in the airflow; a second air/refrigerant heat exchanger which is structured for transferring heat from a high-pressure refrigerant to the airflow directed back into the laundry container so as to heat said airflow; wherein the operating method comprises the steps of
  • said refrigerant vapor-quality adjusting means are controlled so as to selectively maintain below or equal to 1 the ratio between the amount of refrigerant in gaseous state and the whole amount of refrigerant.
  • said refrigerant vapor-quality adjusting means are controlled so as to selectively maintain between 0,80 and 0,99 the ratio, at refrigerant-outlet of said first heat exchanger, between the amount of refrigerant in gaseous state and the whole amount of refrigerant.
  • At least one physical quantity is the temperature and/or pressure of the refrigerant at refrigerant-inlet or at refrigerant-outlet of said first air/refrigerant heat exchanger; and/or the temperature rise or drop of the refrigerant flowing through said first air/refrigerant heat exchanger.
  • said at least one physical quantity is the temperature and/or pressure of the refrigerant at low-pressure refrigerant inlet or at low-pressure refrigerant outlet of the low-pressure side of said refrigerant/refrigerant heat exchanger; and/or the temperature and/or pressure of the refrigerant at high-pressure refrigerant inlet or at high-pressure refrigerant outlet of the high-pressure side of said refrigerant/refrigerant heat exchanger; and/or the temperature rise of the refrigerant flowing through the low-pressure side of said refrigerant/refrigerant heat exchanger; and/or the temperature drop of the refrigerant flowing through the high-pressure side of said refrigerant/refrigerant heat exchanger.
  • said at least one physical quantity is the temperature and/or pressure of the refrigerant at suction and/or at delivery of said refrigerant compressing device.
  • said at least one physical quantity is the temperature and/or pressure of the refrigerant at refrigerant inlet or at refrigerant outlet of said second air/refrigerant heat exchanger.
  • said at least one physical quantity is the temperature and/or moisture degree of the airflow entering into, or coming out of, said laundry container.
  • the step of measuring the current value of said at least one physical quantity comprises the steps of measuring the current pressure and temperature of the refrigerant at refrigerant-outlet of the first heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of calculating the saturation temperature of the refrigerant on the basis of the current refrigerant pressure, and the step of driving said refrigerant vapor-quality adjusting means so as to keep the temperature of the refrigerant at refrigerant-outlet of said first heat exchanger within a predetermined first temperature range located beneath said refrigerant saturation temperature.
  • the step of driving said refrigerant vapor-quality adjusting means comprises the step of either
  • the step of measuring the current value of said at least one physical quantity comprises the steps of measuring the current pressure and temperature of the refrigerant at low-pressure refrigerant outlet of the auxiliary refrigerant/ refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of calculating the saturation temperature of the refrigerant on the basis of the current refrigerant pressure, and the step of driving said refrigerant vapor-quality adjusting means so as to keep the temperature of the refrigerant at low-pressure refrigerant outlet of the auxiliary refrigerant/ refrigerant heat exchanger within a predetermined second temperature range located above said refrigerant saturation temperature.
  • the step of driving said refrigerant vapor-quality adjusting means comprises the step of either
  • the step of measuring the current value of said at least one physical quantity comprises the steps of measuring the temperature rise of the refrigerant flowing through the low-pressure side of said refrigerant/refrigerant heat exchanger, and of measuring the temperature drop of the refrigerant flowing through the high-pressure side of said refrigerant/ refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the difference between the temperature rise of the refrigerant flowing in the low-pressure side of the refrigerant/refrigerant heat exchanger and the temperature drop of the refrigerant flowing in the high-pressure side of the refrigerant/refrigerant heat exchanger, within a predetermined third temperature range.
  • the step of driving said refrigerant vapor-quality adjusting means comprises the step of either
  • the step of driving said refrigerant vapor-quality adjusting means also comprises the step of increasing the ratio between the amount of refrigerant in gaseous state and the whole amount of refrigerant, when the temperature rise of the refrigerant in the low-pressure side of said refrigerant/ refrigerant heat exchanger goes below a predetermined third tolerance value greater than zero.
  • the step of measuring the current value of said at least one physical quantity comprises the step of measuring the temperature rise or drop of the refrigerant flowing through the first air/refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the temperature rise or drop of the refrigerant flowing through said first air/refrigerant heat exchanger within a predetermined narrow fourth temperature range immediately above 0°C.
  • said fourth temperature range is included among 0°C and 5°C.
  • the step of driving said refrigerant vapor-quality adjusting means comprises the step of either
  • the step of measuring the current value of said at least one physical quantity comprises also the step of measuring the temperature drop of the refrigerant flowing through the high-pressure side of said refrigerant/refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to also keep the temperature drop of the refrigerant flowing through the high-pressure side of the refrigerant/refrigerant heat exchanger within a fifth temperature range whose upper and lower ends are both higher than 0°C.
  • the step of driving said refrigerant vapor-quality adjusting means comprises the step of either
  • the step of measuring the current value of said at least one physical quantity comprises also the step of measuring the temperature rise of the refrigerant flowing through the low-pressure side of said refrigerant/refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to also keep the temperature rise of the refrigerant flowing through the low-pressure side of the refrigerant/refrigerant heat exchanger within a sixth temperature range whose upper and lower ends are located above that of said fourth temperature range.
  • the step of driving said refrigerant vapor-quality adjusting means comprises the step of either
  • the step of measuring the current value of said at least one physical quantity comprises the step of measuring the temperature drop of the refrigerant flowing through the high-pressure side of said refrigerant/refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the temperature drop of the refrigerant flowing through the high-pressure side of the refrigerant/refrigerant heat exchanger within a seventh temperature range whose upper and lower ends are both higher than 0°C.
  • the step of measuring the current value of said at least one physical quantity comprises the step of measuring the temperature rise of the refrigerant flowing through the low-pressure side of said refrigerant/refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the temperature rise of the refrigerant flowing through the low-pressure side of the refrigerant/refrigerant heat exchanger within a eighth temperature range whose upper and lower ends are both higher than 0°C.
  • the step of measuring the current value of said at least one physical quantity comprises the step of measuring the refrigerant temperature at low-pressure refrigerant outlet of the refrigerant/refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the refrigerant temperature at low-pressure refrigerant outlet of said refrigerant/refrigerant heat exchanger within a predetermined ninth temperature range.
  • the step of measuring the current value of said at least one physical quantity comprises the step of measuring the refrigerant temperature at refrigerant inlet of the second air/ refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the refrigerant temperature at refrigerant inlet of said second air/ refrigerant heat exchanger within a predetermined tenth temperature range.
  • the step of measuring the current value of said at least one physical quantity comprises the step of measuring the refrigerant temperature at delivery of the refrigerant compressing device; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the refrigerant temperature at delivery of said refrigerant compressing device within a predetermined tenth temperature range.
  • the step of measuring the current value of said at least one physical quantity comprises the step of measuring the refrigerant temperature at high-pressure refrigerant inlet of the refrigerant/refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the refrigerant temperature at high-pressure refrigerant inlet of said refrigerant/ refrigerant heat exchanger within a predetermined eleventh temperature range.
  • the step of measuring the current value of said at least one physical quantity comprises the step of measuring the refrigerant temperature at high-pressure refrigerant outlet of the refrigerant/refrigerant heat exchanger; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the refrigerant temperature at high-pressure refrigerant outlet of said refrigerant/ refrigerant heat exchanger within a predetermined twelfth temperature range.
  • the step of measuring the current value of said at least one physical quantity comprises the step of measuring the temperature of the airflow entering into the laundry container; and in that the step of controlling said refrigerant vapor-quality adjusting means comprises the step of driving said refrigerant vapor-quality adjusting means so as to keep the temperature of said airflow within a predetermined thirteenth temperature range.
  • number 1 indicates as a whole a heat-pump type, home laundry dryer which comprises:
  • heat-pump type, closed-circuit hot-air generator 5 provides for gradually drawing air from laundry container 3; extracting and retaining the surplus moisture from the hot air drawn from laundry container 3; heating the dehumidified air to a predetermined temperature, normally higher than or equal to the temperature of the air arriving from laundry container 3; and feeding the heated, dehumidified air back into laundry container 3, where it flows over, to rapidly dry, the laundry inside the container.
  • Hot-air generator 5 therefore, provides for continuously dehumidifying and heating the air circulating inside laundry container 3 to rapidly dry the laundry inside the container.
  • laundry dryer 1 is preferably a rotary-drum, heat-pump type, home laundry dryer, therefore laundry container 3 consists in a substantially cylindrical, hollow revolving drum 3 which is structured for internally housing the laundry to be dried, and which is fixed in axially rotating manner inside the outer casing 2, directly facing the laundry loading/unloading through opening 2a formed in the front wall of casing 2.
  • the rotary-drum home laundry dryer 1 additionally comprises an electrically-powered motor assembly 6 which is structured for driving into rotation the revolving drum 3 about its longitudinal axis; and an electronic central control unit 7 which controls both the electrically-powered motor assembly 6 and the hot-air generator 5 to perform one of the user-selectable drying cycles preferably, though not necessarily, stored in the same central control unit.
  • the revolving drum 3 preferably, thought not necessarily, extends inside casing 2 coaxial to a substantially horizontally-oriented longitudinal axis L, and preferably, thought not necessarily, consists of a substantially cylindrical, rigid tubular body 3 which rests substantially horizontally inside the casing 2 on a number of substantially horizontally-oriented supporting rollers 8 which are located at both axial ends of tubular body 3, and are fixed to the casing 2 in free revolving manner so as to allow the tubular body 3 to freely rotate inside the casing about its horizontally-oriented longitudinal axis L.
  • Front rim of tubular body 3 is coupled in substantially airtight manner and in axially rotating manner to the front wall of the outer casing 2, so as to surround the laundry loading/unloading opening 2a present on that wall; whereas rear rim of tubular body 3 is preferably, thought not necessarily, coupled in substantially airtight manner and in axially rotating manner to an inner bulkhead parallel and spaced to the rear wall of the outer casing 2.
  • closed-circuit hot-air generator 5 comprises:
  • the bulkhead portion aligned to the rear rim of tubular body 3 is perforated, or at any rate permeable to air, so to permit air entry into the rear rim of tubular body 3, and a first end of the air recirculating conduit 9 is coupled in airtight manner directly to the perforated portion of the inner bulkhead.
  • the second end of air recirculating conduit 9, instead, is integrated into porthole door 4, and is faced to the front rim of tubular body 3 when door 4 is placed in the closing position.
  • Centrifugal fan 10 is designed to produce an airflow f which flows, along air recirculating conduit 9, from the door 4 to the perforated portion of the inner bulkhead of casing 2.
  • hot-air generator 5 is also provided with a manually-removable filtering device 12 which is located along air recirculating conduit 9, upstream of the heat-pump assembly 11 and preferably also of centrifugal fan 10, and which is structured to stop fluff and/or lint particles upstream of heat-pump assembly 11 or even centrifugal fan 10.
  • the heat-pump assembly 11 instead comprises:
  • the air/refrigerant heat exchanger 13 is conventionally referred to as the "evaporator” or the “gas heater” (the latter in case the refrigerant operates at supercritical pressure) of the heat-pump assembly, and it is structured so that the airflow f arriving from revolving drum 3 and the low-pressure and low-temperature refrigerant directed to the suction of the refrigerant compressing device 15 can flow through it simultaneously, allowing the refrigerant having a temperature lower than that of the airflow f, to absorb heat from the airflow f, thus causing condensation of the surplus moisture in the airflow f arriving from revolving drum 3.
  • the air/refrigerant heat exchanger 14 is conventionally referred to as the "condenser” or “gas cooler” (the latter in case the refrigerant operates at supercritical pressure) of the heat-pump assembly, and it is structured so that the airflow f directed back into revolving drum 3 and the high-pressure and high-temperature refrigerant arriving from the delivery of the refrigerant compressing device 15 can flow through it simultaneously, allowing the refrigerant having a temperature greater than that of the airflow f to release heat to the airflow f, thus rapidly heating the airflow f directed back into the revolving drum 3.
  • the heat-pump assembly 11 moreover comprises:
  • internal heat exchanger 18 is preferably crossed, at the same time, by the high-pressure and high-temperature refrigerant directed towards the refrigerant expansion valve 16, and by the low-pressure and low-temperature refrigerant coming out of the refrigerant-outlet of heat exchanger 13 directed to the suction of refrigerant compressing device 15, and it is structured for transferring heat from the high-pressure and high-temperature refrigerant to the low-pressure and low-temperature refrigerant, so to heat up the low-pressure and low-temperature refrigerant before the latter reaches the suction of refrigerant compressing device 15.
  • Internal heat exchanger 18 is structured for transferring heat from the high-pressure side of the heat-pump assembly 11, to the low-pressure side of the same heat-pump assembly 11.
  • the internal heat exchanger 18 is preferably structured so that the refrigerant flowing in the high-pressure side and the refrigerant flowing in the low-pressure side flow in counter-current configuration.
  • Central control unit 7 of laundry dryer 1 is structured/programmed for additionally controlling the refrigerant vapor-quality adjusting means 17 according to the time-progression of at least one physical quantity measured within the laundry dyer 1, so to continuously adjust/vary the current "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, i.e. at refrigerant-outlet of first air/refrigerant heat exchanger 13.
  • central control unit 7 of laundry dryer 1 is preferably structured/programmed for controlling the refrigerant vapor-quality adjusting means 17, so to selectively maintain the "vapor quality" of the refrigerant coming out of evaporator 13 at an average value below 1 and preferably, though not necessarily, also ranging between 0,80 and 0,99.
  • internal heat exchanger 18 is dimensioned so to finalize the evaporation of the low-pressure refrigerant coming out of evaporator 13, so that the refrigerant coming out of the low-pressure refrigerant outlet of internal heat exchanger 18 and directed towards the suction of refrigerant compressing device 15 is always completely in gaseous state, i.e. it is located on the right side of the refrigerant Saturated Vapor Curve F" on the Pressure-Enthalpy chart.
  • the refrigerant vapor-quality adjusting means 17 preferably, though not necessarily, comprise a refrigerant cooling device 17 which is connected in series to the condenser 14, i.e. to the air/refrigerant heat exchanger 14, so to be crossed by the high-pressure and high-temperature refrigerant arriving from the condenser 14, and which is structured for selectively cooling down the high-pressure refrigerant in addition to the condenser 14.
  • the refrigerant vapor-quality adjusting means 17 preferably, though not necessarily, comprise:
  • auxiliary air/refrigerant heat exchanger 19 may be interposed between the high-pressure refrigerant outlet of internal heat exchanger 18 and the refrigerant expansion valve 16.
  • Central control unit 7 of laundry dryer 1 controls refrigerant cooling device 17, i.e. controls activation and deactivation of cooling fan 20, so to selectively maximize or minimize the cooling of the refrigerant directed towards the refrigerant expansion valve 16, so to continuously adjust/vary the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, i.e. at refrigerant-outlet of the air/refrigerant heat exchanger 13.
  • auxiliary air/refrigerant heat exchanger 19 is preferably located downstream of condenser 14, i.e. between the refrigerant outlet of air/refrigerant heat exchanger 14 and the high-pressure side of refrigerant/refrigerant heat exchanger 18.
  • the central control unit 7 of laundry dyer 1 controls the activation and/or the current revolving speed of cooling fan 20 so as to selectively maintain, when hot-air generator 5 is preferably in the steady-state working conditions, the evaporator 13 in a flooded condition.
  • central control unit 7 controls the activation and/or the current revolving speed of cooling fan 20 so as to keep the low-pressure refrigerant that flows along evaporator 13 at least partly in liquid state up to the refrigerant-outlet of the same evaporator 13, i.e. with a refrigerant "vapor quality" below 1 up to the refrigerant-outlet of evaporator 13.
  • the "vapor quality" of the low-pressure refrigerant could also be equal to 1.
  • the refrigerant/refrigerant heat exchanger 18 is structured for sequentially heating up the partially-liquid, low-pressure and low-temperature refrigerant coming out of refrigerant-outlet of the evaporator 13, i.e. of the air/refrigerant heat exchanger 13, so as to perform, when hot-air generator 5 is in the steady-state working phase, the complete evaporation and the subsequent superheating of the refrigerant directed towards the suction of refrigerant compressing device 15.
  • central control unit 7 of laundry dryer 1 is preferably structured/programmed to firstly determine whether the hot-air generator 5 is either in warm-up phase or in steady-state working phase.
  • This operation can be performed, for example, via a continuous control of the temperature of the airflow f entering into revolving drum 3, i.e. on exit from the condenser 14, or via a control of the time-progression of the refrigerant temperature and/or of the refrigerant pressure at refrigerant-outlet of the condenser 14.
  • the moisture degree of the airflow f entering into or coming out of the revolving drum 3 could be used for determining whether the hot-air generator 5 is either in warm-up phase or in steady-state working phase.
  • the temperature of the airflow f flowing through revolving drum 3 reaches the highest value and remains roughly constant to said highest value for several minutes, up to the end of the drying cycle.
  • the central control unit 7 of laundry dryer 1 assumes that hot-air generator 5 is in the warm-up phase and keeps the cooling fan 20 switched-off, or at minimum revolving speed, to perform an intensive superheating of the refrigerant both in the evaporator 13, i.e. in the air/refrigerant heat exchanger 13, and in the auxiliary internal refrigerant/refrigerant heat exchanger 18, so as to rapidly increase the refrigerant temperature at suction of the refrigerant compressing device 15.
  • a given first threshold value for example below 50°C
  • a given second threshold value for example below 40°C
  • central control unit 7 of laundry dryer 1 assumes that hot-air generator 5 is in the steady-state working phase and controls activation and deactivation of cooling fan 20, or varies the revolving speed of cooling fan 20, so to preferably maintain the evaporator 13 in a flooded condition, i.e. so to keep the low-pressure refrigerant that flows along evaporator 13 partly in liquid state up to the refrigerant-outlet of the same evaporator 13.
  • central control unit 7 controls the activation and/or the current revolving speed of cooling fan 20, so as to selectively maintain the "vapor quality" of the low-pressure refrigerant coming out of evaporator 13 at an average value below 1 up to the refrigerant-outlet of the evaporator 13.
  • the central control unit 7 preferably continuously switches the cooling fan 20 on and off, or varies the revolving speed of cooling fan 20, so that the refrigerant coming out of refrigerant-outlet of heat exchanger 13 has a refrigerant "vapor quality" ranging between 0,40 and 1, and in particular preferably, though not necessarily, between 0,80 and 0,99.
  • the refrigerant/refrigerant heat exchanger 18 is instead structured for heating up the low-pressure and low-temperature refrigerant coming out of refrigerant-outlet of the evaporator 13, so as to rise at 1 the refrigerant "vapor quality" and afterward to superheat the gaseous-state refrigerant directed towards the suction of refrigerant compressing device 15.
  • FIG. 3 shows the closed thermodynamic cycle performed by the heat-pump assembly 11 when cooling fan 20 is switched off.
  • the high-pressure and high-temperature refrigerant when coming out of the delivery of refrigerant compressing device 15, the high-pressure and high-temperature refrigerant enters into the condenser 14, i.e. into the air/refrigerant heat exchanger 14, wherein it gives off heat to the airflow f entering into revolving drum 3. Afterwards the high-pressure and high-temperature refrigerant enters into the auxiliary air/refrigerant heat exchanger 19, but, being the cooling fan 20 switched-off, the air/refrigerant heat exchanger 19 has substantially no cooling effects on the refrigerant flowing from the refrigerant-outlet of condenser 14 to the refrigerant expansion valve 16.
  • the high-pressure and high-temperature refrigerant flows inside the refrigerant/refrigerant heat exchanger 18 with substantially no pressure drop, wherein it gives off heat to the low-pressure and low-temperature refrigerant flowing towards the suction of refrigerant compressing device 15, thus moving from point c (high-pressure refrigerant inlet of heat exchanger 18) to point d of the Pressure-Enthalpy chart (high-pressure refrigerant outlet of heat exchanger 18 and inlet of refrigerant expansion valve 16) again along a constant-pressure line.
  • the refrigerant When coming out of air/refrigerant heat exchanger 19 or out of refrigerant/refrigerant heat exchanger 18, the refrigerant is completely in liquid state and therefore it is located on the left side of the refrigerant Saturated Liquid Curve F' on the Pressure-Enthalpy chart.
  • the high-pressure and high-temperature refrigerant flows through the refrigerant expansion valve 16 which subjects the refrigerant to a substantially adiabatic rapid expansion, so as to cause a rapid drop of both refrigerant pressure and refrigerant temperature, and also the evaporation of part of the refrigerant.
  • the refrigerant moves from point d (high-pressure refrigerant outlet of heat exchanger 18 and inlet of refrigerant expansion valve 16) to point e of the Pressure-Enthalpy chart (outlet of refrigerant expansion valve 16 and refrigerant-inlet of evaporator 13) along a substantially constant-Enthalpy line that crosses the refrigerant Saturated Liquid Curve F'.
  • the low-pressure and low-temperature refrigerant flows inside the evaporator 13, i.e. the air/refrigerant heat exchanger 13, wherein it absorbs heat from the airflow f coming out of revolving drum 3 with substantially no pressure drop.
  • the low-pressure and low-temperature refrigerant is allowed to absorb, from the airflow f arriving from revolving drum 3, a heat amount which suffices to perform a complete evaporation and a slight superheating of the refrigerant directed towards the suction of refrigerant compressing device 15.
  • a refrigerant In thermodynamic, a refrigerant is defined as being in a superheated condition when the temperature of the refrigerant is greater than the refrigerant saturation temperature at the current refrigerant pressure. This implies that a refrigerant in superheated condition is a refrigerant completely in gaseous state and it is located on the right side of the refrigerant Saturated Vapor Curve F" on the Pressure-Enthalpy chart.
  • the refrigerant moves from point e (refrigerant-inlet of heat exchanger 13) to point f of the Pressure-Enthalpy chart (low-pressure refrigerant-inlet of refrigerant/ refrigerant heat exchanger 18) along a substantially constant-Pressure line, and point f of the Pressure-Enthalpy chart (low-pressure refrigerant-inlet of internal refrigerant/refrigerant heat exchanger 18) is located on the right side of the refrigerant Saturated Vapor Curve F".
  • the gaseous-state low-pressure and low-temperature refrigerant flows again inside the refrigerant/refrigerant heat exchanger 18 with substantially no pressure drops, wherein it absorbers heat from the high-pressure and high-temperature refrigerant flowing towards the inlet of refrigerant expansion vale 16, thus continuing its superheating process.
  • the gaseous-state refrigerant moves from point f (low-pressure refrigerant-inlet of internal refrigerant/refrigerant heat exchanger 18) to point g of the Pressure-Enthalpy chart (suction of the refrigerant compressing device 15) again along a constant-Pressure line.
  • the gaseous-state, low-pressure and low-temperature refrigerant enters in the refrigerant compressing device 15 wherein it is compressed so as to close the thermodynamic cycle, and moves from point g (suction of the refrigerant compressing device 15) back to point a the Pressure-Enthalpy chart (delivery of refrigerant compressing device 15) along an inclined Pressure-, and Enthalpy- increasing line.
  • Figure 4 instead shows the closed thermodynamic cycle performed by the heat-pump assembly 11 when cooling fan 20 is switched on, i.e. when the refrigerant cooling device 17 cools down the refrigerant flowing from the condenser 14 to the refrigerant expansion device 16.
  • the high-pressure and high-temperature refrigerant enters into the auxiliary air/refrigerant heat exchanger 19, wherein, being the cooling fan 20 switched on, the refrigerant is cooled by a stream w of cooling air arriving from the outside of casing 2.
  • the refrigerant therefore, moves from point b (refrigerant inlet of heat exchanger 19) to point c of the Pressure-Enthalpy chart (high-pressure refrigerant inlet of heat exchanger 18) along the same constant-pressure line.
  • the high-pressure and high-temperature refrigerant flows inside the refrigerant/refrigerant heat exchanger 18 with substantially no pressure drop, wherein it gives off heat to the low-pressure and low-temperature refrigerant flowing towards the suction of refrigerant compressing device 15, thus moving from point c (high-pressure refrigerant inlet of heat exchanger 18) to point d of the Pressure-Enthalpy chart (high-pressure refrigerant outlet of heat exchanger 18 and inlet of refrigerant expansion valve 16) again along a constant-pressure line.
  • the liquid-state, high-pressure and high-temperature refrigerant flows through the refrigerant expansion valve 16 which subjects the refrigerant to a substantially adiabatic rapid expansion, so as to cause a rapid drop of both refrigerant pressure and refrigerant temperature, and also the evaporation of part of the refrigerant.
  • the refrigerant therefore, moves from point d (high-pressure refrigerant outlet of heat exchanger 18 and inlet of refrigerant expansion valve 16) to point e of the Pressure-Enthalpy chart (outlet of refrigerant expansion valve 16 and refrigerant-inlet of evaporator 13) along a substantially constant-Enthalpy line that crosses the refrigerant Saturated Liquid Curve F'.
  • the low-pressure and low-temperature refrigerant flows inside the evaporator 13, i.e. the air/refrigerant heat exchanger 13, wherein it absorbs heat from the airflow f coming out of revolving drum 3 with substantially no pressure drop.
  • the low-pressure and low-temperature refrigerant flowing along the evaporator 13 is able to absorb, from the airflow f arriving from revolving drum 3, an increased heat amount which is however insufficient to perform a complete evaporation of the refrigerant directed towards the suction of refrigerant compressing device 15.
  • the low-pressure and low-temperature is still partly in liquid state, i.e. it has a refrigerant "vapor quality" lower than 1, and it is located on the left side of the refrigerant Saturated Vapor Curve F" on the Pressure-Enthalpy chart.
  • the refrigerant moves from point e (refrigerant-inlet of heat exchanger 13) to point f of the Pressure-Enthalpy chart (low-pressure refrigerant-inlet of internal refrigerant/ refrigerant heat exchanger 18) along a substantially constant-Pressure line, but point f is located on the left side of the refrigerant Saturated Vapor Curve F" on the Pressure-Enthalpy chart.
  • the liquid-gaseous double-phase, low-pressure and low-temperature refrigerant flows again inside the internal refrigerant/ refrigerant heat exchanger 18 with substantially no pressure drop, wherein it absorbers, from the high-pressure and high-temperature refrigerant flowing towards the inlet of refrigerant expansion vale 16, a heat amount which suffices to complete evaporation of the refrigerant and afterwards to perform the superheating of the refrigerant directed towards the suction of refrigerant compressing device 15.
  • the refrigerant while flowing inside the heat exchanger 18, the refrigerant therefore moves from point f (low-pressure refrigerant-inlet of internal heat exchanger 18) to point g of the Pressure-Enthalpy chart (suction of the refrigerant compressing device 15) along a constant-Pressure line that, in this case, crosses the refrigerant Saturated Vapor Curve F" on the Pressure-Enthalpy chart.
  • the gaseous-state, low-pressure and low-temperature refrigerant enters in the refrigerant compressing device 15, wherein it is compressed so as to close the thermodynamic cycle, and moves from point g (suction of refrigerant compressing device 15) back to point a the Pressure-Enthalpy chart (delivery of refrigerant compressing device 15) along an inclined Pressure-, and Enthalpy-increasing line.
  • the central control unit 7 of laundry dryer 1 is structured/ programmed to drive the refrigerant cooling device 17, i.e. to switch the cooling fan 20 on and off, so as to force the heat-pump assembly 11 to selectively and alternatively perform either the Figure 3 closed thermodynamic cycle which produces, at refrigerant-outlet of evaporator 13, a refrigerant having a "vapor quality" equal to 1, or the Figure 4 closed thermodynamic cycle which produces, at refrigerant-outlet of evaporator 13, a refrigerant having a "vapor quality" considerably below 1.
  • thermodynamic cycle The switching between the Figure 3 thermodynamic cycle and the Figure 4 thermodynamic cycle is purposely controlled so as to maintain the evaporator 13 in a flooded condition, i.e. so as to keep the low-pressure refrigerant that flows along the evaporator 13 partly in liquid state up to the refrigerant-outlet of the same evaporator 13.
  • central control unit 7 purposely controls the activation and/or the revolving speed of cooling fan 20, so as to maintain the "vapor quality" of the low-pressure refrigerant coming out of evaporator 13 at an average value below 1 up to the refrigerant-outlet of evaporator 13.
  • central control unit 7 is structured/programmed to switch the cooling fan 20 on and off, or to vary the revolving speed of cooling fan 20, so as to maintain the "vapor quality" of the refrigerant coming out of evaporator 13 at an average value ranging between 0,40 and 1 , and preferably, though not necessarily, also ranging between 0,80 and 0,99.
  • central control unit 7 of laundry dryer 1 preferably implements a control strategy which maintains, when hot-air generator 5 is in the steady-state working phase, the temperature of the refrigerant at refrigerant-outlet of evaporator 13 below the corresponding refrigerant saturation temperature, so that part of the low-pressure refrigerant coming out of heat exchanger 13 is surely still in liquid state.
  • central control unit 7 could maintain the temperature of the refrigerant at refrigerant-outlet of evaporator 13 roughly equal to the corresponding refrigerant saturation temperature, so that the low-pressure refrigerant remains at least partly in liquid state up to the refrigerant-outlet of heat exchanger 13.
  • the refrigerant saturation temperature is the refrigerant temperature at which, for a given pressure of the refrigerant, the liquid-to-gaseous phase-change of the refrigerant is completed.
  • the refrigerant temperature measured at refrigerant-outlet of evaporator 13 is lower than the refrigerant saturation temperature at the same refrigerant pressure, this implies that the refrigerant liquid-to-gaseous phase-change is not finalized in the evaporator 13 and that, consequently, part of the refrigerant is still in liquid state at refrigerant-outlet of the evaporator 13.
  • the central control unit 7 of laundry dryer 1 maintains, when hot-air generator 5 is preferably in the steady-state working phase, the heat exchanger 13 in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the refrigerant temperature and refrigerant pressure measured at refrigerant-outlet of the evaporator 13, i.e. of the air/refrigerant heat exchanger 13.
  • central control unit 7 of laundry dryer 1 firstly measures the current pressure and temperature of the refrigerant at refrigerant-outlet of heat exchanger 13, then calculates the exact refrigerant saturation temperature on the basis of the measured current refrigerant pressure, and finally compares the measured refrigerant temperature with the calculated refrigerant saturation temperature so as to determine whether the calculated refrigerant saturation temperature is greater than the measured refrigerant temperature.
  • central control unit 7 of laundry dryer 1 is structured/programmed to switch on and off the cooling fan 20, so as to maintain the average temperature of the refrigerant at refrigerant-outlet of the evaporator 13, i.e. of the air/refrigerant heat exchanger 13, within a given temperature range located immediately beneath the calculated refrigerant saturation temperature.
  • the upper and lower ends of this temperature range are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13, i.e. of the evaporator 13, ranges between 0,40 and 1 , and in particular ranges preferably, though not necessarily, between 0,80 and 0,99.
  • the temperature of the refrigerant at refrigerant-outlet of the evaporator 13 is preferably, though not necessarily, maintained from 0,1°C to 4°C beneath the calculated refrigerant saturation temperature. This implies that the difference between the calculated refrigerant saturation temperature and the measured refrigerant temperature at refrigerant-outlet of heat exchanger 13 ranges preferably, though not necessarily, between roughly 0,1°C and 4°C.
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed
  • the central control unit 7 of laundry dyer 1 deactivates the cooling fan 20 for increasing the current "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whenever the refrigerant temperature at refrigerant-outlet of the evaporator 13 exceeds a predetermined first threshold value (in the example shown equal to 4°C); and activates the cooling fan 20 for reducing the current "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13, whenever the refrigerant temperature at refrigerant-outlet of heat evaporator 13 goes below a predetermined second threshold value (in the example shown 0,1°C) which is lower than said first threshold value.
  • a predetermined first threshold value in the example shown equal to 4°C
  • the first and the second threshold value are conveniently selected to assure that the "vapor quality" of the refrigerant coming out of heat exchanger 13 is below 1 and preferably, though not necessarily, ranges between 0,80 and 0,99.
  • central control unit 7 deactivates the cooling fan 20 for increasing the current "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13, whenever the refrigerant temperature at refrigerant-outlet of evaporator 13 goes too far below the corresponding calculated refrigerant saturation temperature; and activates the cooling fan 20 for reducing the current "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13, whenever the refrigerant temperature at refrigerant-outlet of evaporator 13 goes too close to the corresponding refrigerant saturation temperature.
  • the central control unit 7 of laundry dryer 1 activates the cooling fan 20 to maximize the cooling of the refrigerant inside heat exchanger 19 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13, only if hot-air generator 5 is in the steady-state working phase.
  • variable-speed cooling fan 20 allows a much more accurate control of the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, i.e. at refrigerant-outlet of air/ refrigerant heat exchanger 13.
  • the laundry dryer 1 is obviously provided with at least one pressure sensor (not shown) and with at least one temperature sensor (not shown), both located at refrigerant-outlet of evaporator 13, i.e. of the air/ refrigerant heat exchanger 13, for continuously measuring the refrigerant local pressure and temperature.
  • refrigerant pressure at outlet of evaporator 13 is substantially equal to the refrigerant pressure at suction of refrigerant compressing device 15 or at low-pressure refrigerant outlet of internal heat exchanger 18, the pressure sensor could also be located at low-pressure refrigerant outlet of internal heat exchanger 18 or at suction of refrigerant compressing device 15.
  • central control unit 7 of laundry dryer 1 can determine whether the evaporator 13, i.e. the air/refrigerant heat exchanger 13, is in a flooded condition, via a direct measurement of the current pressure and temperature of the refrigerant at low-pressure refrigerant outlet of refrigerant/refrigerant heat exchanger 18.
  • central control unit 7 maintains, when hot-air generator 5 is in the steady-state working phase, the heat exchanger 13 in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the refrigerant temperature and refrigerant pressure measured at refrigerant-outlet of heat exchanger 18.
  • the measurement of the current pressure of the refrigerant at low-pressure refrigerant outlet of internal heat exchanger 18 may be replaced by the measurement of the current pressure of the refrigerant at refrigerant-outlet of evaporator 13 because substantially no pressure drops occurs while the refrigerant flows along the low pressure side of internal heat exchanger 18, or by the measurement of the current pressure of the refrigerant at suction of refrigerant compressing device 15.
  • the refrigerant saturation temperature is a scalar physical quantity which depends strictly on the type of refrigerant and on its pressure, therefore central control unit 7 firstly measures the current pressure of the refrigerant at low-pressure refrigerant outlet of internal heat exchanger 18, or at suction of refrigerant compressing device 15, or at refrigerant-outlet of heat exchanger 13; then calculates the exact refrigerant saturation temperature on the basis of the measured current refrigerant pressure; and finally compares the refrigerant temperature measured at low-pressure refrigerant outlet of heat exchanger 18 with the calculated refrigerant saturation temperature, so as to determine whether the refrigerant coming out of the low-pressure refrigerant outlet of internal heat exchanger 18 is superheated and so as to determine the current amount of such superheating.
  • the difference between the refrigerant temperature measured at low-pressure refrigerant outlet of heat exchanger 18 and the calculated refrigerant saturation temperature is very high (for example greater than 12°C), it means that the low-pressure refrigerant is deeply superheated and that, therefore, the low-pressure refrigerant comes out of evaporator 13 when refrigerant evaporation is already finalized. Thus evaporator 13 is in a non-flooded condition.
  • the difference between the refrigerant temperature measured at low-pressure refrigerant outlet of heat exchanger 18 and the calculated refrigerant saturation temperature is very low (for example lower than 1°C), it means that the low-pressure refrigerant is only slightly superheated and that, therefore, the low-pressure refrigerant comes out of the evaporator 13 still partly in liquid state. Thus evaporator 13 is working in a flooded condition.
  • central control unit 7 of laundry dryer 1 may be structured/programmed to switch the cooling fan 20 on and off, so as to keep the difference between the current temperature of the refrigerant at low-pressure refrigerant outlet of internal heat exchanger 18 and the calculated refrigerant saturation temperature, i.e. the current refrigerant superheating, within a predetermined temperature range which is located above the calculated refrigerant saturation temperature and which depends on the structure of internal heat exchanger 18.
  • this temperature range are conveniently selected so that the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13 is below 1, and ranges between 0,40 and 1 .
  • the upper and lower ends of this temperature range are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 ranges preferably, though not necessarily, between 0,80 and 0,99.
  • the central control unit 7 of laundry dryer 1 may be structured/ programmed so to keep the difference between the current temperature of the refrigerant at low-pressure refrigerant outlet of internal heat exchanger 18 and the calculated refrigerant saturation temperature within a given temperature range preferably, though not necessarily, extending from 1°C to 20°C.
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed
  • the central control unit 7 of laundry dyer 1 deactivates the cooling fan 20 for increasing the current "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whenever the refrigerant temperature at low-pressure refrigerant outlet of internal heat exchanger 18 goes below a predetermined first threshold value (in the example shown 1°C); and activates the cooling fan 20 for reducing the current "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whenever the refrigerant temperature at low-pressure refrigerant outlet of internal heat exchanger 18 exceeds a predetermined second threshold value (in the example shown 20°C) which is greater than said first threshold value.
  • a predetermined first threshold value in the example shown 1°C
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13; whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13.
  • the first and the second threshold value are conveniently selected to assure that the "vapor quality" of the refrigerant coming out of evaporator 13 is lower than 1 and preferably, though not necessarily, ranges between 0,80 and 0,99.
  • central control unit 7 keeps the cooling fan 20 switched off for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, if the refrigerant temperature at low-pressure refrigerant outlet of internal heat exchanger 18 arrives too close to the corresponding refrigerant saturation temperature; and keeps the cooling fan 20 switched on for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, if the refrigerant temperature at low-pressure refrigerant outlet of internal heat exchanger 18 goes too high with respect to the corresponding calculated refrigerant saturation temperature.
  • variable-speed cooling fan 20 allows a much more accurate control of the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, i.e. of evaporator 13.
  • the laundry dryer 1 is obviously provided with at least one pressure sensor (not shown) and with at least one temperature sensor (not shown), both located at low-pressure refrigerant outlet of internal heat exchanger 18 for continuously measuring the refrigerant local pressure and temperature.
  • refrigerant pressure at low-pressure refrigerant outlet of internal heat exchanger 18 is substantially equal to the refrigerant pressure at suction of refrigerant compressing device 15 or at outlet of evaporator 13, the pressure sensor could also be located at outlet of evaporator 13 or at suction of refrigerant compressing device 15.
  • thermodynamic approach considering refrigerant zeotropic blends, if the refrigerant temperature at refrigerant-outlet of evaporator 13 is lower that the refrigerant saturation temperature at the same refrigerant pressure, it means that a negative refrigerant superheating is taking place inside the evaporator 13. Similarly to the previous approach, this condition is necessary and sufficient to ensure that part of the refrigerant is in liquid state at refrigerant-outlet of evaporator 13 and that, therefore, heat exchanger 13 is in the flooded condition.
  • central control unit 7 can alternatively check whether the evaporator 13 is in a flooded condition, via a direct measurement and comparison between the temperature drop of the refrigerant flowing in the high-pressure side of internal heat exchanger 18, and the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18.
  • the refrigerant flowing in the low-pressure side of heat exchanger 18 is merely superheated, and the increase of the refrigerant temperature measured at the low-pressure side of heat exchanger 18 is significantly higher than the drop of refrigerant temperature measured at the high-pressure side of heat exchanger 18.
  • a refrigerant almost completely in liquid state i.e. the refrigerant flowing in the high-pressure side of heat exchanger 18
  • has a thermal capacity, i.e. a specific heat considerably higher than that of a whole gaseous-state refrigerant (i.e. the refrigerant flowing in the low-pressure side of heat exchanger 18).
  • the refrigerant flowing in the low-pressure side of heat exchanger 18 must be firstly completely vaporized and then superheated, thus the difference between the increase of the refrigerant temperature measured at the low-pressure side of heat exchanger 18 and the drop of the refrigerant temperature measured at the high-pressure side of heat exchanger 18 is small. This is due to the fact that the average thermal capacity of the refrigerant flowing in the low-pressure side of heat exchanger 18 becomes close to the thermal capacity of the liquid-state refrigerant flowing in the high-pressure side of heat exchanger 18.
  • central control unit 7 of laundry dryer 1 may be structured/programmed
  • the first tolerance value is significantly greater than zero (for example 10°C), whereas the second tolerance value is preferably, though not necessarily, lower than the first tolerance value.
  • central control unit 7 of laundry dryer 1 may be structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the current "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, if the temperature rise of the refrigerant flowing in the low-pressure side of heat exchanger 18 exceeds of a predetermined first tolerance value the temperature drop of the refrigerant flowing in the high-pressure side of heat exchanger 18 (for example the temperature rise of the low-pressure refrigerant is more than 10°C higher than the temperature drop of the high-pressure refrigerant).
  • central control unit 7 of laundry dryer 1 deactivates the cooling fan 20 for increasing the current "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, if the temperature drop of the refrigerant flowing in the high-pressure side of heat exchanger 18 exceeds of a predetermined second tolerance value the temperature rise of the refrigerant flowing in the low-pressure side of heat exchanger 18 (for example the temperature drop of the low-pressure refrigerant is more than 3°C higher than the temperature rise of the low-pressure refrigerant), or if the temperature rise of the refrigerant flowing in the low-pressure side of heat exchanger 18 goes below a predetermined third threshold value (for example it goes below 5°C).
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed to measure the temperature drop of the refrigerant flowing in the high-pressure side of internal heat exchanger 18, and the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18; and to drive the refrigerant cooling device 17, i.e.
  • the refrigerant vapor-quality adjusting means so as to keep the difference between the temperature rise of the refrigerant flowing in the low-pressure side of heat exchanger 18 and the temperature drop of the refrigerant flowing in the high-pressure side of heat exchanger 18, within a predetermined tolerance range whose upper and lower ends are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 is below 1 and preferably ranges between 0,40 and 1 .
  • central control unit 7 is structured/programmed to switch the cooling fan 20 on and off, so as to keep the difference between the temperature rise of the refrigerant flowing in the low-pressure side of heat exchanger 18 and the temperature drop of the refrigerant flowing in the high-pressure side of heat exchanger 18, within a tolerance range preferably, though not necessarily, extending from -3°C to 15°C.
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whenever the difference between the temperature rise of the refrigerant flowing in the low-pressure side of heat exchanger 18 and the temperature drop of the refrigerant flowing in the high-pressure side of heat exchanger 18 exceeds the upper limit of said tolerance range (for example the upper limit is equal to 15°C).
  • central control unit 7 deactivates the cooling fan 20 for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whenever the difference between the temperature rise of the refrigerant flowing in the low-pressure side of heat exchanger 18 and the temperature drop of the refrigerant flowing in the high-pressure side of heat exchanger 18 goes below the lower limit of said tolerance (for example the lower limit is equal to -3°C); or whenever the temperature rise of the refrigerant flowing in the low-pressure side of heat exchanger 18 goes below a predetermined threshold value (for example it goes below 5°C).
  • this threshold value is greater than zero so as to ensure that the low-pressure and low-temperature refrigerant flowing in the low-pressure side of internal heat exchanger 18 is at least a little bit superheated before reaching the suction of refrigerant compressing device 15.
  • the laundry dryer 1 is obviously provided with four temperature sensors (not shown), each located at a respective inlet or outlet of heat exchanger 18 to measure the corresponding refrigerant temperatures.
  • central control unit 7 maintains, when hot-air generator 5 is in the steady-state working phase, the heat exchanger 13 in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the temperature difference of the refrigerant flowing in the evaporator 13, i.e. in the air/refrigerant heat exchanger 13.
  • central control unit 7 of laundry dryer 1 can measure the temperature drop of the refrigerant flowing in evaporator 13 and, when the hot-air generator is in the steady-state working phase, it can continuously switch the cooling fan 20 on and off so as to keep the temperature drop of the refrigerant flowing through the evaporator 13 as constant as possible within a given narrow temperature range located immediately above 0°C.
  • the upper and lower ends of this narrow temperature range are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 is below 1 and ranges between 0,40 and 1 , and in particular ranges preferably, though not necessarily, between 0,80 and 0,99.
  • central control unit 7 is structured/programmed to continuously switch the cooling fan 20 on and off, so as to keep the temperature drop of the refrigerant flowing through the evaporator 13 within a given narrow temperature range extending from approximately 0°C to 3°C, or event from 0°C to 5°C, and preferably, though not necessarily, extending from 0,2°C to 0,8°C.
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13 and that deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, the central control unit 7 of laundry dryer 1, when hot-air generator 5 is in the steady-state working phase, activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature drop of the refrigerant flowing through the evaporator 13 exceeds a first threshold value (for example 0,8°C).
  • a first threshold value for example 0,8°C
  • central control unit 7 of laundry dryer 1 deactivates the cooling fan 20 for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whenever the temperature drop of the refrigerant flowing through the evaporator 13 goes below a second threshold value (for example 0,2°C) which is lower than said upper threshold value.
  • a second threshold value for example 0,2°C
  • the laundry dryer 1 is provided with two temperature sensors located, respectively, at refrigerant-inlet and at refrigerant-outlet of evaporator 13 to measure the corresponding refrigerant temperatures.
  • central control unit 7 may improve precision of the fourth control-strategy referred above via an additional control of the temperature drop of the refrigerant that flows in the high-pressure side of internal heat exchanger 18. If the temperature drop of the refrigerant flowing through the evaporator 13 is slightly greater than 0°C and, at the same time, the temperature drop of the refrigerant flowing in the high-pressure side of refrigerant/refrigerant heat exchanger 18 is significantly high, this means that internal heat exchanger 18 is finalizing the evaporation of the low-pressure refrigerant and that, therefore, the evaporator 13 is in a flooded condition.
  • This combined control-strategy is particularly helpful when the behaviour of the refrigerant flowing in the heat-pump assembly 11 is that of a pure/ideal fluid.
  • the central control unit 7 of laundry dryer 1 maintains, when hot-air generator 5 is in the steady-state working phase, the evaporator 13 in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the temperature drop of the refrigerant flowing in the evaporator 13, i.e. flowing in the air/ refrigerant heat exchanger 13, and of the temperature drop of the refrigerant flowing through the high-pressure side of internal heat exchanger 18.
  • the temperature drop of the refrigerant flowing through the evaporator 13 is very close to zero when the evaporator 13 is in a flooded condition, because the refrigerant liquid-to-gaseous phase-change takes place at a constant temperature and it is not finalized at refrigerant-outlet of heat exchanger 13.
  • the drop of the refrigerant temperature at the high-pressure side of internal heat exchanger 18 is considerably high when the evaporator 13 is in the flooded condition, because the high-temperature and high-pressure refrigerant flowing through internal heat exchanger 18 has to transfer to the low-pressure refrigerant flowing through the same heat exchanger enough heat to finalize both the evaporation and the superheating.
  • the latent evaporation heat transfer coefficient of the refrigerant in fact, is considerably higher than the sensible heat transfer coefficient of the same refrigerant.
  • central control unit 7 of laundry dryer 1 can measure both the temperature drop of the refrigerant flowing in evaporator 13 and the temperature drop of the refrigerant that flows in the high-pressure side of internal heat exchanger 18, and, when the hot-air generator is in the steady-state working phase, it can continuously switch on and off the cooling fan 20 so as to keep the temperature rise of the refrigerant flowing through the evaporator 13 as constant as possible within a first narrow temperature range located immediately above 0°C, and which extends preferably, though not necessarily, from 0°C and 5°C; and, at the same time, so as to keep the temperature drop of the refrigerant flowing through the high-pressure side of internal heat exchanger 18 within a second temperature range whose upper and lower ends are both significantly higher than 0°C.
  • the first temperature range extends preferably, though not necessarily, from 0,2°C to 0,8°C; whereas the second temperature range extends preferably, though not necessarily, from 10°C to 20°C, thus assuring that the complete vaporization of the refrigerant and subsequent superheating of the refrigerant take place inside internal heat exchanger 18.
  • Central control unit 7 is therefore preferably, though not necessarily, structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature drop of the refrigerant flowing through the evaporator 13 exceeds a first threshold value (for example 0,8°C), and whenever, at the same time, the temperature drop of the refrigerant flowing through the high-pressure side of internal heat exchanger 18 goes below a second threshold value (for example 10°C); and deactivates the cooling fan 20 for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature drop of the refrigerant flowing through the evaporator 13 goes below a third threshold value (for example 0,2°C) which is lower than said first threshold value, and whenever, at the same time, the temperature drop of the refrigerant flowing through the high-pressure side of internal heat exchanger 18 exceeds a fourth threshold value (for example 20°
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13; whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13.
  • the laundry dryer 1 is provided with four temperature sensors located, respectively, at refrigerant-inlet of evaporator 13, at refrigerant-outlet of evaporator 13, at high-pressure refrigerant inlet of heat exchanger 18 and finally at high-pressure refrigerant outlet of heat exchanger 18 to measure the corresponding refrigerant temperatures.
  • central control unit 7 maintains, when hot-air generator 5 is in the steady-state working phase, the evaporator 13, i.e. the air/refrigerant heat exchanger 13, in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the temperature drop of the refrigerant flowing in the evaporator 13, i.e. flowing in heat exchanger 13, and of the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18.
  • this combined control-strategy is particularly helpful when the behaviour of the refrigerant flowing in the heat-pump assembly 11 is a pure/ideal fluid.
  • the temperature drop of the refrigerant flowing through the evaporator 13 is very close to zero when the evaporator 13 is in a flooded condition, because the refrigerant liquid-to-gaseous phase-change takes place at a constant temperature and it is not finalized at refrigerant-outlet of heat exchanger 13.
  • the temperature rise of the refrigerant flowing through the low-pressure side of internal heat exchanger 18 is significantly high, i.e. significantly greater than zero, because the refrigerant flowing in the low-pressure side of internal heat exchanger 18 is to be only superheated.
  • central control unit 7 of laundry dryer 1 can measure both the temperature drop of the refrigerant flowing in the evaporator 13 and the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18, and, when hot-air generator is in the steady-state working phase, it can switch the cooling fan 20 on and off (i.e.
  • central control unit 7 is preferably, though not necessarily, structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature drop of the refrigerant flowing through the evaporator 13 exceeds a first threshold value (for example 0,8°C), and whenever the temperature rise of the refrigerant flowing through the low-pressure side of internal heat exchanger 18 exceeds a second threshold value (for example 20°C); and deactivates the cooling fan 20 for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature drop of the refrigerant flowing through the evaporator 13 goes below a third threshold value (for example 0,2°C) which is lower than said first threshold value, and the temperature rise of the refrigerant flowing through the low-pressure side of internal heat exchanger 18 goes below a fourth threshold value (for example 3°C) which is lower than said second threshold value.
  • a first threshold value for example 0,8°C
  • second threshold value for example
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13; whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13.
  • the fourth threshold value is always greater than the second threshold value.
  • the heat exchanger 18 finalizes only the superheating of the refrigerant.
  • the liquid state portion of the refrigerant coming out from the evaporator 13 is excessive, and the internal heat exchanger 18 is not able to finalize the evaporation of low-pressure refrigerant and afterwards superheat the refrigerant directed towards the suction of refrigerant compressing device 15.
  • the laundry dryer 1 is provided with three temperature sensors located, respectively, at refrigerant-inlet of the evaporator 13, at refrigerant-outlet of the evaporator 13, and finally at low-pressure refrigerant outlet of heat exchanger 18 to measure the corresponding refrigerant temperatures.
  • the refrigerant temperature at low-pressure refrigerant inlet of heat exchanger 18, in fact, is to be considered equal to the refrigerant temperature at refrigerant-outlet of heat exchanger 13.
  • control-strategy can be also adapted to deal with refrigerant zeotropic blends, taking into consideration that the complete liquid-to-gaseous phase-change of a refrigerant zeotropic blend takes place at increasing temperature. This implies that, when the evaporator 13 is in flooded condition, the refrigerant flowing through the evaporator 13 is subjected to a temperature rise greater than zero, even if the liquid-to-gaseous phase-change is not finalized at refrigerant-outlet of evaporator 13.
  • central control unit 7 of laundry dryer 1 can measure the temperature rise of the refrigerant flowing in evaporator 13 and, when the hot-air generator is in the steady-state working phase, it can continuously switch the cooling fan 20 on and off so as to keep the temperature rise of the refrigerant flowing through the evaporator 13 as constant as possible within a given narrow temperature range slightly above 0°C.
  • the upper and lower ends of this narrow temperature range are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 is below 1 and ranges between 0,40 and 1 (upper limit not included), and in particular ranges preferably, though not necessarily, between 0,80 and 0,99.
  • central control unit 7 is structured/programmed to continuously switch the cooling fan 20 on and off, so as to keep the temperature rise of the refrigerant flowing through the evaporator 13 within a given narrow temperature range extending from approximately 1°C to 5°C, or even from 0°C to 5°C, and preferably, though not necessarily, extending from 2°C to 4°C.
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13 and that deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, central control unit 7 of laundry dryer 1, when hot-air generator 5 is in the steady-state working phase, activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature rise of the refrigerant flowing through the evaporator 13 exceeds a first threshold value (for example 4°C).
  • a first threshold value for example 4°C
  • central control unit 7 deactivates the cooling fan 20 for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whenever the temperature rise of the refrigerant flowing through the evaporator 13 goes below a second threshold value (for example 2°C) which is lower than said upper threshold value.
  • a second threshold value for example 2°C
  • the laundry dryer 1 is again provided with two temperature sensors located, respectively, at refrigerant-inlet and at refrigerant-outlet of evaporator 13 to measure the corresponding refrigerant temperatures.
  • central control unit 7 may optionally improve precision of this last control-strategy, via an additional control of the temperature drop of the refrigerant that flows in the high-pressure side of internal heat exchanger 18. If the temperature rise of the refrigerant flowing through the evaporator 13 is slightly above 0°C and, at the same time, the temperature drop of the refrigerant flowing in the high-pressure side of refrigerant/refrigerant heat exchanger 18 is significantly high, this means that internal heat exchanger 18 is finalizing the evaporation of the low-pressure refrigerant and that, therefore, the evaporator 13 is in a flooded condition.
  • the central control unit 7 of laundry dryer 1 maintains, when hot-air generator 5 is in the steady-state working phase, the evaporator 13 in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the temperature rise of the refrigerant flowing in the evaporator 13, i.e. flowing in the air/ refrigerant heat exchanger 13, and of the temperature drop of the refrigerant flowing through the high-pressure side of internal heat exchanger 18.
  • the temperature rise of the refrigerant flowing through the evaporator 13 is slightly above zero when the evaporator 13 is in a flooded condition.
  • the drop of the refrigerant temperature at the high-pressure side of internal heat exchanger 18 is considerably high when the evaporator 13 is in the flooded condition, because the high-temperature and high-pressure refrigerant flowing through the internal heat exchanger 18 has to transfer to the low-pressure refrigerant flowing through the same heat exchanger enough heat to finalize both the evaporation and the superheating.
  • the latent evaporation heat transfer coefficient of the refrigerant in fact, is considerably higher than the sensible heat transfer coefficient of the same refrigerant.
  • central control unit 7 of laundry dryer 1 can measure both the temperature rise of the refrigerant flowing in evaporator 13 and the temperature drop of the refrigerant that flows in the high-pressure side of internal heat exchanger 18, and, when the hot-air generator is in the steady-state working phase, it can continuously switch on and off the cooling fan 20 so as to keep the temperature rise of the refrigerant flowing through the evaporator 13 as constant as possible within a first narrow temperature range located above 0°C, and which extends preferably, though not necessarily, from 1°C and 5°C; and, at the same time, so as to keep the temperature drop of the refrigerant flowing through the high-pressure side of internal heat exchanger 18 within a second temperature range whose upper and lower ends are both significantly higher than 0°C.
  • the first temperature range extends preferably, though not necessarily, from 2°C to 8°C; whereas the second temperature range extends preferably, though not necessarily, from 10°C to 20°C, thus assuring that the complete vaporization of the refrigerant and subsequent superheating of the refrigerant take place inside internal heat exchanger 18.
  • Central control unit 7 is therefore preferably, though not necessarily, structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature rise of the refrigerant flowing through the evaporator 13 exceeds a first threshold value (for example 4°C), and whenever, at the same time, the temperature drop of the refrigerant flowing through the high-pressure side of internal heat exchanger 18 goes below a second threshold value (for example 10°C); and deactivates the cooling fan 20 for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature rise of the refrigerant flowing through the evaporator 13 goes below a third threshold value (for example 2°C) which is lower than said first threshold value, and whenever, at the same time, the temperature drop of the refrigerant flowing through the high-pressure side of internal heat exchanger 18 exceeds a fourth threshold value (for example 20°C)
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13; whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13.
  • the laundry dryer 1 is again provided with four temperature sensors located, respectively, at refrigerant-inlet of evaporator 13, at refrigerant-outlet of evaporator 13, at high-pressure refrigerant inlet of heat exchanger 18 and finally at high-pressure refrigerant outlet of heat exchanger 18 to measure the corresponding refrigerant temperatures.
  • central control unit 7 maintains, when hot-air generator 5 is in the steady-state working phase, the evaporator 13, i.e. the air/refrigerant heat exchanger 13, in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the temperature rise of the refrigerant flowing in the evaporator 13, i.e. flowing in heat exchanger 13, and of the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18.
  • the temperature rise of the refrigerant flowing through the evaporator 13 is slightly higher than zero when the evaporator 13 is in a flooded condition.
  • the temperature rise of the refrigerant flowing through the low-pressure side of internal heat exchanger 18 is significantly high, i.e. significantly greater than zero, because the refrigerant flowing in the low-pressure side of internal heat exchanger 18 must be only superheated.
  • central control unit 7 of laundry dryer 1 can measure both the temperature rise of the refrigerant flowing in the evaporator 13 and the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18, and, when hot-air generator is in the steady-state working phase, it can switch the cooling fan 20 on and off (i.e.
  • central control unit 7 is preferably, though not necessarily, structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature rise of the refrigerant flowing through the evaporator 13 exceeds a first threshold value (for example 4°C), and whenever the temperature rise of the refrigerant flowing through the low-pressure side of internal heat exchanger 18 exceeds a second threshold value (for example 20°C); and deactivates the cooling fan 20 for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature rise of the refrigerant flowing through the evaporator 13 goes below a third threshold value (for example 2°C) which is lower than said first threshold value, and the temperature rise of the refrigerant flowing through the low-pressure side of internal heat exchanger 18 goes below a fourth threshold value (for example 3°C) which is lower than said second threshold value.
  • a first threshold value for example 4°C
  • second threshold value for example 20°C
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13; whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13.
  • the fourth threshold value is always greater than the second threshold value.
  • the heat exchanger 18 finalizes only the superheating of the refrigerant.
  • the liquid state portion of the refrigerant coming out from the evaporator 13 is excessive, and the internal heat exchanger 18 is not able to finalize the evaporation of low-pressure refrigerant and afterwards superheat the refrigerant directed towards the suction of refrigerant compressing device 15.
  • the laundry dryer 1 is again provided with three temperature sensors located, respectively, at refrigerant-inlet of the evaporator 13, at refrigerant-outlet of the evaporator 13, and finally at low-pressure refrigerant outlet of heat exchanger 18 to measure the corresponding refrigerant temperatures.
  • the refrigerant temperature at low-pressure refrigerant inlet of heat exchanger 18, in fact, is to be considered equal to the refrigerant temperature at refrigerant-outlet of heat exchanger 13.
  • central control unit 7 maintains, when hot-air generator 5 is in the steady-state working phase, the heat exchanger 13 in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the temperature drop of the refrigerant flowing in the high-pressure side of internal heat exchanger 18.
  • the drop of the refrigerant temperature at the high-pressure side of internal heat exchanger 18 is very high when the evaporator 13 is in a flooded condition, because the high-temperature and high-pressure refrigerant flowing through internal heat exchanger 18 must transfer to the low-pressure refrigerant flowing through the same heat exchanger enough heat to finalize both the evaporation and the superheating of the refrigerant.
  • the drop of the refrigerant temperature at the high-pressure side of internal heat exchanger 18 is much higher when the evaporator 13 does not finalize the evaporation of the refrigerant within itself, i.e. when heat exchanger 13 is in a flooded condition, than when the evaporator 13 finalizes evaporation of the refrigerant within itself.
  • central control unit 7 of laundry dryer 1 can measure the temperature drop of the refrigerant flowing in the high-pressure side of internal heat exchanger 18, and, when the hot-air generator is in the steady-state working phase, it can switch the cooling fan 20 on and off (i.e. adjusts the "vapor quality" of the refrigerant coming out of heat exchanger 13), so as to keep the temperature drop of the refrigerant flowing in the high-pressure side of internal heat exchanger 18 within a predetermined temperature range whose upper and lower ends are both higher than 0°C.
  • This temperature range assures that the complete vaporization and superheating of the refrigerant takes place inside internal heat exchanger 18, and that the "vapor quality" of the refrigerant coming out of the evaporator 13 is lower than 1 and ranges between 0,40 and 1 .
  • this temperature range are conveniently selected so as to assure the "vapor quality" of the refrigerant coming out of heat exchanger 13 preferably, though not necessarily, ranges between 0,80 and 0,99. In the example shown, in particular, this temperature range extends preferably, though not necessarily, from 3°C to 20°C.
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13, whenever the temperature drop of the refrigerant flowing in the high-pressure side of internal heat exchanger 18 goes below a first threshold value (for example 3°C); and deactivates the cooling fan 20 for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13, whenever the temperature drop of the refrigerant flowing in the high-pressure side of internal heat exchanger 18 exceeds a second threshold value (for example 20°C) which is higher than said first threshold value.
  • a first threshold value for example 3°C
  • the laundry dryer 1 is provided with two temperature sensors located, respectively, at high-pressure refrigerant inlet and at high-pressure refrigerant outlet of internal heat exchanger 18 to measure the corresponding refrigerant temperatures.
  • central control unit 7 maintains, when hot-air generator 5 is in the steady-state working phase, the heat exchanger 13 in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18.
  • the increase of the refrigerant temperature flowing in the low-pressure side of the internal heat exchanger 18 is much higher when the evaporator 13 finalizes the refrigerant evaporation, than when the evaporator 13 does not finalize the refrigerant evaporation and, therefore, operates in a flooded condition.
  • the refrigerant flowing in the low-pressure side of internal heat exchanger 18 is merely subjected to superheating.
  • the refrigerant flowing in the low-pressure side of internal heat exchanger 18 is firstly subjected to a complete evaporation and afterwards is subjected to superheating.
  • central control unit 7 of laundry dryer 1 can measure the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18, and, when the hot-air generator is in the steady-state working phase, it can continuously switch on and off the cooling fan 20 so as to keep the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18 within a given temperature range whose ends are both higher than 0°C.
  • the upper and lower ends of this temperature range are properly selected to assure that the vaporization of the refrigerant is finalized in internal heat exchanger 18, and that the "vapor quality" of the refrigerant coming out of heat exchanger 13 is lower than 1 and preferably, though not necessarily, ranges between 0,80 and 0,99.
  • the temperature range extends preferably, though not necessarily, from 3°C to 20°C.
  • central control unit 7 may be preferably, though not necessarily, structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18 goes above a first threshold value (for example 20°C); and deactivates the cooling fan 20 for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the temperature rise of the refrigerant flowing in the low-pressure side of internal heat exchanger 18 goes below a second threshold value (for example 3°C) which is lower than said first threshold value.
  • a first threshold value for example 20°C
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13.
  • the first and the second threshold value are conveniently selected so to assure that the "vapor quality" of the refrigerant coming out of the evaporator 13 is lower than 1 and preferably, though not necessarily, ranges between 0,80 and 0,99.
  • the laundry dryer 1 is provided with two temperature sensors located, respectively, at high-pressure refrigerant inlet and at high-pressure refrigerant outlet of internal heat exchanger 18 to measure the corresponding refrigerant temperatures.
  • central control unit 7 maintains, when hot-air generator 5 is in the steady-state working phase, the heat exchanger 13 in a flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the refrigerant temperature measured at low-pressure refrigerant outlet of internal heat exchanger 18, or at suction of refrigerant compressing device 15.
  • the refrigerant temperature in fact, is roughly the same in both places.
  • a too low temperature of the refrigerant coming out of the low-pressure refrigerant outlet of internal heat exchanger 18 implies that the internal heat exchanger 18 is not able to sufficiently superheat the refrigerant arriving from the evaporator 13. This, in turn, implies that an excessive amount of the heat arriving from the high-pressure refrigerant is used for finalizing the evaporation of the low-pressure refrigerant, thus too much liquid-state refrigerant is coming out of evaporator 13.
  • central control unit 7 of laundry dryer 1 may be preferably, though not necessarily, structured/programmed to measure the refrigerant temperature at low-pressure refrigerant outlet of internal heat exchanger 18, and to continuously switch the cooling fan 20 on and off so as to keep the temperature of the refrigerant at suction of refrigerant compressing device 15, or at low-pressure refrigerant outlet of internal heat exchanger 18, within a given temperature range whose upper and lower ends are experimentally determined to assure that refrigerant vaporization is finalized inside internal heat exchanger 18, and that the "vapor quality" of the refrigerant coming out of heat exchanger 13 is lower than 1 and ranges between 0,40 and 1 .
  • This temperature range strictly depend on the structure of heat-pump assembly 11, namely of heat exchangers 13 and 18, and are conveniently selected so that the "vapor quality" of the refrigerant coming out of the evaporator 13 ranges preferably, though not necessarily, between 0,80 and 0,99.
  • the temperature range extends preferably, though not necessarily, between 20°C and 40°C.
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the refrigerant temperature at suction of refrigerant compressing device 15 goes above a predetermined first threshold value (for example 35°C); and deactivates the cooling fan 20, or minimizes the revolving speed of cooling fan 20, for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the refrigerant temperature at suction of refrigerant compressing device 15 goes below a given predetermined second threshold value (for example 30°C) which is lower that said first threshold value.
  • a predetermined first threshold value for example 35°C
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13; whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13.
  • first and second threshold values are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 is lower than 1 and preferably, though not necessarily, ranges between 0,80 and 0,99.
  • central control unit 7 of laundry dryer 1 is structured/programmed to keep the cooling fan 20 switched on when the refrigerant temperature at suction of refrigerant compressing device 15 gets too warm (for example it moves above 35°C); and to keep the cooling fan 20 switched off when the refrigerant temperature at suction of refrigerant compressing device 15 gets too cold (for example it moves below 30°C).
  • the laundry dryer 1 is provided with a temperature sensor (not shown) located at suction of refrigerant compressing device 15.
  • central control unit 7 maintains, when hot-air generator 5 is in the steady-state working phase, the evaporator 13 in flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the refrigerant temperature measured at refrigerant-inlet of condenser 14, i.e. of the air/refrigerant heat exchanger 14, or at delivery of refrigerant compressing device 15.
  • the refrigerant temperature in fact, is the same in both places.
  • thermodynamic compression in turn, depends on some mechanical features of the refrigerant compressing device 15, namely the compression ratio, thus the refrigerant temperature measured at refrigerant-inlet of condenser 14, or at delivery of refrigerant compressing device 15, depends on the temperature of the refrigerant at suction of the refrigerant compressing device 15.
  • a too low temperature of the refrigerant coming out of the refrigerant compressing device 15 implies that internal heat exchanger 18 is not able to sufficiently superheat the refrigerant arriving from the evaporator 13, and that therefore too much liquid-state refrigerant is coming out of the evaporator 13; whereas a too high temperature of the refrigerant coming out of the refrigerant compressing device 15 implies that an excessive superheating of the low-pressure refrigerant is taking place inside internal heat exchanger 18, and that therefore too few liquid-state refrigerant is coming out of the evaporator 13.
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed to measure the temperature of the refrigerant at refrigerant-inlet of condenser 14, and to continuously switch on and off the cooling fan 20 so as to keep the temperature of the refrigerant at refrigerant-inlet of condenser 14, or at delivery of refrigerant compressing device 15, within a given temperature range whose upper and lower ends are experimentally determined to assure that refrigerant vaporization is finalized inside internal heat exchanger 18, and that the "vapor quality" of the refrigerant coming out of the evaporator 13 is lower than 1 and ranges between 0,40 and 1 .
  • the upper and lower ends of this temperature range strictly depend on the structure of heat-pump assembly 11, namely of the heat exchangers 13 and 18 and of the refrigerant compressing device 15, and are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 ranges preferably, though not necessarily, between 0,80 and 0,99.
  • the temperature range extends preferably, though not necessarily, between 60°C and 120°C.
  • central control unit 7 of laundry dryer 1 is structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the refrigerant temperature at delivery of refrigerant compressing device 15 moves above a predetermined first threshold value (for example 95°C); and deactivates the cooling fan 20, or minimizes the revolving speed of cooling fan 20, for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the refrigerant temperature at delivery of refrigerant compressing device 15 moves below a given predetermined second threshold value (for example 90°C) which is lower that said first threshold value.
  • a predetermined first threshold value for example 95°C
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13.
  • first and second threshold values are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 is lower than 1 and preferably, though not necessarily, ranges between 0,80 and 0,99.
  • central control unit 7 of laundry dryer 1 is structured/programmed to keep the cooling fan 20 switch on when the refrigerant temperature at delivery of refrigerant compressing device 15, or at refrigerant-inlet of condenser 14, gets too warm (for example it moves above 95°C); and to keep the cooling fan 20 switch off when the refrigerant temperature at delivery of refrigerant compressing device 15, or at refrigerant-inlet of condenser 14, gets too cold (for example it moves below 90°C).
  • the laundry dryer 1 is provided with a temperature sensor (not shown) located at delivery of refrigerant compressing device 15 or at refrigerant-inlet of condenser 14.
  • the central control unit 7 of laundry dryer 1 maintains, when hot-air generator 5 is in the steady-state working phase, the heat exchanger 13 in flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the refrigerant temperature measured at refrigerant outlet of auxiliary heat exchanger 19, or at high-pressure refrigerant inlet of heat exchanger 18.
  • the temperature of the refrigerant coming out of refrigerant outlet of auxiliary heat exchanger 19 is strictly correlated to the temperature of the refrigerant coming out of the evaporator 13.
  • a too low temperature of the refrigerant coming out of the refrigerant outlet of auxiliary heat exchanger 19 implies that internal heat exchanger 18 is not able to sufficiently superheat the refrigerant arriving from the evaporator 13, and that too much liquid-state refrigerant is coming out of the evaporator 13; whereas a too high temperature of the refrigerant coming out of the refrigerant outlet of auxiliary heat exchanger 19 implies that an excessive superheating of the low-pressure refrigerant is taking place inside internal heat exchanger 18, and that too few liquid-state refrigerant is coming out of the evaporator 13.
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed to measure the refrigerant temperature at refrigerant outlet of auxiliary heat exchanger 19, or at high-pressure refrigerant inlet of heat exchanger 18, and to continuously switch the cooling fan 20 on and off so as to keep the temperature of the refrigerant at refrigerant outlet of auxiliary heat exchanger 19, or at high-pressure refrigerant inlet of heat exchanger 18, within a given temperature range whose upper and lower ends are experimentally determined to assure that refrigerant vaporization is finalized inside internal heat exchanger 18, and that the "vapor quality" of the refrigerant coming out of the evaporator 13 is lower than 1 and ranges between 0,40 and 1 .
  • the upper and lower ends of this temperature range strictly depend on the structure of heat-pump assembly 11, are both considerably above 0°C, and are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 ranges preferably, though not necessarily, between 0,80 and 0,99.
  • the temperature range extends preferably, though not necessarily, between 40°C and 70°C.
  • central control unit 7 of laundry dryer 1 is structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the refrigerant temperature at refrigerant outlet of auxiliary heat exchanger 19, or at high-pressure refrigerant inlet of heat exchanger 18, moves above a predetermined first threshold value (for example 60°C); and deactivates the cooling fan 20, or minimizes the revolving speed of cooling fan 20, for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the refrigerant at refrigerant outlet of auxiliary heat exchanger 19, or at high-pressure refrigerant inlet of heat exchanger 18, moves below a given predetermined second threshold value (for example 55°C) which is lower that said first threshold value.
  • a predetermined first threshold value for example 60°C
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13.
  • First and second threshold values are conveniently selected so that the "vapor quality" of the refrigerant coming out of the evaporator 13 is lower than 1 and preferably, though not necessarily, ranges between 0,80 and 0,99.
  • central control unit 7 of laundry dryer 1 is structured/programmed to keep the cooling fan 20 switch on when the refrigerant temperature at refrigerant outlet of auxiliary heat exchanger 19, or at high-pressure refrigerant inlet of heat exchanger 18, gets too warm (for example it moves above 60°C); and to keep the cooling fan 20 switch off when the refrigerant temperature at refrigerant outlet of auxiliary heat exchanger 19, or at high-pressure refrigerant inlet of heat exchanger 18, gets too cold (for example it moves below 55°C).
  • the laundry dryer 1 is provided with a temperature sensor (not shown) located at refrigerant outlet of auxiliary heat exchanger 19, or at high-pressure refrigerant inlet of heat exchanger 18.
  • the central control unit 7 of laundry dryer 1 maintains, when hot-air generator 5 is in the steady-state working phase, the heat exchanger 13 in flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the refrigerant temperature measured at high-pressure refrigerant outlet of internal heat exchanger 18.
  • the temperature of the refrigerant coming out of the high-pressure refrigerant outlet of internal heat exchanger 18 is strictly correlated to the temperature of the refrigerant coming out of the evaporator 13.
  • a too low temperature of the refrigerant coming out of the high-pressure refrigerant outlet of internal heat exchanger 18 implies that internal heat exchanger 18 is not able to sufficiently superheat the low-pressure refrigerant arriving from the evaporator 13, and that therefore a too much liquid-state refrigerant is coming out of the evaporator 13;
  • a too high temperature of the refrigerant coming out of the high-pressure refrigerant outlet of internal heat exchanger 18 implies that an excessive superheating of the low-pressure refrigerant is taking place inside internal heat exchanger 18, and that therefore a too few liquid-state refrigerant is coming out of the evaporator 13.
  • central control unit 7 of laundry dryer 1 may be preferably, though not necessarily, structured/programmed to measure the refrigerant temperature at high-pressure refrigerant outlet of internal heat exchanger 18, and to continuously switch the cooling fan 20 on and off so as to keep the temperature of the refrigerant at high-pressure refrigerant outlet of internal heat exchanger 18 within a given temperature range, whose upper and lower ends are experimentally determined to assure that refrigerant vaporization is finalized inside internal heat exchanger 18, and that the "vapor quality" of the refrigerant coming out of the evaporator 13, i.e. of the air/refrigerant heat exchanger 13, is lower than 1 and ranges between 0,40 and 1 .
  • the upper and lower ends of this temperature range strictly depend on the structure of heat-pump assembly 11, are both considerably above 0°C, and are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 ranges preferably, though not necessarily, between 0,80 and 0,99.
  • the temperature range extends preferably, though not necessarily, between 25°C and 65°C.
  • central control unit 7 of laundry dryer 1 is structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whenever the refrigerant temperature at high-pressure refrigerant outlet of internal heat exchanger 18 moves above a predetermined first threshold value (for example 40°C); and deactivates the cooling fan 20, or minimizes the revolving speed of cooling fan 20, for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of evaporator 13, whenever the refrigerant temperature at high-pressure refrigerant outlet of internal heat exchanger 18 moves below a given predetermined second threshold value (for example 35°C) which is lower that said first threshold value.
  • a predetermined first threshold value for example 40°C
  • cooling fan 20 drives below 1, i.e. reduces, the "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13; whereas deactivation of cooling fan 20 brings back to 1, i.e. increases, the "vapor quality" of the refrigerant at refrigerant-outlet of the evaporator 13.
  • First and second threshold values are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 is lower than 1 and preferably, though not necessarily, ranges between 0,80 and 0,99.
  • central control unit 7 of laundry dryer 1 is structured/programmed to keep the cooling fan 20 switch on when the refrigerant temperature at high-pressure refrigerant outlet of internal heat exchanger 18 gets too warm (for example it moves above 40°C); and to keep the cooling fan 20 switch off when the refrigerant temperature at high-pressure refrigerant outlet of internal heat exchanger 18 gets too cold (for example it moves below 35°C).
  • the laundry dryer 1 is provided with a temperature sensor (not shown) located at high-pressure refrigerant outlet of heat exchanger 18.
  • the central control unit 7 of laundry dryer 1 maintains, when hot-air generator 5 is in the steady-state working phase, the heat exchanger 13 in flooded condition via a selected activation and deactivation of cooling fan 20 on the basis of the current temperature of the airflow f coming out of condenser 14, i.e. of the air/refrigerant heat exchanger 14, directed back into revolving drum 3.
  • the temperature of the airflow f entering into revolving drum 3 is strictly correlated to the temperature of the high-pressure refrigerant entering into the condenser 14 of heat-pump assembly 11.
  • an excessive reduction of the temperature of the airflow f entering into revolving drum 3 implies that internal heat exchanger 18 is not able to sufficiently superheat the low-pressure refrigerant arriving from the evaporator 13, and that, therefore, too much liquid-state refrigerant is coming out of the evaporator 13.
  • an excessive increase of the temperature of the airflow f entering into revolving drum 3 implies that an excessive superheating of the low-pressure refrigerant is taking place inside internal heat exchanger 18, and that, therefore, too few liquid-state refrigerant is coming out of the evaporator 13.
  • central control unit 7 of laundry dryer 1 is preferably, though not necessarily, structured/programmed to switch on and off the cooling fan 20, so as to keep the temperature of the airflow f coming out of the air-outlet of the condenser 14, within a given temperature range whose upper and lower ends are experimentally determined to assure that refrigerant vaporization is finalized inside internal heat exchanger 18, and that the "vapor quality" of the refrigerant coming out of the condenser 13 is lower than 1 and ranges between 0,40 and 1 .
  • the upper and lower ends of this temperature range strictly depend on the structure of heat-pump assembly 11, are both considerably above 0°C, and are conveniently selected so that the "vapor quality" of the refrigerant coming out of heat exchanger 13 ranges preferably, though not necessarily, between 0,80 and 0,99.
  • the temperature range of the airflow f coming out of condenser 14 extends preferably, though not necessarily, between 50°C and 80°C.
  • central control unit 7 of laundry dryer 1 is structured/programmed
  • central control unit 7 of laundry dryer 1 activates the cooling fan 20 for reducing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the air temperature of the airflow F coming out of condenser 14 moves above a predetermined first threshold value (for example 70°C); and deactivates the cooling fan 20, or minimizes the revolving speed of cooling fan 20, for increasing the "vapor quality" of the refrigerant at refrigerant-outlet of heat exchanger 13, whenever the air temperature of the airflow F coming out of condenser 14 moves below a given predetermined second threshold value (for example 65°C) which is lower that said first threshold value.
  • a predetermined first threshold value for example 70°C
  • first and second threshold values are conveniently selected so that the "vapor quality" of the refrigerant coming out of the evaporator 13 is lower than 1 and preferably, though not necessarily, ranges between 0,80 and 0,99.
  • central control unit 7 of laundry dryer 1 is structured/programmed to keep the cooling fan 20 switch on when the air temperature of the airflow F coming out of condenser 14 gets too warm (for example it moves above 70°C); and to keep the cooling fan 20 switch off when the air temperature of the airflow F coming out of condenser 14 gets too cold (for example it moves below 65°C).
  • the laundry dryer 1 is provided with a temperature sensor (not shown) located at air-outlet of condenser 14, i.e. of air/refrigerant heat exchanger 14.
  • the central control unit 7 could use other physical quantities to determine whether the evaporator 13 is in a flooded or a non-flooded condition, such as, for example, the current temperature of the refrigerant at refrigerant inlet of the evaporator 13, or the current temperature of the refrigerant at refrigerant outlet of the evaporator 13 or the current temperature of the refrigerant at refrigerant outlet of the condenser 14 or at refrigerant inlet of auxiliary heat exchanger 19.
  • central control unit 7 controls the refrigerant vapor-quality adjusting means 17 (namely the auxiliary heat exchanger 19 and the auxiliary cooling fan 20) so to continuously adjusting/varying the refrigerant "vapor quality" at refrigerant-outlet of the evaporator 13 so as to maintain said "vapor quality" below 1, and preferably, though not necessarily, also between 0,80 and 0,99, when hot-air generator 5 is preferably in the steady-state working phase.
  • the refrigerant/refrigerant internal heat exchanger 18 is dimensioned so to finalize the evaporation of the low-pressure refrigerant and ensure that the refrigerant entering into the refrigerant compressing device 15 is in gaseous state, i.e. it is on the right side of the refrigerant vapor saturated curve F", and has a temperature higher than the corresponding refrigerant saturation temperature, i.e. it is superheated.
  • the bi-phase state refrigerant has a thermal capacity which is higher than that of a gaseous-state refrigerant, keeping the air/refrigerant heat exchanger 13 in a flooded condition allows to maximize the air cooling capacity of heat exchanger 13 and, consequently, to improve dehumidification process.
  • the potential drawback of the internal refrigerant/ refrigerant heat exchanger 18 as such is that in the steady state phase the refrigerant temperature at suction of refrigerant compressing device 15 could be higher than that of a traditional heat-pump assembly for laundry dryers, thus more power is required to the refrigerant compressing device 15 to compress the refrigerant and complete the closed thermodynamic cycle.
  • the air cooling capacity in the evaporator 13 increases more than the power required by the refrigerant compressing device 15, thus significantly improving the overall energy efficiency of heat-pump assembly 11.
  • air/refrigerant heat exchanger 19 and refrigerant/refrigerant heat exchanger 18 are "passive" components which have a very simplified structured, thus they are very cheap to produce and their incorporation into the heat-pump assembly does not significantly increase the overall production costs of the rotary-drum, heat-pump type, home laundry dryer.
  • air/refrigerant heat exchangers 13 and 14 can now be dimensioned so to have optimal performances when the hot-air generator 5 operates both in the steady state working conditions, and in the warm up working condition. Possibility barred to the traditional heat-pump type, closed-circuit, hot-air generators.
  • heat-pump assembly 11 may control the refrigerant "vapor quality" (i.e. the "gaseous-liquid ratio") at refrigerant-outlet of the evaporator 13, i.e. of the air/refrigerant heat exchanger 13, via means structured for selectively varying the flow-rate of the refrigerant flowing through evaporator 13 and internal heat exchanger 18, i.e. along the heat-pump assembly 11.
  • refrigerant "vapor quality" i.e. the "gaseous-liquid ratio”
  • These means for varying the flow-rate of the low-pressure refrigerant flowing through the evaporator 13 may comprise, for example:
  • the central control unit 7 of laundry dryer 1 controls said refrigerant flow-rate varying means so as to increase the flow-rate of the refrigerant flowing into the evaporator 13, i.e. into the heat exchanger 13, in all working conditions in which activation of cooling fan 20 was previously requested; and so as to reduce the flow-rate of the refrigerant flowing into the evaporator 13 in all working conditions in which deactivation of cooling fan 20 was previously requested.
  • the central control unit 7 of laundry dryer 1 may be structured/programmed for varying the target "vapor quality” value during the drying cycle.
  • the central control unit 7 could, for example, initially maintain the target "vapor quality” at 0,8, then rise the target "vapor quality” at 0,90, and finally rise the target "vapor quality” at 0,99 or 1, so to maximize step-by-step the performance of the drying cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Solid Materials (AREA)

Claims (42)

  1. Séchoir à linge (1), comprenant une enceinte (2) de type caisson structurée pour reposer sur le sol et, à l'intérieur de l'enceinte (2), un récipient pour le linge (3) structuré pour recevoir le linge devant être séché, et un générateur d'air chaud en circuit fermé (5), structuré pour faire circuler, à travers le récipient pour le linge (3), un flux d'air chaud ;
    le générateur d'air chaud (5) comprenant à son tour : un conduit de recirculation d'air (9) dont les deux extrémités sont connectées au récipient pour le linge (3) ; un moyen de circulation d'air (10) structuré pour produire, à l'intérieur du conduit de recirculation d'air (9), un flux d'air (f) qui s'écoule à travers ledit récipient pour le linge (3) ; et un ensemble de pompe à chaleur (11) structuré pour refroidir le flux d'air (f) sortant du récipient pour le linge (3) de manière à condenser l'humidité dans ledit flux d'air (f), puis pour chauffer le flux d'air (f) revenant à l'intérieur du récipient pour le linge (3) ;
    ledit ensemble de pompe à chaleur (11) comprenant :
    - un premier échangeur de chaleur air/réfrigérant (13) qui est situé le long du conduit de recirculation d'air (9) et qui est structuré pour transférer la chaleur du flux d'air (f) provenant du récipient pour le linge (3) au réfrigérant de manière à condenser l'humidité dans le flux d'air (f) ;
    - un deuxième échangeur de chaleur air/réfrigérant (14) qui est situé le long du conduit de recirculation d'air (9), en aval du premier échangeur de chaleur (13), et qui est structuré pour transférer la chaleur du réfrigérant au flux d'air (f) qui est renvoyé à l'intérieur du récipient pour le linge (3) de manière à chauffer ledit flux d'air (f) ;
    - un dispositif de compression de réfrigérant (15) qui est interposé entre la sortie de réfrigérant du premier échangeur de chaleur (13) et l'entrée de réfrigérant du deuxième échangeur de chaleur (14), et qui est structuré pour comprimer le réfrigérant dirigé vers le deuxième échangeur de chaleur (14) de telle sorte que la pression et la température du réfrigérant soient beaucoup plus élevées au niveau de l'entrée de réfrigérant du deuxième échangeur de chaleur (14) qu'au niveau de la sortie de réfrigérant du premier échangeur de chaleur (13) ;
    - un dispositif d'expansion de réfrigérant (16) qui est interposé entre la sortie de réfrigérant du deuxième échangeur de chaleur (14) et l'entrée de réfrigérant du premier échangeur de chaleur (13), et qui est structuré de manière à produire une expansion du réfrigérant ; et
    - un échangeur de chaleur réfrigérant/réfrigérant auxiliaire (18) comprenant un côté haute pression à travers lequel s'écoule le réfrigérant haute pression dirigé vers le dispositif d'expansion de réfrigérant (16) et un côté basse pression à travers lequel s'écoule le réfrigérant basse pression sortant du premier échangeur de chaleur (13), et qui est structuré de telle sorte que les côtés haute et basse pression soient accouplés en position terminale l'un à l'autre de manière à permettre un transfert thermique du réfrigérant haute pression et haute température au réfrigérant basse pression et basse température ; le séchoir à linge (1) étant caractérisé en ce que ledit ensemble de pompe à chaleur (11) comprend en outre :
    - des moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant, structurés pour ajuster le rapport, au niveau de la sortie de réfrigérant du premier échangeur de chaleur (13), entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant ; en maximisant ou en minimisant, sélectivement, le refroidissement du réfrigérant dirigé vers le dispositif d'expansion de réfrigérant (16),
    - des moyens de détection apte à mesurer la valeur actuelle d'au moins une quantité physique associée au réfrigérant et/ou au flux d'air (f),
    - une unité de commande centrale (7) structurée pour commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant en fonction de l'évolution dans le temps de ladite au moins une quantité physique,
    - l'unité de commande centrale (7) étant structurée pour commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir ledit rapport sélectivement, en dessous de 1 ou égal à 1.
  2. Séchoir à linge selon la revendication 1, caractérisé en ce que ladite au moins une quantité physique est la température et/ou la pression du réfrigérant au niveau de l'entrée de réfrigérant ou au niveau de la sortie de réfrigérant dudit premier échangeur de chaleur air/réfrigérant (13) ; et/ou l'augmentation ou la chute de température du réfrigérant s'écoulant à travers ledit premier échangeur de chaleur air/réfrigérant (13).
  3. Séchoir à linge selon la revendication 1, caractérisé en ce que ladite au moins une quantité physique est la température et/ou la pression du réfrigérant au niveau de l'entrée de réfrigérant basse pression ou au niveau de la sortie de réfrigérant basse pression du côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et/ou la température et/ou la pression du réfrigérant au niveau de l'entrée de réfrigérant haute pression ou au niveau de la sortie de réfrigérant haute pression du côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et/ou l'augmentation de température du réfrigérant s'écoulant à travers le côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et/ou la chute de température du réfrigérant s'écoulant à travers le côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18).
  4. Séchoir à linge selon la revendication 1, caractérisé en ce que ladite au moins une quantité physique est la température et/ou la pression du réfrigérant au niveau de l'aspiration et/ou de la distribution dudit dispositif de compression de réfrigérant (15).
  5. Séchoir à linge selon la revendication 1, caractérisé en ce que ladite au moins une quantité physique est la température et/ou la pression du réfrigérant au niveau de l'entrée de réfrigérant ou au niveau de la sortie de réfrigérant dudit deuxième échangeur de chaleur air/réfrigérant (14).
  6. Séchoir à linge selon la revendication 1, caractérisé en ce que ladite au moins une quantité physique est la température et/ou le degré d'humidité du flux d'air (f) entrant dans ledit récipient pour le linge (3) ou sortant de celui-ci.
  7. Séchoir à linge selon la revendication 1, caractérisé en ce que l'unité de commande centrale (7) est structurée pour commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir entre 0,80 et 0,99 le rapport, au niveau de la sortie de réfrigérant dudit premier échangeur de chaleur (13), entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant.
  8. Séchoir à ligne selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprennent des moyens de refroidissement de réfrigérant haute pression (19, 20) qui sont structurés pour refroidir sélectivement le réfrigérant haute pression s'écoulant depuis le deuxième échangeur de chaleur (14) vers le dispositif d'expansion de réfrigérant (16).
  9. Séchoir à linge selon la revendication 8, caractérisé en ce que lesdits moyens de refroidissement de réfrigérant haute pression (19, 20) comprennent un troisième échangeur de chaleur air/réfrigérant (19) qui est connecté en série au deuxième échangeur de chaleur air/réfrigérant (14).
  10. Séchoir à linge selon la revendication 9, caractérisé en ce que lesdits moyens de refroidissement de réfrigérant haute pression (17) comprennent en outre un dispositif de ventilation auxiliaire (20) qui est structuré pour canaliser un écoulement (w) d'air de refroidissement vers le corps dudit troisième échangeur de chaleur air/réfrigérant (19).
  11. Séchoir à linge selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprennent des moyens d'ajustement du débit de réfrigérant qui sont structurés pour faire varier le débit du réfrigérant basse pression s'écoulant à travers le premier échangeur de chaleur air/réfrigérant (13).
  12. Séchoir à linge selon la revendication 11, caractérisé en ce que lesdits moyens d'ajustement du débit de réfrigérant comprennent un dispositif de compression de réfrigérant à vitesse variable ou une vanne d'expansion de réfrigérant à commande électrique ou un système d'expansion à tubes capillaires multiples à commande électrique.
  13. Séchoir à linge selon la revendication 3, caractérisé en ce que lesdits moyens de détection comprennent des moyens de capteurs structurés pour détecter la température et/ou la pression du réfrigérant au niveau de l'entrée de réfrigérant basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18), et/ou au niveau de la sortie de réfrigérant basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18), et/ou au niveau de l'entrée de réfrigérant haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18), et/au niveau de la sortie de réfrigérant haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18).
  14. Procédé de fonctionnement d'un séchoir à linge (1) comprenant une enceinte (2) de type caisson structurée pour reposer sur le sol et, à l'intérieur de l'enceinte (2), un récipient pour le linge (3) structuré pour recevoir le linge devant être séché, et un générateur d'air chaud en circuit fermé (5), structuré pour faire circuler, à travers le récipient pour le linge (3), un flux d'air chaud ; le générateur d'air chaud (5) étant pourvu d'un ensemble de pompe à chaleur (11) structuré pour refroidir le flux d'air (f) sortant du récipient pour le linge (3) de manière à condenser l'humidité dans ledit flux d'air (f), puis pour chauffer le flux d'air (f) revenant à l'intérieur du récipient pour le linge (3) ;
    ledit ensemble de pompe à chaleur (11) comprenant :
    un premier échangeur de chaleur air/réfrigérant (13) qui est structuré pour transférer la chaleur du flux d'air (f) provenant du récipient pour le linge (3) à un réfrigérant basse pression de manière à condenser l'humidité dans le flux d'air (f) ; un deuxième échangeur de chaleur air/réfrigérant (14) qui est structuré pour transférer la chaleur provenant d'un réfrigérant haute pression au flux d'air (f) redirigé dans le récipient pour le linge (3) de manière à chauffer ledit flux d'air (f) ; un dispositif de compression de réfrigérant (15) qui est interposé entre la sortie de réfrigérant du premier échangeur de chaleur (13) et l'entrée de réfrigérant du deuxième échangeur de chaleur (14), et qui est structuré pour comprimer le réfrigérant dirigé vers le deuxième échangeur de chaleur (14) de telle sorte que la pression et la température du réfrigérant soient beaucoup plus élevées au niveau de l'entrée de réfrigérant du deuxième échangeur de chaleur (14) qu'au niveau de la sortie de réfrigérant du premier échangeur de chaleur (13) ; un dispositif d'expansion de réfrigérant (16) qui est interposé entre la sortie de réfrigérant du deuxième échangeur de chaleur (14) et l'entrée de réfrigérant du premier échangeur de chaleur (13), et qui est structuré de manière à produire une expansion du réfrigérant ; et un échangeur de chaleur réfrigérant/réfrigérant auxiliaire (18) comprenant un côté haute pression à travers lequel s'écoule le réfrigérant haute pression dirigé vers le dispositif d'expansion de réfrigérant (16) et un côté basse pression à travers lequel s'écoule le réfrigérant basse pression sortant du premier échangeur de chaleur (13), et qui est structuré de telle sorte que les côtés haute et basse pression soient accouplés en position terminale l'un à l'autre de manière à permettre un transfert thermique du réfrigérant haute pression et haute température au réfrigérant basse pression et basse température ; le procédé de fonctionnement étant caractérisé en ce qu'il comprend les étapes consistant à
    - mesurer la valeur actuelle d'au moins une quantité physique associée au réfrigérant et/ou au flux d'air (f),
    - sur la base de l'évolution dans le temps de ladite au moins une quantité physique, commander des moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant, structurés pour ajuster le rapport, au niveau de la sortie de réfrigérant du premier échangeur de chaleur (13), entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant, en maximisant ou en minimisant, sélectivement, le refroidissement du réfrigérant dirigé vers le dispositif d'expansion de réfrigérant (16),
    - acheminer le réfrigérant au côté haute pression et au côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant auxiliaire (18) pour transférer la chaleur du réfrigérant haute pression et haute température s'écoulant à travers le côté haute pression au réfrigérant basse pression et basse température s'écoulant à travers le côté basse pression,
    - lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant étant commandés de manière à maintenir sélectivement, en dessous de 1 ou égal à 1, le rapport entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant.
  15. Procédé de fonctionnement d'un séchoir à linge selon la revendication 14, caractérisé en ce que lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant sont commandés de manière à maintenir sélectivement entre 0,80 et 0,99 le rapport, au niveau de la sortie de réfrigérant dudit premier échangeur de chaleur (13), entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant.
  16. Procédé de fonctionnement d'un séchoir à linge selon la revendication 14 ou 15, caractérisé en ce que ladite au moins une quantité physique est la température et/ou la pression du réfrigérant au niveau de l'entrée de réfrigérant ou au niveau de la sortie de réfrigérant dudit premier échangeur de chaleur air/réfrigérant (13) ; et/ou l'augmentation ou la chute de température du réfrigérant s'écoulant à travers ledit premier échangeur de chaleur air/réfrigérant (13).
  17. Procédé de fonctionnement d'un séchoir à linge selon la revendication 14 ou 15, caractérisé en ce que ladite au moins une quantité physique est la température et/ou la pression du réfrigérant au niveau de l'entrée de réfrigérant basse pression ou au niveau de la sortie de réfrigérant basse pression du côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et/ou la température et/ou la pression du réfrigérant au niveau de l'entrée de réfrigérant haute pression ou au niveau de la sortie de réfrigérant haute pression du côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et/ou l'augmentation de température du réfrigérant s'écoulant à travers le côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et/ou la chute de température du réfrigérant s'écoulant à travers le côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18).
  18. Procédé de fonctionnement d'un séchoir à linge selon la revendication 14 ou 15, caractérisé en ce que ladite au moins une quantité physique est la température et/ou la pression du réfrigérant au niveau de l'aspiration et/ou de la distribution dudit dispositif de compression de réfrigérant (15).
  19. Procédé de fonctionnement d'un séchoir à linge selon la revendication 14 ou 15, caractérisé en ce que ladite au moins une quantité physique est la température et/ou la pression du réfrigérant au niveau de l'entrée de réfrigérant ou au niveau de la sortie de réfrigérant dudit deuxième échangeur de chaleur air/réfrigérant (14).
  20. Procédé de fonctionnement d'un séchoir à linge selon la revendication 14 ou 15, caractérisé en ce que ladite au moins une quantité physique est la température et/ou le degré d'humidité du flux d'air (f) entrant dans ledit récipient pour le linge (3) ou sortant de celui-ci.
  21. Procédé de fonctionnement d'un séchoir à linge selon la revendication 16, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend les étapes consistant à mesurer la pression et la température actuelles du réfrigérant au niveau de la sortie de réfrigérant du premier échangeur de chaleur (13) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à calculer la température de saturation du réfrigérant sur la base de la pression actuelle de réfrigérant, et l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la température du réfrigérant au niveau de la sortie de réfrigérant dudit premier échangeur de chaleur (13) dans une première plage de température prédéterminée située en dessous de ladite température de saturation de réfrigérant.
  22. Procédé de fonctionnement d'un séchoir à linge selon la revendication 21, caractérisé en ce que l'étape consistant à entraîner les moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à
    - soit augmenter le rapport entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant, lorsque la différence entre la température de saturation du réfrigérant calculée et la température du réfrigérant mesurée au niveau de la sortie de réfrigérant du premier échangeur de chaleur (13) dépasse la limite supérieure de ladite première plage de température,
    - soit réduire ledit rapport lorsque la différence entre la température de saturation de réfrigérant calculée et ladite température de réfrigérant mesurée passe en dessous de la limite inférieure de ladite première plage de température.
  23. Procédé de fonctionnement d'un séchoir à linge selon la revendication 17, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend les étapes consistant à mesurer la pression et la température actuelles du réfrigérant au niveau de la sortie de réfrigérant basse pression de l'échangeur de chaleur réfrigérant/réfrigérant auxiliaire (18) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à calculer la température de saturation du réfrigérant sur la base de la pression de réfrigérant actuelle, et l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la température du réfrigérant au niveau de la sortie de réfrigérant basse pression de l'échangeur de chaleur réfrigérant/réfrigérant auxiliaire (18) à l'intérieur d'une deuxième plage de température prédéterminée située au-dessus de ladite température de saturation du réfrigérant.
  24. Procédé de fonctionnement d'un séchoir à linge selon la revendication 23, caractérisé en ce que l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à
    - soit augmenter le rapport entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant, lorsque la différence entre la température du réfrigérant mesurée au niveau de la sortie de réfrigérant basse pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) et la température de saturation du réfrigérant calculée passe en dessous de la limite inférieure de ladite deuxième plage de température,
    - soit réduire ledit rapport lorsque la différence entre la température de réfrigérant mesuré au niveau de la sortie de réfrigérant basse pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) et la température de saturation du réfrigérant calculée dépasse la limite supérieure de ladite deuxième plage de température.
  25. Procédé de fonctionnement d'un séchoir à linge selon la revendication 17, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend les étapes consistant à mesurer l'augmentation de température du réfrigérant s'écoulant à travers le côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18), et consistant à mesurer la chute de température du réfrigérant s'écoulant à travers le côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la différence entre l'augmentation de température de réfrigérant s'écoulant dans le côté basse pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) et la chute de température du réfrigérant s'écoulant dans le côté haute pression de l'échangeur de chaleur réfrigérant/réfrigérant (18), à l'intérieur d'une troisième plage de température prédéterminée.
  26. Procédé de fonctionnement d'un séchoir à linge selon la revendication 25, caractérisé en ce que l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à
    - soit réduire le rapport entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant lorsque la chute de température du réfrigérant s'écoulant dans le côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) dépasse, d'une première valeur de tolérance prédéterminée, l'augmentation de température du réfrigérant s'écoulant dans le côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18),
    - soit augmenter ledit rapport lorsque la chute de température du réfrigérant s'écoulant dans le côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) dépasse l'augmentation de température du réfrigérant s'écoulant dans le côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) d'une deuxième valeur de tolérance prédéterminée.
  27. Procédé de fonctionnement d'un séchoir à linge selon la revendication 25 ou 26, caractérisé en ce que l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend également l'étape consistant à augmenter le rapport entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant lorsque l'augmentation de température du réfrigérant dans le côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) passe en dessous d'une troisième valeur de tolérance prédéterminée supérieure à zéro.
  28. Procédé de fonctionnement d'un séchoir à linge selon la revendication 16, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend l'étape consistant à mesurer l'augmentation ou la chute de température du réfrigérant s'écoulant à travers le premier échangeur de chaleur air/réfrigérant (13) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir l'augmentation ou la chute de température du réfrigérant s'écoulant à travers ledit premier échangeur de chaleur air/réfrigérant (13) à l'intérieur d'une quatrième plage de température étroite prédéterminée immédiatement au-dessus de 0°C.
  29. Procédé de fonctionnement d'un séchoir à linge selon la revendication 28, caractérisé en ce que ladite quatrième plage de température est incluse entre 0°C et 5°C.
  30. Procédé de fonctionnement d'un séchoir à linge selon la revendication 28 ou 29, caractérisé en ce que l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à :
    - soit augmenter le rapport entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant lorsque l'augmentation ou la chute de température du réfrigérant s'écoulant à travers le premier échangeur de chaleur air/réfrigérant (13) passe en dessous de la limite inférieure de ladite quatrième plage de température,
    - soit réduire ledit rapport lorsque
    l'augmentation ou la chute de température du réfrigérant s'écoulant à travers le premier échangeur de chaleur air/réfrigérant (13) dépasse la limite supérieure de ladite quatrième plage de températures.
  31. Procédé de fonctionnement d'un séchoir à linge selon la revendication 18 et selon l'une quelconque des revendications 29 à 31, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend également l'étape consistant à mesurer la chute de température du réfrigérant s'écoulant à travers le côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la chute de température du réfrigérant s'écoulant à travers le côté haute pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) à l'intérieur d'une cinquième plage de température dont les extrémités supérieure et inférieure sont toutes deux supérieures à 0°C.
  32. Procédé de fonctionnement d'un séchoir à linge selon la revendication 31, caractérisé en ce que l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à :
    - soit réduire le rapport entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant lorsque l'augmentation ou la chute de température du réfrigérant s'écoulant à travers le premier échangeur de chaleur air/réfrigérant (13) dépasse la limite supérieure de ladite quatrième plage de température et que la chute de température du réfrigérant s'écoulant à travers le côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) passe en dessous de la limite inférieure de ladite cinquième valeur seuil ;
    - soit augmenter ledit rapport lorsque l'augmentation ou la chute de température du réfrigérant s'écoulant à travers le premier échangeur de chaleur air/réfrigérant (13) passe en dessous de la limite inférieure de ladite quatrième plage de température, et que la chute de température du réfrigérant s'écoulant à travers le côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) dépasse la limite supérieure de ladite cinquième valeur seuil.
  33. Procédé de fonctionnement d'un séchoir à linge selon la revendication 17 et selon l'une quelconque des revendications 29 à 31, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend également l'étape consistant à mesurer l'augmentation de température du réfrigérant s'écoulant à travers le côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir l'augmentation de température du réfrigérant s'écoulant à travers le côté basse pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) à l'intérieur d'une sixième plage de température dont les extrémités supérieure et inférieure sont situées au-dessus de celles de ladite quatrième plage de température.
  34. Procédé de fonctionnement d'un séchoir à linge selon la revendication 33, caractérisé en ce que l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à
    - soit réduire le rapport entre la quantité de réfrigérant à l'état gazeux et la quantité totale de réfrigérant lorsque l'augmentation ou la chute de température du réfrigérant s'écoulant à travers le premier échangeur de chaleur air/réfrigérant (13) dépasse la limite supérieure de ladite quatrième plage de température et que l'augmentation de température du réfrigérant s'écoulant à travers le côté basse pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) dépasse la limite supérieure de ladite sixième valeur seuil ;
    - soit augmenter ledit rapport lorsque l'augmentation de température du réfrigérant s'écoulant à travers le premier échangeur de chaleur air/réfrigérant (13) passe en dessous de la limite inférieure de ladite quatrième plage de température et que l'augmentation de température du réfrigérant s'écoulant à travers le côté basse pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) passe en dessous de la limite inférieure de ladite sixième valeur seuil.
  35. Procédé de fonctionnement d'un séchoir à linge selon la revendication 17, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend l'étape consistant à mesurer la chute de température du réfrigérant s'écoulant à travers le côté haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) de la qualité de la vapeur de réfrigérant de manière à maintenir la chute de température du réfrigérant s'écoulant à travers le côté haute pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) à l'intérieur d'une septième plage de température dont les extrémités supérieure et inférieure sont toutes deux supérieures à 0°C.
  36. Procédé de fonctionnement d'un séchoir à linge selon la revendication 17, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend l'étape consistant à mesurer l'augmentation de température du réfrigérant s'écoulant à travers le côté basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir l'augmentation de température du réfrigérant s'écoulant à travers le côté basse pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) à l'intérieur d'une huitième plage de température dont les extrémités supérieure et inférieure sont toutes deux supérieures à 0°C.
  37. Procédé de fonctionnement d'un séchoir à linge selon la revendication 17, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend l'étape consistant à mesurer la température de réfrigérant au niveau de la sortie de réfrigérant basse pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la température de réfrigérant au niveau de la sortie de réfrigérant basse pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) à l'intérieur d'une neuvième plage de température prédéterminée.
  38. Procédé de fonctionnement d'un séchoir à linge selon la revendication 19, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend l'étape consistant à mesurer la température de réfrigérant au niveau de l'entrée de réfrigérant du deuxième échangeur de chaleur air/réfrigérant (14) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la température de réfrigérant au niveau de l'entrée de réfrigérant dudit deuxième échangeur de chaleur air/réfrigérant (14) à l'intérieur d'une dixième plage de température prédéterminée.
  39. Procédé de fonctionnement d'un séchoir à linge selon la revendication 18, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend l'étape consistant à mesurer la température de réfrigérant au niveau de la distribution du dispositif de compression de réfrigérant (15) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la température de réfrigérant au niveau de la distribution du dispositif de compression de réfrigérant (15) à l'intérieur d'une dixième plage de température prédéterminée.
  40. Procédé de fonctionnement d'un séchoir à linge selon la revendication 17, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend l'étape consistant à mesurer la température de réfrigérant au niveau de l'entrée de réfrigérant haute pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la température de réfrigérant au niveau de l'entrée de réfrigérant haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) à l'intérieur d'une onzième plage de température prédéterminée.
  41. Procédé de fonctionnement d'un séchoir à linge selon la revendication 17, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend l'étape consistant à mesurer la température de réfrigérant au niveau de la sortie de réfrigérant haute pression de l'échangeur de chaleur réfrigérant/réfrigérant (18) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la température de réfrigérant au niveau de la sortie de réfrigérant haute pression dudit échangeur de chaleur réfrigérant/réfrigérant (18) à l'intérieur d'une douzième plage de température prédéterminée.
  42. Procédé de fonctionnement d'un séchoir à linge selon la revendication 20, caractérisé en ce que l'étape consistant à mesurer la valeur actuelle de ladite au moins une quantité physique comprend l'étape consistant à mesurer la température du flux d'air (f) entrant dans le récipient pour le linge (3) ; et en ce que l'étape consistant à commander lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant comprend l'étape consistant à entraîner lesdits moyens (17) d'ajustement de la qualité de la vapeur de réfrigérant de manière à maintenir la température dudit flux d'air (f) à l'intérieur d'une treizième plage de température prédéterminée.
EP10197041.6A 2010-12-27 2010-12-27 Séchoir à linge avec pompe de chaleur pour usage domestique Not-in-force EP2468944B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP10197041.6A EP2468944B1 (fr) 2010-12-27 2010-12-27 Séchoir à linge avec pompe de chaleur pour usage domestique
CN2011800665546A CN103348056A (zh) 2010-12-27 2011-12-21 家用干衣机
AU2011351627A AU2011351627A1 (en) 2010-12-27 2011-12-21 Home laundry dryer
PCT/EP2011/073604 WO2012089585A1 (fr) 2010-12-27 2011-12-21 Sèche-linge domestique
US13/997,907 US20140082960A1 (en) 2010-12-27 2011-12-21 Home laundry dryer
RU2013135232/12A RU2013135232A (ru) 2010-12-27 2011-12-21 Бытовое сушильное устройство для белья
BR112013016443A BR112013016443A2 (pt) 2010-12-27 2011-12-21 secadora de roupas e método de operação de uma secadora de roupas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10197041.6A EP2468944B1 (fr) 2010-12-27 2010-12-27 Séchoir à linge avec pompe de chaleur pour usage domestique

Publications (2)

Publication Number Publication Date
EP2468944A1 EP2468944A1 (fr) 2012-06-27
EP2468944B1 true EP2468944B1 (fr) 2019-02-20

Family

ID=44147917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10197041.6A Not-in-force EP2468944B1 (fr) 2010-12-27 2010-12-27 Séchoir à linge avec pompe de chaleur pour usage domestique

Country Status (7)

Country Link
US (1) US20140082960A1 (fr)
EP (1) EP2468944B1 (fr)
CN (1) CN103348056A (fr)
AU (1) AU2011351627A1 (fr)
BR (1) BR112013016443A2 (fr)
RU (1) RU2013135232A (fr)
WO (1) WO2012089585A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140396B2 (en) * 2013-03-15 2015-09-22 Water-Gen Ltd. Dehumidification apparatus
EP2976454A1 (fr) * 2013-03-20 2016-01-27 Electrolux Appliances Aktiebolag Appareil pour sécher le linge
WO2014206441A1 (fr) * 2013-06-24 2014-12-31 Electrolux Appliances Aktiebolag Sèche-linge à pompe à chaleur
JP2016104111A (ja) * 2014-11-19 2016-06-09 三星電子株式会社Samsung Electronics Co.,Ltd. 乾燥機
JP6616594B2 (ja) * 2015-06-11 2019-12-04 東芝ライフスタイル株式会社 衣類乾燥機
US20220057127A1 (en) * 2020-08-19 2022-02-24 Honeywell International Inc. Vapor cycle cooling system for high powered devices
CN113891642B (zh) * 2021-12-08 2022-03-04 浙江飞旋科技有限公司 散热装置及冷板散热***
CN114892371B (zh) * 2022-06-15 2023-08-25 惠而浦(中国)股份有限公司 一种洗衣机蒸汽发生器的控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022150B2 (ja) * 1994-04-27 2000-03-15 三洋電機株式会社 衣類乾燥機
DE4434205A1 (de) * 1994-08-31 1996-03-07 Joerg Sdrojewski Wäschetrockner
JP3557002B2 (ja) * 1995-07-14 2004-08-25 三洋電機株式会社 電気機器
JP2001120898A (ja) * 1999-10-27 2001-05-08 Matsushita Electric Ind Co Ltd ガス衣類乾燥機
JP2003075065A (ja) * 2001-09-04 2003-03-12 Matsushita Electric Ind Co Ltd ヒートポンプ式乾燥機
JP2004313765A (ja) * 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd 乾燥装置及びその運転方法
US7469486B2 (en) * 2003-09-25 2008-12-30 Matsushita Electric Industrial Co., Ltd. Heat pump type drying apparatus drying apparatus and drying method
JP2005253588A (ja) * 2004-03-10 2005-09-22 Sanyo Electric Co Ltd 乾燥機
US7698911B2 (en) * 2005-11-30 2010-04-20 General Electric Company Methods and systems for detecting dryness of clothes in an appliance
DE102005062939A1 (de) * 2005-12-29 2007-07-05 BSH Bosch und Siemens Hausgeräte GmbH Hausgerät zur Pflege von Wäschestücken
WO2009049096A1 (fr) * 2007-10-09 2009-04-16 Advanced Thermal Sciences Corp. Système et procédé de commande thermique
EP1983095B1 (fr) * 2008-08-08 2012-09-05 V-Zug AG Sèche-linge doté d'un chauffage dans le circuit de pompe à chaleur
EP2284310B1 (fr) * 2009-08-12 2014-07-09 Electrolux Home Products Corporation N.V. Sèche-linge à tambour avec pompe à chaleur et procédé pour faire fonctionner une pompe à chaleur pour un sèche-linge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103348056A (zh) 2013-10-09
BR112013016443A2 (pt) 2016-09-20
AU2011351627A1 (en) 2013-04-11
EP2468944A1 (fr) 2012-06-27
US20140082960A1 (en) 2014-03-27
RU2013135232A (ru) 2015-02-10
WO2012089585A1 (fr) 2012-07-05

Similar Documents

Publication Publication Date Title
EP2468945B1 (fr) Séchoir à linge avec pompe de chaleur pour usage domestique
EP2468944B1 (fr) Séchoir à linge avec pompe de chaleur pour usage domestique
EP3040470B1 (fr) Appareil de traitement de vêtements
EP3031976B1 (fr) Appareil de traitement de vêtements avec système de pompe à chaleur
EP2489774B1 (fr) Sèche-linge à pompe à chaleur
KR100737006B1 (ko) 의류 건조 장치
WO2005031231A1 (fr) Appareil de sechage de type pompe a chaleur, appareil de sechage et procede de sechage
US9146056B2 (en) Laundry treating apparatus having expansion valve which is variable according to the driving mode
EP2060671B1 (fr) Séchoir à linge pour usage domestique
JP2004236965A (ja) 衣類乾燥装置
US11060236B2 (en) Dryer appliance and method of operating the same based on the relative humidity of drum exit air
JP2004239549A (ja) 衣類乾燥装置
EP2692940A1 (fr) Procédé de séchage du linge dans un sèche-linge et sèche-linge
EP2549007B1 (fr) Appareil de traitement de linge à pompe thermique
EP2527523B1 (fr) Sèche-linge à tambour rotatif
KR20110029579A (ko) 히트펌프식 건조기 및 히트펌프식 건조기 제어방법
JP2004089413A (ja) 衣類乾燥装置
CN110093759B (zh) 用于干燥洗涤物的器具和用于运行该器具的热泵的方法
KR100577248B1 (ko) 건조장치 및 건조장치의 건조행정 제어방법
EP2147999A1 (fr) Séchoir à linge pour usage domestique
EP2586905B1 (fr) Sèche-linge avec système de pompe à chaleur
CN114351425A (zh) 干衣机

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180831

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010057031

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1098324

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190521

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1098324

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010057031

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

26N No opposition filed

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191227

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191227

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211224

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010057031

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221227