EP2461898B1 - Apparatus, system and method for emulsifying oil and water - Google Patents

Apparatus, system and method for emulsifying oil and water Download PDF

Info

Publication number
EP2461898B1
EP2461898B1 EP09784330.4A EP09784330A EP2461898B1 EP 2461898 B1 EP2461898 B1 EP 2461898B1 EP 09784330 A EP09784330 A EP 09784330A EP 2461898 B1 EP2461898 B1 EP 2461898B1
Authority
EP
European Patent Office
Prior art keywords
continuous phase
emulsion
phase
nozzle
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09784330.4A
Other languages
German (de)
French (fr)
Other versions
EP2461898A1 (en
Inventor
Olivier Maniere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solenis Technologies Cayman LP
Original Assignee
Solenis Technologies Cayman LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solenis Technologies Cayman LP filed Critical Solenis Technologies Cayman LP
Priority to PL09784330T priority Critical patent/PL2461898T3/en
Publication of EP2461898A1 publication Critical patent/EP2461898A1/en
Application granted granted Critical
Publication of EP2461898B1 publication Critical patent/EP2461898B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/14Carboxylic acids; Derivatives thereof
    • D21H17/15Polycarboxylic acids, e.g. maleic acid
    • D21H17/16Addition products thereof with hydrocarbons
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/17Ketenes, e.g. ketene dimers

Definitions

  • the present invention relates to an apparatus, system and method for emulsifying oil and water which are particularly useful in the preparation of aqueous emulsions of sizing agents for internal or surface sizing. paper and paperboard or for the reversal of inverse emulsion polymer products used in paper and paperboard processing.
  • Additives used in the paper industry for the purpose of rendering aqueous penetrants resistant are generally referred to as sizing agents.
  • US 1,540,592 published in 1925 , describes an apparatus with an ejector and a turbine pump in series.
  • WO 99/25466 A1 relates to a polymer supply system and its method of use. The disclosure of this document forms the basis for the preamble of claims 1, 7, and 15.
  • alkyl ketene dimer (AKD) and alkenyl succinic anhydride (ASA).
  • ASA alkenyl succinic anhydride
  • ASA and AKD are hydrophobic materials, not soluble in water. These materials can be added to the liquid paste before forming the sheet, which is called internal sizing, or can be applied to the surface of the formed coil, which is called surface sizing. For both applications, to be effective, the sizing agent must be well distributed in the aqueous system. For this reason, these insoluble additives in water are generally added in the form of aqueous oil emulsions.
  • aqueous emulsions of the sizing agents can be provided to the paper mill in this form, or be prepared on site. Indeed, it is more advantageous for some synthetic sizing agents reactive with cellulose to emulsify them on site.
  • ASA for example, is emulsified on site because of the instability of the anhydride functionality after emulsification with water.
  • Pawlowska, et al. disclose "an improved process for wet paper sizing which uses simpler and less expensive low shear equipment for ASA emulsification.”
  • Pawlowska et al. disclose a sizing process comprising "forming, in the absence of high shear forces, an aqueous sizing emulsion comprising an alkenyl succinic anhydride component" which is subsequently diluted using a cationic component.
  • the main difference between Pawlowska and Mazzarella lies in the post-dilution of the emulsion with a cationic component in order to improve retention.
  • Low shear systems consist of: “simply stirring, passing through a mixing valve or a conventional vacuum cleaner or through the usual agitation present in a dough preparation system" (Mazzarella) or, the shear conditions "created by a selected device from the group consisting of centrifugal pumps, static line mixers, peristaltic pumps, and combinations thereof” (Pawlowska). But these definitions merge into lists of commercial emulsification equipment that include low and high pressure industrial units such as Cytec's low-pressure turbine emulsifiers from Cytec Industries, Inc., Nalco high-pressure foam systems, and Venturi emulsifiers and turbines from National Starch “suggesting that there are turbine pumps that fall into the category of low shear.
  • Waring mixers are used to produce high and low energy ASA emulsions ( Chen and Woodward, Tappi J. Aug 1986, pg 95 ) by varying the voltage.
  • “low shear” and “high shear” systems can not be defined solely by the type of equipment.
  • Dilts et al. defines low shear as the ability to pump liquid through a pump with a backpressure of 3.4 bar (50 psi) or less, while high shear is defined as the need for backpressure from 10.3 to 20.7 bar (150 to 300 psi) for pumping a liquid.
  • WO 01/88262 A2 discloses commercial emulsification equipment comprising industrial low and high pressure units, and refers to a turbine and venturi emulsification device.
  • a system for emulsifying oil in water or water in oil comprises a venturi device.
  • a continuous phase is introduced under pressure into the venturi device and through a continuous phase nozzle having a first diameter in a mixing section.
  • a dispersed phase is introduced into the mixing section of the venturi device to form an emulsion of the dispersed phase in the continuous phase.
  • the emulsion is conducted through a mixed phase nozzle which has a second diameter and to an outlet of the venturi device.
  • the diameter of the mixed phase nozzle is larger than the diameter of the continuous phase nozzle with a ratio greater than 1: 1 and less than 4: 1.
  • Venturi devices were known.
  • WO 98/45034 A1 describes a venturi device used in the field of support in size.
  • the venturi device was intended to mix oil soluble in water.
  • the continuous phase comprises water, which is introduced at a pressure of about 10 bar to about 50 bar.
  • the dispersed phase comprises one or more sizing agents.
  • the emulsion may be discharged into a discharge chamber, where optional additives may be mixed therein.
  • the emulsion can be stored for later use, or diluted with water or other aqueous solution before being added to the wet portion, or a sizing press or coater for a paper making system. or cardboard.
  • the emulsion can be added directly to the wet portion, or to a sizing press or coater for a papermaking or paperboard manufacturing system.
  • the dispersed phase may contain a sizing component of the cellulose-reactive paper or a mixture of such components or a sizing component of the non-cellulose-reacting paper or a mixture of such components.
  • exemplary cellulose-reactive paper sizing components include alkenyl succinic anhydride (ASA), ketene dimers and multimers, such as alkyl ketene dimer (AKD), organic epoxies containing about 12 to 22 carbon atoms, acyl halides containing from about 12 to 22 carbon atoms, fatty acid anhydrides from about 12 to 22 carbon atoms fatty acids, and organic isocyanates containing from about 12 to about 22 carbon atoms. about 12 to 22 carbon atoms.
  • ASA alkenyl succinic anhydride
  • ketene dimers and multimers such as alkyl ketene dimer (AKD)
  • organic epoxies containing about 12 to 22 carbon atoms
  • the dispersed phase can be introduced only by suction at the suction inlet of the venturi device, or possibly pumped with a pump in the mixing section.
  • the dispersed phase is filtered before it is introduced into the mixing section.
  • the continuous phase may be water and the dispersed phase may be an inverse emulsion polymer generally used in papermaking.
  • an oil-in-water emulsion containing a polymer in the aqueous phase can be introduced into the venturi device through the suction inlet. The presence of a large volume of dilution water and the mixing in the mixing section which breaks the emulsion will "activate" the polymer, producing a dilute polymer-based mixture containing oil droplets.
  • An example of an inverse emulsion polymer generally used in papermaking is a retention and drainage aid, such as PERFORM SP7200 or PERFORM PC8179 retention and drainage assistants (Ashland). Inc., Covington, KY).
  • a method of emulsifying a sizing agent to be used for processing paper or board comprises the following steps.
  • a continuous phase is introduced under pressure into a venturi device and into a continuous phase nozzle which has a first diameter which directs said continuous phase into a mixing section of the device.
  • a dispersed phase is introduced into the mixing section of the venturi device to form an emulsion of the dispersed phase in the continuous phase.
  • the emulsion is passed through a mixed phase nozzle which has a second diameter d2 which is larger than the diameter of the continuous phase nozzle d1 with a ratio greater than 1: 1 and less than 4: 1.
  • the continuous phase is introduced at a pressure of about 10 bar to about 50 bar and with a continuous phase nozzle flow rate of from about 10 to about 100 m / sec.
  • the dispersed phase may contain a sizing component of the cellulose-reactive paper or a mixture of such components or a sizing component of the paper not reacting with the cellulose or a mixture of such components.
  • exemplary cellulose-reactive paper sizing components include alkenyl succinic anhydride (ASA), ketene dimers and multimers, organic epoxides containing from about 12 to 22 carbon atoms, acyl halides. containing from about 12 to 22 carbon atoms, fatty acid anhydrides from about 12 to 22 carbon atoms and organic isocyanates containing from about 12 to about 22 carbon atoms.
  • the dispersed phase can be introduced solely by suction at the suction inlet of the venturi device, or possibly pumped by means of a pump into the mixing section.
  • the dispersed phase is filtered before it is introduced into the mixing section.
  • the resulting emulsion of sizing agent has an average particle diameter of less than about 2 microns, preferably 0.5 to 1.5 microns, and most preferably less than about 1 micron as measured. by means of a light diffusion technique on a control emulsion for about one to about ten minutes after emulsion exit of the venturi device.
  • the emulsion is added to either a wet part or a sizing or coater for a paper or board making system. If the continuous phase is water, the emulsion is preferably post-diluted with water to produce a solids content in the range of about 1 to about 5% by weight. Subsequently, the post-dilution emulsion is preferably mixed with an aqueous solution of a synthetic or natural cationic polymer before being added to the wet portion, sizing press or coater.
  • a venturi device has a continuous phase nozzle that has a first diameter that conducts a first liquid under pressure to a mixing section, and an inlet for directing a second liquid to the mixing section so as to form an emulsion.
  • the venturi device further has a mixed phase nozzle which has a second diameter through which the emulsion is directed to an outlet of the venturi device.
  • the diameter of the mixed phase nozzle is larger than the diameter of the continuous phase nozzle with a ratio greater than 1: 1 and less than 4: 1.
  • the mixing section is tapered and tapered with a larger diameter at which the inlet meets the narrower diameter mixing section at which the mixed phase nozzle rejoins the mixing section.
  • the venturi device comprises a discharge diffuser in fluid communication with the nozzle for mixed phase and at the outlet of the venturi device.
  • an “emulsion” is a mixture of particles of a liquid in a second liquid.
  • Two common types of emulsions are oil-in-water and water-in-oil emulsions.
  • oil is generally meant a liquid that is insoluble or almost insoluble in water.
  • water is the “continuous phase” and the oil is the discontinuous phase.
  • discontinuous phase the liquid that forms the continuous phase of the final emulsion
  • disperse phase the other liquid that forms the discontinuous phase of the final emulsion.
  • the water is the continuous phase and the oil is the dispersed phase.
  • FIG. figure 1 A scheme of a system for oil and water emulsification is shown in FIG. figure 1 .
  • System 10 will be described with reference to the emulsification of a sizing agent, such as alkyl ketene dimer (AKD) or alkenyl succinic anhydride (ASA), in water.
  • a sizing agent such as alkyl ketene dimer (AKD) or alkenyl succinic anhydride (ASA)
  • ASA alkenyl succinic anhydride
  • the flow rate of the water which may alternatively be called “continuous phase” with respect to this embodiment, is controlled at a specific flow rate. using a control loop with the flow meter 20 and the control valve 18.
  • Other flow control means are conceivable as is known to those skilled in the art.
  • the pump 22 can be of any type, including a multi-stage centrifugal pump or a regenerative pump, which can provide a supply pressure of about 30 bar, or supply pressures in the range of about 10 to 50 bar, more preferably about 18 to 35 bar.
  • Pressure gauges 40a, 40b, 40c are provided for the purpose of monitoring, respectively, the pressures of the continuous phase, the dispersed phase and the emulsion.
  • the continuous phase is sent to a first entry 48 (refer to the figure 3 ) of a venturi device 50.
  • the filter 36 is designed to prevent clogging of a nozzle 60 for mixed phase of the venturi device 50. Referring to Figures 2-4 for details regarding the Venturi 50 device.
  • the optional pump 38 may be of any type that can provide a supply pressure of up to about 5 bar, preferably about 3 bar, for example.
  • the flow rate of the sizing agent which may also be referred to as the "disperse phase" in this embodiment, can be controlled using the pump 38 or using a control loop. It is also conceivable to provide alternative commands to adjust the ratio of the continuous phase by the dispersed phase fed to the venturi device 50. Since the continuous phase fed to the venturi device 50 produces a vacuum at the inlet of suction 52 of the dispersed phase, it is not necessarily necessary for the pump 38 to provide the dispersed phase to the venturi device 50. Nevertheless, using the pump 38 to provide the dispersed phase to the venturi device 50 is obtained a pressure of more sustained feeding and better control of the emulsion formation process.
  • the continuous and dispersed phases mix in the venturi device 50 and are evacuated to a chamber 70.
  • the diameter of the chamber 70 must be sufficient to reduce the velocity of the emulsified product from the venturi device 50.
  • Additives may be mixed with the emulsified product in the chamber 70 or downstream of the chamber 70.
  • the mixed phase or the emulsified product may be directed to the paper machine or to a storage tank 76 or delivery container (not shown) via a pressure control valve 74.
  • the continuous phase is water
  • the emulsion is preferably post-diluted with water to produce a solids content in the range of about 1 to about 5% by weight.
  • the post-dilution emulsion is preferably mixed with an aqueous solution of a natural or synthetic cationic polymer before being added to the wet portion, the sizing press or the coater of a coating machine. manufacture of paper or cardboard.
  • FIGS. Figures 2 to 4 One embodiment of a venturi device 50 for the emulsification of oil and water is shown in FIGS. Figures 2 to 4 .
  • the figure 3 is a longitudinal section of the venturi device 50.
  • the venturi device 50 has a first inlet 48 into which the continuous phase, such as water, is introduced.
  • the continuous phase flows through the venturi device 50 in the direction of the arrow 54.
  • the flow rate of the continuous phase increases from the first inlet 48 to a smaller diameter channel 56 and then through a conical section 58 before to enter a nozzle with the smallest diameter or nozzle 66 for continuous phase.
  • the shape and dimensions of the flow channel of the continuous phase can be varied.
  • the venturi device 50 has a suction inlet 52 through which the dispersed phase, such as a sizing agent, but not limited thereto, enters the venturi device 50 in the direction of the arrow 62. Vacuum is produced at the suction inlet 52 by the flow of the continuous phase through the continuous phase nozzle 66.
  • the dispersed phase such as a sizing agent, but not limited thereto
  • the continuous phase (for example water) and the dispersed phase (for example a sizing agent) mix in a generally conical chamber 80 and return through the nozzle 60 for mixed phase.
  • the diameter d2 of the mixed phase nozzle is larger than the diameter d1 of the continuous phase nozzle at a ratio greater than 1: 1 and less than 4: 1.
  • the nozzle 60 for mixed phase has a diameter d2 which is twice the diameter d1 of the nozzle 66 for continuous phase.
  • the continuous phase and the dispersed phase are mixed due to the turbulence within the tapered mixing chamber 80 between the continuous phase nozzle 66 and the mixed phase nozzle 60 to form the emulsion or mixed phase.
  • the emulsion leaves the mixed phase nozzle 60 through a discharge diffuser 82 and leaves the venturi device in the direction of arrow 84.
  • the emulsion thus formed is discharged into chamber 70 (refer to FIG. figure 1 ).
  • the emulsions are formed by feeding the continuous phase of an emulsion via the high-pressure continuous phase nozzle 66.
  • the flow of the continuous phase via the continuous phase nozzle 66 creates a low pressure region at the dispersed phase inlet 52 to the venturi device 50.
  • the continuous and dispersed phases are mixed in a generally conical mixing chamber 80. inside the venturi device 50 and supplied to a nozzle 60 for mixed phase which has a diameter d2 greater than the diameter d1 of the nozzle 66 for continuous phase.
  • the two distinct dimensions d2 and d1 of the diameters create two layers of jets at high speed.
  • the emulsified product from the venturi device 50 is discharged into a chamber 70 where the pressure and the fluid velocity are reduced.
  • FIG. 1 further shows an optional reservoir 76 into which the emulsion can be deposited.
  • a representative venturi device 50 has the following dimensions.
  • the mixed phase nozzle 60 has a circular diameter d2 of about 1.2 mm and the continuous phase nozzle 66 has a circular diameter d1 of about 0.7 mm.
  • the mixed phase nozzle 60 has a circular diameter d2 of about 1.8 mm and the continuous phase nozzle 66 has a circular diameter d1 of about 1 mm.
  • the representative venturi device 50 has a total length of about 90 mm.
  • the first inlet 48 is formed with a tapped female circular opening of about 12.7 mm (0.5 inches) to receive a feed tube or fitting (not shown) for the introduction of the continuous phase into the first
  • the first inlet 48 has a length of about 20 mm, and the smaller diameter channel 56 has a length of about 35 mm, the distal end forming a tapering to direct the liquid from the continuous phase to the continuous phase nozzle 66.
  • the continuous phase nozzle 66 has a length of approximately 4 mm.
  • Mixed phase nozzle 60 has a length of about 15 mm.
  • the suction inlet 52 in the representative venturi device 50 has a circular diameter of about 10 mm and a length of about 10 mm.
  • the suction inlet 52 tapers at a conical distal end which directs the material of the dispersed phase to a tubing which leads to a conical chamber 80 for mixing the continuous phase and the dispersed phase together to form a mixed phase or emulsion.
  • the conical chamber 80 has a circular proximal diameter of about 10 mm and tapers toward the mixed phase nozzle 60 at its distal end.
  • the discharge diffuser 82 at the distal end of the representative venturi device 50, is formed with an externally threaded outer portion of about 12.7 mm (0.5 inch) which will be connected to a threaded discharge tube or fitting (not shown) so that the mixed phase (emulsion) leaves the venturi device 50.
  • the discharge diffuser has a length of about 18 mm, and an outer circular opening with a diameter of about 15 mm.
  • An end elevational view of the venturi device 50 from the discharge diffuser 82 in the figure 2 shows that the venturi device 50 has a generally hexagonal or six-sided exterior appearance, and its height and width is about 36 mm.
  • the representative venturi device 50 is shown in FIG. figure 3 formed of two machined parts, the first part, in which is formed the first inlet 48 leading to the nozzle 66 of the venturi, and the second part, in which is formed the suction inlet 52, the conical chamber 80, the nozzle
  • the first portion engages with the second portion and is threadably threaded through threads 77 formed on the outside of the first portion and the interior of the second portion.
  • a sealing ring 78 is provided for fluid sealing of the first and second parts.
  • the continuous phase of the emulsion can be based on water or oil.
  • the dispersed phase of the emulsion may be oil-based.
  • the dispersed phase of the emulsion may be water-based.
  • water-based continuous phases include, but are not limited to, water, solutions aqueous starches and polymer solutions. Additional ingredients customarily used in emulsions of sizing agents, such as, but not limited to, biocides, alums, cationic resins, surfactants, etc. may be contained in the phase addition. keep on going.
  • the oil-based dispersed phase include, but are not limited to, ASA, AKD, and polymers. Additives such as surfactants may optionally be present in the oily phase.
  • the pressure of the continuous phase feed is between about 10 bar and 50 bar, preferably between about 18 bar and 35 bar.
  • the ratio of the dimensions of the mixed phase nozzle and the continuous phase nozzle is greater than 1: 1 and less than 4: 1, preferably between 1.5: 1 and 2.5: 1.
  • the diameter of the continuous phase nozzle (for example the nozzle 66 in the figure 3 ) is set in order to obtain a flow rate of about 10 to 100 m / s, preferably about 40 to 60 m / s. high speed creates instant emulsion creation conditions.
  • the ratio of the continuous phase to the dispersed phase is varied to meet the requirements of the emulsion in terms of viscosity, stability and homogeneity.
  • the concentration of the dispersed phase in the continuous phase ranges from about 2 to 50% by weight, preferably from about 4 to 35% by weight.
  • the diameter of the chamber at the outlet of the venturi device (for example, the chamber 70 in the figure 1 ) is about 5 to 100 times the diameter of the continuous phase nozzle of the venturi device (for example the nozzle 66 in the figure 2 ), preferably about 40 to 80 times the diameter of the nozzle 66 for continuous phase.
  • the pressure that prevails in the chamber is about 1 to 6.7 bar, preferably about 1.3 to 5 bar.
  • the pressure of the dispersed phase input is about 1.3 to 6.7 bar, preferably about 3 to 4.3 bar.
  • the preferred paper sizing components are selected from the group consisting of cellulose reactive paper sizing components and paper sizing components not reactive with cellulose.
  • cellulose-reactive adhesives are defined as adhesives capable of forming covalent chemical bonds by reaction with hydroxyl groups of the cellulose, and non-reactive adhesives are defined as the adhesives that do not form these covalent bonds with cellulose.
  • Preferred cellulose-reactive adhesives for use in the invention include alkenyl succinic anhydrides (ASA), ketene dimers and multimers, organic epoxides containing from about 12 to 22 carbon atoms, acyl halides, and the like. containing about 12 to 22 carbon atoms, fatty acid anhydrides from about 12 to 22 carbon atoms and organic isocyanates containing from about 12 to about 22 carbon atoms. It is also possible to envisage the use of mixtures of reactive sizing agents.
  • ASA alkenyl succinic anhydrides
  • ketene dimers and multimers organic epoxides containing from about 12 to 22 carbon atoms
  • acyl halides containing about 12 to 22 carbon atoms
  • organic isocyanates containing from about 12 to about 22 carbon atoms. It is also possible to envisage the use of mixtures of reactive sizing agents.
  • ASAs Alkenyl succinic anhydrides
  • ASAs are composed of unsaturated hydrocarbon chains containing pendant succinic anhydride groups. They are usually made through a two-step process starting with an alpha olefin. The olefin is first isomerized by randomly shifting the double bond from the alpha position. In the second step, the isomerized olefin is reacted with a maleic anhydride to yield the final ASA having the standard formula (1) (see below).
  • Typical olefins used for the reaction with maleic anhydride include alkenyl, cycloalkenyl and aralkenyl components containing from about 8 to about 22 carbon atoms.
  • n-decenyl succinic anhydride isooctadecenyl succinic anhydride, n-octadecenyl succinic anhydride, n-hexadecenyl succinic anhydride, n-dodecyl succinic anhydride, i-dodecenyl succinic anhydride, and the like.
  • n-decenyl succinic anhydride and n-octenyl succinic anhydride are examples.
  • Succinic alkenyl anhydrides are disclosed in the patent US. No. 4,040,900 and by CE Farley and RB Wasser in The Sizing of Paper, Second Edition, edited by WF Reynolds, Tappi Press, 1989, pages 51-62 .
  • Various alkenyl succinic anhydrides are commercially available from Bercen Inc., Denham Springs, LA.
  • the alkenyl succinic anhydrides to be used in the invention are preferably liquid at 25 ° C. More preferably, they are liquid at 20 ° C.
  • the preferred ketene dimers and multimers are materials of the formula (2) (see below), wherein n is an integer from 0 to about 20, R and R ", which may be the same or different, are groups saturated or unsaturated straight chain or branched alkyl or alkenyl groups having 6 to 24 carbon atoms, and R 'is a straight chain or branched alkenyl group, saturated or unsaturated having from about 2 to about 40 carbon atoms.
  • the groups R and R " are straight-chain or branched alkyl or alkenyl groups having 6 to 24 carbon atoms, cycloalkyl groups having at least 6 carbon atoms, aryl groups having at least 6 carbon atoms, aralkyl groups having at least 7 carbon atoms, alkaryl groups having at least 7 carbon atoms, and mixtures thereof.
  • the ketene dimer is selected from the group consisting of (a) octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, docosyl, tetracosyl, phenyl, benzyl, beta-naphthyl, and ketene dimers.
  • ketene dimers prepared from organic acids selected from the group consisting of montanic acid, naphthenic acid, 9,10-decylenic acid, 9,10-dodecylenic acid, palmitoleic acid, oleic acid, ricinoleic acid, linoleic, of eleostearic acid, natural mixtures of fatty acids found in coconut oil, babassu oil, palm kernel oil, palm oil, olive oil , peanut oil, rapeseed oil, beef tallow, lard, whale blubber, and mixtures of any of the aforementioned fatty acids.
  • the ketene dimer is selected from the group consisting of octyl-, decyl-, dodecyl-, tetradecyl-, hexadecyl-, octadecyl-, eicosyl-, docosyl-, tetracosyl-, phenyl-, benzyl-, ⁇ - -naphthyl-, and cyclohexyl-ketenes.
  • Alkyl ketene dimers have been used commercially for many years and are prepared by dimerization of alkylketenes obtained from straight-chain saturated fatty acid chlorides; those that are most widely used are obtained from palmitic and / or stearic acid.
  • the pure alkyl ketene dimer is provided by Ashland Hercules Water Technologies, Ashland Inc, Wilmington, Del., As a sizing agent with the designation AQUAPEL 364.
  • the preferred ketene multimers for use as the dispersed phase in the process of this invention have the formula (2) where n is an integer equal to at least 1, R and R ", which may be the same or different, are alkyl groups or saturated or non-saturated straight chain or branched alkenyls having 6 to 24 carbon atoms, preferably 10 to 20 carbon atoms, and still more preferably 14 to 16 carbon atoms, and R 'is a saturated straight or branched chain alkylene group or not having 2 to 40 carbon atoms, preferably 4 to 8 carbon atoms or 28 to 40 carbon atoms.
  • ketene dimers and multimers for use as the disperse phase in the invention are those which are not in solid form at 25 ° C (non-substantially crystalline, semi-crystalline or waxy solids; that they flow by heating without heat of fusion). Dimers and multimers of ketene which are not in the solid state at 25 ° C. are disclosed in US Pat. US. No. 5,685,815 , 5846663 , 5725731 , 5766417 and 5879814 . Ketene dimers that are not in a solid state at 25 ° C are provided by Ashland Hercules Water
  • cellulose reactive adhesives for use as the disperse phase in the invention are mixtures of ketene dimers or multimers with alkenyl succinic anhydrides as described in US Pat. US. No. 5,766,417 .
  • the adhesives which do not react with the cellulose to be used in the form of dispersed phase in the invention preferably include hydrophobic materials which flow freely at temperatures below 95 ° C., preferably below 70 ° C., of the wax. Esterified rosins, hydrocarbon or terpene resins, and polymeric sizing agents.
  • the sizing emulsions of this invention may conveniently contain at least one surfactant to facilitate their emulsification in water, such materials are well known in the art.
  • the surfactant component facilitates the emulsification of the sizing agent with a water component when the emulsion is made.
  • the surfactants are anionic or nonionic or may be cationic and may have a wide range of HLB values.
  • Suitable surfactants include, but are not limited to, phosphate ethoxylates which may contain hydrocarbon substituents of alkyl, aryl, aralkyl or alkenyl, sulfonated products such as those obtained by sulfonating fatty alcohols or aromatic fatty alcohols, ethoxylated alkyl phenols such as nonyl phenoxy polyethoxy ethanols, octyl phenoxy polyethoxy ethanols, polyethylene glycols such as PEG 400 monooleate and PEG 600 dilaurate, ethoxylated phosphate esters, dialkyl sulfosuccinates such as dioctyl sodium sulphosuccinate, polyoxyalkylenealkyl or polyoxyalkylene alkylaryl esters or the corresponding mono or diesters, and trialkyl amines and their quaternary acids and salts as well as amine hydrates such as oleyl dimethylamine and
  • Preferred surfactants are those that emulsify the bonding agent to result in the average droplet size of the emulsion or the smallest particle size.
  • Such emulsions may have a mean droplet size or particle size about 2 microns or less, preferably between 0.5 and 1.5 microns, and most preferably about 1 micron or less.
  • the size of the droplets can be conveniently measured by any well-known particle size measurement technique, for example, microscope, conventional or quasi-elastic light scattering, sedimentation, disk centrifugation, sensing electrozone, chromatographic and fractionation of the flow in an equilibrium sedimentation field.
  • the droplet sizes can be estimated by a light scattering method using an instrument such as the HORIBA LA-300 Particle Size Analyzer.
  • the amount of surfactant may vary depending on the specific surfactant, or surfactant mixture used, as is well known to those skilled in the art.
  • the amount of surfactant present in a sizing composition of the invention should not exceed the minimum required to have an average particle size of about 2 microns or less, preferably between 0.5 and 1.5 microns and most preferably about 1 micron or less in the resulting emulsion. Higher amounts can result in particle size degradation and machine behavior problems that are a consequence of low quality emulsion. From about 0.01% to about 10% surfactant by weight may be used based on the total weight of sizing agent. Preferably, the quality of surfactant present in a sizing composition is from about 0.1% to about 5% by weight.
  • the amount of surfactant present in a sizing composition is less than about 1.0% by weight.
  • Commercially available blends comprising at least one sizing agent and at least one surfactant, such as PREQUEL 20F sizing agents or PREQUEL 90F supplied by Ashland Inc., Wilmington, Del., May be suitably used for forming the sizing emulsions of the invention.
  • the continuous phase may be water or an aqueous solution of a natural or synthetic polymer. Water is preferred. If the continuous phase is water, post-dilution of the emulsion with water to obtain a desired solids content, followed by further dilution with an aqueous solution based on natural or synthetic polymer is recommended.
  • Cationic polymers that can be used for the formation of oil emulsions in water of sizing agents include any cationic polymer containing water-soluble nitrogen which imparts a positive surface charge to particles of the dispersed phase of the emulsion.
  • such cationic polymers are quaternary ammonium compounds; homopolymers or copolymers of unsaturated amines to ethylene; resinous reaction products of epihalohydrins and polyaminopolyamides; alkylenepolyamines; poly (diallylamines), bis-aminopropylpiperazine, dicyandiamide (or cyanamide) -polyalkylene polyamine condensates, dicyandiamide (or cyanamide) -formaldehyde condensates, and dicyandiamide (or cyanamide) -bis-aminopropylpiperazine condensates; and cationic starches.
  • the cationic starches are water-soluble starches containing amino groups, quaternary ammonium or other cationic groups in an amount sufficient for the starch as a whole to have a pronounced cellulose affinity.
  • Cationic starch is preferred.
  • Non-cationic polymers can also be used.
  • cationic polymers in sizing compositions is generally described in the Patents US 4,240,935 , 4243481 , 4279794 , 4295931 , 4317756 , 4522686 , all delivered to Dumas, in the Patent US 2,961,366 issued Weisgerber, and in the Patent No. 5,853,542 (delivered to Bottorff). Atmospheric polymers, like those disclosed in the patent US 7,270,727 (Varnell ), can also be used.
  • the minimum amount of cationic polymer used must be sufficient for the dispersion to become cationic.
  • the amount used will vary depending on the solubility in water and the cationic strength of the particular polymer employed, as well as other variables, such as water quality.
  • the amount of natural or synthetic polymer can be expressed as a percentage of the weight of the cellulose-reactive glue used.
  • the amount of polymer is from about 0.1% to about 400% by weight based on the weight of the cellulose-reactive glue, more preferably from about 2 to about 100% by weight relative to the weight of the cellulose-reactive glue, and most preferably from about 10 to about 30% by weight based on the weight of the cellulose-reactive glue. This amount will depend on the requirements of a specific paper production application.
  • the temperature of the aqueous solution used for the post-dilution is generally less than about 50 ° C, but may be higher depending on the application.
  • the pH of the aqueous solution varies, depending on the application. The pH may be in the range of about 4 to about 8.
  • Post dilution is generally performed under low shear conditions, for example, under shear conditions created by a device such as a centrifugal pump, static in-line mixer, peristaltic pump, rod stirrer, or combinations. of these devices.
  • the emulsions of sizing agents prepared by this invention can be used in the context of internal sizing of paper or board where the sizing emulsions are added to the liquid paste at the wet end of the sizing. papermaking process, or surface sizing of paper or board in which the sizing dispersions are applied at the sizing press or coater.
  • This invention can also be used in one or both parts of a two-part gluing system. For example, a portion may be mixed internally with the wood pulp and a second portion applied at the sizing press, a common practice in papermaking.
  • the amount of sizing agent added to the paste or applied as surface adhesive ranges from about 0.005 to 5% by weight, based on the dryness of the dough, i.e. and optional fillers, and preferably from 0.01 to 1% by weight, where the dosage depends primarily on the quality of the paste or paper to be bonded, the sizing compound used and the desired sizing level.
  • Chemical elements conventionally added to the pulp during the production of paper or board such as treatment assistants (for example, retention aids, drainage assistants, additives) contaminant control, etc.) or other functional additives (eg, wet or dry strength additives, colorants, optical brighteners, etc.) can be used combined with the sizing agents of this invention.
  • treatment assistants for example, retention aids, drainage assistants, additives
  • contaminant control etc.
  • other functional additives eg, wet or dry strength additives, colorants, optical brighteners, etc.
  • the venturi device 50 of this invention can also be used for the preparation of the inverse emulsion polymers usually used in the papermaking process.
  • the polymers of the inverse emulsion are prepared and stabilized using active surfactants, more commonly referred to as surfactants.
  • the surfactants used will allow emulsification of the water-soluble monomer in the oil phase prior to polymerization, and provide stability to the resulting emulsion polymer. Stability that includes sedimentation resistance, minor changes in viscosity over time and premature inversion, not to mention the need for a stable emulsion during the polymerization process, requires a robust set of stabilization of the viscosity. 'emulsion.
  • Emulsion inversion refers to the process before use, in which the phases are reversed, and the polymer is released from the discontinuous phase.
  • a large volume of aqueous solution is added to create a continuous aqueous (water) phase in which the coalescence of the previously dispersed aqueous phase results in the dispersion of the polymer in the solution, making the solution viscous.
  • Surfactants called “disintegrating surfactants”, are added to the emulsion to promote inversion, to disrupt the stabilization system of the original emulsion when the relatively large volume of water is combined, having use a certain level of agitation where shearing, with the emulsion of water in the oil.
  • the polymer can now interact with other aqueous phase materials.
  • the relatively small amount of oil (20-40% by weight of the original emulsion) is dispersed in the aqueous phase, where due to the addition of the large volume of aqueous solution, the oil is a minor component.
  • the polymer is inverted to an aqueous solution, so that the resulting concentration of the active polymer is typically in the range of about 0.1% to about 1.5% by weight.
  • concentration used depends on several factors, including, but not limited to, water temperature and chemistry, solution viscosity, feed rate, and equipment dimensions and flow rates.
  • the emulsion polymer can be inverted into an aqueous solution by directing convergent streams of water and pure emulsion to the desired concentrations through the device. venturi 50.
  • the continuous phase is water, which is introduced by the first inlet 48 of the venturi device 50
  • the dispersed phase is the emulsion based on polymer or crude emulsion, which is introduced by the suction inlet 52 of the venturi device 50.
  • the pressure of the continuous phase is in the range of about 10 to 40 bar, preferably about 15 to 25 bar, and the flow rate of the continuous phase of about 10 to 50 m / s, preferably about 25 to 35 m / s.
  • the resulting mixture undergoes a mixing step, in a static mixer or mechanical pump, in which the mixing action improves the inversion process.
  • a mixing step in a static mixer or mechanical pump, in which the mixing action improves the inversion process.
  • the aqueous solution is then transferred to a reservoir, where it is mixed until homogeneous.
  • the transfer step to a tank is eliminated.
  • the water supply pressure is 30 bar.
  • the diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1 mm.
  • a dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 15 kg / h.
  • the diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 2 mm.
  • the venturi velocity is 53 m / s in the continuous phase nozzle.
  • the median particle size of the emulsion is 0.67 microns.
  • 170 l / h of water were fed as a continuous phase into a first inlet of a venturi device as shown in FIGS. Figures 2-4 .
  • the water supply pressure is 30 bar.
  • the diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1 mm.
  • a dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 27 kg / h.
  • the diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 2 mm.
  • the venturi velocity is 60 m / s in the continuous phase nozzle.
  • the median particle size of the emulsion is 0.67 microns.
  • the water supply pressure is 31 bar.
  • the diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 0.8 mm.
  • a dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 8 kg / h.
  • the diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 1.6 mm.
  • the venturi velocity is 44 m / s in the continuous phase nozzle.
  • the median particle size of the emulsion is 0.82 microns.
  • a venturi device 180 l / h of water was fed as a continuous phase into a first inlet of a venturi device as shown in FIGS. Figures 2-4 .
  • the water supply pressure is 32 bar.
  • the diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1 mm.
  • a dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 15 kg / h.
  • the diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 1 mm (same diameter for the continuous phase and mixed phase nozzle).
  • the venturi velocity is 63 m / s in the mixed phase nozzle.
  • the emulsion was almost immediately dispersed in separate phases: water and drops of ASA. It was impossible to measure the particle size distribution.
  • the water supply pressure is 30 bar.
  • the diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1 mm.
  • a dispersed phase based on PREQUEL 90F sizing agent (one AnKD provided by Ashland Hercules Water Technologies, Wilmington, Del.) was supplied under vacuum to the suction inlet of the venturi device at 30 kg / h.
  • the diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 2 mm.
  • the venturi velocity is 53 m / s in the continuous phase nozzle.
  • the emulsion was stable with a median particle size of 0.8 microns.
  • the water supply pressure is 30 bar.
  • the diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 0.8 mm.
  • a dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 30 kg / h.
  • the diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 2.4 mm.
  • the venturi velocity is 44 m / s in the continuous phase nozzle.
  • the emulsion was stable with a median particle size of 1.15 microns.
  • the water supply pressure is 30 bar.
  • the diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1.2 mm.
  • a dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 30 kg / h.
  • the diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 1.6 mm.
  • the venturi velocity is 53 m / s in the continuous phase nozzle.
  • the emulsion was stable with a median particle size of 0.8 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

La présente invention se rapporte à un appareil, un système et un procédé pour émulsifier de l'huile et de l'eau qui sont particulièrement utiles dans la préparation d'émulsions aqueuses d'agents d'encollage pour l'encollage interne ou de surface du papier et du carton ou pour l'inversion de produits polymères en émulsion inverse utilisés dans le traitement du papier et du carton.The present invention relates to an apparatus, system and method for emulsifying oil and water which are particularly useful in the preparation of aqueous emulsions of sizing agents for internal or surface sizing. paper and paperboard or for the reversal of inverse emulsion polymer products used in paper and paperboard processing.

CONTEXTE DE L'INVENTIONBACKGROUND OF THE INVENTION

Les additifs utilisés dans l'industrie papetière dans le but rendre les pénétrants aqueux résistants sont généralement appelés agents d'encollage. US 1,540,592, publié en 1925 , décrit un appareil avec un éjecteur et une pompe à turbine en série. WO 99/25466 A1 concerne un système d'alimentation en polymère et son procédé d'utilisation. La divulgation de ce document forme la base pour le préambule des revendications 1, 7, et 15.Additives used in the paper industry for the purpose of rendering aqueous penetrants resistant are generally referred to as sizing agents. US 1,540,592, published in 1925 , describes an apparatus with an ejector and a turbine pump in series. WO 99/25466 A1 relates to a polymer supply system and its method of use. The disclosure of this document forms the basis for the preamble of claims 1, 7, and 15.

Les deux agents d'encollage synthétiques les plus usuels sont le dimère de cétène d'alkyle (AKD) et l'anhydride succinique d'alcényle (ASA).The two most common synthetic sizing agents are alkyl ketene dimer (AKD) and alkenyl succinic anhydride (ASA).

Ces deux agents, ASA et AKD, sont des matières hydrophobes, non solubles dans l'eau. Ces matières peuvent être ajoutées à la pâte liquide avant formation de la feuille, que l'on dénomme encollage interne, ou peuvent être appliqués à la surface de la bobine formée, que l'on dénomme encollage de surface. Pour les deux applications, pour être efficace, l'agent d'encollage doit être bien réparti dans le système aqueux. Pour cette raison, ces additifs non solubles dans l'eau sont généralement ajoutés sous la forme d'émulsions d'huile dans l'eau aqueuses.These two agents, ASA and AKD, are hydrophobic materials, not soluble in water. These materials can be added to the liquid paste before forming the sheet, which is called internal sizing, or can be applied to the surface of the formed coil, which is called surface sizing. For both applications, to be effective, the sizing agent must be well distributed in the aqueous system. For this reason, these insoluble additives in water are generally added in the form of aqueous oil emulsions.

Les émulsions aqueuses des agents d'encollage peuvent être procurées à l'usine de papier sous cette forme, ou être préparées sur site. En effet, il est plus avantageux, pour certains agents d'encollage synthétiques réagissant avec la cellulose, de les émulsifier sur site. L'ASA, par exemple, est émulsifié sur site en raison de l'instabilité de la fonctionnalité anhydride après l'émulsification avec l'eau.The aqueous emulsions of the sizing agents can be provided to the paper mill in this form, or be prepared on site. Indeed, it is more advantageous for some synthetic sizing agents reactive with cellulose to emulsify them on site. ASA, for example, is emulsified on site because of the instability of the anhydride functionality after emulsification with water.

A ce jour, deux classes de technologies d'émulsification sur site sont utilisées dans l'industrie: (1) la technologie à cisaillement élevé, et (2) la technologie à cisaillement faible. Avec l'émulsification à cisaillement élevé on fait passer l'ASA (ou un autre agent d'encollage) et un polymère synthétique, l'amidon, ou un colloïde protecteur, à travers une pompe à turbine à cisaillement élevé ou dispositif d'homogénéisation, avec ou sans ajout d'agents de surface. Les limitations de cette approche résident dans la nécessité d'avoir recours à "un équipement lourd, coûteux et relativement complexe capable d'exercer des pressions et/ou cisaillement d'homogénéisation élevés, ainsi qu'à des procédures strictes concernant les températures, proportions émulsifiantes, etc., afin de produire une émulsion stable satisfaisante à la colle spécifique." (Brevet US No. 4,040,900 ).To date, two classes of on-site emulsification technologies are used in the industry: (1) high shear technology, and (2) low shear technology. With high shear emulsification, the ASA (or other sizing agent) and synthetic polymer, starch, or protective colloid are passed through a high shear turbine pump or homogenizer. , with or without the addition of surfactants. The limitations of this approach lie in the need for "heavy, expensive and relatively complex equipment capable of exerting high homogenization pressures and / or shear, as well as stringent temperature, proportional procedures. emulsifiers, etc., in order to produce a satisfactory stable emulsion with specific glue. " (Patent US 4,040,900 ).

Dans le but de palier à ces limitations concernant l'émulsification à cisaillement élevé, des approches basées sur l'émulsification à cisaillement faible ont été proposées, en commençant par Mazzarella (Brevet US. No. 4,040,900) en 1977 qui a divulgué des mélanges de ASA avec 3-20 parties en poids d'un additif actif de surface (agent de surface) que "l'on peut aisément émulsifier avec l'eau en l'absence de forces de cisaillement élevées et dans une condition de pression normale simplement en agitant, et en faisant passer par un robinet mélangeur ou un aspirateur usuel". Malheureusement, une telle émulsification à cisaillement faible peut conduire à des problèmes d'apparition de mousse et une efficacité d'encollage médiocre du fait que l'augmentation du niveau de l'agent de surface provoque l'accumulation d'agent de surface dans le système. ( C.E. Farley et R.B Wasser, "Sizing with Alkenyl Succinic Anhydride", Chapitre 3 in The sizing of Paper, 2nd Edition, W.F. Reynolds, Ed. Tappi Press, 1989, pp 51-62 ).In order to overcome these limitations on high shear emulsification, approaches based on low shear emulsification have been proposed, starting with Mazzarella (US Patent No. 4,040,900) in 1977 which has disclosed mixtures of ASA with 3-20 parts by weight of a surface active additive (surfactant) which can be readily emulsified with water in the absence of high shear forces and in a normal pressure condition simply by stirring, and by passing through a mixing valve or a conventional vacuum cleaner ". Unfortunately, such low shear emulsification can lead to foaming problems and poor sizing efficiency because the increase in the level of the surfactant causes the surfactant to accumulate in the surface. system. ( CE Farley and RB Wasser, "Sizing with Alkenyl Succinic Anhydride", Chapter 3 in The sizing of Paper, 2nd Edition, Reynolds WF, Ed Tappi Press, 1989, pp 51-62 ).

Plus récemment, Pawlowska, et al. (WO2006/096216 ), divulguent "un procédé amélioré pour l'encollage de papier dans la partie humide qui utilise un équipement pour cisaillement faible plus simple et moins coûteux pour l'émulsification ASA.". Pawlowska et al. divulguent un procédé d'encollage comprenant le fait de "former, en l'absence de forces de cisaillement élevées, une émulsion d'encollage aqueuse comprenant un composant d'anhydride succinique d'alcényle" qui est dilué par la suite à l'aide d'un composant cationique. La différence principale entre Pawlowska et Mazzarella réside dans la post-dilution de l'émulsion avec un composant cationique dans le but d'améliorer la rétention. Les exemples démontrent de manière soutenue que les émulsions ASA à cisaillement faible post-diluées à l'aide d'un amidon cationique sont des agents d'encollage moins efficaces que les émulsions ASA à cisaillement élevé, mais on soutient que la simplicité du processus d'émulsification des émulsions ASA à cisaillement faible apporte au fabricant de papier "des avantages opérationnels et de coûts".More recently, Pawlowska, et al. (WO2006 / 096216 ), disclose "an improved process for wet paper sizing which uses simpler and less expensive low shear equipment for ASA emulsification." Pawlowska et al. disclose a sizing process comprising "forming, in the absence of high shear forces, an aqueous sizing emulsion comprising an alkenyl succinic anhydride component" which is subsequently diluted using a cationic component. The main difference between Pawlowska and Mazzarella lies in the post-dilution of the emulsion with a cationic component in order to improve retention. The examples demonstrate consistently that low-shear ASA emulsions post-diluted with cationic starch are less effective sizing agents than high-shear ASA emulsions, but it is argued that the simplicity of the process emulsification of low shear ASA emulsions provides the paper manufacturer with "operational and cost advantages".

D'autres brevets divulguent l'utilisation d'amidons modifiés (par exemple, le Brevet US. 6,210,475 ) ou polymères (par exemple, US 6,444,024 B1 ), afin d'améliorer la performance des systèmes d'émulsification à cisaillement faible, cependant, aucun de ces brevets ne résout les questions liées au comportement et à la performance basique caractérisant le système à cisaillement faible.Other patents disclose the use of modified starches (e.g. US. 6210475 ) or polymers (for example, US 6,444,024 B1 ), in order to improve the performance of low shear emulsification systems, however, none of these patents solves the behavioral and basic performance issues characterizing the low shear system.

Dans la littérature, on a tendance à avoir des définitions qualitatives des conditions à "cisaillement faible" par rapport aux conditions à "cisaillement élevé". Typiquement, on utilise une liste d'équipements qui convient ou non au descripteur. Les systèmes à "cisaillement élevé" sont :"présents dans les mélangeurs Waring, les pompes à turbines, ou d'autres agitateurs à très hautes vitesses, etc.", et "on les trouve dans les équipements d'homogénéisation à pistons ou d'autres types" (Mazzarella). Les systèmes à "cisaillement faible" consistent : "simplement en l'agitation, le passage par un robinet mélangeur ou un aspirateur usuel ou par le biais de l'agitation habituelle présente dans un système de préparation de la pâte" (Mazzarella) ou, les conditions de cisaillement "créées par un dispositif sélectionné du groupe constitué de pompes centrifuges, des mélangeurs en ligne statiques, des pompes péristaltiques, et leurs combinaisons" (Pawlowska). Mais ces définitions se confondent dans les listes d'équipements d'émulsification commerciaux qui comportent des unités industrielles à faible et haute pression telles que les "émulseurs à turbine basse pression Cytec de Cytec Industries, Inc, les systèmes émulseurs haute pression Nalco, et les émulseurs venturi et les turbines de National Starch" ce qui suggère que l'on trouve des pompes à turbines qui rentrent dans la catégorie du cisaillement faible. De plus, les mélangeurs Waring sont utilisés pour produire des émulsions ASA haute et basse énergie ( Chen and Woodward, Tappi J. Aug 1986, pg 95 ) en faisant varier la tension électrique. Ainsi, les systèmes à "cisaillement faible" et à "cisaillement élevé" ne peuvent être définis uniquement par le type de l'équipement.In the literature, there is a tendency to have qualitative definitions of "low shear" versus "high shear" conditions. Typically, a list of equipment that is suitable or unsuitable for the descriptor is used. "High shear" systems are: "present in Waring mixers, turbine pumps, or other high speed agitators, etc.", and "can be found in piston homogenizer or 'other types' (Mazzarella). "Low shear" systems consist of: "simply stirring, passing through a mixing valve or a conventional vacuum cleaner or through the usual agitation present in a dough preparation system" (Mazzarella) or, the shear conditions "created by a selected device from the group consisting of centrifugal pumps, static line mixers, peristaltic pumps, and combinations thereof" (Pawlowska). But these definitions merge into lists of commercial emulsification equipment that include low and high pressure industrial units such as Cytec's low-pressure turbine emulsifiers from Cytec Industries, Inc., Nalco high-pressure foam systems, and Venturi emulsifiers and turbines from National Starch "suggesting that there are turbine pumps that fall into the category of low shear. In addition, Waring mixers are used to produce high and low energy ASA emulsions ( Chen and Woodward, Tappi J. Aug 1986, pg 95 ) by varying the voltage. Thus, "low shear" and "high shear" systems can not be defined solely by the type of equipment.

Dans les " Principles of ASA Sizing" (CE Farley, 1987 Tappi Sizing Short Course, pg 89 ) on trouve une définition plus quantitative des systèmes d'émulsification à "cisaillement élevé" et à "cisaillement faible": "l'émulsification à cisaillement élevé s'élabore avec une pompe à turbine à tolérances précises. Le travail effectué par la pompe est tel que le différentiel de pression entre la sortie et l'entrée de la pompe est d'environ 8,3 à 9,7 bar (120 à 140 psi). L'ASA et l'amidon sont mélangés au niveau de l'entrée de la pompe à turbine ou à sa proximité." "Dans l'émulsification à cisaillement faible, l'ASA, l'amidon ainsi qu'un agent de surface sont mélangés puis on 1 es fait passer à travers une série de venturis. Le rapport typique de amidon: ASA: agent de surface est d'environ 2,5:1:0,05. Un inconvénient potentiel de ce procédé est le niveau plus élevé d'agent de surface utilisé, ce qui peut conduire à ce qu'on appelle un "désencollage" et une efficacité médiocre de l'ASA ainsi que des problèmes d'apparition de mousse. " Ainsi, la distinction que fait Farley entre le cisaillement élevé et le cisaillement faible est que le les systèmes à cisaillement élevé ont un différentiel de pression de l'ordre de 8,3 à 9, 7 bar (120 à 140 psi).In the " Principles of ASA Sizing "(CE Farley, 1987 Tappi Sizing Short Course, pg 89 A more quantitative definition of "high shear" and "low shear" emulsification systems is that "high shear emulsification is performed with a precisely tolerated turbine pump." The work done by the pump is such as The pressure differential between the outlet and the pump inlet is approximately 8.3 to 9.7 bar (120 to 140 psi). ASA and starch are mixed at or near the inlet of the turbine pump. "In low shear emulsification, ASA, starch and a surfactant are mixed and then passed through a series of venturis. The typical ratio of starch: ASA: surfactant is about 2.5: 1: 0.05. A potential disadvantage of this process is the higher level of surfactant used, which can lead to so-called "desizing" and poor efficiency of the ASA as well as foaming problems. Thus, Farley's distinction between high shear and low shear is that the high shear systems have a pressure differential of the order of 8.3 to 9.7 bar (120 to 140 psi).

De même, Dilts et al. (US 2008/0277084 A1 ) définit le cisaillement faible par la capacité de pomper un liquide à travers une pompe avec une contre-pression de 3,4 bar (50 psi) ou moins, alors que le cisaillement élevé est définit comme la nécessité d'avoir une contre-pression de 10,3 à 20,7 bars (150 à 300 psi) pour pomper un liquide.Similarly, Dilts et al. (US 2008/0277084 A1 ) defines low shear as the ability to pump liquid through a pump with a backpressure of 3.4 bar (50 psi) or less, while high shear is defined as the need for backpressure from 10.3 to 20.7 bar (150 to 300 psi) for pumping a liquid.

WO 01/88262 A2 divulgue un équipement d'émulsification commercial comprenant des unités de basse et haute pression industrielles, et fait référence à un dispositif d'émulsification turbine et venturi. WO 01/88262 A2 discloses commercial emulsification equipment comprising industrial low and high pressure units, and refers to a turbine and venturi emulsification device.

On a encore besoin, sur le marché, d'avoir un équipement d'émulsification ASA, plus simple et moins coûteux, qui ne soulève pas de problèmes de comportement de la machine à papier (mousse, dépôts) et/ou une efficacité d'encollage médiocre due à une charge élevée d'agent de surface ou une mauvaise qualité de l'émulsion.There is still a need on the market for simpler and less expensive ASA emulsification equipment which does not raise problems with the behavior of the paper machine (foam, deposits) and / or an efficiency of poor sizing due to high surfactant load or poor quality of the emulsion.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

On a découvert qu'il est possible de préparer des émulsions d'agents d'encollage (tels que ASA) stables et de bonne qualité dans l'eau, avec un bon comportement de la machine à papier et une bonne efficacité d'encollage en alimentant de l'eau à travers un dispositif venturi avec une pression relativement élevée et en introduisant l'agent d'encollage au niveau de l'entrée d'admission du venturi. Ce système est plus simple, plus fiable, plus économe en termes énergétiques et moins coûteux que les systèmes à cisaillement élevé traditionnels utilisés de nos jours, et procure des émulsions de meilleure qualité en utilisant des niveaux d'agent de surface moins importants que les systèmes à cisaillement faible, consommant peu d'énergie disponibles de nos jours. De plus, ce système peut être utilisé pour l'émulsification sur site d'autres additifs de fabrication du papier, ou l'inversion de produits polymères d'émulsion inverse.It has been discovered that it is possible to prepare emulsions of sizing agents (such as ASA) which are stable and of good quality in water, with a good behavior of the paper machine and good sizing efficiency. supplying water through a venturi device with a relatively high pressure and introducing the sizing agent at the intake inlet of the venturi. This system is simpler, more reliable, more energy efficient and less costly than the traditional high shear systems used today, and provides higher quality emulsions using lower surfactant levels than conventional systems. low shear, low energy consumption available nowadays. In addition, this system can be used for on-site emulsification of other papermaking additives, or the reversal of inverse emulsion polymer products.

Dans un premier aspect, un système d'émulsification d'huile dans l'eau ou d'eau dans l'huile comporte un dispositif venturi. Une phase continue est introduite sous pression dans le dispositif venturi et à travers une buse à phase continue ayant un premier diamètre dans une section de mélange. Une phase dispersée est introduite dans la section de mélange du dispositif venturi afin de former une émulsion de la phase dispersée dans la phase continue. L'émulsion est menée à travers une buse pour phase mélangée qui possède un second diamètre et vers une sortie du dispositif venturi. Le diamètre de la buse pour phase mélangée est plus important que le diamètre de la buse pour phase continue avec un rapport supérieur à 1:1 et inférieur à 4:1.In a first aspect, a system for emulsifying oil in water or water in oil comprises a venturi device. A continuous phase is introduced under pressure into the venturi device and through a continuous phase nozzle having a first diameter in a mixing section. A dispersed phase is introduced into the mixing section of the venturi device to form an emulsion of the dispersed phase in the continuous phase. The emulsion is conducted through a mixed phase nozzle which has a second diameter and to an outlet of the venturi device. The diameter of the mixed phase nozzle is larger than the diameter of the continuous phase nozzle with a ratio greater than 1: 1 and less than 4: 1.

Des dispositifs venturi étaient connus. Par exemple, WO 98/45034 A1 décrit un dispositif venturi utilsé dans le domaine de soutènement en taille. Le dispositif venturi étai prévu pour mélanger de l'huile soluble dans l'eau.Venturi devices were known. For example, WO 98/45034 A1 describes a venturi device used in the field of support in size. The venturi device was intended to mix oil soluble in water.

Dans l'invention la phase continue comprend de l'eau, qui est introduite à une pression d'environ 10 bars à environ 50 bars.In the invention the continuous phase comprises water, which is introduced at a pressure of about 10 bar to about 50 bar.

La vitesse d'écoulement se trouve dans la plage de 10 à 100 m/s approximativement. De préférence, la phase dispersée comprend un agent d'encollage ou plus. L'émulsion peut être évacuée dans une chambre de décharge, dans laquelle des additifs optionnels peuvent y être mélangés. L'émulsion peut être stockée pour une utilisation ultérieure, ou être diluée avec l'eau ou avec une autre solution aqueuse avant d'être ajoutée à la partie humide, ou à une presse d'encollage ou coucheuse pour un système de fabrication de papier ou de carton. Alternativement, l'émulsion peut être ajoutée directement à la partie humide, ou à une presse d'encollage ou coucheuse pour un système de fabrication de papier ou de carton.The flow velocity is in the range of approximately 10 to 100 m / s. Preferably, the dispersed phase comprises one or more sizing agents. The emulsion may be discharged into a discharge chamber, where optional additives may be mixed therein. The emulsion can be stored for later use, or diluted with water or other aqueous solution before being added to the wet portion, or a sizing press or coater for a paper making system. or cardboard. Alternatively, the emulsion can be added directly to the wet portion, or to a sizing press or coater for a papermaking or paperboard manufacturing system.

La phase dispersée peut contenir un composant d'encollage du papier réagissant à la cellulose ou un mélange de tels composants ou un composant d'encollage du papier ne réagissant pas à la cellulose ou un mélange de tels composants. Les composants d'encollage du papier réagissant à la cellulose exemplaires incluent l'anhydride succinique d'alcényle (ASA), les dimères et multimères de cétène, tels que le dimère de cétène d'alkyle (AKD), des époxydes organiques contenant d'environ 12 à 22 atomes de carbone, des halogénures d'acyle contenant d'environ 12 à 22 atomes de carbone, des anhydrides d'acides gras issus d'acides gras à environ 12 à 22 atomes de carbone et des isocyanates organiques contenant d'environ 12 à 22 atomes de carbone.The dispersed phase may contain a sizing component of the cellulose-reactive paper or a mixture of such components or a sizing component of the non-cellulose-reacting paper or a mixture of such components. Exemplary cellulose-reactive paper sizing components include alkenyl succinic anhydride (ASA), ketene dimers and multimers, such as alkyl ketene dimer (AKD), organic epoxies containing about 12 to 22 carbon atoms, acyl halides containing from about 12 to 22 carbon atoms, fatty acid anhydrides from about 12 to 22 carbon atoms fatty acids, and organic isocyanates containing from about 12 to about 22 carbon atoms. about 12 to 22 carbon atoms.

La phase dispersée peut être introduire uniquement par aspiration au niveau de l'entrée d'aspiration du dispositif venturi, ou, éventuellement, pompée à l'aide d'une pompe dans la section de mélange. De préférence, la phase dispersée est filtrée avant son introduction dans la section de mélange.The dispersed phase can be introduced only by suction at the suction inlet of the venturi device, or possibly pumped with a pump in the mixing section. Preferably, the dispersed phase is filtered before it is introduced into the mixing section.

Alternativement, la phase continue peut être de l'eau et la phase dispersée peut être un polymère d'émulsion inverse utilisé généralement dans la fabrication du papier. Dans ce cas, une émulsion d'huile dans l'eau contenant un polymère dans la phase aqueuse peut être introduite dans le dispositif venturi par l'entrée d'aspiration. La présence d'un gros volume d'eau de dilution et le mélange dans la section de mélange qui casse l'émulsion vont "activer" le polymère, produisant un mélange à base de polymère dilué contenant des gouttelettes d'huile. Un exemple d'un polymère d'émulsion inverse utilisé généralement dans la fabrication de papier est un agent d'aide à la rétention et au drainage, tel quel les agents d'assistance à la rétention et au drainage PERFORM SP7200 ou PERFORM PC8179 (Ashland Inc., Covington, KY).Alternatively, the continuous phase may be water and the dispersed phase may be an inverse emulsion polymer generally used in papermaking. In this case, an oil-in-water emulsion containing a polymer in the aqueous phase can be introduced into the venturi device through the suction inlet. The presence of a large volume of dilution water and the mixing in the mixing section which breaks the emulsion will "activate" the polymer, producing a dilute polymer-based mixture containing oil droplets. An example of an inverse emulsion polymer generally used in papermaking is a retention and drainage aid, such as PERFORM SP7200 or PERFORM PC8179 retention and drainage assistants (Ashland). Inc., Covington, KY).

Dans un second aspect, un procédé d'émulsification d'un agent d'encollage devant être utilisé pour le traitement de papier ou de carton comporte les étapes suivantes. Une phase continue est introduite sous pression dans un dispositif venturi et au niveau d'une buse pour phase continue qui possède un premier diamètre qui dirige ladite phase continue dans une section de mélange du dispositif. Une phase dispersée est introduite dans la section de mélange du dispositif venturi afin de former une émulsion de la phase dispersée dans la phase continue. On conduit l'émulsion à travers une buse pour phase mélangée qui possède un second diamètre d2 qui est plus important que le diamètre de la buse pour phase continue d1 avec un rapport supérieur à 1:1 et inférieur à 4:1. La phase continue est introduite avec une pression d'environ 10 bars à environ 50 bars et avec une vitesse de l'écoulement dans la buse pour phase continue allant d'environ 10 à environ 100 m/s.In a second aspect, a method of emulsifying a sizing agent to be used for processing paper or board comprises the following steps. A continuous phase is introduced under pressure into a venturi device and into a continuous phase nozzle which has a first diameter which directs said continuous phase into a mixing section of the device. A dispersed phase is introduced into the mixing section of the venturi device to form an emulsion of the dispersed phase in the continuous phase. The emulsion is passed through a mixed phase nozzle which has a second diameter d2 which is larger than the diameter of the continuous phase nozzle d1 with a ratio greater than 1: 1 and less than 4: 1. The continuous phase is introduced at a pressure of about 10 bar to about 50 bar and with a continuous phase nozzle flow rate of from about 10 to about 100 m / sec.

Dans le procédé, la phase dispersée peut contenir un composant d'encollage du papier réagissant à la cellulose ou un mélange de tels composants ou un composant d'encollage du papier ne réagissant pas à la cellulose ou un mélange de tels composants. Les composants d'encollage du papier réagissant à la cellulose exemplaires incluent l'anhydride succinique d'alcényle (ASA), les dimères et multimères de cétène, des époxydes organiques contenant d'environ 12 à 22 atomes de carbone, des halogénures d'acyle contenant d'environ 12 à 22 atomes de carbone, des anhydrides d'acides gras issus d'acides gras à environ 12 à 22 atomes de carbone et des isocyanates organiques contenant d'environ 12 à 22 atomes de carbone.In the process, the dispersed phase may contain a sizing component of the cellulose-reactive paper or a mixture of such components or a sizing component of the paper not reacting with the cellulose or a mixture of such components. Exemplary cellulose-reactive paper sizing components include alkenyl succinic anhydride (ASA), ketene dimers and multimers, organic epoxides containing from about 12 to 22 carbon atoms, acyl halides. containing from about 12 to 22 carbon atoms, fatty acid anhydrides from about 12 to 22 carbon atoms and organic isocyanates containing from about 12 to about 22 carbon atoms.

Dans le procédé, la phase dispersée peut être introduire uniquement par aspiration au niveau de l'entrée d'aspiration du dispositif venturi, ou, éventuellement, pompée à l'aide d'une pompe dans la section dé mélange. De préférence, la phase dispersée est filtrée avant son introduction dans la section de mélange.In the process, the dispersed phase can be introduced solely by suction at the suction inlet of the venturi device, or possibly pumped by means of a pump into the mixing section. Preferably, the dispersed phase is filtered before it is introduced into the mixing section.

L'émulsion résultante d'agent d'encollage possède un diamètre des particules moyen inférieur à 2 microns environ, de préférence entre 0,5 et 1,5 microns, et le plus préférablement inférieur à environ 1 micron, tel qu'on le mesure par le biais d'une technique de diffusion de la lumière sur une émulsion témoin pendant environ une à environ dix minutes après sortie de l'émulsion du dispositif venturi. L'émulsion est ajoutée soit à une partie humide ou à une presse d'encollage ou coucheuse pour un système de fabrication de papier ou de carton. Si la phase continue est l'eau, l'émulsion est de préférence post-diluée avec l'eau afin de produire une teneur en éléments solides dans la plage d'environ 1 à environ 5% en poids. Par la suite, l'émulsion ayant subi la post-dilution est de préférence mélangée avec une solution aqueuse d'un polymère cationique synthétique ou naturel avant d'être ajoutée à la partie humide, la presse d'encollage ou la coucheuse.The resulting emulsion of sizing agent has an average particle diameter of less than about 2 microns, preferably 0.5 to 1.5 microns, and most preferably less than about 1 micron as measured. by means of a light diffusion technique on a control emulsion for about one to about ten minutes after emulsion exit of the venturi device. The emulsion is added to either a wet part or a sizing or coater for a paper or board making system. If the continuous phase is water, the emulsion is preferably post-diluted with water to produce a solids content in the range of about 1 to about 5% by weight. Subsequently, the post-dilution emulsion is preferably mixed with an aqueous solution of a synthetic or natural cationic polymer before being added to the wet portion, sizing press or coater.

Dans un autre aspect, un dispositif venturi possède une buse pour phase continue qui a un premier diamètre qui conduit un premier liquide sous pression à une section de mélange, ainsi qu'une entrée pour diriger un second liquide à la section de mélange afin d'y former une émulsion. Le dispositif venturi a en outre une buse pour phase mélangée qui possède un second diamètre à travers lequel on dirige l'émulsion vers une sortie du dispositif venturi. Le diamètre de la buse pour phase mélangée est plus important que le diamètre de la buse pour phase continue avec un rapport supérieur à 1:1 et inférieur à 4:1. De préférence, la section de mélange est de forme conique et effilée d'un diamètre le plus large au niveau duquel l'entrée rejoint la section de mélange à un diamètre le plus étroit au niveau duquel la buse pour phase mélangée rejoint la section de mélange. De préférence, le dispositif venturi comporte un diffuseur de décharge en communication fluidique avec la buse pour phase mélangée et au niveau de la sortie du dispositif venturi.In another aspect, a venturi device has a continuous phase nozzle that has a first diameter that conducts a first liquid under pressure to a mixing section, and an inlet for directing a second liquid to the mixing section so as to form an emulsion. The venturi device further has a mixed phase nozzle which has a second diameter through which the emulsion is directed to an outlet of the venturi device. The diameter of the mixed phase nozzle is larger than the diameter of the continuous phase nozzle with a ratio greater than 1: 1 and less than 4: 1. Preferably, the mixing section is tapered and tapered with a larger diameter at which the inlet meets the narrower diameter mixing section at which the mixed phase nozzle rejoins the mixing section. . Preferably, the venturi device comprises a discharge diffuser in fluid communication with the nozzle for mixed phase and at the outlet of the venturi device.

BREVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

D'autres objectifs, avantages et particularités, ainsi que des applications éventuelles de la présente invention sont divulgués dans la description qui suit des modes de réalisation en référence aux dessins joints, dans lesquels:

  • La figure 1 est un diagramme schématique d'un système exemplaire pour l'émulsification d'huile et d'eau selon l'invention;
  • La figure 2 est une vue en élévation côté sortie d'un dispositif venturi selon l'invention;
  • La figure 3 est une vue en coupe du dispositif venturi prise le long de la ligne 3-3 de la figure 2; et
  • La figure 4 est une vue en coupe éclatée du dispositif venturi montrant la buse pour phase continue et la buse pour phase mélangée du dispositif venturi de la figure 3.
Other objects, advantages and features, as well as possible applications of the present invention are disclosed in the following description of the embodiments with reference to the accompanying drawings, in which:
  • The figure 1 is a schematic diagram of an exemplary system for the emulsification of oil and water according to the invention;
  • The figure 2 is an elevation view on the outlet side of a venturi device according to the invention;
  • The figure 3 is a sectional view of the venturi device taken along line 3-3 of the figure 2 ; and
  • The figure 4 is an exploded sectional view of the venturi device showing the continuous phase nozzle and the mixed phase nozzle of the venturi device of the figure 3 .

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

Dans cette demande, une "émulsion" est un mélange de particules d'un liquide dans un deuxième liquide. Deux types usuels d'émulsions sont les émulsions d'huile dans l'eau et d'eau dans l'huile. Par "huile" on désigne généralement un liquide non soluble ou presque non soluble dans l'eau. Pour les émulsions de type huile dans l'eau, l'eau est la "phase continue" et l'huile est la phase discontinue. Pour les émulsions du type eau dans l'huile, c'est l'inverse. Ici, le liquide qui forme la phase continue de l'émulsion finale est désigné par "phase continue" et l'autre liquide qui forme la phase discontinue de l'émulsion finale est désigné par "phase dispersée". Dans le cas d'une émulsion de type huile dans l'eau, l'eau est la phase continue et l'huile est la phase dispersée.In this application, an "emulsion" is a mixture of particles of a liquid in a second liquid. Two common types of emulsions are oil-in-water and water-in-oil emulsions. By "oil" is generally meant a liquid that is insoluble or almost insoluble in water. For oil-in-water emulsions, water is the "continuous phase" and the oil is the discontinuous phase. For emulsions of the water-in-oil type, the opposite is true. Here, the liquid that forms the continuous phase of the final emulsion is referred to as "continuous phase" and the other liquid that forms the discontinuous phase of the final emulsion is referred to as "disperse phase". In the case of an oil-in-water emulsion, the water is the continuous phase and the oil is the dispersed phase.

Un schéma d'un système 10 pour l'émulsification d'huile et d'eau est montré dans la figure 1. Le système 10 sera décrit en se rapportant à l'émulsification d'un agent d'encollage, tel que le dimère de cétène d'alkyle (AKD) ou l'anhydride succinique d'alcényle (ASA), dans l'eau. Cependant, il faut comprendre que le système peut être utilisé pour émulsifier d'autres matières, et le choix des phases continue et dispersée a un but illustratif et ne vise pas à limiter l'invention.A scheme of a system for oil and water emulsification is shown in FIG. figure 1 . System 10 will be described with reference to the emulsification of a sizing agent, such as alkyl ketene dimer (AKD) or alkenyl succinic anhydride (ASA), in water. However, it should be understood that the system can be used to emulsify other materials, and the choice of continuous and dispersed phases is for illustrative purposes and is not intended to limit the invention.

En se rapportant à la figure 1, un apport d'une "phase continue", telle que l'eau sans y être limitée dans ce mode de réalisation, provenant d'un réservoir de stockage ou réservoir d'alimentation 12 est fourni à une pompe 22 via une ligne 14 et un filtre 16 à travers une soupape de commande 18 et un débitmètre 20. Le débit de l'eau, que l'on peut en variante appeler "phase continue" en ce qui concerne ce mode de réalisation, est commandé à un débit spécifique en utilisant une boucle de régulation avec le débitmètre 20 et la soupape de commande 18. D'autres moyens de régulation du débit sont envisageables comme le sait l'homme du métier. La pompe 22 peut être d'un type quelconque, y compris une pompe centrifuge à plusieurs étages ou une pompe régénérative, qui peut fournir une pression d'alimentation d'environ 30 bars, ou des pressions d'alimentation dans la plage d'environ 10 à 50 bars, plus préférablement d'environ 18 à 35 bars. Des jauges de pression 40a,40b,40c sont prévues dans le but de surveiller, respectivement, les pressions de la phase continue, de la phase dispersée et de l'émulsion. La phase continue est envoyée à une première entrée 48 (se rapporter à la figure 3) d'un dispositif venturi 50.By referring to the figure 1 , a supply of a "continuous phase", such as water without being limited in this embodiment, from a storage tank or feed tank 12 is supplied to a pump 22 via a line 14 and a filter 16 through a control valve 18 and a flow meter 20. The flow rate of the water, which may alternatively be called "continuous phase" with respect to this embodiment, is controlled at a specific flow rate. using a control loop with the flow meter 20 and the control valve 18. Other flow control means are conceivable as is known to those skilled in the art. The pump 22 can be of any type, including a multi-stage centrifugal pump or a regenerative pump, which can provide a supply pressure of about 30 bar, or supply pressures in the range of about 10 to 50 bar, more preferably about 18 to 35 bar. Pressure gauges 40a, 40b, 40c are provided for the purpose of monitoring, respectively, the pressures of the continuous phase, the dispersed phase and the emulsion. The continuous phase is sent to a first entry 48 (refer to the figure 3 ) of a venturi device 50.

Une "phase dispersée", telle qu'un agent d'encollage liquide, sans toutefois y être limitée dans ce mode de réalisation, est fournie (ou pompée à l'aide d'une pompe 38 optionnelle), depuis un réservoir de stockage ou réservoir d'alimentation 32 via une ligne 34 et un filtre 36 en passant par un débitmètre 39 et un régulateur de contre-pression 42 à une entrée d'aspiration 52 (se rapporter à la figure 3) du dispositif venturi 50. Le filtre 36 est conçu de sorte à éviter le colmatage d'une buse 60 pour phase mélangée du dispositif venturi 50. Se rapporter aux figures 2-4 pour les détails concernant le dispositif venturi 50.A "dispersed phase", such as a liquid sizing agent, but not limited thereto in this embodiment, is provided (or pumped with an optional pump 38) from a storage tank or supply tank 32 via a line 34 and a filter 36 through a flow meter 39 and a back pressure regulator 42 to a suction inlet 52 (refer to FIG. figure 3 ) of the venturi device 50. The filter 36 is designed to prevent clogging of a nozzle 60 for mixed phase of the venturi device 50. Referring to Figures 2-4 for details regarding the Venturi 50 device.

La pompe optionnelle 38 peut être d'un type quelconque qui peut fournir une pression d'alimentation jusqu'à environ 5 bars, de préférence environ 3 bars, par exemple. Le débit de l'agent d'encollage, qui peut également être désigné par "phase dispersée" dans ce mode de réalisation, peut être commandé à l'aide de la pompe 38 ou à l'aide d'une boucle de régulation. Il est également envisageable de prévoir des commandes alternatives afin de régler le rapport de la phase continue par la phase dispersée alimentées au dispositif venturi 50. Etant donné que la phase continue alimentée au dispositif venturi 50 produit du vide au niveau de l'entrée d'aspiration 52 de la phase dispersée, on n'a pas forcément besoin de la pompe 38 pour fournir la phase dispersée au dispositif venturi 50. Néanmoins, en utilisant la pompe 38 pour fournir la phase dispersée au dispositif venturi 50 on obtient une pression d'alimentation plus soutenue et un meilleur contrôle du processus de formation de l'émulsion.The optional pump 38 may be of any type that can provide a supply pressure of up to about 5 bar, preferably about 3 bar, for example. The flow rate of the sizing agent, which may also be referred to as the "disperse phase" in this embodiment, can be controlled using the pump 38 or using a control loop. It is also conceivable to provide alternative commands to adjust the ratio of the continuous phase by the dispersed phase fed to the venturi device 50. Since the continuous phase fed to the venturi device 50 produces a vacuum at the inlet of suction 52 of the dispersed phase, it is not necessarily necessary for the pump 38 to provide the dispersed phase to the venturi device 50. Nevertheless, using the pump 38 to provide the dispersed phase to the venturi device 50 is obtained a pressure of more sustained feeding and better control of the emulsion formation process.

Les phases continue et dispersée se mélangent dans le dispositif venturi 50 et sont évacuées à une chambre 70. Le diamètre de la chambre 70 doit être suffisant pour réduire la vitesse du produit émulsifié provenant du dispositif venturi 50. Des additifs peuvent être mélangés au produit émulsifié dans la chambre 70 ou en aval de la chambre 70.The continuous and dispersed phases mix in the venturi device 50 and are evacuated to a chamber 70. The diameter of the chamber 70 must be sufficient to reduce the velocity of the emulsified product from the venturi device 50. Additives may be mixed with the emulsified product in the chamber 70 or downstream of the chamber 70.

La phase mélangée ou le produit émulsifié peut être dirigée à la machine à papier ou à un réservoir de stockage 76 ou conteneur de livraison (non montré), via une soupape de commande de la pression 74. Si la phase continue est l'eau, l'émulsion est de préférence post-diluée avec l'eau afin de produire une teneur en éléments solides dans la plage d'environ 1 à environ 5 % en poids. Ensuite, l'émulsion ayant subi la post-dilution est de préférence mélangée avec une solution aqueuse d'un polymère cationique naturel ou synthétique avant d'être ajoutée à la partie humide, la presse d'encollage ou la coucheuse d'une machine de fabrication de papier ou de carton.The mixed phase or the emulsified product may be directed to the paper machine or to a storage tank 76 or delivery container (not shown) via a pressure control valve 74. If the continuous phase is water, the emulsion is preferably post-diluted with water to produce a solids content in the range of about 1 to about 5% by weight. Then, the post-dilution emulsion is preferably mixed with an aqueous solution of a natural or synthetic cationic polymer before being added to the wet portion, the sizing press or the coater of a coating machine. manufacture of paper or cardboard.

Un mode de réalisation d'un dispositif venturi 50 pour l'émulsification d'huile et d'eau est montré dans les figures 2 à 4. La figure 3 est une section longitudinale du dispositif venturi 50. Le dispositif venturi 50 possède une première entrée 48 dans laquelle on introduit la phase continue, telle que l'eau. La phase continue circule à travers le dispositif venturi 50 dans la direction de la flèche 54. La vitesse d'écoulement de la phase continue augmente en allant de la première entrée 48 à un canal 56 à plus petit diamètre puis dans une section conique 58 avant de rentrer dans une buse au plus petit diamètre ou buse 66 pour phase continue. On peut faire varier la forme et les dimensions du canal d'écoulement de la phase continue.One embodiment of a venturi device 50 for the emulsification of oil and water is shown in FIGS. Figures 2 to 4 . The figure 3 is a longitudinal section of the venturi device 50. The venturi device 50 has a first inlet 48 into which the continuous phase, such as water, is introduced. The continuous phase flows through the venturi device 50 in the direction of the arrow 54. The flow rate of the continuous phase increases from the first inlet 48 to a smaller diameter channel 56 and then through a conical section 58 before to enter a nozzle with the smallest diameter or nozzle 66 for continuous phase. The shape and dimensions of the flow channel of the continuous phase can be varied.

Le dispositif venturi 50 possède une entrée d'aspiration 52 à travers laquelle la phase dispersée, telle qu'un agent d'encollage, mais sans y être limitée, pénètre dans le dispositif venturi 50 dans la direction de la flèche 62. Du vide est produit au niveau de l'entrée d'aspiration 52 par l'écoulement de la phase continue à travers la buse 66 pour phase continue.The venturi device 50 has a suction inlet 52 through which the dispersed phase, such as a sizing agent, but not limited thereto, enters the venturi device 50 in the direction of the arrow 62. Vacuum is produced at the suction inlet 52 by the flow of the continuous phase through the continuous phase nozzle 66.

La phase continue (par exemple de l'eau) et la phase dispersée (par exemple un agent d'encollage) se mélangent dans une chambre 80 globalement conique et rentrent par la buse 60 pour phase mélangée. Dans l'invention, le diamètre d2 de la buse pour phase mélangée est plus important que le diamètre d1 de la buse pour phase continue à un rapport supérieur à 1:1 et inférieur à 4:1. Dans un mode de réalisation de l'invention, en se rapportant à la figure 4, la buse 60 pour phase mélangée possède un diamètre d2 qui est de deux fois le diamètre d1 de la buse 66 pour phase continue. La phase continue et la phase dispersée se mélangent grâce à la turbulence régnant à l'intérieur de la chambre de mélange conique 80 entre la buse 66 pour phase continue et la buse 60 pour phase mélangée, pour former l'émulsion ou phase mélangée. L'émulsion quitte la buse 60 pour phase mélangée à travers un diffuseur de décharge 82 et quitte le dispositif venturi dans la direction de la flèche 84. L'émulsion ainsi formée est évacuée dans la chambre 70 (se rapporter à la figure 1).The continuous phase (for example water) and the dispersed phase (for example a sizing agent) mix in a generally conical chamber 80 and return through the nozzle 60 for mixed phase. In the invention, the diameter d2 of the mixed phase nozzle is larger than the diameter d1 of the continuous phase nozzle at a ratio greater than 1: 1 and less than 4: 1. In one embodiment of the invention, referring to the figure 4 , the nozzle 60 for mixed phase has a diameter d2 which is twice the diameter d1 of the nozzle 66 for continuous phase. The continuous phase and the dispersed phase are mixed due to the turbulence within the tapered mixing chamber 80 between the continuous phase nozzle 66 and the mixed phase nozzle 60 to form the emulsion or mixed phase. The emulsion leaves the mixed phase nozzle 60 through a discharge diffuser 82 and leaves the venturi device in the direction of arrow 84. The emulsion thus formed is discharged into chamber 70 (refer to FIG. figure 1 ).

Dans l'invention, les émulsions sont formées en alimentant la phase continue d'une émulsion via la buse 66 pour phase continue à haute pression. L'écoulement de la phase continue via la busse 66 pour phase continue crée une région à basse pression au niveau de l'entrée 52 pour phase dispersée au dispositif venturi 50. Les phases continue et dispersée sont mélangées dans une chambre de mélange 80 globalement conique à l'intérieur du dispositif venturi 50 et alimentées à une buse 60 pour phase mélangée qui possède un diamètre d2 plus important que le diamètre d1 de la buse 66 pour phase continue. Les deux dimensions distinctes d2 et d1 des diamètres créent deux couches de jets à grande vitesse. Le produit émulsifié provenant du dispositif venturi 50 est évacué dans une chambre 70 où la pression et la vitesse fluidique sont réduites. Dans la chambre 70 ou en aval de cette dernière, des agents additionnels peuvent être ajoutés à l'émulsion afin d'en améliorer la performance, ou bien, l'émulsion peut être diluée avec l'eau et/ou avec une solution aqueuse à base de polymère cationique, ou d'autres modifications de l'émulsion sont envisageables. La figure 1 montre en outre un réservoir 76 optionnel dans lequel on peut déposer l'émulsion.In the invention, the emulsions are formed by feeding the continuous phase of an emulsion via the high-pressure continuous phase nozzle 66. The flow of the continuous phase via the continuous phase nozzle 66 creates a low pressure region at the dispersed phase inlet 52 to the venturi device 50. The continuous and dispersed phases are mixed in a generally conical mixing chamber 80. inside the venturi device 50 and supplied to a nozzle 60 for mixed phase which has a diameter d2 greater than the diameter d1 of the nozzle 66 for continuous phase. The two distinct dimensions d2 and d1 of the diameters create two layers of jets at high speed. The emulsified product from the venturi device 50 is discharged into a chamber 70 where the pressure and the fluid velocity are reduced. In the chamber 70 or downstream of the latter, additional agents may be added to the emulsion to improve its performance, or the emulsion may be diluted with water and / or with an aqueous solution. cationic polymer base, or other modifications of the emulsion are conceivable. The figure 1 further shows an optional reservoir 76 into which the emulsion can be deposited.

Un dispositif venturi 50 représentatif possède les dimensions suivantes. En se rapportant à la figure 4, la buse 60 pour phase mélangée possède un diamètre circulaire d2 d'environ 1,2 mm et la buse 66 pour phase continue possède un diamètre circulaire d1 d'environ 0,7 mm. Dans un dispositif alternatif, la buse 60 pour phase mélangée possède un diamètre circulaire d2 d'environ 1,8 mm et la buse 66 pour phase continue possède un diamètre circulaire d1 d'environ 1 mm. En se rapportant à la figure 4, le dispositif venturi 50 représentatif a une longueur totale d'environ 90 mm. La première entrée 48 est formée avec une ouverture circulaire femelle taraudée d'environ 12,7 mm (0,5 pouces) afin de recevoir un tube d'alimentation ou raccord (non montré) pour l'introduction de la phase continue dans la première entrée 48. La première entrée 48 possède une longueur d'environ 20 mm, et le canal 56 à plus petit diamètre 56 a une longueur d'environ 35 mm, l'extrémité distale formant un effilement conique pour diriger le liquide de la phase continue à la buse 66 pour phase continue. La buse 66 pour phase continue a une longueur d'approximativement 4 mm. La buse 60 pour phase mélangée a une longueur d'environ 15 mm.A representative venturi device 50 has the following dimensions. By referring to the figure 4 the mixed phase nozzle 60 has a circular diameter d2 of about 1.2 mm and the continuous phase nozzle 66 has a circular diameter d1 of about 0.7 mm. In an alternative device, the mixed phase nozzle 60 has a circular diameter d2 of about 1.8 mm and the continuous phase nozzle 66 has a circular diameter d1 of about 1 mm. By referring to the figure 4 , the representative venturi device 50 has a total length of about 90 mm. The first inlet 48 is formed with a tapped female circular opening of about 12.7 mm (0.5 inches) to receive a feed tube or fitting (not shown) for the introduction of the continuous phase into the first The first inlet 48 has a length of about 20 mm, and the smaller diameter channel 56 has a length of about 35 mm, the distal end forming a tapering to direct the liquid from the continuous phase to the continuous phase nozzle 66. The continuous phase nozzle 66 has a length of approximately 4 mm. Mixed phase nozzle 60 has a length of about 15 mm.

L'entrée d'aspiration 52 dans le dispositif venturi 50 représentatif a un diamètre circulaire d'environ 10 mm et une longueur d'environ 10 mm. L'entrée d'aspiration 52 s'effile au niveau d'une extrémité distale conique qui dirige la matière de la phase dispersée à une tubulure qui conduit à une chambre conique 80 pour le mélange de la phase continue et de la phase dispersée ensemble pour former une phase mélangée ou émulsion. La chambre conique 80 possède un diamètre proximal circulaire d'environ 10 mm et s'effile vers la buse 60 pour phase mélangée au niveau de son extrémité distale.The suction inlet 52 in the representative venturi device 50 has a circular diameter of about 10 mm and a length of about 10 mm. The suction inlet 52 tapers at a conical distal end which directs the material of the dispersed phase to a tubing which leads to a conical chamber 80 for mixing the continuous phase and the dispersed phase together to form a mixed phase or emulsion. The conical chamber 80 has a circular proximal diameter of about 10 mm and tapers toward the mixed phase nozzle 60 at its distal end.

Le diffuseur de décharge 82, au niveau de l'extrémité distale du dispositif venturi 50 représentatif selon l'invention, est formé avec une partie externe filetée à l'extérieur d'environ 12, 7 mm (0,5 pouce) qui va être raccordée à un tube de décharge taraudé ou raccord (non montré) pour que la phase mélangée (émulsion) quitte le dispositif venturi 50. Le diffuseur de décharge a une longueur d'environ 18 mm, et une ouverture circulaire externe avec un diamètre d'environ 15 mm. Une vue en élévation d'extrémité du dispositif venturi 50 depuis le diffuseur de décharge 82 dans la figure 2 montre que le dispositif venturi 50 présente un aspect extérieur globalement hexagonal ou à six côtés, et son hauteur et largeur est d'environ 36 mm.The discharge diffuser 82, at the distal end of the representative venturi device 50, is formed with an externally threaded outer portion of about 12.7 mm (0.5 inch) which will be connected to a threaded discharge tube or fitting (not shown) so that the mixed phase (emulsion) leaves the venturi device 50. The discharge diffuser has a length of about 18 mm, and an outer circular opening with a diameter of about 15 mm. An end elevational view of the venturi device 50 from the discharge diffuser 82 in the figure 2 shows that the venturi device 50 has a generally hexagonal or six-sided exterior appearance, and its height and width is about 36 mm.

Le dispositif venturi 50 représentatif est montré dans la figure 3 formé de deux parties usinées, la première partie, dans laquelle est formée la première entrée 48 conduisant à la buse 66 du venturi, et la seconde partie, dans laquelle est formée l'entrée d'aspiration 52, la chambre conique 80, la buse 60 pour phase mélangée et le diffuseur 82. La première partie s'engage avec la seconde partie et est raccordée par filetage le biais de filets 77 formés sur l'extérieur de la première partie et l'intérieur de la seconde partie. Une bague d'étanchéité 78 est prévue pour l'étanchéité aux fluides de la première et la seconde partie.The representative venturi device 50 is shown in FIG. figure 3 formed of two machined parts, the first part, in which is formed the first inlet 48 leading to the nozzle 66 of the venturi, and the second part, in which is formed the suction inlet 52, the conical chamber 80, the nozzle The first portion engages with the second portion and is threadably threaded through threads 77 formed on the outside of the first portion and the interior of the second portion. A sealing ring 78 is provided for fluid sealing of the first and second parts.

La phase continue de l'émulsion peut être à base d'eau ou d'huile. Lorsque la phase continue est à base d'eau, la phase dispersée de l'émulsion peut être à base d'huile. Lorsque la phase continue est à base d'huile, la phase dispersée de l'émulsion peut être à base d'eau. Des exemples de phases continues à base d'eau comportent, sans y être limités, l'eau, des solutions aqueuses d'amidons et des solutions polymères. Des ingrédients additionnels utilisés habituellement dans les émulsions d'agents d'encollage, tels que, des biocides, des aluns, des résines cationiques, des agents de surface, etc., sans y être limités, peuvent être contenus dans l'apport en phase continue. Des exemples de phase dispersée à base d'huile incluent, sans y être limités, ASA, AKD, et des polymères. Des additifs tels que des agents de surface peuvent être contenus, optionnellement, dans la phase huileuse.The continuous phase of the emulsion can be based on water or oil. When the continuous phase is water-based, the dispersed phase of the emulsion may be oil-based. When the continuous phase is oil-based, the dispersed phase of the emulsion may be water-based. Examples of water-based continuous phases include, but are not limited to, water, solutions aqueous starches and polymer solutions. Additional ingredients customarily used in emulsions of sizing agents, such as, but not limited to, biocides, alums, cationic resins, surfactants, etc. may be contained in the phase addition. keep on going. Examples of the oil-based dispersed phase include, but are not limited to, ASA, AKD, and polymers. Additives such as surfactants may optionally be present in the oily phase.

La pression de l'apport en phase continue se trouve environ entre 10 bars et 50 bars, de préférence entre environ 18 bars et 35 bars. Le rapport des dimensions de la buse pour phase mélangée et de la buse pour phase continue est supérieur à 1:1 et inférieur à 4:1, de préférence, entre 1,5:1 et 2,5:1. Le diamètre de la buse pour phase continue (par exemple la buse 66 dans la figure 3) est fixé afin d'obtenir une vitesse d'écoulement d'environ 10 à 100 m/s, de préférence, d'environ 40 à 60 m/s. la vitesse élevée créée des conditions de création instantanée d'émulsions.The pressure of the continuous phase feed is between about 10 bar and 50 bar, preferably between about 18 bar and 35 bar. The ratio of the dimensions of the mixed phase nozzle and the continuous phase nozzle is greater than 1: 1 and less than 4: 1, preferably between 1.5: 1 and 2.5: 1. The diameter of the continuous phase nozzle (for example the nozzle 66 in the figure 3 ) is set in order to obtain a flow rate of about 10 to 100 m / s, preferably about 40 to 60 m / s. high speed creates instant emulsion creation conditions.

On fait varier le rapport de la phase continue par la phase dispersée afin de satisfaire les exigences de l'émulsion en termes de viscosité, stabilité et homogénéité. La concentration de la phase dispersée dans la phase continue varie d'environ 2 à 50% en poids, de préférence, d'environ 4 à 35% en poids. Le diamètre de la chambre au niveau de l'évacuation du dispositif venturi (par exemple, la chambre 70 dans la figure 1) est d'environ 5 à 100 fois le diamètre de la buse pour phase continue du dispositif venturi (par exemple la buse 66 dans la figure 2), de préférence d'environ 40 à 80 fois le diamètre de la buse 66 pour phase continue. La pression qui règne dans la chambre (par exemple dans la chambre 70 de la figure 1) est d'environ 1 à 6,7 bars, de préférence, d'environ 1,3 à 5 bars. La pression de l'intrant en phase dispersée est d'environ 1,3 à 6,7 bars, de préférence d'environ 3 à 4,3 bars.The ratio of the continuous phase to the dispersed phase is varied to meet the requirements of the emulsion in terms of viscosity, stability and homogeneity. The concentration of the dispersed phase in the continuous phase ranges from about 2 to 50% by weight, preferably from about 4 to 35% by weight. The diameter of the chamber at the outlet of the venturi device (for example, the chamber 70 in the figure 1 ) is about 5 to 100 times the diameter of the continuous phase nozzle of the venturi device (for example the nozzle 66 in the figure 2 ), preferably about 40 to 80 times the diameter of the nozzle 66 for continuous phase. The pressure that prevails in the chamber (for example in the chamber 70 of the figure 1 ) is about 1 to 6.7 bar, preferably about 1.3 to 5 bar. The pressure of the dispersed phase input is about 1.3 to 6.7 bar, preferably about 3 to 4.3 bar.

Pour la phase dispersée de l'invention, les composants d'encollage de papier préférés sont sélectionnés du groupe constitué de composants d'encollage de papier réagissant à la cellulose et des composant d'encollage de papier ne réagissant pas à la cellulose. Pour les fins de cette invention, des colles réagissant à la cellulose sont définies comme étant les colles capables de former des liaisons chimiques covalentes par réaction avec des groupes hydroxyles de la cellulose, et les colles ne réagissant pas à la cellulose sont définies comme étant les colles qui ne forment pas ces liaisons covalentes avec la cellulose.For the disperse phase of the invention, the preferred paper sizing components are selected from the group consisting of cellulose reactive paper sizing components and paper sizing components not reactive with cellulose. For purposes of this invention, cellulose-reactive adhesives are defined as adhesives capable of forming covalent chemical bonds by reaction with hydroxyl groups of the cellulose, and non-reactive adhesives are defined as the adhesives that do not form these covalent bonds with cellulose.

Les colles réagissant avec la cellulose préférées à utiliser dans l'invention incluent les anhydrides succiniques d'alcényle (ASA), les dimères et multimères de cétène, les époxydes organiques contenant d'environ 12 à 22 atomes de carbone, les halogénures d'acyle contenant d'environ 12 à 22 atomes de carbone, les anhydrides d'acides gras issus d'acides gras à environ 12 à 22 atomes de carbone et des isocyanates organiques contenant d'environ 12 à 22 atomes de carbone. On peut également envisager l'utilisation des mélanges d'agents d'encollage réactifs.Preferred cellulose-reactive adhesives for use in the invention include alkenyl succinic anhydrides (ASA), ketene dimers and multimers, organic epoxides containing from about 12 to 22 carbon atoms, acyl halides, and the like. containing about 12 to 22 carbon atoms, fatty acid anhydrides from about 12 to 22 carbon atoms and organic isocyanates containing from about 12 to about 22 carbon atoms. It is also possible to envisage the use of mixtures of reactive sizing agents.

Les anhydrides succiniques d'alcényle (ASA) sont composés de chaînes hydrocarbonées insaturées contenant des groupes d'anhydrides succiniques pendants. Ils sont généralement élaborés au travers d'un procédé en deux étapes commençant par une oléfine alpha. L'oléfine est d'abord isomérisée en déplaçant aléatoirement la double liaison de la position alpha. Dans la deuxième étape, on fait réagir l'oléfine isomérisée avec un anhydride maléique pour aboutir à l'ASA final ayant la formule standard (1) (voir ci-dessous). Des oléfines typiques utilisées pour la réaction avec l'anhydride maléique incluent des composants d'alcényle, de cycloalcényle et d'aralcényle contenant d'environ 8 à environ 22 atomes de carbone. Des exemples spécifiques sont l'anhydride succinique d'isooctadécényle, l'anhydride succinique de n-octadécényle, l'anhydride succinique de n-hexadécényle, l'anhydride succinique de n-dodécyle, l'anhydride succinique de i-dodécényle, l'anhydride succinique de n-décényle et l'anhydride succinique de n-octényle.

Figure imgb0001
Alkenyl succinic anhydrides (ASAs) are composed of unsaturated hydrocarbon chains containing pendant succinic anhydride groups. They are usually made through a two-step process starting with an alpha olefin. The olefin is first isomerized by randomly shifting the double bond from the alpha position. In the second step, the isomerized olefin is reacted with a maleic anhydride to yield the final ASA having the standard formula (1) (see below). Typical olefins used for the reaction with maleic anhydride include alkenyl, cycloalkenyl and aralkenyl components containing from about 8 to about 22 carbon atoms. Specific examples are isooctadecenyl succinic anhydride, n-octadecenyl succinic anhydride, n-hexadecenyl succinic anhydride, n-dodecyl succinic anhydride, i-dodecenyl succinic anhydride, and the like. n-decenyl succinic anhydride and n-octenyl succinic anhydride.
Figure imgb0001

Les anhydrides succiniques d'alcényle sont divulgués dans le Brevet US. No. 4,040,900 et par C.E. Farley et R.B Wasser dans The Sizing of Paper, Second Edition, édité par W.F. Reynolds, Tappi Press, 1989, pages 51-62 . Diverses anhydrides succiniques d'alcényle sont disponibles dans le commerce auprès de Bercen Inc., Denham Springs, LA. Les anhydrides succiniques d'alcényle à utiliser dans l'invention sont de préférence liquides à 25°C. Plus préférablement, ils sont liquides à 20°C.Succinic alkenyl anhydrides are disclosed in the patent US. No. 4,040,900 and by CE Farley and RB Wasser in The Sizing of Paper, Second Edition, edited by WF Reynolds, Tappi Press, 1989, pages 51-62 . Various alkenyl succinic anhydrides are commercially available from Bercen Inc., Denham Springs, LA. The alkenyl succinic anhydrides to be used in the invention are preferably liquid at 25 ° C. More preferably, they are liquid at 20 ° C.

Les dimères et multimères de cétène préférés sont des matières de la formule (2) (voir ci-dessous), dans lesquels n est un entier de 0 à environ 20, R et R", qui peuvent être identiques ou différents, sont des groupes alkyles ou alcényles à chaîne droite ou ramifiés saturés ou non ayant 6 à 24 atomes de carbone, et R' est un groupe alcényle à chaîne droite ou ramifiés saturés ou non ayant d'environ 2 à environ 40 atomes de carbone.

Figure imgb0002
The preferred ketene dimers and multimers are materials of the formula (2) (see below), wherein n is an integer from 0 to about 20, R and R ", which may be the same or different, are groups saturated or unsaturated straight chain or branched alkyl or alkenyl groups having 6 to 24 carbon atoms, and R 'is a straight chain or branched alkenyl group, saturated or unsaturated having from about 2 to about 40 carbon atoms.
Figure imgb0002

Les dimères de cétène qui feront office de phase dispersée dans le procédé de cette invention ont la structure de la formule (2) dans laquelle n=0 et les groupes R et R", qui peuvent être identiques ou différents, sont des radicaux hydrocarbonés. De préférence, les groupes R et R" sont des groupes alkyles ou alcényles à chaîne droite ou ramifiés ayant 6 à 24 atomes de carbone, des groupes cycloalkyles ayant au moins 6 atomes de carbone, des groupes aryles ayant au moins 6 atomes de carbone, des groupes aralkyles ayant au moins 7 atomes de carbone, des groupes alkaryles ayant au moins 7 atomes de carbone, et des mélanges de ces derniers. De préférence, le dimère de cétène est sélectionné du groupe constitué de (a) octyle, décyle, dodécyle, tétradécyle, hexadécyle, octadécyle, eicosyle, docosyle, tétracosyle, phényle, benzyle, .béta.-naphtyle, et les dimères de cétène de cyclohexyle, et (b) les dimères de cétène préparés à partir d'acides organiques sélectionnés du groupe constitué d'acide montanique, d'acide naphténique, d'acide 9,10-décylénique, d'acide 9,10-dodécylénique, d'acide palmitoléique, d'acide oléique, d'acide ricinoléique, d'acide linoléique, d'acide éléostéarique, des mélanges naturels d'acides gras que l'on trouve dans l'huile de coprah, l'huile de babassu, l'huile de palmiste, l'huile de palme, l'huile d'olive, l'huile d'arachide, l'huile de colza, le suif de boeuf, le saindoux, la graisse de baleine, et des mélanges de n'importe lesquels des acides gras susmentionnés. Plus préférablement, le dimère de cétène est sélectionné du groupe constitué de dimère d'octyl-, décyl-, dodécyl-, tétradécyl-, hexadécyl-, octadécyl-, eicosyl-, docosyl-, tétracosyl-, phényl-, benzyl-, β-naphthyl-, et cyclohexyl-cétènes.The ketene dimers which will act as the disperse phase in the process of this invention have the structure of the formula (2) wherein n = 0 and the groups R and R ", which may be the same or different, are hydrocarbon radicals. Preferably, the groups R and R "are straight-chain or branched alkyl or alkenyl groups having 6 to 24 carbon atoms, cycloalkyl groups having at least 6 carbon atoms, aryl groups having at least 6 carbon atoms, aralkyl groups having at least 7 carbon atoms, alkaryl groups having at least 7 carbon atoms, and mixtures thereof. Preferably, the ketene dimer is selected from the group consisting of (a) octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, docosyl, tetracosyl, phenyl, benzyl, beta-naphthyl, and ketene dimers. cyclohexyl, and (b) ketene dimers prepared from organic acids selected from the group consisting of montanic acid, naphthenic acid, 9,10-decylenic acid, 9,10-dodecylenic acid, palmitoleic acid, oleic acid, ricinoleic acid, linoleic, of eleostearic acid, natural mixtures of fatty acids found in coconut oil, babassu oil, palm kernel oil, palm oil, olive oil , peanut oil, rapeseed oil, beef tallow, lard, whale blubber, and mixtures of any of the aforementioned fatty acids. More preferably, the ketene dimer is selected from the group consisting of octyl-, decyl-, dodecyl-, tetradecyl-, hexadecyl-, octadecyl-, eicosyl-, docosyl-, tetracosyl-, phenyl-, benzyl-, β- -naphthyl-, and cyclohexyl-ketenes.

Des dimères d'alkylcétènes ont été utilisés dans le commerce pendant de nombreuses années et sont préparés par dimérisation des alkylcéténes obtenus à partir de chlorures d'acides gras saturés à chaîne droite; ceux qui sont le plus largement utilisés sont obtenus à partir d'acide palmitique et/ou stéarique. Le dimère d'alkylcétène pur est fourni par Ashland Hercules Water Technologies, Ashland Inc, Wilmington, Del., comme agent d'encollage avec l'appellation AQUAPEL 364.Alkyl ketene dimers have been used commercially for many years and are prepared by dimerization of alkylketenes obtained from straight-chain saturated fatty acid chlorides; those that are most widely used are obtained from palmitic and / or stearic acid. The pure alkyl ketene dimer is provided by Ashland Hercules Water Technologies, Ashland Inc, Wilmington, Del., As a sizing agent with the designation AQUAPEL 364.

Les multimères de cétène préférés à utiliser comme phase dispersée dans le procédé de cette invention ont la formule (2) où n est un entier égal à au moins 1, R et R", qui peuvent être identiques ou différents, sont des groupes alkyles ou alcényles à chaîne droite ou ramifiés saturés ou non ayant 6 à 24 atomes de carbone, de préférence 10 à 20 atomes de carbone, et encore plus préférablement 14 à 16 atomes de carbone, et R' est un groupe alkylène à chaîne droite ou ramifié saturé ou non ayant de 2 à 40 atomes de carbones, de préférence de 4 à 8 atomes de carbones ou de 28 à 40 atomes de carbones.The preferred ketene multimers for use as the dispersed phase in the process of this invention have the formula (2) where n is an integer equal to at least 1, R and R ", which may be the same or different, are alkyl groups or saturated or non-saturated straight chain or branched alkenyls having 6 to 24 carbon atoms, preferably 10 to 20 carbon atoms, and still more preferably 14 to 16 carbon atoms, and R 'is a saturated straight or branched chain alkylene group or not having 2 to 40 carbon atoms, preferably 4 to 8 carbon atoms or 28 to 40 carbon atoms.

Les multimères de cétène préférés sont décrits dans la Publication de la Demande de Brevet Européen No. 0 629 741 A1 et dans les brevets US. No. 5,685,815 et 5,846,663 .The preferred ketene multimers are described in European Patent Application Publication No. 0 629 741 A1 and in patents US. No. 5,685,815 and 5846663 .

Parmi les dimères et multimères de cétène préférés à utiliser comme la phase dispersée dans l'invention on trouve ceux qui ne sont pas sous forme solide à 25°C (matière solide non sensiblement cristalline, semi-cristalline ou cireuse; c'est-à-dire qu'ils s'écoulent par chauffage sans chaleur de fusion). Les dimères et multimères de cétène qui ne sont pas à l'état solide à 25°C sont divulgués dans les brevets US. No. 5,685,815 , 5,846,663 , 5,725,731 , 5,766,417 et 5,879,814 . Les dimères de cétène qui ne se trouvent pas à l'état solide à 25°C sont fournis par Ashland Hercules WaterAmong the preferred ketene dimers and multimers for use as the disperse phase in the invention are those which are not in solid form at 25 ° C (non-substantially crystalline, semi-crystalline or waxy solids; that they flow by heating without heat of fusion). Dimers and multimers of ketene which are not in the solid state at 25 ° C. are disclosed in US Pat. US. No. 5,685,815 , 5846663 , 5725731 , 5766417 and 5879814 . Ketene dimers that are not in a solid state at 25 ° C are provided by Ashland Hercules Water

Technologies, Wilmington, Del., comme agents d'encollage sous l'appellation PREQUEL et PRECIS.Technologies, Wilmington, Del., As sizing agents under the name PREQUEL and PRECIS.

D'autres colles préférées réactives à la cellulose à utiliser sous forme de phase dispersée dans l'invention sont des mélanges de dimères ou multimères de cétène avec des anhydrides succiniques d'alcényle comme décrit dans le brevet US. No. 5,766,417 .Other preferred cellulose reactive adhesives for use as the disperse phase in the invention are mixtures of ketene dimers or multimers with alkenyl succinic anhydrides as described in US Pat. US. No. 5,766,417 .

Les colles ne réagissant pas avec la cellulose à utiliser sous forme de phase dispersée dans l'invention incluent de préférence des matières hydrophobes qui s'écoulent librement à des températures inférieure à 95°C, de préférence inférieure à 70°C, de la cire, des colophanes estérifiées, des résines hydrocarbonées ou terpènes, et des agents d'encollage polymères.The adhesives which do not react with the cellulose to be used in the form of dispersed phase in the invention preferably include hydrophobic materials which flow freely at temperatures below 95 ° C., preferably below 70 ° C., of the wax. Esterified rosins, hydrocarbon or terpene resins, and polymeric sizing agents.

Egalement, les émulsions d'encollage de cette invention peuvent convenablement contenir au moins un agent de surface afin de faciliter leur émulsification dans l'eau, de telles matières sont bien connues dans la technique. Le composant de l'agent de surface facilite l'émulsification de l'agent d'encollage avec un composant de l'eau lorsqu'on réalise l'émulsion. Généralement, les agents de surface sont anioniques ou non ioniques ou peuvent être cationiques et peuvent avoir une large gamme de valeurs HLB.Also, the sizing emulsions of this invention may conveniently contain at least one surfactant to facilitate their emulsification in water, such materials are well known in the art. The surfactant component facilitates the emulsification of the sizing agent with a water component when the emulsion is made. Generally, the surfactants are anionic or nonionic or may be cationic and may have a wide range of HLB values.

Des agents de surface convenables incluent, mais sans y être limités, des éthoxylates phosphatés qui peuvent contenir des substituants hydrocarbonés d'alkyle, d'aryle, d'aralkyle ou d'alcényle, des produits sulfonés tels que ceux obtenus en sulfonant des alcools gras ou des alcools gras aromatiques, des alkyl-phénols éthoxylés tels que les nonyl phénoxy polyéthoxy éthanols, les octyl phénoxy polyéthoxy éthanols, les polyéthylène glycols tels que le PEG 400 monooléate et le PEG 600 dilaurate, les esters de phosphate éthoxylés, les sulfosuccinates de dialkyle tels que le sulfosuccinate de dioctyle sodium, polyoxyalkylènealkyle ou les esters d'alkylaryle polyoxyalkylène ou les mono ou diesters correspondants, et les amines trialkyle et leurs acides et sels quaternaires aussi bien que les hydrates d'amine tels que le diméthylamine d'oléyl et le diméthylamine de stéaryle.Suitable surfactants include, but are not limited to, phosphate ethoxylates which may contain hydrocarbon substituents of alkyl, aryl, aralkyl or alkenyl, sulfonated products such as those obtained by sulfonating fatty alcohols or aromatic fatty alcohols, ethoxylated alkyl phenols such as nonyl phenoxy polyethoxy ethanols, octyl phenoxy polyethoxy ethanols, polyethylene glycols such as PEG 400 monooleate and PEG 600 dilaurate, ethoxylated phosphate esters, dialkyl sulfosuccinates such as dioctyl sodium sulphosuccinate, polyoxyalkylenealkyl or polyoxyalkylene alkylaryl esters or the corresponding mono or diesters, and trialkyl amines and their quaternary acids and salts as well as amine hydrates such as oleyl dimethylamine and dimethylamine stearyl.

Des agents de surface préférés sont ceux qui émulsifient l'agent d'éncollage pour aboutir au diamètre moyen de gouttelette de l'émulsion ou de la taille de particule le plus petit. De telles émulsions peuvent avoir un diamètre de gouttelette moyen ou taille de particules d'environ 2 microns ou moins, de préférence entre 0,5 et 1,5 microns, et le plus préférablement d'environ 1 micron ou moins. La taille des gouttelettes peut être convenablement mesurée par toute technique de mesure de tailles des particules bien connue, par exemple, les procédés au microscope, de diffusion de lumière classique ou quasi-élastique, de sédimentation, de centrifugation au disque, de détection d'électrozone, chromatographique et fractionnement de l'écoulement dans un champ à l'équilibre de sédimentation. De manière convenable, les tailles des gouttelettes peuvent être estimées par un procédé de diffusion de lumière par le recours à un instrument tel que l'analyseur de tailles de particules HORIBA LA-300.Preferred surfactants are those that emulsify the bonding agent to result in the average droplet size of the emulsion or the smallest particle size. Such emulsions may have a mean droplet size or particle size about 2 microns or less, preferably between 0.5 and 1.5 microns, and most preferably about 1 micron or less. The size of the droplets can be conveniently measured by any well-known particle size measurement technique, for example, microscope, conventional or quasi-elastic light scattering, sedimentation, disk centrifugation, sensing electrozone, chromatographic and fractionation of the flow in an equilibrium sedimentation field. Suitably, the droplet sizes can be estimated by a light scattering method using an instrument such as the HORIBA LA-300 Particle Size Analyzer.

Bien évidemment, la quantité d'agent de surface peut varier en fonction de l'agent de surface spécifique, ou du mélange d'agents de surface utilisé, comme le sait bien l'homme du métier. La quantité d'agent de surface présente dans une composition d'encollage de l'invention ne doit pas dépasser le minimum requis pour avoir une taille moyenne des particules d'environ 2 microns ou moins, de préférence entre 0,5 et 1,5 microns et le plus préférablement d'environ 1 micron ou moins dans l'émulsion résultante. Des quantités plus élevées peuvent aboutir à la dégradation de la taille des particules et aux problèmes liés au comportement de la machine qui sont une conséquence d'une émulsion de basse qualité. On peut utiliser de l'ordre de 0,01 % à environ 10% d'agent de surface en poids, sur la base du poids total d'agent d'encollage. De préférence, la qualité d'agent de surface présent dans une composition d'encollage va d'environ 0,1% à environ 5% en poids. Le plus préférablement, la quantité d'agent de surface présent dans une composition d'encollage est inférieure à environ 1,0% en poids. Des mélanges disponibles dans le commerce et comprenant au moins un agent d'encollage et au moins un agent de surface, tels que les agents d'encollage PREQUEL 20F ou le PREQUEL 90F fournis par Ashland Inc., Wilmington, Del., peuvent être convenablement utilisés pour la formation des émulsions d'encollage de l'invention.Of course, the amount of surfactant may vary depending on the specific surfactant, or surfactant mixture used, as is well known to those skilled in the art. The amount of surfactant present in a sizing composition of the invention should not exceed the minimum required to have an average particle size of about 2 microns or less, preferably between 0.5 and 1.5 microns and most preferably about 1 micron or less in the resulting emulsion. Higher amounts can result in particle size degradation and machine behavior problems that are a consequence of low quality emulsion. From about 0.01% to about 10% surfactant by weight may be used based on the total weight of sizing agent. Preferably, the quality of surfactant present in a sizing composition is from about 0.1% to about 5% by weight. Most preferably, the amount of surfactant present in a sizing composition is less than about 1.0% by weight. Commercially available blends comprising at least one sizing agent and at least one surfactant, such as PREQUEL 20F sizing agents or PREQUEL 90F supplied by Ashland Inc., Wilmington, Del., May be suitably used for forming the sizing emulsions of the invention.

Concernant les émulsions d'huile dans l'eau, telles que les émulsions d'agents d'encollage, la phase continue peut être l'eau ou bien une solution aqueuse d'un polymère naturel ou synthétique. L'eau est préférée. Si la phase continue est l'eau, la post-dilution de l'émulsion avec l'eau pour obtenir une teneur en éléments solides souhaitée, suivie par une dilution additionnelle avec une solution aqueuse à base de polymère naturel ou synthétique est recommandée. Les polymères cationiques qui peuvent être utilisés pour la formation d'émulsions d'huile dans l'eau d'agents d'encollage incluent tout polymère cationique contenant de l'azote soluble dans l'eau qui confère une charge superficielle positive aux particules de la phase dispersée de l'émulsion. Typiquement, de tels polymères cationiques sont des composés d'ammonium quaternaire; des homopolymères ou copolymères d'amines insaturées en éthylène; les produits de réaction résineux d'épihalohydrines et de polyaminopolyamides; des alkylénepolyamines; des poly(diallylamines), bis-aminopropylpipérazine, des condensats de dicyandiamide (ou cyanamide)-polyalkylène polyamine, des condensats de dicyandiamide (ou cyanamide)-formaldéhydes, et des condensats de dicyandiamide (ou cyanamide)-bis-aminopropylpipérazine; et des amidons cationiques. Les amidons cationiques sont des amidons solubles dans l'eau contenant des groupes aminés, de l'ammonium quaternaire ou d'autres groupes cationiques en quantité suffisante pour que l'amidon dans son ensemble possède une affinité prononcée à la cellulose. L'amidon cationique est préféré. On peut également utiliser des polymères non cationiques.With regard to oil-in-water emulsions, such as emulsions of sizing agents, the continuous phase may be water or an aqueous solution of a natural or synthetic polymer. Water is preferred. If the continuous phase is water, post-dilution of the emulsion with water to obtain a desired solids content, followed by further dilution with an aqueous solution based on natural or synthetic polymer is recommended. Cationic polymers that can be used for the formation of oil emulsions in water of sizing agents include any cationic polymer containing water-soluble nitrogen which imparts a positive surface charge to particles of the dispersed phase of the emulsion. Typically, such cationic polymers are quaternary ammonium compounds; homopolymers or copolymers of unsaturated amines to ethylene; resinous reaction products of epihalohydrins and polyaminopolyamides; alkylenepolyamines; poly (diallylamines), bis-aminopropylpiperazine, dicyandiamide (or cyanamide) -polyalkylene polyamine condensates, dicyandiamide (or cyanamide) -formaldehyde condensates, and dicyandiamide (or cyanamide) -bis-aminopropylpiperazine condensates; and cationic starches. The cationic starches are water-soluble starches containing amino groups, quaternary ammonium or other cationic groups in an amount sufficient for the starch as a whole to have a pronounced cellulose affinity. Cationic starch is preferred. Non-cationic polymers can also be used.

L'utilisation de polymères cationiques dans des compositions d'encollage est globalement décrite dans les Brevets U.S No. 4,240,935 , 4,243,481 , 4,279,794 , 4,295,931 , 4,317,756 , 4,522,686 , tous délivrés à Dumas, dans le Brevet U.S No. 2,961,366 délivré Weisgerber, et dans le Brevet U.S No. 5,853,542 (délivré à Bottorff). Les polymères atmosphériques à l'instar de ceux divulgués dans le Brevet U.S No. 7,270,727 (Varnell ), peuvent également être utilisés.The use of cationic polymers in sizing compositions is generally described in the Patents US 4,240,935 , 4243481 , 4279794 , 4295931 , 4317756 , 4522686 , all delivered to Dumas, in the Patent US 2,961,366 issued Weisgerber, and in the Patent No. 5,853,542 (delivered to Bottorff). Atmospheric polymers, like those disclosed in the patent US 7,270,727 (Varnell ), can also be used.

La quantité minimale de polymère cationique utilisé doit être suffisante pour que la dispersion devienne cationique. La quantité utilisée variera en fonction de la solubilité dans l'eau et de la force cationique du polymère particulier employé, ainsi que d'autres variables, telles que la qualité de l'eau.The minimum amount of cationic polymer used must be sufficient for the dispersion to become cationic. The amount used will vary depending on the solubility in water and the cationic strength of the particular polymer employed, as well as other variables, such as water quality.

La quantité de polymère naturel ou synthétique peut être exprimée comme un pourcentage du poids de la colle réagissant avec la cellulose que l'on utilise. De préférence, la quantité de polymère se trouve d'environ 0,1% jusqu'à environ 400% en poids par rapport au poids de la colle réagissant avec la cellulose, plus préférablement d'environ 2 à environ 100% en poids par rapport au poids de la colle réagissant avec la cellulose, et de la façon la plus préférable, d'environ 10 à environ 30% en poids par rapport au poids de la colle réagissant avec la cellulose. Cette quantité va dépendre des exigences propres à une application de production de papier spécifique.The amount of natural or synthetic polymer can be expressed as a percentage of the weight of the cellulose-reactive glue used. Preferably, the amount of polymer is from about 0.1% to about 400% by weight based on the weight of the cellulose-reactive glue, more preferably from about 2 to about 100% by weight relative to the weight of the cellulose-reactive glue, and most preferably from about 10 to about 30% by weight based on the weight of the cellulose-reactive glue. This amount will depend on the requirements of a specific paper production application.

La température de la solution aqueuse utilisée pour la poste dilution est généralement inférieure à environ 50°C, mais peut être supérieure selon l'application. Le pH de la solution aqueuse varie, suivant l'application. Le pH peut se trouver dans la plage de 4 à 8 environ. La post dilution est généralement exécutée dans des conditions de faible cisaillement, par exemple, dans les conditions de cisaillement créées par un dispositif tel qu'une pompe centrifuge, un mélangeur en ligne statique, une pompe péristaltique, un agitateur à tige, ou des combinaisons de ces dispositifs.The temperature of the aqueous solution used for the post-dilution is generally less than about 50 ° C, but may be higher depending on the application. The pH of the aqueous solution varies, depending on the application. The pH may be in the range of about 4 to about 8. Post dilution is generally performed under low shear conditions, for example, under shear conditions created by a device such as a centrifugal pump, static in-line mixer, peristaltic pump, rod stirrer, or combinations. of these devices.

Les émulsions d'agents d'encollage préparées par le biais de cette invention peuvent être utilisées dans le cadre de l'encollage interne de papier ou de carton où les émulsions d'encollage sont ajoutées à la pâte liquide au niveau de la partie humide du processus de fabrication de papier, ou l'encollage superficiel de papier ou de carton dans lequel les dispersions d'encollage sont appliquées au niveau de la presse d'encollage ou la coucheuse. Cette invention peut également être utilisée dans l'une ou les deux parties d'un système d'encollage à deux parties. Par exemple, une partie peut être mélangée intérieurement avec la pâte de bois et une seconde partie appliquée au niveau de la presse d'encollage, une pratique habituelle dans la fabrication de papier.The emulsions of sizing agents prepared by this invention can be used in the context of internal sizing of paper or board where the sizing emulsions are added to the liquid paste at the wet end of the sizing. papermaking process, or surface sizing of paper or board in which the sizing dispersions are applied at the sizing press or coater. This invention can also be used in one or both parts of a two-part gluing system. For example, a portion may be mixed internally with the wood pulp and a second portion applied at the sizing press, a common practice in papermaking.

La quantité d'agent d'encollage ajoutée à la pâte ou appliquée sous forme de colle superficielle va d'environ 0,005 à 5% en poids, sur la base de la siccité de la pâte, c'est-à-dire, les fibres et les charges optionnelles, et de préférence de 0,01 à 1% en poids, où le dosage dépend principalement de la qualité de la pâte ou du papier à coller, du composé d'encollage utilisé et du niveau d'encollage souhaité.The amount of sizing agent added to the paste or applied as surface adhesive ranges from about 0.005 to 5% by weight, based on the dryness of the dough, i.e. and optional fillers, and preferably from 0.01 to 1% by weight, where the dosage depends primarily on the quality of the paste or paper to be bonded, the sizing compound used and the desired sizing level.

Les éléments chimiques conventionnellement ajoutés à la pâte lors de la production de papier ou de carton, tels que les agents d'aide au traitement (par exemple, des agents d'aide à la rétention, les agents d'aide au drainage, les additifs de contrôle des contaminants, etc.) ou d'autres additifs fonctionnels (par exemple, des additifs d'amélioration de la résistance à l'état sec ou humide, des colorants, des agents de brillance optique, etc.) peuvent être utilisés de manière combinée avec les agents d'encollage de cette invention.Chemical elements conventionally added to the pulp during the production of paper or board, such as treatment assistants (for example, retention aids, drainage assistants, additives) contaminant control, etc.) or other functional additives (eg, wet or dry strength additives, colorants, optical brighteners, etc.) can be used combined with the sizing agents of this invention.

L'invention a été décrite ici en référence à une phase dispersée qui peut contenir un agent d'encollage. En variante, le dispositif venturi 50 de cette invention peut également être utilisé pour la préparation des polymères de l'émulsion inverse utilisés habituellement dans le processus de fabrication de papier. Les polymères de l'émulsion inverse sont préparés et stabilisés en utilisant des agents de surface actifs, plus communément appelés agents de surface. Les agents de surface utilisés vont permettre l'émulsification du monomère soluble dans l'eau dans la phase huileuse avant la polymérisation, et procurer la stabilité au polymère de l'émulsion résultante. La stabilité qui inclut la résistance à la sédimentation, des changements mineurs de la viscosité au cours du temps et l'inversion prématurée, sans oublier la nécessité d'avoir une émulsion stable pendant le processus de polymérisation, nécessite un ensemble robuste de stabilisation de l'émulsion.The invention has been described herein with reference to a dispersed phase which may contain a sizing agent. Alternatively, the venturi device 50 of this invention can also be used for the preparation of the inverse emulsion polymers usually used in the papermaking process. The polymers of the inverse emulsion are prepared and stabilized using active surfactants, more commonly referred to as surfactants. The surfactants used will allow emulsification of the water-soluble monomer in the oil phase prior to polymerization, and provide stability to the resulting emulsion polymer. Stability that includes sedimentation resistance, minor changes in viscosity over time and premature inversion, not to mention the need for a stable emulsion during the polymerization process, requires a robust set of stabilization of the viscosity. 'emulsion.

L'inversion de l'émulsion se rapporte au processus avant utilisation, dans lequel les phases sont inversées, et le polymère est libéré de la phase discontinue. Un grand volume de solution aqueuse est ajouté afin de créer une phase aqueuse (eau) continue dans laquelle la coalescence de la phase aqueuse précédemment dispersée aboutit à la dispersion du polymère dans la solution, rendant la solution visqueuse. Des agents de surface, appelés "agents de surface désagrégeurs", sont ajoutés à l'émulsion pour favoriser l'inversion, afin de perturber le système de stabilisation de l'émulsion originale lorsque le volume relativement important d'eau est combiné, en ayant recours à un certain niveau d'agitation où cisaillement, avec l'émulsion d'eau dans l'huile. C'est bien l'action conjointe de ces trois facteurs, le volume important de la phase dispersée, les forces de cisaillement, et le ou les agents de surface désagrégeurs, qui résulte en l'inversion, ou inversion de phase, de l'émulsion. De plus, le polymère peut à présent interagir avec d'autres matières à phases aqueuses. La quantité relativement faible d'huile (20-40% en poids de l'émulsion originale) est dispersée dans la phase aqueuse, où, en raison de l'ajout du grand volume de solution aqueuse, l'huile est un composant mineur.Emulsion inversion refers to the process before use, in which the phases are reversed, and the polymer is released from the discontinuous phase. A large volume of aqueous solution is added to create a continuous aqueous (water) phase in which the coalescence of the previously dispersed aqueous phase results in the dispersion of the polymer in the solution, making the solution viscous. Surfactants, called "disintegrating surfactants", are added to the emulsion to promote inversion, to disrupt the stabilization system of the original emulsion when the relatively large volume of water is combined, having use a certain level of agitation where shearing, with the emulsion of water in the oil. It is indeed the joint action of these three factors, the large volume of the dispersed phase, the shear forces, and the disintegrating surface agent (s), which results in the inversion, or phase inversion, of the emulsion. In addition, the polymer can now interact with other aqueous phase materials. The relatively small amount of oil (20-40% by weight of the original emulsion) is dispersed in the aqueous phase, where due to the addition of the large volume of aqueous solution, the oil is a minor component.

Le polymère est inversé en une solution aqueuse, de sorte que la concentration résultante du polymère actif se trouve typiquement dans la plage d'environ 0,1% à environ 1,5% en poids. La concentration utilisée dépend de plusieurs facteurs, comprenant, mais sans y être limitée, la température et la chimie de l'eau, la viscosité de la solution, la vitesse d'amenée, et les dimensions de l'équipement et les débits.The polymer is inverted to an aqueous solution, so that the resulting concentration of the active polymer is typically in the range of about 0.1% to about 1.5% by weight. The concentration used depends on several factors, including, but not limited to, water temperature and chemistry, solution viscosity, feed rate, and equipment dimensions and flow rates.

On peut inverse le polymère de l'émulsion en une solution aqueuse en dirigeant des flux convergents d'eau et d'émulsion pure aux concentrations souhaitées à travers le dispositif venturi 50. Dans cette inversion, la phase continue est l'eau, qui est introduite par la première entrée 48 du dispositif venturi 50, et la phase dispersée est l'émulsion à base de polymère ou émulsion brute, qui est introduite par l'entrée d'aspiration 52 du dispositif venturi 50. La pression de la phase continue se trouve dans la plage d'environ 10 à 40 bars, de préférence d'environ 15 à 25 bars, et la vitesse d'écoulement de la phase continue d'environ 10 à 50 m/s, de préférence d'environ 25 à 35 m/s. Ensuite, le mélange résultant subi une étape de mélange, dans un mélangeur statique ou une pompe mécanique, dans laquelle l'action de mélange améliore le processus d'inversion. Typiquement, la solution aqueuse est ensuite transférée dans un réservoir, dans lequel elle est mélangée jusqu'à devenir homogène. Dans un système continu, on élimine l'étape de transfert vers un réservoir.The emulsion polymer can be inverted into an aqueous solution by directing convergent streams of water and pure emulsion to the desired concentrations through the device. venturi 50. In this inversion, the continuous phase is water, which is introduced by the first inlet 48 of the venturi device 50, and the dispersed phase is the emulsion based on polymer or crude emulsion, which is introduced by the suction inlet 52 of the venturi device 50. The pressure of the continuous phase is in the range of about 10 to 40 bar, preferably about 15 to 25 bar, and the flow rate of the continuous phase of about 10 to 50 m / s, preferably about 25 to 35 m / s. Then, the resulting mixture undergoes a mixing step, in a static mixer or mechanical pump, in which the mixing action improves the inversion process. Typically, the aqueous solution is then transferred to a reservoir, where it is mixed until homogeneous. In a continuous system, the transfer step to a tank is eliminated.

Typiquement, de l'eau de dilution additionnelle est ajoutée à la solution à polymère inversé juste avant l'introduction dans le processus pour aider la dispersion du polymère.Typically, additional dilution water is added to the invert polymer solution just prior to introduction into the process to aid polymer dispersion.

ExemplesExamples Exemple 1Example 1

150 l/h d'eau ont été alimentés comme phase continue dans une première entrée d'un dispositif venturi comme montré aux figures 2-4. La pression d'alimentation de l'eau est de 30 bars. Le diamètre de la buse pour phase continue (par exemple, le diamètre de la buse 66 dans la figure 3) est de 1 mm. Une phase dispersée à base d'agent d'encollage PREQUEL 20F (un ASA) a été fournie sous vide à l'entrée d'aspiration du dispositif venturi à 15 kg/h. Le diamètre de la buse pour phase mélangée (par exemple, le diamètre de la buse 60 dans la figure 3) est de 2 mm. La vitesse du venturi est de 53 m/s dans la buse pour phase continue. La taille médiane des particules de l'émulsion est de 0,67 microns.150 l / h of water was fed as a continuous phase into a first inlet of a venturi device as shown in FIGS. Figures 2-4 . The water supply pressure is 30 bar. The diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1 mm. A dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 15 kg / h. The diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 2 mm. The venturi velocity is 53 m / s in the continuous phase nozzle. The median particle size of the emulsion is 0.67 microns.

Exemple 2Example 2

170 l/h d'eau ont été alimentés comme phase continue dans une première entrée d'un dispositif venturi comme montré aux figures 2-4. La pression d'alimentation de l'eau est de 30 bars. Le diamètre de la buse pour phase continue (par exemple, le diamètre de la buse 66 dans la figure 3) est de 1 mm. Une phase dispersée à base d'agent d'encollage PREQUEL 20F (un ASA) a été fournie sous vide à l'entrée d'aspiration du dispositif venturi à 27 kg/h. Le diamètre de la buse pour phase mélangée (par exemple, le diamètre de la buse 60 dans la figure 3) est de 2 mm. La vitesse du venturi est de 60 m/s dans la buse pour phase continue. La taille médiane des particules de l'émulsion est de 0,67 microns.170 l / h of water were fed as a continuous phase into a first inlet of a venturi device as shown in FIGS. Figures 2-4 . The water supply pressure is 30 bar. The diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1 mm. A dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 27 kg / h. The diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 2 mm. The venturi velocity is 60 m / s in the continuous phase nozzle. The median particle size of the emulsion is 0.67 microns.

Exemple 3Example 3

80 l/h d'eau ont été alimentés comme phase continue dans une première entrée d'un dispositif venturi comme montré aux figures 2-4. La pression d'alimentation de l'eau est de 31 bars. Le diamètre de la buse pour phase continue (par exemple, le diamètre de la buse 66 dans la figure 3) est de 0,8 mm. Une phase dispersée à base d'agent d'encollage PREQUEL 20F (un ASA) a été fournie sous vide à l'entrée d'aspiration du dispositif venturi à 8 kg/h. Le diamètre de la buse pour phase mélangée (par exemple, le diamètre de la buse 60 dans la figure 3) est de 1,6 mm. La vitesse du venturi est de 44 m/s dans la buse pour phase continue. La taille médiane des particules de l'émulsion est de 0,82 microns.80 l / h of water were fed as a continuous phase into a first inlet of a venturi device as shown in FIGS. Figures 2-4 . The water supply pressure is 31 bar. The diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 0.8 mm. A dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 8 kg / h. The diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 1.6 mm. The venturi velocity is 44 m / s in the continuous phase nozzle. The median particle size of the emulsion is 0.82 microns.

Exemple 4 (exemple comparatif)Example 4 (Comparative Example)

180 l/h d'eau ont été alimentés comme phase continue dans une première entrée d'un dispositif venturi comme montré aux figures 2-4. La pression d'alimentation de l'eau est de 32 bars. Le diamètre de la buse pour phase continue (par exemple, le diamètre de la buse 66 dans la figure 3) est de 1 mm. Une phase dispersée à base d'agent d'encollage PREQUEL 20F (un ASA) a été fournie sous vide à l'entrée d'aspiration du dispositif venturi à 15 kg/h. Le diamètre de la buse pour phase mélangée (par exemple, le diamètre de la buse 60 dans la figure 3) est de 1 mm (même diamètre pour la buse pour phase continue et pour phase mélangée). La vitesse du venturi est de 63 m/s dans la buse pour phase mélangée. L'émulsion s'est presqu'immédiatement dispersée en phases séparées: de l'eau et des gouttes de ASA. Il fut impossible de mesurer la distribution de la taille des particules.180 l / h of water was fed as a continuous phase into a first inlet of a venturi device as shown in FIGS. Figures 2-4 . The water supply pressure is 32 bar. The diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1 mm. A dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 15 kg / h. The diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 1 mm (same diameter for the continuous phase and mixed phase nozzle). The venturi velocity is 63 m / s in the mixed phase nozzle. The emulsion was almost immediately dispersed in separate phases: water and drops of ASA. It was impossible to measure the particle size distribution.

Exemple 5Example 5

160 l/h d'eau ont été alimentés comme phase continue dans une première entrée d'un dispositif venturi comme montré aux figures 2-4. La pression d'alimentation de l'eau est de 30 bars. Le diamètre de la buse pour phase continue (par exemple, le diamètre de la buse 66 dans la figure 3) est de 1 mm. Une phase dispersée à base d'agent d'encollage PREQUEL 90F (un AnKD fourni par Ashland Hercules Water Technologies, Wilmington, Del.) a été fournie sous vide à l'entrée d'aspiration du dispositif venturi à 30 kg/h. Le diamètre de la buse pour phase mélangée (par exemple, le diamètre de la buse 60 dans la figure 3) est de 2 mm. La vitesse du venturi est de 53 m/s dans la buse pour phase continue. L'émulsion s'est révélée stable avec une taille médiane des particules de 0,8 microns.160 l / h of water were fed as a continuous phase in a first inlet of a venturi device as shown in FIGS. Figures 2-4 . The water supply pressure is 30 bar. The diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1 mm. A dispersed phase based on PREQUEL 90F sizing agent (one AnKD provided by Ashland Hercules Water Technologies, Wilmington, Del.) Was supplied under vacuum to the suction inlet of the venturi device at 30 kg / h. The diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 2 mm. The venturi velocity is 53 m / s in the continuous phase nozzle. The emulsion was stable with a median particle size of 0.8 microns.

Exemple 6Example 6

90 l/h d'eau ont été alimentés comme phase continue dans une première entrée d'un dispositif venturi comme montré aux figures 2-4. La pression d'alimentation de l'eau est de 30 bars. Le diamètre de la buse pour phase continue (par exemple, le diamètre de la buse 66 dans la figure 3) est de 0,8 mm. Une phase dispersée à base d'agent d'encollage PREQUEL 20F (un ASA) a été fournie sous vide à l'entrée d'aspiration du dispositif venturi à 30 kg/h. Le diamètre de la buse pour phase mélangée (par exemple, le diamètre de la buse 60 dans la figure 3) est de 2,4 mm. La vitesse du venturi est de 44 m/s dans la buse pour phase continue. L'émulsion s'est révélée stable avec une taille médiane des particules de 1,15 microns.90 l / h of water were fed as a continuous phase in a first inlet of a venturi device as shown in FIGS. Figures 2-4 . The water supply pressure is 30 bar. The diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 0.8 mm. A dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 30 kg / h. The diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 2.4 mm. The venturi velocity is 44 m / s in the continuous phase nozzle. The emulsion was stable with a median particle size of 1.15 microns.

Exemple 7Example 7

180 l/h d'eau ont été alimentés comme phase continue dans une première entrée d'un dispositif venturi comme montré aux figures 2-4. La pression d'alimentation de l'eau est de 30 bars. Le diamètre de la buse pour phase continue (par exemple, le diamètre de la buse 66 dans la figure 3) est de 1,2 mm. Une phase dispersée à base d'agent d'encollage PREQUEL 20F (un ASA) a été fournie sous vide à l'entrée d'aspiration du dispositif venturi à 30 kg/h. Le diamètre de la buse pour phase mélangée (par exemple, le diamètre de la buse 60 dans la figure 3) est de 1,6 mm. La vitesse du venturi est de 53 m/s dans la buse pour phase continue. L'émulsion s'est révélée stable avec une taille médiane des particules de 0,8 microns.180 l / h of water was fed as a continuous phase into a first inlet of a venturi device as shown in FIGS. Figures 2-4 . The water supply pressure is 30 bar. The diameter of the continuous phase nozzle (for example, the diameter of the nozzle 66 in the figure 3 ) is 1.2 mm. A dispersed phase based on PREQUEL 20F sizing agent (ASA) was supplied under vacuum to the suction inlet of the venturi device at 30 kg / h. The diameter of the mixed phase nozzle (for example, the diameter of the nozzle 60 in the figure 3 ) is 1.6 mm. The venturi velocity is 53 m / s in the continuous phase nozzle. The emulsion was stable with a median particle size of 0.8 microns.

Bien que l'on ait décrit la présente invention en rapport avec des modes de réalisation particuliers de celle-ci, il est clair que plusieurs autres formes et modifications seront évidentes pour l'homme du métier.Although the present invention has been described in connection with particular embodiments thereof, it is clear that many other forms and modifications will be apparent to those skilled in the art.

Claims (14)

  1. A system for emulsifying oil in water or water in oil which comprises:
    - a venturi apparatus (50) having a continuous phase nozzle (66) and a dispersed phase inlet (52),
    - wherein the continuous phase nozzle has a first diameter (d1) that directs the stream of a continuous phase into a mixing section (80) of the venturi apparatus, and
    - the dispersed phase inlet introduces a dispersed phase into the mixing section to form an emulsion of the dispersed phase and the continuous phase; and
    - wherein said venturi apparatus has a mixed phase nozzle (60) having a second diameter (d2) through which the emulsion is directed from the mixing section toward an outlet of the venturi apparatus,
    - said second diameter (d2) of said venturi apparatus (50) being larger than said first diameter (d1) at a ratio of greater than 1:1 and less than 4:1,
    - characterized in that system is designed for the continuous phase
    o to be introduced at a pressure of from about 10 bar to about 50 bar and
    o to have a velocity in the range of about 10 to 100 m/s through the continuous phase nozzle.
  2. The system of claim 1, further comprising a pump (22) to pump the continuous phase into the venturi apparatus (50).
  3. The system of any of the preceding claims, designed for the continuous phase to comprise water or an aqueous solution of starch or a polymer solution.
  4. The system of any of the preceding claims, designed for the dispersed phase to comprise one or more inverse emulsions.
  5. The system of any of claims 1 to 3, designed for the dispersed phase to comprise one or more cellulose non-reactive paper sizing compounds or cellulose reactive paper sizing compounds, such as alkenyl succinic anhydride (ASA), alkyl ketene dimer (AKD), ketene dimers, ketene multimers, organic epoxides containing from about 12 to 22 carbon atoms, acyl halides containing from about 12 to 22 carbon atoms, fatty acid anhydrides from fatty acids containing from about 12 to 22 carbon atoms, or organic isocyanates containing from about 12 to 22 carbon atoms.
  6. A method for emulsifying a sizing agent for use in treating paper or paperboard, said method comprising the following facts:
    - introducing under pressure a continuous phase containing water into a venturi apparatus (50), said venturi apparatus having a continuous phase nozzle (66) of a first diameter (d1) that directs said continuous phase into a mixing section (80);
    - introducing a dispersed phase containing at least one sizing agent into the mixing section (80) of the venturi apparatus to form an emulsion of the dispersed phase and the continuous phase;
    - directing the emulsion through a mixed phase nozzle (60) having a second diameter (d2) in said venturi apparatus,
    - said mixed phase nozzle diameter (d2) of said venturi apparatus being larger than said continuous phase nozzle diameter (d1) at a ratio of greater than 1:1 and less than 4:1,
    - characterized in that the continuous phase
    o is introduced at a pressure of from about 10 bar to about 50 bar and
    o has a velocity of about 10 to 100 m/s through the continuous phase nozzle.
  7. The method of claim 6, wherein the continuous phase comprises water or an aqueous solution of starch or a polymer solution.
  8. The method of any of claims 6 to 7, wherein the dispersed phase comprises cellulose non-reactive paper sizing compounds or cellulose reactive paper sizing compounds, such as alkenyl succinic anhydride (ASA), alkyl ketene dimer (AKD), ketene dimers, ketene multimers, organic epoxides containing from about 12 to 22 carbon atoms, acyl halides containing from about 12 to 22 carbon atoms, fatty acid anhydrides from fatty acids containing from about 12 to 22 carbon atoms, or organic isocyanates containing from about 12 to 22 carbon atoms.
  9. The method of any of claims 6 to 8, wherein the dispersed phase further comprises one or more surfactants in an amount of from 0.1 % to about 5% by weight of said dispersed phase.
  10. The method of any of claims 6 to 9, wherein the emulsion has a mean particle size below 2 microns.
  11. The method of any of claims 6 to 10, wherein the emulsion has a concentration of dispersed phase in continuous phase of from 2 to 50 percent by weight.
  12. The method of any of claims 6 to 11, further comprising the fact of post-diluting the emulsion and adding the post-diluted emulsion either to a wet end or to a size press or coater for a paper or paperboard making system.
  13. A method for reversing an inverse emulsion, said method comprising:
    - introducing under pressure a continuous phase containing water into a venturi apparatus (50), said venturi apparatus having a continuous phase nozzle (66) of a first diameter (d1) that directs said continuous phase into a mixing section (80);
    - introducing a dispersed phase containing at least one inverse emulsion into the mixing section (80) of the venturi apparatus to form an emulsion of the dispersed phase and the continuous phase;
    - directing the emulsion through a mixed phase nozzle (60) having a second diameter (d2) in said venturi apparatus,
    - said mixed phase nozzle diameter (d2) of said venturi apparatus being larger than said continuous phase nozzle diameter (d1) at a ratio of greater than 1:1 and less than 4:1,
    - characterized in that the pressure of the continuous phase is in the range of from about 10 bar to 40 bar, preferably about 15 to 25 bar, and the continuous phase has a velocity of about 10 to 50 m/s, preferably about 25 to 35 m/s, through the continuous phase nozzle.
  14. The method of claim 13, wherein the inverse emulsion comprises one or more retention and drainage aids for use in paper or paperboard making systems.
EP09784330.4A 2009-08-04 2009-08-04 Apparatus, system and method for emulsifying oil and water Active EP2461898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09784330T PL2461898T3 (en) 2009-08-04 2009-08-04 Apparatus, system and method for emulsifying oil and water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2009/000976 WO2011015715A1 (en) 2009-08-04 2009-08-04 Apparatus, system and method for emulsifying oil and water

Publications (2)

Publication Number Publication Date
EP2461898A1 EP2461898A1 (en) 2012-06-13
EP2461898B1 true EP2461898B1 (en) 2015-10-07

Family

ID=42077679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09784330.4A Active EP2461898B1 (en) 2009-08-04 2009-08-04 Apparatus, system and method for emulsifying oil and water

Country Status (15)

Country Link
US (1) US11554353B2 (en)
EP (1) EP2461898B1 (en)
JP (1) JP5740548B2 (en)
KR (1) KR101644212B1 (en)
CN (1) CN102639219B (en)
AU (1) AU2009350832B2 (en)
BR (1) BR112012002642B1 (en)
CA (1) CA2770942C (en)
ES (1) ES2550620T3 (en)
MX (1) MX2012001551A (en)
PL (1) PL2461898T3 (en)
PT (1) PT2461898E (en)
RU (1) RU2538578C2 (en)
WO (1) WO2011015715A1 (en)
ZA (1) ZA201201603B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088250B2 (en) 2008-11-26 2012-01-03 Nalco Company Method of increasing filler content in papermaking
US8852400B2 (en) 2010-11-02 2014-10-07 Ecolab Usa Inc. Emulsification of alkenyl succinic anhydride with an amine-containing homopolymer or copolymer
CN102817601B (en) * 2012-08-31 2015-04-08 中国石油天然气股份有限公司 Method and device for performing on-line profile control on polymer driving oil field by applying crosslinking agent
JP6355906B2 (en) * 2012-10-05 2018-07-11 花王株式会社 Method for producing emulsion
CA2904596C (en) 2013-03-13 2021-11-16 Nalco Company Method of using aldehyde-functionalized polymers to increase papermachine performance and enhance sizing
JP6444062B2 (en) * 2013-06-17 2018-12-26 花王株式会社 Method for producing dispersion
CN105377062A (en) * 2013-07-19 2016-03-02 菲利普莫里斯生产公司 Hydrophobic paper
US9956532B2 (en) * 2013-11-07 2018-05-01 U.S. Department Of Energy Apparatus and method for generating swirling flow
US9567708B2 (en) 2014-01-16 2017-02-14 Ecolab Usa Inc. Wet end chemicals for dry end strength in paper
US9702086B2 (en) 2014-10-06 2017-07-11 Ecolab Usa Inc. Method of increasing paper strength using an amine containing polymer composition
US9920482B2 (en) 2014-10-06 2018-03-20 Ecolab Usa Inc. Method of increasing paper strength
AU2016248111A1 (en) 2015-04-13 2017-11-02 Virginia Tech Intellectual Properties, Inc. Apparatus for dewatering and demineralization of fine particles
CN106917324B (en) 2015-12-25 2019-11-08 艺康美国股份有限公司 A kind of paper-making sizing method and its paper of preparation
US10857507B2 (en) * 2016-03-23 2020-12-08 Alfa Laval Corporate Ab Apparatus for dispersing particles in a liquid
CN109072558A (en) 2016-05-13 2018-12-21 艺康美国股份有限公司 Thin paper dust is reduced
CN106422955B (en) * 2016-08-30 2019-03-15 扬州大学 It is a kind of quickly, the device and method of a large amount of, continuous production nanoemulsions or nano suspending liquid
CN110831691A (en) * 2017-07-07 2020-02-21 林德股份公司 Low temperature LCO2Flour cooling system
US20190091690A1 (en) * 2017-09-25 2019-03-28 Tantti Laboratory Inc. Method and apparatus of generating substantially monodisperse droplets
CN108421427A (en) * 2017-12-15 2018-08-21 苏州派凯姆新能源科技股份有限公司 A kind of novel homogenizing emulsifying pump of alkenyl succinic anhydride
CN109499410B (en) * 2019-01-11 2024-02-02 西安交通大学 Venturi emulsion preparation device with Venturi injection structure and injection hole
TWI693965B (en) 2019-03-12 2020-05-21 信紘科技股份有限公司 Chemical liquid dilution method
TWI697356B (en) * 2019-03-12 2020-07-01 信紘科技股份有限公司 Fluid mixer
CN110075728A (en) * 2019-04-28 2019-08-02 邱振权 A kind of ASA emulsifier unit and control method
KR102406095B1 (en) * 2020-04-21 2022-06-13 주식회사 성광이엔에프 Emulsion manufacturing system using ultrafine bubbles
CN112538780A (en) * 2020-12-22 2021-03-23 浙江凯丰新材料股份有限公司 Online emulsification device of ASA sizing agent
CN113083161B (en) * 2021-04-09 2022-04-12 华东理工大学 Jet type foam generating device for removing peculiar smell substances
WO2023283328A1 (en) * 2021-07-08 2023-01-12 Ecolab Usa Inc. System and technique for inverting polymers under ultra-high shear

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1205675A (en) * 1968-01-05 1970-09-16 Karl Hutter Device for mixing media, more particularly liquids
WO1999025466A1 (en) * 1997-11-14 1999-05-27 Calgon Corporation Emulsion feed assembly
WO1999042545A1 (en) * 1998-02-19 1999-08-26 Crystallisation & Degumming Sprl Method for producing microcrystals of vegetable and animal fats

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1540592A (en) * 1924-08-25 1925-06-02 Best Robert Bertram Emulsifying or mixing apparatus
US2961366A (en) 1957-02-27 1960-11-22 Hercules Powder Co Ltd Sized paper and method of making same
US4040900A (en) 1974-05-20 1977-08-09 National Starch And Chemical Corporation Method of sizing paper
IT1015665B (en) * 1974-07-04 1977-05-20 Snam Progetti METHOD FOR THE PREPARATION IN WITH TINUE OF WATER OIL EMULSIONS AND EQUIPMENT SUITABLE FOR THE PURPOSE
US4295931A (en) 1976-03-08 1981-10-20 Hercules Incorporated Sizing method and sizing composition for use therein
US4317756A (en) 1977-08-19 1982-03-02 Hercules Incorporated Sizing composition comprising a hydrophobic cellulose-reactive sizing agent and a cationic polymer
US4234481A (en) 1977-11-30 1980-11-18 Crompton & Knowles Corporation Yellow pyrazolone ester dyes for heat transfer printing
CH620134A5 (en) * 1978-03-14 1980-11-14 Blaser & Co Ag
US4240935A (en) 1978-12-22 1980-12-23 Hercules Incorporated Ketene dimer paper sizing compositions
US4279794A (en) 1979-04-26 1981-07-21 Hercules Incorporated Sizing method and sizing composition for use therein
US4210534A (en) * 1979-05-11 1980-07-01 Clevepak Corporation Multiple stage jet nozzle and aeration system
US4522686A (en) 1981-09-15 1985-06-11 Hercules Incorporated Aqueous sizing compositions
US4430251A (en) 1981-09-29 1984-02-07 Hoffert Manufacturing Co., Inc. High energy emulsifier
SU1590124A1 (en) * 1988-04-08 1990-09-07 Институт технической механики АН УССР Apparatus for producing fine-dispersed system
JPH02127594A (en) * 1988-11-02 1990-05-16 Hokuetsu Paper Mills Ltd Sizing of papermaking raw material using substituted succinic anhydride
GB8910372D0 (en) * 1989-05-05 1989-06-21 Framo Dev Ltd Multiphase process mixing and measuring system
US5171795A (en) 1990-08-01 1992-12-15 Hercules Incorporated Process for the production of improved polyaminopolyamide epichlorohydrin resins
US5714552A (en) 1990-11-30 1998-02-03 Hercules Incorporated Process for making epichlorohydrin resins
CA2066378C (en) 1991-04-24 2000-09-19 David J. Hardman Dehalogenation of organohalogen-containing compounds
EP0616002B1 (en) * 1992-09-18 1998-03-04 Idemitsu Petrochemical Co., Ltd. Process for producing polycarbonate powder
GB9311944D0 (en) 1993-06-10 1993-07-28 Hercules Inc Synthesis of alkyl ketene multimers (akm) and application for precision converting grades of fine paper
US5403522A (en) * 1993-11-12 1995-04-04 Von Berg; Richard Apparatus and methods for mixing liquids and flowable treating agents
US5685815A (en) 1994-02-07 1997-11-11 Hercules Incorporated Process of using paper containing alkaline sizing agents with improved conversion capability
US5846663A (en) 1994-02-07 1998-12-08 Hercules Incorporated Method of surface sizing paper comprising surface sizing paper with 2-oxetanone ketene multimer sizing agent
US5614597A (en) 1994-12-14 1997-03-25 Hercules Incorporated Wet strength resins having reduced levels of organic halogen by-products
US5725731A (en) 1995-05-08 1998-03-10 Hercules Incorporated 2-oxetanone sizing agents comprising saturated and unsaturated tails, paper made with the 2-oxetanone sizing agents, and use of the paper in high speed converting and reprographic operations
US5595631A (en) * 1995-05-17 1997-01-21 National Starch And Chemical Investment Holding Corporation Method of paper sizing using modified cationic starch
US5853542A (en) 1995-09-11 1998-12-29 Hercules Incorporated Method of sizing paper using a sizing agent and a polymeric enhancer and paper produced thereof
AU718417B2 (en) * 1995-11-14 2000-04-13 Stockhausen Gmbh & Co. Kg Water additive and method for fire prevention and fire extinguishing
US5766417A (en) 1996-03-06 1998-06-16 Hercules Incorporated Process for using alkaline sized paper in high speed converting or reprographics operations
DE19703779C2 (en) * 1997-02-01 2003-06-05 Karlsruhe Forschzent Method and device for producing a disperse mixture
AUPO609997A0 (en) * 1997-04-09 1997-05-01 Queensland University Of Technology Mixing apparatus
US5863128A (en) * 1997-12-04 1999-01-26 Mazzei; Angelo L. Mixer-injectors with twisting and straightening vanes
US5931771A (en) 1997-12-24 1999-08-03 Kozyuk; Oleg V. Method and apparatus for producing ultra-thin emulsions and dispersions
US6210475B1 (en) * 1999-09-03 2001-04-03 Bayer Corporation Use of hydroxyalkylated starches for improved emulsification of sizing agents
US6444024B1 (en) 1999-12-16 2002-09-03 Akzo Nobel Nv Sizing composition
CN1409788A (en) * 1999-12-16 2003-04-09 阿克佐诺贝尔公司 Sizing composition
US6576049B1 (en) * 2000-05-18 2003-06-10 Bayer Corporation Paper sizing compositions and methods
US6796704B1 (en) * 2000-06-06 2004-09-28 W. Gerald Lott Apparatus and method for mixing components with a venturi arrangement
US20030127204A1 (en) 2001-09-06 2003-07-10 Varnell Daniel F. Amphoteric polymer resins that increase the rate of sizing development
US20080267006A1 (en) * 2004-08-06 2008-10-30 Carlos Miguel Moreira Campos Device for Mixing Fluids
WO2006096216A1 (en) 2005-03-03 2006-09-14 Kemira Oyj Reduced shear cellulose reactive sizing agent for wet end applications
BRPI0810314A2 (en) * 2007-05-09 2014-10-21 Buckman Labor Inc "SUCCINIC ALKENYL ANXYRID COLLAGE EMULSION, PAPER-STICKING PROCESS, MIXTURE WITH SUCCINIC ALKENYL ANXYRID AND EMULSIFYING AGENT"
US7784999B1 (en) * 2009-07-01 2010-08-31 Vortex Systems (International) Ci Eductor apparatus with lobes for optimizing flow patterns

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1205675A (en) * 1968-01-05 1970-09-16 Karl Hutter Device for mixing media, more particularly liquids
WO1999025466A1 (en) * 1997-11-14 1999-05-27 Calgon Corporation Emulsion feed assembly
WO1999042545A1 (en) * 1998-02-19 1999-08-26 Crystallisation & Degumming Sprl Method for producing microcrystals of vegetable and animal fats

Also Published As

Publication number Publication date
BR112012002642B1 (en) 2021-05-25
AU2009350832A1 (en) 2012-03-08
EP2461898A1 (en) 2012-06-13
US11554353B2 (en) 2023-01-17
JP5740548B2 (en) 2015-06-24
PT2461898E (en) 2015-11-30
ES2550620T3 (en) 2015-11-11
BR112012002642A2 (en) 2020-12-15
JP2013501164A (en) 2013-01-10
RU2012108162A (en) 2013-09-10
PL2461898T3 (en) 2016-01-29
US20120103546A1 (en) 2012-05-03
CN102639219A (en) 2012-08-15
RU2538578C2 (en) 2015-01-10
WO2011015715A1 (en) 2011-02-10
ZA201201603B (en) 2013-10-28
CA2770942C (en) 2016-11-01
MX2012001551A (en) 2012-05-23
AU2009350832B2 (en) 2016-06-09
CN102639219B (en) 2016-03-09
KR20120041242A (en) 2012-04-30
KR101644212B1 (en) 2016-07-29
CA2770942A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
EP2461898B1 (en) Apparatus, system and method for emulsifying oil and water
EP1973636B1 (en) Method for preparing a calibrated emulsion
FR2530239A1 (en)
US10006171B2 (en) Methods and compositions for enhancing sizing in papermaking process
EP3679189A1 (en) Inline dilution of microfibrillated cellulose
JPH0261196A (en) Sizing method of paper and similar product
TWI470133B (en) Composition for sizing paper
EP2859146B1 (en) Method for producing an emulsion of alkenyl succinic anhydride (asa) in an aqueous solution of a cationic amylaceous substance, resulting emulsion, and use thereof
TW201210684A (en) Apparatus, system and method for emulsifying oil and water
EP2904146B1 (en) Process for producing a stable emulsion of alkenyl succinic anhydride (asa) in an aqueous solution of cationic amylaceous material, emulsion obtained and use thereof
FR2897280A1 (en) Preparation of alkenyl succinic anhydride sizing emulsion useful for paper sizing, comprises ultrasonic usage
EP2929929B1 (en) Method for producing an alkenyl succinic anhydride emulsion
Petersen et al. Effectiveness of polyoxyethylene nonionic emulsifiers in emulsification processes using disc systems
CN102493276B (en) Stable alkenyl succinic anhydride sizing emulsion for papermaking and preparation method thereof
BE895777A (en) WATER-SOLUBLE COMPOSITIONS BASED ON CATIONIC HYDROPHILIC POLYMERS AND ANIONIC SURFACTANTS
EP3102734B1 (en) On-site emulsification of defoamer for brownstock washing of pulp
EP3317353A1 (en) Continuous preparation of cationic bitumen emulsions
Ariyaprakai Long-term Stability of Orange Oil Emulsions Prepared by Spontaneous Emulsification Using Polyglycerol Esters Mixed with Sucrose Esters
BE478998A (en)
FR2520747A1 (en) Paper mfr. and waste water-purificn. flocculant - comprising water-dilutable compsn. contg. hydrophilic cationic polymer and anion-active surfactant
BE494007A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130312

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLENIS TECHNOLOGIES CAYMAN, L.P.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 753390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER AND CIE S.A., CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2550620

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009034063

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20151117

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20151007

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009034063

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

26N No opposition filed

Effective date: 20160708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160804

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20171024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090804

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 753390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20180829

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20180802

Year of fee payment: 10

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 753390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190804

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009034063

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003080000

Ipc: B01F0023400000

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 15

Ref country code: GB

Payment date: 20230828

Year of fee payment: 15

Ref country code: FI

Payment date: 20230825

Year of fee payment: 15

Ref country code: ES

Payment date: 20230901

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230827

Year of fee payment: 15

Ref country code: PL

Payment date: 20230719

Year of fee payment: 15

Ref country code: FR

Payment date: 20230825

Year of fee payment: 15

Ref country code: DE

Payment date: 20230829

Year of fee payment: 15