EP2456818A1 - Combination of natural cationic and anionic materials as a binder for a textile substrate - Google Patents

Combination of natural cationic and anionic materials as a binder for a textile substrate

Info

Publication number
EP2456818A1
EP2456818A1 EP10745379A EP10745379A EP2456818A1 EP 2456818 A1 EP2456818 A1 EP 2456818A1 EP 10745379 A EP10745379 A EP 10745379A EP 10745379 A EP10745379 A EP 10745379A EP 2456818 A1 EP2456818 A1 EP 2456818A1
Authority
EP
European Patent Office
Prior art keywords
anionic
polymers
binder
cationic
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10745379A
Other languages
German (de)
French (fr)
Inventor
Michel Bourgeois
Christine Faure
Stéphanie BAUMBERGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut Francais Textile et Habillement
Original Assignee
Institut Francais Textile et Habillement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais Textile et Habillement filed Critical Institut Francais Textile et Habillement
Publication of EP2456818A1 publication Critical patent/EP2456818A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/08Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/11Starch or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/70Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment combined with mechanical treatment
    • D06M15/705Embossing; Calendering; Pressing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/06Processes in which the treating agent is dispersed in a gas, e.g. aerosols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/35Abrasion, pilling or fibrillation resistance

Definitions

  • the present invention relates to a combination of organic products, all from natural and renewable resources, for which binder properties for textile substrates have been demonstrated. More specifically, in the context of the present invention, the binder is the combination of polymers and / or molecules, at least one cationic and the other anionic.
  • these polymers and / or molecules can serve as a chemical binder for any type of textile support, whatever the structure and nature of the textile fibers used in the support.
  • the textile industry is defined as encompassing the entire process from fibers to the finished product.
  • two main sectors of activity are defined, namely the long fibers (for example wool) and the short fibers (for example cotton).
  • a textile support or textile structure is defined as an assembly of textile fibers, whatever the assembly technique used.
  • the nonwoven in which the fibers are randomly assembled are distinguished, the woven in which the fibers are an interweaving of warp yarns and weft yarns, and the knit where the fibers are interlaced in stitches.
  • the nonwoven fabric is distinguished from paper by the longer length of its fibers (about 5 mm) and especially by the absence of hydrogen bonds between the fibers.
  • a nonwoven is a manufactured sheet, consisting of directionally or randomly oriented webs or webs of fibers bound by friction and / or cohesion and / or adhesion, excluding paper and the products obtained. by weaving, knitting, tufting, seaming incorporating binding threads or filaments or felts by wet pressing, whether or not needled.
  • the field of textiles also includes composite materials.
  • a composite material is an assembly of at least two immiscible materials, but having good compatibility, thus constituting a new material that has properties that the elements alone do not possess. This possibility explains the increasing use of composite materials in different industrial sectors. Nevertheless, the exact description of a composite depends on the field of use and the expected mechanical performance.
  • a composite material consists of a fibrous framework, called reinforcement, which provides the mechanical strength and a protection, called matrix, which is generally a plastic material (thermoplastic or thermosetting resin) and which ensures the cohesion of the structure and the retransmission of the forces towards the fibrous reinforcement.
  • reinforcement which provides the mechanical strength
  • matrix which is generally a plastic material (thermoplastic or thermosetting resin) and which ensures the cohesion of the structure and the retransmission of the forces towards the fibrous reinforcement.
  • matrix which is generally a plastic material (thermoplastic or thermosetting resin) and which ensures the cohesion of the structure and the retransmission of the forces towards the fibrous reinforcement.
  • CMO - organic matrix composites
  • Ceramic matrix composites reserved for high-tech applications and working at high temperatures such as space, nuclear and military, as well as braking (ceramic brakes);
  • CCM metal matrix composites
  • the reinforcement is the skeleton supporting the mechanical forces. It can be in many forms: short fibers (mat) or continuous fibers (fabrics or multidirectional textures) depending on the intended application. Fibers generally have good tensile strength but low compressive strength. Among the most used fibers include glass fibers, carbon fibers, aramid fibers, silicon carbide fibers. For natural composites, there is a growing interest in plant fibers, such as hemp or flax. These fibers have good mechanical properties for a modest price, and are particularly ecological since they are natural products.
  • the resin remains synthetic (thermo-fusible polyolefin fibers or powders, polyamide, etc.). Many composites are also based on thermosetting polymers, which makes them difficult to recycle. These technological solutions therefore go against sustainable development.
  • the braids, ropes and structures mentioned above non-woven, fabrics or knits which have a three-dimensional structure (3D).
  • the fibers used in the field of textiles can be of natural, synthetic or artificial origins. Another classification of the fibers divides them into organic and mineral fibers, respectively:
  • mineral fibers such as fiberglass and asbestos
  • agrotextile namely the manufacture of flexible materials intended for example for the revegetation of soils or the fight against erosion
  • a binder (or resin) is defined as a product (liquid or solid) which assembles elements on the fibers constituting the textile: for example, immobilization of powder on fibers, fibers on fibers, molecules on fibers, microcapsules on fibers, ...
  • binders are used for textile finishing processes, such as:
  • the commercial binders used are acrylic, polyurethane or PVC binders.
  • the fibers are carded and transformed into a sheet.
  • the tablecloth is consolidated by different techniques:
  • binder either thermally, by adding a binder (powder or fiber) which melts and glues the fibers together;
  • the most common bonding to consolidate fiber webs involves commercial products derived from petroleum chemistry, such as polypropylene powders or two-component fibers in which one of the components melts at a temperature moderate and resins (eg epoxy resins).
  • petroleum chemistry such as polypropylene powders or two-component fibers in which one of the components melts at a temperature moderate and resins (eg epoxy resins).
  • thermoplastics available in powder form, such as starch modified by a chemical functionalization, or else polylactic acid (PLA for
  • Polylactic Acid or Polyhydroxyalkanoates (PHA) which are entirely synthetic molecules but based on vegetable raw materials;
  • thermosets such as epoxidized vegetable oils.
  • thermosets such as epoxidized vegetable oils.
  • the implementation of these binders requires the removal of powders, bicomponent fibers, or the projection or impregnation of the resins on the textile support, and the heating of the support at a high temperature.
  • the present invention relates to a binder for textile structures characterized in that this binder is exclusively of natural origin.
  • a structure or a textile support is defined as above, namely an arrangement of textile fibers, regardless of the method of manufacture of the structure (woven, knitted, nonwoven, braided textile surfaces ... whether 2D or 3D) and whatever the nature of textile fibers.
  • a satisfying binding function is defined as:
  • this binding function lasts over time and withstands various factors, in particular water and / or detergents, and abrasion.
  • Various tests are known to those skilled in the art for testing these properties, in particular:
  • washing standard in the field of clothing articles washing and domestic drying method NF EN 26330;
  • the binder according to the invention is characterized by the presence of at least two polymers and / or molecules of natural origin, one anionic and the other cationic respectively.
  • it is an organic binder, that is to say that at least the polymers and / or molecules contain carbon.
  • naturally occurring refers to the fact that these polymers and / or molecules are derived from renewable resources or raw materials, in other words that they are bio-based.
  • the said renewable resources may be of a plant or animal nature, of agricultural or marine origin: cereals, oilseeds, wood, fibers, algae, shells of crustaceans or insects, .... According to the definition of ADEME (Agency of the Environment and the Mastery of the Energy), it is thus about bioproducts.
  • the terms “naturally occurring” or “derived from renewable resources” indicate that the polymers and / or molecules may, in their natural state, be in anionic or cationic form, or may be slightly modified, especially to graft these ionic functions. However, these are to be differentiated from so-called synthetic molecules or polymers, generally derived from petroleum, the synthesis of which, in particular the polymerization, makes use of chemistry.
  • anionic polymers it is the combination of cationic and anionic polymers.
  • anionic polymers a possible alternative to the implementation of anionic polymers is the use of anionic molecules.
  • the term "polymer” is understood to mean a macromolecule composed of monomers of low molecular weight, linked together in a chain or in a network.
  • the anionic or cationic polymers used have molar masses of between 10 3 and 10 6 Da.
  • the polymers have a molecular weight of the order of 10 3 to 10 5 Da for the anionic lignosulfonates and 3.10 4 to 10 5 Da for the cationic starches. Thanks to their network structure and intermolecular ionic bonds between the negative charges of the anion and the positive charges of the cation, the high molecular weight polymers used in the composition of the binder therefore have the function of stiffening the textile support. bonding the fibers together and / or immobilizing elements (powder, molecules, microcapsules) on the fibers constituting the textile. They play perfectly their role of binder for textile supports.
  • the same polymer is both carrier of the anionic and cationic function, which is particularly the case of proteins such as albumin or collagen under conditions close to their isoelectric point.
  • the intramolecular bonds being weaker than the intermolecular bonds, such polymers are advantageously used in anionic or cationic form, in association with a polymer and / or a molecule carrying the complementary charge.
  • starch derivative in particular functionalized by quaternary ammonium functions.
  • Starch is a complex carbohydrate main constituent of cereals and potatoes.
  • Such cationic starch derivatives are commercially available, including:
  • Celquat H 100 or Polyquaternium 4 (National Starch), a hydroxyethyl cellulose dimethyl diallylammonium (cationic) copolymer (CAS #:
  • SC240C Celquat ® National Starch
  • polyquaternium- 10 CAS No. 53568-66-4
  • VECTOR SC 20157 ® (ROQUETTE), a cationic polymer derived from starch (No.
  • they may be salts or derivatives of chitosan.
  • the anionic polymer is a negatively charged lignin derivative.
  • Lignin is a group of compounds found mainly in the pectocellulosic walls of certain plant cells, including wood.
  • a preferred derivative of lignin is lignosulfonate (CAS RN: 8062-15-5), resulting from the production of pulp using bisulphite and carrying anionic sulfonate functions.
  • calcium lignosulfonate (CAS No: 8061-52-7), sodium lignosulfonate (CAS No: 8061-51-6), potassium lignosulfonate (CAS No: 37314-65-1), and ammonium lignosulfonate (CAS No. 8061-53-8) may be used in the context of the present invention.
  • REAX 81 A ® (Mead Westvaco), average degree of sulfonation, with about 5% sulfur;
  • Lignosol SD 60 ® (Borregaard LignoTech).
  • anionic polymers such as sodium alginate derived from algae, cellulose oxide resulting from the oxidation of cellulose or anionic starch from chemical modification of the native starch. It may also be salts of carboxymethylcellulose (CMC) or hyaluronic acid.
  • CMC carboxymethylcellulose
  • the anionic "component" of the binder according to the invention may be an anionic molecule of natural origin, advantageously having a molar mass of between 100 and 1000 Da. In a preferred manner, it is a soluble fatty acid salt derived from natural products of both plant and animal origin.
  • an anionic molecule may be sodium oleate or sodium lauryl sulphate.
  • the present invention is not limited to the combination of an anionic polymer or molecule and a cationic polymer, but that one or more polymers and / or anionic molecules may be associated with one or more cationic polymers. , the essential condition in the context of the invention being that all of these polymers and / or molecules is of natural origin.
  • the mass ratio of polymers and / or anionic molecule / cationic polymers, in particular cationic starch / sodium lignosulfonate is advantageously:
  • the mixture has too much water solubility incompatible with the desired binder function.
  • biodegradable means that, by the action of microorganisms under aerobic conditions, the decomposition of an organic compound with CO 2, water and mineral salts provides a new biomass.
  • a product is said to be biodegradable if it can be decomposed by living organisms in the biological environment (soil, fresh water, salt water, compost, activated sludge, etc.). Biodegradation results in a gradual simplification of the chemical structure of the organic compound: cleavage of the polymer chains and obtaining oligomers of low molecular weights available for the synthesis of cellular constituents (biomass).
  • the invention also relates to a method of depositing a binder as defined above on a textile support. This can be achieved for textile finishing, namely the assembly of elements on the fibers constituting the textile (immobilization of powder on fibers, fibers on fibers, molecules on fibers, microcapsules on fibers, etc.). or for the consolidation of a nonwoven textile support.
  • such a method comprises the following steps:
  • At least one solvent At least one solvent
  • the polymers and / or anionic and cationic molecules of natural origin are defined as above.
  • the anionic and cationic polymers and / or molecules are advantageously formulated in a liquid medium, using at least one solvent.
  • a true or colloidal solution is thus obtained.
  • the mixture is in the form of a solution. It is therefore preferentially an extemporaneous mixture, ready to use.
  • the mixture or the composition according to the invention therefore consists of:
  • the mixture or composition according to the invention does not contain fibers and / or mineral fillers and / or surfactants and / or precursors or accelerators of thermoset resins (of the isocyanate, epoxide, phenol derivative type). , imidazoles, polyamines).
  • the solvent is water, optionally supplemented with an alcohol.
  • the alcohol may be either a light alcohol (defined as having not more than 3 carbon atoms), or a heavy alcohol (defined as having at least 4 carbon atoms), optionally in a mixture.
  • a preferred light alcohol is ethanol.
  • Glycerol is also a by-product of the trans-esterification of vegetable oils in the production of methyl esters of vegetable oils that serve as fuels under the name of biodiesel or diester.
  • the dispersion of the cationic and anionic polymers and / or molecules in the solvent depends on the respective nature of these polymers and / or molecules and the solvent, but also on the concentration of polymers and / or molecules and the mass ratio between the polymers and / or molecules in the presence.
  • the polymers and / or molecules constituting the binder advantageously represent at most 20% by weight. of the mixture. This is the mass ratio between the dry matter of the binder and the total material of the mixture (binder + solvent in particular).
  • the mass ratio between polymers and / or anionic and cationic molecules, respectively is advantageously:
  • the plasticizer may be glycerol or polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the application of the mixture on the textile support is carried out by spraying, in practice using a device equipped with one or more nozzles for projecting the mixture in the form of droplets.
  • this deposit can be achieved by the other two techniques conventionally used in the textile field, namely by padding or immersion in full bath.
  • this deposition may be carried out by spraying with the aid of separate mixtures in solution in a solvent, or in the solid state.
  • each polymer and / or molecule can be deposited independently.
  • the application is carried out in a mass ratio between the dry matter of the binder mixture and the fibers of the textile support between 0.1 and 20%, ideally between 2% and 5%.
  • the next step is to fix or activate the binder on the textile support.
  • this is achieved by simple partial or total elimination of all or part of the solvents in the presence.
  • the elimination is carried out by simple drying at a temperature adapted to the fibers and the products.
  • the preferred temperature range is between 100 and 120 ° C.
  • this drying can also be carried out at ambient temperature.
  • the implementation of moderate temperatures in the treatment of the textile constitutes a significant difference, with the prior art which required the heating of the support at an elevated temperature, greater than 150 ° C.
  • the spray application technique has the advantage of reducing the amount of solvent in the presence and especially to facilitate its elimination due to its dispersion in droplets.
  • the mixture of at least two polymers and / or anionic and cationic molecules, respectively is produced in situ, that is to say directly on the textile support. In practice, this can be achieved by formulating each type of ionic polymer and / or molecule in a solvent and spraying each solution either consecutively or simultaneously but from separate nozzles.
  • FIG. 1 illustrates, in industrial trials, the influence of different spray mixtures on the mechanical properties of a rolled nonwoven of 600 g / m 2 in the production direction (A) or in the cross direction (B).
  • FIG. 2 illustrates, in laboratory tests, the influence of different spray mixtures on the mechanical properties of a calendered non-woven fabric in the production (A) or cross-direction (B) direction.
  • FIG. 3 illustrates, in laboratory tests, the influence of different spray mixtures on the mechanical properties of a non-roving rolled non-woven fabric in the production (A) or cross-direction (B) direction.
  • FIG. 4 illustrates, in laboratory tests, the influence of different spray mixtures on the mechanical properties of a non-rolled non-woven fabric in the production (A) or cross-direction (B) direction.
  • FIG. 5 illustrates, in laboratory tests, the influence of different spray mixtures on the mechanical properties of a non-rolled non-rolled non-woven fabric in the production (A) or cross-direction (B) direction.
  • the general protocol for obtaining a binder based on sodium lignosulfonate and cationic starch in water is as follows:
  • Lignosulfonate Arbo Nl 8 ® (anionic polymer) is in solid form, is dissolved in cold water or optionally warmed to 40 0 C to accelerate dissolution.
  • the cationic starch C * Bond 05949 HR ®, Cationamyl ® 9865 or Hl Celquat ® 00 is in the form of powdered solids is solubilized in water at 95 ° C (to accelerate dissolution), using a stirrer Powerful Ultra Turrax ® at 6000 rpm until the solution is translucent, while maintaining the temperature at around 95 ° C.
  • the two solutions are mixed by pouring the lignosulfonate solution Arbo N 18 ® in the cationic starch solution.
  • the liquid medium thickens and then becomes fluid and can become a mixture of gum in water in the mass ratios of cationic starch / lignosulfonate.
  • This binder is sprayable at room temperature.
  • This example describes industrial tests involving spraying of lignosulfonate binders and cationic starch on hemp nonwovens. The conditions of water removal and the properties of the reinforced support (especially the mechanical strength) are indicated.
  • the fibrous supports used for the spray treatments are nonwovens of needled hemp fiber.
  • Control nonwovens are raw needled hemp nonwovens, having undergone the same treatment (heating / calendering) as sprayed nonwovens.
  • the binders are sprayed with a hand sprayer (gun type for addition of fluid liquids) on each side of the sample at a rate of about 2% dry matter.
  • the speed of advance of the nonwoven in the oven and the temperature are adjusted in order to dry the sample under good conditions, without decomposition (120 ° C. for 45 seconds).
  • Binders 3, 1 'and 2' were used in this example 5. Binders 1, 2 and 3 were used in Example 6 below.
  • the impregnated and dried nonwoven is calendered (or not) at the outlet of the oven, at 90 ° C. so as not to alter the nonwoven fabric.
  • tensile tests were carried out on the various samples made industrially.
  • test specimens 5 ⁇ 20 cm (one specimen in the production direction and one specimen in the cross direction);
  • Test parameters tensile speed 50 mm / min;
  • the binder 1 '(anionic + cationic) is the least effective
  • the sprays were carried out on the same nonwoven needled hemp of 600 g / cm 2 , rusty or not, used in Example 5.
  • the binders are sprayed with a hand sprayer (gun type for fluid addition) on each side of the sample.
  • the speed of advance of the nonwoven in the oven and the temperature are adjusted in order to dry the sample under good conditions (120 ° C. for 45 seconds).
  • the samples are calendered or not at 90 0 C so as not to alter the nonwoven.
  • the binders 1, 2 and 3 are sprayed on each side with 2% (+/- 0.1%) in total dry matter relative to the mass of fibers.
  • the tensile tests are carried out on these samples under conditions similar to those of Example 5.
  • the figures show the change in% of the mechanical characteristics provided by the binder with respect to the control supports (non-woven blanks, calendered or not).
  • the maximum resistance Fm (Rmax in the figures) is significantly improved (from 30 to 120%).
  • the binder 3 is most suitable for the calendered-retted sample
  • the binder 2 is the most suitable for the calendered-non-rusty sample
  • the binder 2 is the most suitable for the non-calendered-rusty sample
  • the binder 3 is the most suitable for the non-calendered-non-rusty sample.
  • a heavy alcohol in this case glycerol
  • glycerol is added in the binder formulation at a level of 1% relative to the solids.
  • Glycerol is placed in the solution of Vector SC 20157 ® .
  • the Vector SC 20157 ® + Glycerol solution is then added to the lignosulfonate:
  • Table 5 summarizes the test carried out and indicates the percentages of the constituents of the binder, in dry matter:
  • the binder is sprayable at room temperature.
  • the resulting sample is softer to the touch.
  • the binder whose composition is shown in Table 6 below is applied by coating on a cotton fabric of 130 g / m 2 .
  • the fabric is dried in an oven at 120 ° C. for 45 seconds.
  • a test piece of the fabric prepared above is washed.
  • the fabric is washed twice at 40 ° C. in the presence of ECE lye without perborate according to standard NF EN 26330.
  • the sample is dried. A small portion of the binder placed in excess on the cotton was removed at the washings. The majority of the binder remained on the fabric after washing. The binder placed on cotton by coating is resistant after 2 washes.
  • the test is carried out on a specimen of the fabric prepared above according to standard NF EN ISO 105-X12 (crockmeter test).
  • the binder must not generate powder during the various manipulations of the textile (during manufacture, storage, installation or during use). In order to verify this property, an abrasion resistance test is done on the crockmeter.
  • the abrasive medium is cotton.
  • test piece is fixed on the cylindrical part of the apparatus and then deposited on the abrasive cotton support.
  • the crank is then actuated.
  • white abrasive cotton Teests carried out with 150 fast returns.
  • the results are satisfactory, the binder placed on cotton by coating is resistant after 150 round trips.
  • the binder whose composition is shown in Table 7 below is sprayed onto a white cotton fabric of 130 g / m 2 .
  • the impregnation rate is 8.0% dry matter.
  • the fabric is dried in an oven at 120 ° C. for 45 seconds.
  • the treated fabric and the untreated fabric are buried in the soil for 8 and 15 days.
  • the tissues are taken out of the ground, cleaned and weighed.
  • the binder placed on the cotton was degraded largely in the soil, under the conditions of the test.
  • the treated cotton has not deteriorated much: the cotton begins to degrade when the totality of the binder disappeared after 15 days.
  • the binder has behaved as a biodegradation retarding agent.
  • untreated cotton began to degrade (10% weight loss).
  • the addition of the binder according to the invention does not inhibit the natural chain of biodegradation in soil, formation of humus and biomass;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The present invention relates to the use of a mixture, containing at least two natural polymers and/or organic molecules, one of which is anionic and the other of which is cationic, respectively, as a binder for a textile substrate, as well as to a method for depositing a binder comprising such a mixture for carrying out textile finishing or for strengthening a textile substrate.

Description

ASSOCIATION DE PRODUITS CATIONIOUES ET ANIONIOUES NATURELS COMME LIANT POUR SUPPORT TEXTILE  ASSOCIATION OF CATIONIC PRODUCTS AND NATURAL ANIONIOUES AS BINDER FOR TEXTILE SUPPORT
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention a trait à une association de produits organiques, tous issus de ressources naturelles et renouvelables, pour laquelle des propriétés de liant pour supports textiles ont été mises en évidence. Plus précisément, dans le cadre de la présente invention, le liant est la combinaison de polymères et/ou de molécules, au moins l'un cationique et l'autre anionique. The present invention relates to a combination of organic products, all from natural and renewable resources, for which binder properties for textile substrates have been demonstrated. More specifically, in the context of the present invention, the binder is the combination of polymers and / or molecules, at least one cationic and the other anionic.
Grâce à un procédé relativement simple, ces polymères et/ou molécules peuvent servir de liant chimique pour tout type de support textile, quelles que soient la structure et la nature des fibres textiles mises en œuvre dans le support. Thanks to a relatively simple process, these polymers and / or molecules can serve as a chemical binder for any type of textile support, whatever the structure and nature of the textile fibers used in the support.
ETAT DE LA TECHNIQUE ANTÉRIEURE STATE OF THE PRIOR ART
L'industrie textile se définit comme englobant l'ensemble du processus en partant des fibres jusqu'au produit fini. Dans ce domaine technique, on définit deux grands secteurs d'activité, à savoir la filière fibres longues (par exemple la laine) et la filière fibres courtes (par exemple le coton). The textile industry is defined as encompassing the entire process from fibers to the finished product. In this technical field, two main sectors of activity are defined, namely the long fibers (for example wool) and the short fibers (for example cotton).
Un support textile -ou structure textile- est défini comme un assemblage de fibres textiles, quelle que soit la technique d'assemblage mise en œuvre. On distingue le non tissé dans lequel les fibres sont assemblées de manière aléatoire, le tissé dans lequel les fibres sont un entrecroisement de fils de chaine et de fils de trame, et le tricot où les fibres sont entrelacées en mailles. Le textile non tissé se distingue du papier par la longueur supérieure de ses fibres (5 mm environ) et surtout par l'absence de liaisons hydrogène entre les fibres. A textile support or textile structure is defined as an assembly of textile fibers, whatever the assembly technique used. The nonwoven in which the fibers are randomly assembled are distinguished, the woven in which the fibers are an interweaving of warp yarns and weft yarns, and the knit where the fibers are interlaced in stitches. The nonwoven fabric is distinguished from paper by the longer length of its fibers (about 5 mm) and especially by the absence of hydrogen bonds between the fibers.
En d'autres termes, un non tissé est une feuille manufacturée, constituée de voiles ou de nappes de fibres orientées directionnellement ou au hasard, liées par friction et/ou cohésion et/ou adhésion, à l'exclusion du papier et des produits obtenus par tissage, tricotage, tuftage, couturage incorporant des fils ou filaments de liage ou feutrés par foulage humide, qu'ils soient ou non aiguilletés. Le domaine du textile englobe également les matériaux composites. Un matériau composite est un assemblage d'au moins deux matériaux non miscibles, mais ayant une bonne compatibilité, constituant ainsi un nouveau matériau qui possède des propriétés que les éléments seuls ne possèdent pas. Cette possibilité explique l'utilisation croissante des matériaux composites dans différents secteurs industriels. Néanmoins, la description exacte d'un composite dépend du domaine d'utilisation et des performances mécaniques attendues. In other words, a nonwoven is a manufactured sheet, consisting of directionally or randomly oriented webs or webs of fibers bound by friction and / or cohesion and / or adhesion, excluding paper and the products obtained. by weaving, knitting, tufting, seaming incorporating binding threads or filaments or felts by wet pressing, whether or not needled. The field of textiles also includes composite materials. A composite material is an assembly of at least two immiscible materials, but having good compatibility, thus constituting a new material that has properties that the elements alone do not possess. This possibility explains the increasing use of composite materials in different industrial sectors. Nevertheless, the exact description of a composite depends on the field of use and the expected mechanical performance.
De manière générale, un matériau composite est constitué d'une ossature fibreuse, appelée renfort, qui assure la tenue mécanique et d'une protection, appelée matrice, qui est généralement une matière plastique (résine thermoplastique ou thermodurcissable) et qui assure la cohésion de la structure et la retransmission des efforts vers le renfort fibreux. Il existe aujourd'hui un grand nombre de matériaux composites que l'on classe typiquement en trois familles, en fonction de la nature de la matrice : In general, a composite material consists of a fibrous framework, called reinforcement, which provides the mechanical strength and a protection, called matrix, which is generally a plastic material (thermoplastic or thermosetting resin) and which ensures the cohesion of the structure and the retransmission of the forces towards the fibrous reinforcement. There are today a large number of composite materials that are typically classified into three families, depending on the nature of the matrix:
- les composites à matrices organiques (CMO) qui constituent, de loin, les volumes les plus importants aujourd'hui à l'échelle industrielle ; - organic matrix composites (CMO), which are by far the most important volumes today on an industrial scale;
les composites à matrices céramiques (CMC) réservés aux applications de très haute technicité et travaillant à haute température comme le spatial, le nucléaire et le militaire, ainsi que le freinage (freins céramique) ;  ceramic matrix composites (CMC) reserved for high-tech applications and working at high temperatures such as space, nuclear and military, as well as braking (ceramic brakes);
- les composites à matrices métalliques (CMM). - metal matrix composites (CMM).
Le renfort est le squelette supportant les efforts mécaniques. Il peut se présenter sous de nombreuses formes : fibres courtes (mat) ou fibres continues (tissus ou textures multidirectionnelles) en fonction de l'application envisagée. Les fibres possèdent généralement une bonne résistance à la traction mais une résistance à la compression faible. Parmi les fibres les plus employées, on peut citer les fibres de verre, les fibres de carbone, les fibres d'aramide, les fibres de carbure de silicium. Pour les composites naturels, un intérêt croissant est porté aux fibres végétales, comme le chanvre ou le lin. Ces fibres ont de bonnes propriétés mécaniques pour un prix modeste, et sont particulièrement écologiques puisque ce sont des produits naturels. The reinforcement is the skeleton supporting the mechanical forces. It can be in many forms: short fibers (mat) or continuous fibers (fabrics or multidirectional textures) depending on the intended application. Fibers generally have good tensile strength but low compressive strength. Among the most used fibers include glass fibers, carbon fibers, aramid fibers, silicon carbide fibers. For natural composites, there is a growing interest in plant fibers, such as hemp or flax. These fibers have good mechanical properties for a modest price, and are particularly ecological since they are natural products.
La résine reste synthétique (fibres ou poudres de polyoléfïne thermo fusible ; polyamide, ...). Beaucoup de composites sont aussi à base de polymères thermodurcissables, ce qui les rend difficilement recyclables. Ces solutions technologiques vont donc à l'encontre du développement durable. Dans le domaine du textile, on peut en outre citer les tresses, cordes et les structures évoquées précédemment (non tissés, tissus ou tricots) qui présentent une structure en trois dimensions (3D). De manière générale, les fibres mises en œuvre dans le domaine du textile peuvent être d'origines naturelle, synthétique ou artificielle. Une autre classification des fibres les divisent en fibres organiques et minérales, respectivement : The resin remains synthetic (thermo-fusible polyolefin fibers or powders, polyamide, etc.). Many composites are also based on thermosetting polymers, which makes them difficult to recycle. These technological solutions therefore go against sustainable development. In the field of textile, one can also mention the braids, ropes and structures mentioned above (non-woven, fabrics or knits) which have a three-dimensional structure (3D). In general, the fibers used in the field of textiles can be of natural, synthetic or artificial origins. Another classification of the fibers divides them into organic and mineral fibers, respectively:
fibres minérales, telles que fibres de verre et amiante ;  mineral fibers, such as fiberglass and asbestos;
fibres organiques :  organic fibers:
• d'origine naturelle animale (telles que la soie ou la laine) ou végétale (telles que le coton, le lin ou le chanvre) ;  • of natural animal origin (such as silk or wool) or vegetable origin (such as cotton, linen or hemp);
• d'origine synthétique (polyamide, polyester, ...)  • synthetic origin (polyamide, polyester, ...)
• d'origine artificielle (viscose, acétate de cellulose). Les supports textiles trouvent de nombreuses applications, notamment dans les domaines suivants :  • of artificial origin (viscose, cellulose acetate). Textile supports have many applications, particularly in the following areas:
l'habillement, l'ameublement ;  clothing, furniture;
le transport (automobile, aérien, ferroviaire), plus précisément pour la garniture de l'habitacle ou pour l'élaboration de panneaux pour la carrosserie ;  transportation (automobile, air, railway), more specifically for the interior trim or for the development of panels for the bodywork;
- la fabrication de panneaux pour le bâtiment ; - manufacture of panels for the building;
le moulage d'éléments de conditionnement et de transport ;  molding of packaging and transport elements;
l' agrotextile, à savoir la fabrication de matériaux souples destinés par exemple à la revégétalisation des sols ou à la lutte contre l'érosion ;  agrotextile, namely the manufacture of flexible materials intended for example for the revegetation of soils or the fight against erosion;
Dans l'industrie textile, d'une façon générale, un liant (ou résine) est défini comme un produit (liquide ou solide) qui assemble des éléments sur les fibres constituant le textile : par exemple, immobilisation de poudre sur fibres, de fibres sur fibres, de molécules sur fibres, de microcapsules sur fibres,... . Ainsi, les liants sont utilisés pour les procédés d'ennoblissement textiles, tels que : In the textile industry, in general, a binder (or resin) is defined as a product (liquid or solid) which assembles elements on the fibers constituting the textile: for example, immobilization of powder on fibers, fibers on fibers, molecules on fibers, microcapsules on fibers, ... Thus binders are used for textile finishing processes, such as:
impressions ou teintures à base de pigments ;  pigment prints or dyes;
enduction sur textile ;  coating on textile;
immobilisation de microcapsules sur fibres ;  immobilization of microcapsules on fibers;
immobilisation d'actifs biocides (antimicrobiens, anti-insectes, ...) sur fibres ;  immobilization of biocidal (antimicrobial, anti-insect, etc.) assets on fibers;
- immobilisation de molécules odorantes sur fibres. Pour ces applications, les liants commerciaux utilisés sont les liants acryliques, polyuréthane ou PVC. immobilization of odorant molecules on fibers. For these applications, the commercial binders used are acrylic, polyurethane or PVC binders.
Par ailleurs, dans l'industrie des non tissés en particulier, les fibres sont cardées et transformées en nappe. La nappe est consolidée par différentes techniques : Moreover, in the nonwoven industry in particular, the fibers are carded and transformed into a sheet. The tablecloth is consolidated by different techniques:
soit thermiquement, par ajout d'un liant (en poudre ou en fibres) qui fond et colle les fibres entre elles ;  either thermally, by adding a binder (powder or fiber) which melts and glues the fibers together;
soit par aiguilletage (liage mécanique) ;  either by needling (mechanical bonding);
soit par ajout d'un liant chimique (ou adhésif) qui colle les fibres entre elles (imprégnation chimique) ;  either by adding a chemical binder (or adhesive) which bonds the fibers together (chemical impregnation);
soit en utilisant une combinaison de plusieurs de ces techniques.  or using a combination of several of these techniques.
Dans l'industrie des non tissés, le liage le plus répandu pour consolider les nappes de fibres fait appel à des produits commerciaux issus de la chimie du pétrole, tels que les poudres de polypropylène ou les fibres bicomposantes dont un des composants fond à une température modérée et les résines (par exemple les résines époxy). In the non-woven industry, the most common bonding to consolidate fiber webs involves commercial products derived from petroleum chemistry, such as polypropylene powders or two-component fibers in which one of the components melts at a temperature moderate and resins (eg epoxy resins).
Bien sûr, d'un point de vue environnemental, ces solutions pour le liage, basées sur des ressources pétrolières, sont considérées comme peu satisfaisantes. Of course, from an environmental point of view, these solutions for binding, based on petroleum resources, are considered unsatisfactory.
Ainsi, il a été envisagé de créer des structures liées chimiquement mais d'origine naturelle et biodégradable. Dans la littérature, deux grandes catégories de solutions techniques d'origine végétale ont été rapportées : Thus, it has been envisaged to create chemically related structures of natural and biodegradable origin. In the literature, two main categories of technical solutions of plant origin have been reported:
les thermoplastiques, disponibles sous forme de poudre, telles que l'amidon modifié par une fonctionnalisation chimique, ou encore l'acide polylactique (PLA pour thermoplastics, available in powder form, such as starch modified by a chemical functionalization, or else polylactic acid (PLA for
Polylactic Acid) ou les Polyhydroxyalkanoates (PHA) qui sont des molécules entièrement synthétiques mais à base de matières premières végétales ; Polylactic Acid) or Polyhydroxyalkanoates (PHA) which are entirely synthetic molecules but based on vegetable raw materials;
les thermodurcissables, telles que les huiles végétales époxydées. Toutefois, la mise en œuvre de ces liants nécessite la dépose des poudres, des fibres bicomposantes, ou la projection ou l'imprégnation des résines sur le support textile, et le chauffage du support à une température élevée.  thermosets, such as epoxidized vegetable oils. However, the implementation of these binders requires the removal of powders, bicomponent fibers, or the projection or impregnation of the resins on the textile support, and the heating of the support at a high temperature.
Il existe donc un besoin évident d'identifier de nouvelles solutions techniques utilisables pour le traitement des structures textiles par des liants, notamment pour un ennoblissement textile ou un liage chimique de non tissés, ne présentant pas les inconvénients de celles de l'art antérieur mentionnées ci-dessus. EXPOSE DE L'INVENTION There is therefore a clear need to identify new technical solutions that can be used for the treatment of textile structures by binders, in particular for textile finishing or chemical bonding of nonwovens, which do not have the drawbacks of those of the prior art mentioned. above. SUMMARY OF THE INVENTION
Ainsi, la présente invention porte sur un liant pour structures textiles caractérisé par le fait que ce liant est exclusivement d'origine naturelle. Thus, the present invention relates to a binder for textile structures characterized in that this binder is exclusively of natural origin.
Dans le cadre de l'invention, une structure ou un support textile est défini comme ci- dessus, à savoir un agencement de fibres textiles, quel que soit le procédé de fabrication de la structure (surfaces textiles tissées, tricotées, non tissées, tressées..., qu'elles soient 2D ou 3D) et quelle que soit la nature des fibres textiles. In the context of the invention, a structure or a textile support is defined as above, namely an arrangement of textile fibers, regardless of the method of manufacture of the structure (woven, knitted, nonwoven, braided textile surfaces ... whether 2D or 3D) and whatever the nature of textile fibers.
Par ailleurs, une fonction liante satisfaisante est définie comme : Moreover, a satisfying binding function is defined as:
une consolidation mécanique du support textile, et/ou  a mechanical consolidation of the textile support, and / or
une immobilisation d'éléments (poudre, molécules, microcapsules) sur les fibres constituant le textile.  an immobilization of elements (powder, molecules, microcapsules) on the fibers constituting the textile.
De manière avantageuse, cette fonction liante perdure dans le temps et résiste à différents facteurs, notamment à l'eau et/ou à des détergents, et à l'abrasion. Différents tests sont connus de l'homme du métier pour tester ces propriétés, notamment : Advantageously, this binding function lasts over time and withstands various factors, in particular water and / or detergents, and abrasion. Various tests are known to those skilled in the art for testing these properties, in particular:
la norme de lavage dans le domaine des articles d'habillement = Méthode de lavage et de séchage domestique NF EN 26330 ;  the washing standard in the field of clothing articles = washing and domestic drying method NF EN 26330;
la norme pour évaluer la résistance aux frottements de textiles = Norme NF EN ISO the standard for evaluating the resistance to friction of textiles = NF EN ISO standard
105-X12 (test au crockmeter). 105-X12 (crockmeter test).
Plus précisément, le liant selon l'invention se caractérise par la présence d'au moins deux polymères et/ou molécules d'origine naturelle, l'un anionique et l'autre cationique respectivement. More specifically, the binder according to the invention is characterized by the presence of at least two polymers and / or molecules of natural origin, one anionic and the other cationic respectively.
En pratique, il s'agit d'un liant organique, c'est-à-dire qu'au moins les polymères et/ou molécules contiennent du carbone. In practice, it is an organic binder, that is to say that at least the polymers and / or molecules contain carbon.
On entend par « d'origine naturelle » le fait que ces polymères et/ou molécules sont issus de ressources ou matières premières renouvelables, en d'autres termes qu'ils sont biosourcés. Lesdites ressources renouvelables peuvent aussi bien être de nature végétale qu'animale, d'origine agricole que marine : céréales, oléagineux, bois, fibres, algues, carapaces de crustacés ou d'insectes, .... Selon la définition de l'ADEME (Agence de l'Environnement et de la Maitrise de l'Energie), il s'agit donc de bioproduits. Les termes « d'origine naturelle » ou « issus de ressources renouvelables » indiquent que les polymères et/ou molécules peuvent, à l'état naturel, se présenter sous forme anio nique ou cationique, ou bien peuvent être faiblement modifiés, notamment de manière à greffer ces fonctions ioniques. Toutefois, ceux-ci sont à différencier des molécules ou polymères dits synthétiques, généralement issus du pétrole, dont la synthèse -notamment la polymérisation- fait appel à la chimie. The term "naturally occurring" refers to the fact that these polymers and / or molecules are derived from renewable resources or raw materials, in other words that they are bio-based. The said renewable resources may be of a plant or animal nature, of agricultural or marine origin: cereals, oilseeds, wood, fibers, algae, shells of crustaceans or insects, .... According to the definition of ADEME (Agency of the Environment and the Mastery of the Energy), it is thus about bioproducts. The terms "naturally occurring" or "derived from renewable resources" indicate that the polymers and / or molecules may, in their natural state, be in anionic or cationic form, or may be slightly modified, especially to graft these ionic functions. However, these are to be differentiated from so-called synthetic molecules or polymers, generally derived from petroleum, the synthesis of which, in particular the polymerization, makes use of chemistry.
De manière avantageuse, il s'agit de la combinaison de polymères cationiques et anioniques. Toutefois, une alternative possible à la mise en œuvre de polymères anioniques est l'utilisation de molécules anioniques. Advantageously, it is the combination of cationic and anionic polymers. However, a possible alternative to the implementation of anionic polymers is the use of anionic molecules.
Dans le cadre de l'invention, on entend par « polymère » une macromolécule composée de monomères de faible masse moléculaire, liés entre eux en chaîne ou en réseau. Avantageusement, les polymères anioniques ou cationiques mis en œuvre possèdent des masses molaires comprises entre 103 et 106 Da. Typiquement, les polymères présentent une masse moléculaire de l'ordre de 103 à 105 Da pour les lignosulfonates anioniques et 3.104 à 105 Da pour les amidons cationiques. Grâce à leur structure en réseau et aux liaisons ioniques intermoléculaires s 'établissant entre les charges négatives de l'anion et les charges positives du cation, les polymères de haut poids moléculaire entrant dans la composition du liant ont donc pour fonction de rigidifîer le support textile, d'assembler par collage les fibres entre elles et/ou d'immobiliser des éléments (poudre, molécules, microcapsules) sur les fibres constituant le textile. Ils jouent ainsi parfaitement leur rôle de liant pour supports textiles. In the context of the invention, the term "polymer" is understood to mean a macromolecule composed of monomers of low molecular weight, linked together in a chain or in a network. Advantageously, the anionic or cationic polymers used have molar masses of between 10 3 and 10 6 Da. Typically, the polymers have a molecular weight of the order of 10 3 to 10 5 Da for the anionic lignosulfonates and 3.10 4 to 10 5 Da for the cationic starches. Thanks to their network structure and intermolecular ionic bonds between the negative charges of the anion and the positive charges of the cation, the high molecular weight polymers used in the composition of the binder therefore have the function of stiffening the textile support. bonding the fibers together and / or immobilizing elements (powder, molecules, microcapsules) on the fibers constituting the textile. They play perfectly their role of binder for textile supports.
Il peut être envisagé qu'un même polymère soit à la fois porteur de la fonction anionique et cationique, ce qui est notamment le cas de protéines telles que l'albumine ou le collagène dans des conditions proches de leur point isoélectrique. Toutefois, les liaisons intramoléculaires étant moins fortes que les liaisons intermoléculaires, de tels polymères sont avantageusement utilisés sous forme anionique ou cationique, en association avec un polymère et/ou une molécule porteur de la charge complémentaire. It can be envisaged that the same polymer is both carrier of the anionic and cationic function, which is particularly the case of proteins such as albumin or collagen under conditions close to their isoelectric point. However, the intramolecular bonds being weaker than the intermolecular bonds, such polymers are advantageously used in anionic or cationic form, in association with a polymer and / or a molecule carrying the complementary charge.
Concernant le polymère cationique, il s'agit avantageusement d'un dérivé de l'amidon, en particulier fonctionnalisé par des fonctions ammonium quaternaire. L'amidon est un glucide complexe constituant principal des céréales et de la pomme de terre. De tels dérivés cationiques d'amidon sont disponibles dans le commerce, notamment :As regards the cationic polymer, it is advantageously a starch derivative, in particular functionalized by quaternary ammonium functions. Starch is a complex carbohydrate main constituent of cereals and potatoes. Such cationic starch derivatives are commercially available, including:
Celquat H 100® ou polyquaternium 4 (National Starch), un copolymère hydroxyéthyl cellulose diméthyl diallylammonium chlorure (cationique) (n° CAS :Celquat H 100 ® or Polyquaternium 4 (National Starch), a hydroxyethyl cellulose dimethyl diallylammonium (cationic) copolymer (CAS #:
92183-41-0) ; 92183-41-0);
- Celquat L200® (National Starch) ou polyquaternium 4, un polymère cationique cellulosique ; - Celquat ® L200 (National Starch) or polyquaternium 4, a cellulosic cationic polymer;
Celquat SC240C® (National Starch) ou polyquaternium- 10 (n° CAS : 53568-66-4), un hydroxyéthyl cellulose éthoxylé et quaternisé ; SC240C Celquat ® (National Starch) or polyquaternium- 10 (CAS No. 53568-66-4), a hydroxyethyl cellulose and ethoxylated quaternized;
C*Bond HR 05949® (Cargill Industrial Starches), un amidon cationique ayant un taux d'azote de 0,1 % en matière sèche (n° CAS : 56780-58-6) ; C * Bond 05949 HR ® (Cargill Industrial Starches), a cationic starch having a nitrogen content of 0.1% dry matter (CAS No.: 56780-58-6);
Cationamyl 9865® (AGRANA STÀRKE GMBH), un amidon de pomme de terre ayant un taux d'azote de 0,27 - 0,32 % (n° CAS : 56780-58-6) ; Cationamyl 9865 ® (AGRANA Stärke GMBH), a potato starch having a nitrogen content of 0.27 to 0.32% (CAS No.: 56780-58-6);
VECTOR SC 20157® (ROQUETTE), un polymère cationique issu d'amidon (n°VECTOR SC 20157 ® (ROQUETTE), a cationic polymer derived from starch (No.
CAS 56780 58 6). CAS 56780 58 6).
Alternativement, il peut s'agir de sels ou de dérivés du chitosane. Alternatively, they may be salts or derivatives of chitosan.
De manière privilégiée, le polymère anionique est un dérivé de la lignine chargé négativement. La lignine correspond à un groupe de composés trouvés principalement dans les parois pectocellulosiques de certaines cellules végétales, notamment le bois. Un dérivé privilégié de la lignine est le lignosulfonate (n° CAS : 8062-15-5), résultant de la production de pâte à l'aide de bisulfite et porteur de fonctions anioniques sulfonate. Ainsi, le lignosulfonate de calcium (n° CAS : 8061-52-7), le lignosulfonate de sodium (n° CAS : 8061-51-6), le lignosulfonate de potassium (n° CAS : 37314-65-1), et le lignosulfonate d'ammonium (n° CAS : 8061-53-8) peuvent être mis en œuvre dans le cadre de la présente invention. In a preferred manner, the anionic polymer is a negatively charged lignin derivative. Lignin is a group of compounds found mainly in the pectocellulosic walls of certain plant cells, including wood. A preferred derivative of lignin is lignosulfonate (CAS RN: 8062-15-5), resulting from the production of pulp using bisulphite and carrying anionic sulfonate functions. Thus, calcium lignosulfonate (CAS No: 8061-52-7), sodium lignosulfonate (CAS No: 8061-51-6), potassium lignosulfonate (CAS No: 37314-65-1), and ammonium lignosulfonate (CAS No. 8061-53-8) may be used in the context of the present invention.
Certains de ces polymères sont disponibles dans le commerce, notamment les lignosulfonates de sodium suivants : Some of these polymers are commercially available, including the following sodium lignosulfonates:
- Arbo Nl 8® (TEMBEC), de masse molaire supérieure à 30 000, avec un degré de sulfonation élevé (16 % de soufre), résistant à des températures de 2500C sans perdre son pouvoir tensio-actif et dispersant ; - Arbo Nl 8 ® (TEMBEC), with a molar mass greater than 30,000, with a high degree of sulfonation (16% sulfur), resistant to temperatures of 250 ° C. without losing its surfactant and dispersant power;
REAX 81 A® (Mead Westvaco), de degré de sulfonation moyen, avec 5 % de soufre environ ; REAX 81 A ® (Mead Westvaco), average degree of sulfonation, with about 5% sulfur;
- REAX 85A® (Mead Westvaco), de faible degré de sulfonation, et de haut poids moléculaire ; Diwatex XP-9 (Borregaard LignoTech), de faible degré de sulfonation, avec 3,5% de soufre environ ; - REAX 85A ® (Mead Westvaco), low degree of sulfonation, and high molecular weight; Diwatex XP-9 (Borregaard LignoTech), low degree of sulfonation, with about 3.5% sulfur;
Ultrazine Na® (Borregaard LignoTech), de haut poids moléculaire ; Ultrazine Na ® (Borregaard LignoTech), high molecular weight;
Lignosol SD 60® (Borregaard LignoTech). Lignosol SD 60 ® (Borregaard LignoTech).
Alternativement, d'autres types de polymères anioniques peuvent être mis en œuvre, tels que de l'alginate de sodium issu d'algues, de l'oxyde de cellulose issu de l'oxydation de la cellulose ou de l'amidon anionique issu de la modification chimique de l'amidon natif. Il peut également s'agir de sels de carboxyméthylcellulose (CMC) ou d'acide hyaluronique. Alternatively, other types of anionic polymers may be used, such as sodium alginate derived from algae, cellulose oxide resulting from the oxidation of cellulose or anionic starch from chemical modification of the native starch. It may also be salts of carboxymethylcellulose (CMC) or hyaluronic acid.
En outre, la « composante » anionique du liant selon l'invention peut être une molécule anionique d'origine naturelle, présentant avantageusement une masse molaire comprise entre 100 et 1000 Da. De manière privilégiée, il s'agit d'un sel d'acide gras soluble issu de produits naturels aussi bien d'origine végétale qu'animale. A titre d'exemple, une telle molécule anionique peut être de l'oléate de sodium ou du laurylsulfate de sodium. In addition, the anionic "component" of the binder according to the invention may be an anionic molecule of natural origin, advantageously having a molar mass of between 100 and 1000 Da. In a preferred manner, it is a soluble fatty acid salt derived from natural products of both plant and animal origin. By way of example, such an anionic molecule may be sodium oleate or sodium lauryl sulphate.
Il apparaît que la présente invention n'est pas limitée à l'association d'un polymère ou molécule anionique et d'un polymère cationique, mais qu'un ou plusieurs polymères et/ou molécules anioniques peuvent être associés à un ou plusieurs polymères cationiques, la condition essentielle dans le cadre de l'invention étant que l'ensemble de ces polymères et/ou molécules soit d'origine naturelle. It appears that the present invention is not limited to the combination of an anionic polymer or molecule and a cationic polymer, but that one or more polymers and / or anionic molecules may be associated with one or more cationic polymers. , the essential condition in the context of the invention being that all of these polymers and / or molecules is of natural origin.
Des combinaisons particulièrement privilégiées dans le cadre de l'invention ont pu être définies : Particularly preferred combinations within the scope of the invention have been defined:
Arbo N18® + VECTOR SC 20157®; Arbo N18 ® + VECTOR SC 20157 ® ;
Arbo N18® + C*Bond HR 05949®; Arbo N18 ® + C * Bond HR 05949 ® ;
Arbo N 18® + Cationamyl 9865 ®; Arbo N 18 ® + Cationamyl 9865 ® ;
Arbo Nl 8® + Cationamyl 9865® + C*Bond HR 05949®; Arbo Nl 8 ® + Cationamyl 9865 ® + C * Bond HR 05949 ® ;
- Arbo N18® + Celquat H100®; - Arbo N18 ® + Celquat H100 ® ;
Oléate de sodium + VECTOR SC 20157®; Sodium Oleate + VECTOR SC 20157 ® ;
Laurylsulfate de sodium + VECTOR SC 20157®; Sodium Lauryl Sulfate + VECTOR SC 20157 ® ;
Oléate de sodium + C*Bond HR 05949®. Afin d'optimiser la fonction liante, le rapport massique polymères et/ou molécule anioniques / polymères cationiques, notamment amidon cationique / ligno-sulfonate de sodium, est avantageusement : Sodium Oleate + C * Bond HR 05949 ® . In order to optimize the binder function, the mass ratio of polymers and / or anionic molecule / cationic polymers, in particular cationic starch / sodium lignosulfonate, is advantageously:
- inférieur à 10, voire inférieur à 4, voire même inférieur à 2 ;  - less than 10, or even less than 4, or even less than 2;
- supérieur à 0,1, voire supérieur à 0,25, voire même supérieur à 0,5 ; - greater than 0.1, or even greater than 0.25, or even greater than 0.5;
- compris entre 1/10 (0,1) et 10/1 (10), avantageusement entre 20/80 (0,25) et 80/20 (4), voire même compris entre 10/20 (0,5) et 20/10 (2).  between 1/10 (0.1) and 10/1 (10), advantageously between 20/80 (0.25) and 80/20 (4), or even between 10/20 (0.5) and 20/10 (2).
En dehors de ces plages, le mélange présente une trop forte solubilité à l'eau incompatible avec la fonction liante recherchée. Outside these ranges, the mixture has too much water solubility incompatible with the desired binder function.
Il est à noter que le rapport idéal n'est pas le rapport stoéchiométrique (nombre de cations/nombre d'anions = 1). D'une façon inattendue, ce rapport est compris dans une large plage autour de 1, ce qui permet d'obtenir des liants dotés de viscosité et d'aspect différents : émulsions ou suspensions fluides, précipités cristallins, huiles, gommes ou gels. Cette plage de travail autour de 1 est probablement liée à la structure spatiale des produits mis en œuvre, leur déformabilité en solution aqueuse et l'encombrement stérique autour des charges ioniques qui vont s'associer. Selon une autre caractéristique privilégiée de l'invention, notamment en raison des applications visées telles que l' agrotextile, les polymères et/ou molécules constitutifs du liant sont avantageusement biodégradables. On entend par « biodégradable » le fait que, par l'action des microorganismes en conditions aérobies, la décomposition d'un composé organique en CO2, eau et sels minéraux fournit une nouvelle biomasse. Un produit est dit biodégradable s'il peut être décomposé par des organismes vivants du milieu biologique (sol, eau douce, eau salée, compost, boue activée, ...). La biodégradation se traduit par une simplification progressive de la structure chimique du composé organique : coupure des chaînes du polymère et obtention d' oligomères de faibles masses moléculaires disponibles pour la synthèse de constituants cellulaires (biomasse). It should be noted that the ideal ratio is not the stoichiometric ratio (number of cations / number of anions = 1). Unexpectedly, this ratio is in a wide range around 1, which makes it possible to obtain binders with different viscosity and appearance: fluid emulsions or suspensions, crystalline precipitates, oils, gums or gels. This working range around 1 is probably related to the spatial structure of the products used, their deformability in aqueous solution and the steric hindrance around the ionic charges that will be associated. According to another preferred feature of the invention, in particular because of the intended applications such as agrotextile, the polymers and / or molecules constituting the binder are advantageously biodegradable. The term "biodegradable" means that, by the action of microorganisms under aerobic conditions, the decomposition of an organic compound with CO 2, water and mineral salts provides a new biomass. A product is said to be biodegradable if it can be decomposed by living organisms in the biological environment (soil, fresh water, salt water, compost, activated sludge, etc.). Biodegradation results in a gradual simplification of the chemical structure of the organic compound: cleavage of the polymer chains and obtaining oligomers of low molecular weights available for the synthesis of cellular constituents (biomass).
Une des méthodes de mesure de la biodégradation de textiles est la norme NF EN ISO 11721-1 (juin 2001) : Détermination de la résistance aux microorganismes des textiles contenant de la cellulose - Essais d'enfouissement - Partie 1 : Evaluation d'un traitement d'imputrescibilité. Cette norme est utilisée aussi bien pour montrer la résistance d'un textile aux germes du sol que pour mesurer sa biodégradation. One of the methods for measuring the biodegradation of textiles is the standard NF EN ISO 11721-1 (June 2001): Determination of the resistance to microorganisms in textiles containing cellulose - Landfill tests - Part 1: Evaluation of a treatment rot-proof. This standard is used both to show the resistance of a textile to soil germs and to measure its biodegradation.
Ainsi, à la connaissance du Déposant, c'est la première fois qu'un mélange de polymères et/ou molécules anioniques et cationiques, d'origine exclusivement naturelle, est proposé pour son utilisation comme liant pour supports textiles. L'invention concerne également un procédé de dépôt d'un liant tel que défini précédemment sur un support textile. Ceci peut être réalisé pour l'ennoblissement textile, à savoir l'assemblage d'éléments sur les fibres constituant le textile (immobilisation de poudre sur fibres, de fibres sur fibres, de molécules sur fibres, de microcapsules sur fibres, ...) ou pour la consolidation d'un support textile non tissé. Thus, to the knowledge of the Applicant, this is the first time that a mixture of polymers and / or anionic and cationic molecules, of exclusively natural origin, is proposed for use as a binder for textile substrates. The invention also relates to a method of depositing a binder as defined above on a textile support. This can be achieved for textile finishing, namely the assembly of elements on the fibers constituting the textile (immobilization of powder on fibers, fibers on fibers, molecules on fibers, microcapsules on fibers, etc.). or for the consolidation of a nonwoven textile support.
Plus précisément, un tel procédé comprend les étapes suivantes : More specifically, such a method comprises the following steps:
application, sur le support textile, d'un mélange contenant :  application, on the textile support, of a mixture containing:
• au moins deux polymères et/ou molécules d'origine naturelle, l'un anionique et l'autre cationique respectivement;  At least two polymers and / or molecules of natural origin, one anionic and the other cationic respectively;
• au moins un solvant ;  At least one solvent;
élimination d'au moins solvant.  removal of at least one solvent
Dans des modes privilégiés de réalisation de l'invention, les polymères et/ou molécules anioniques et cationiques d'origine naturelle sont définis comme précédemment. In preferred embodiments of the invention, the polymers and / or anionic and cationic molecules of natural origin are defined as above.
Pour être appliqués sur le support textile, les polymères et/ou molécules anioniques et cationiques sont avantageusement formulés en milieu liquide, à l'aide d'au moins un solvant. On obtient ainsi une solution vraie ou colloïdale. Avantageusement, le mélange se trouve sous la forme d'une solution. Il s'agit donc préférentiellement d'un mélange extemporané, prêt à l'emploi. To be applied on the textile support, the anionic and cationic polymers and / or molecules are advantageously formulated in a liquid medium, using at least one solvent. A true or colloidal solution is thus obtained. Advantageously, the mixture is in the form of a solution. It is therefore preferentially an extemporaneous mixture, ready to use.
De manière avantageuse, le mélange ou la composition selon l'invention est donc constituée de : Advantageously, the mixture or the composition according to the invention therefore consists of:
- au moins deux polymères et/ou molécules d'origine naturelle, l'un anionique et l'autre cationique respectivement;  at least two polymers and / or molecules of natural origin, one anionic and the other cationic respectively;
- un solvant ; et  a solvent; and
éventuellement un plastifiant. De manière encore plus avantageuse, le mélange ou la composition selon l'invention ne contient pas de fibres et/ou de charges minérales et/ou de tensioactifs et/ou de précurseurs ou accélérateurs de résines thermodures (de type isocyanates, époxydes, dérivés phénoliques, imidazoles, polyamines). Selon un mode de réalisation privilégié, le solvant est de l'eau, éventuellement additionné d'un alcool. L'alcool peut aussi bien être un alcool léger (défini comme ayant au plus 3 atomes de carbone), ou un alcool lourd (défini comme ayant au moins 4 atomes de carbone), éventuellement en mélange. Un alcool léger privilégié est l'éthanol. Un exemple d'alcool lourd avantageux est le glycérol (Téb = 2900C), issu de la saponification de matières grasses animales ou végétales. Le glycérol est aussi un sous-produit de la trans-estérification d'huiles végétales lors de la production d'esters méthyliques d'huiles végétales qui servent de carburants sous la dénomination de biodiesel ou diester. optionally a plasticizer. Even more advantageously, the mixture or composition according to the invention does not contain fibers and / or mineral fillers and / or surfactants and / or precursors or accelerators of thermoset resins (of the isocyanate, epoxide, phenol derivative type). , imidazoles, polyamines). According to a preferred embodiment, the solvent is water, optionally supplemented with an alcohol. The alcohol may be either a light alcohol (defined as having not more than 3 carbon atoms), or a heavy alcohol (defined as having at least 4 carbon atoms), optionally in a mixture. A preferred light alcohol is ethanol. An example of an advantageous heavy alcohol is glycerol (Teb = 290 ° C.), derived from the saponification of animal or vegetable fats. Glycerol is also a by-product of the trans-esterification of vegetable oils in the production of methyl esters of vegetable oils that serve as fuels under the name of biodiesel or diester.
Bien évidemment, la dispersion des polymères et/ou molécules cationiques et anioniques dans le solvant dépend de la nature respective de ces polymères et/ou molécules et du solvant, mais également de la concentration en polymères et/ou molécules et du rapport massique entre les polymères et/ou molécules en présence. Of course, the dispersion of the cationic and anionic polymers and / or molecules in the solvent depends on the respective nature of these polymers and / or molecules and the solvent, but also on the concentration of polymers and / or molecules and the mass ratio between the polymers and / or molecules in the presence.
Si ces paramètres peuvent être déterminés au cas par cas par l'homme du métier, il a été mis en évidence, dans le cadre de la présente invention, que les polymères et/ou molécules constitutifs du liant représentent avantageusement au plus 20% en poids du mélange. Il s'agit ici du rapport massique entre la matière sèche du liant et la matière totale du mélange (liant + solvant notamment). If these parameters can be determined case by case by those skilled in the art, it has been demonstrated, in the context of the present invention, that the polymers and / or molecules constituting the binder advantageously represent at most 20% by weight. of the mixture. This is the mass ratio between the dry matter of the binder and the total material of the mixture (binder + solvent in particular).
Par ailleurs et comme déjà mentionné, le rapport massique entre polymères et/ou molécules anioniques et cationiques, respectivement, est avantageusement : Moreover, and as already mentioned, the mass ratio between polymers and / or anionic and cationic molecules, respectively, is advantageously:
- inférieur à 10, voire inférieur à 4, voire même inférieur à 2 ; - less than 10, or even less than 4, or even less than 2;
- supérieur à 0,1, voire supérieur à 0,25, voire même supérieur à 0,5 ;  - greater than 0.1, or even greater than 0.25, or even greater than 0.5;
- compris entre 1/10 (0,1) et 10/1 (10), avantageusement entre 20/80 (0,25) et 80/20 (4), voire même compris entre 10/20 (0,5) et 20/10 (2). De manière classique, le plastifiant peut être du glycérol ou du polyéthylène glycol (PEG). Avantageusement, il est également d'origine naturelle, comme défini ci-dessus.  between 1/10 (0.1) and 10/1 (10), advantageously between 20/80 (0.25) and 80/20 (4), or even between 10/20 (0.5) and 20/10 (2). Typically, the plasticizer may be glycerol or polyethylene glycol (PEG). Advantageously, it is also of natural origin, as defined above.
Préférentiellement, l'application du mélange sur le support textile est réalisée par pulvérisation, en pratique à l'aide d'un dispositif équipé d'une ou plusieurs buses permettant la projection du mélange sous forme de gouttelettes. Alternativement, ce dépôt peut être réalisé par les deux autres techniques classiquement utilisées dans le domaine du textile, à savoir par foulardage ou par immersion en plein bain. Alternativement, ce dépôt peut être réalisé par pulvérisation à l'aide de mélanges distincts en solution dans un solvant, ou à l'état solide. Ainsi, chaque polymère et/ou molécule peut être déposé de manière indépendante. De manière adaptée, l'application est réalisée selon un rapport massique entre la matière sèche du mélange liant et les fibres du support textile compris entre 0,1 et 20 %, idéalement entre 2% et 5 %. Preferably, the application of the mixture on the textile support is carried out by spraying, in practice using a device equipped with one or more nozzles for projecting the mixture in the form of droplets. Alternatively, this deposit can be achieved by the other two techniques conventionally used in the textile field, namely by padding or immersion in full bath. Alternatively, this deposition may be carried out by spraying with the aid of separate mixtures in solution in a solvent, or in the solid state. Thus, each polymer and / or molecule can be deposited independently. Suitably, the application is carried out in a mass ratio between the dry matter of the binder mixture and the fibers of the textile support between 0.1 and 20%, ideally between 2% and 5%.
Dans le cadre de la pulvérisation qui nécessite des solutions relativement fluides, il s'avère que la concentration et le rapport entre les polymères et/ou molécules ioniques sont particulièrement critiques pour obtenir un mélange final pulvérisable : En effet, il a été observé qu'en cas de sur- ou sous-dosage de l'un de ces polymères ou molécules, on obtient des produits non so lubies, non manipulables avec formation de poudre, de gel, de gomme ou épaississement excessif de la solution. In the context of spraying which requires relatively fluid solutions, it turns out that the concentration and the ratio between the polymers and / or ionic molecules are particularly critical to obtain a final sprayable mixture: In fact, it has been observed that in the case of over- or under-dosing of one of these polymers or molecules, unsubstantiated, non-manipulable products are obtained with formation of powder, gel, gum or excessive thickening of the solution.
L'étape suivante consiste à fixer ou à activer le liant sur le support textile. Dans le cadre de la présente invention, ceci est réalisé par simple élimination partielle ou totale de tout ou partie des solvants en présence. En pratique, l'élimination est réalisée par simple séchage à une température adaptée aux fibres et aux produits. La gamme de température privilégiée est entre 100 et 1200C. Dans le cas où le solvant est de l'eau, ce séchage peut aussi être réalisé à température ambiante. Toutefois et pour augmenter la vitesse d'élimination, il est possible de disposer le textile traité dans une étuve, entre deux plaques chauffées d'une presse ou dans une rame de séchage. La mise en œuvre de températures modérées dans le traitement du textile constitue une différence notable, avec l'art antérieur qui imposait le chauffage du support à une température élevée, supérieure à 1500C. The next step is to fix or activate the binder on the textile support. In the context of the present invention, this is achieved by simple partial or total elimination of all or part of the solvents in the presence. In practice, the elimination is carried out by simple drying at a temperature adapted to the fibers and the products. The preferred temperature range is between 100 and 120 ° C. In the case where the solvent is water, this drying can also be carried out at ambient temperature. However, and in order to increase the elimination rate, it is possible to dispose the treated textile in an oven, between two heated plates of a press or in a drying ream. The implementation of moderate temperatures in the treatment of the textile constitutes a significant difference, with the prior art which required the heating of the support at an elevated temperature, greater than 150 ° C.
La technique d'application par pulvérisation présente l'avantage de diminuer la quantité de solvant en présence et surtout de faciliter son élimination en raison de sa dispersion en gouttelettes. The spray application technique has the advantage of reducing the amount of solvent in the presence and especially to facilitate its elimination due to its dispersion in droplets.
Selon ce procédé, il doit donc être trouvé un compromis au niveau de la concentration des polymères et/ou molécules, permettant d'une part la pulvérisation (et donc une concentration limitée) et d'autre part une élimination rapide du solvant (et donc avantageusement une concentration élevée). Dans un mode de réalisation particulier et comme déjà évoqué, le mélange d'au moins deux polymères et/ou molécules anionique et catio nique, respectivement, est réalisé in situ, c'est-à-dire directement sur le support textile. En pratique, ceci peut être réalisé en formulant chaque type de polymères et/ou molécules ioniques dans un solvant et en pulvérisant chaque solution soit de manière consécutive, soit simultanément mais à partir de buses distinctes. According to this method, it must therefore be found a compromise at the level of the concentration of the polymers and / or molecules, allowing on the one hand the spraying (and therefore a limited concentration) and on the other hand a rapid elimination of the solvent (and therefore advantageously a high concentration). In a particular embodiment and as already mentioned, the mixture of at least two polymers and / or anionic and cationic molecules, respectively, is produced in situ, that is to say directly on the textile support. In practice, this can be achieved by formulating each type of ionic polymer and / or molecule in a solvent and spraying each solution either consecutively or simultaneously but from separate nozzles.
EXEMPLES DE REALISATION L'invention et les avantages qui en découlent ressortiront mieux des exemples de réalisation qui suivent, à l'appui des figures annexées. Ces exemples ne sont cependant en aucun cas limitatifs. EXAMPLES OF EMBODIMENT The invention and the advantages which result therefrom will emerge more clearly from the following exemplary embodiments, in support of the appended figures. These examples are however in no way limiting.
LEGENDES DES FIGURES LEGENDS OF FIGURES
La figure 1 illustre, en essais industriels, l'influence de différents mélanges de pulvérisation sur les propriétés mécaniques d'un non tissé roui de 600 g/m2 en sens production (A) ou en sens travers (B). FIG. 1 illustrates, in industrial trials, the influence of different spray mixtures on the mechanical properties of a rolled nonwoven of 600 g / m 2 in the production direction (A) or in the cross direction (B).
La figure 2 illustre, en essais de laboratoire, l'influence de différents mélanges de pulvérisation sur les propriétés mécaniques d'un non tissé roui calandre en sens production (A) ou en sens travers (B).  FIG. 2 illustrates, in laboratory tests, the influence of different spray mixtures on the mechanical properties of a calendered non-woven fabric in the production (A) or cross-direction (B) direction.
La figure 3 illustre, en essais de laboratoire, l'influence de différents mélanges de pulvérisation sur les propriétés mécaniques d'un non tissé non roui calandre en sens production (A) ou en sens travers (B).  FIG. 3 illustrates, in laboratory tests, the influence of different spray mixtures on the mechanical properties of a non-roving rolled non-woven fabric in the production (A) or cross-direction (B) direction.
La figure 4 illustre, en essais de laboratoire, l'influence de différents mélanges de pulvérisation sur les propriétés mécaniques d'un non tissé roui non calandre en sens production (A) ou en sens travers (B). FIG. 4 illustrates, in laboratory tests, the influence of different spray mixtures on the mechanical properties of a non-rolled non-woven fabric in the production (A) or cross-direction (B) direction.
La figure 5 illustre, en essais de laboratoire, l'influence de différents mélanges de pulvérisation sur les propriétés mécaniques d'un non tissé non roui non calandre en sens production (A) ou en sens travers (B). 1/ PROTOCOLE GÉNÉRAL DE PRÉPARATION DU MÉLANGE : FIG. 5 illustrates, in laboratory tests, the influence of different spray mixtures on the mechanical properties of a non-rolled non-rolled non-woven fabric in the production (A) or cross-direction (B) direction. 1 / GENERAL PROTOCOL FOR THE PREPARATION OF MIXTURE:
Le protocole général d'obtention d'un liant à base de lignosulfonate de sodium et d'amidon cationique dans l'eau est le suivant : The general protocol for obtaining a binder based on sodium lignosulfonate and cationic starch in water is as follows:
Le lignosulfonate Arbo Nl 8® (polymère anionique), se présentant sous forme solide, est solubilisé dans l'eau froide ou éventuellement tiédie à 400C pour accélérer la dissolution. Lignosulfonate Arbo Nl 8 ® (anionic polymer) is in solid form, is dissolved in cold water or optionally warmed to 40 0 C to accelerate dissolution.
L'amidon cationique, C*Bond HR 05949®, Cationamyl 9865® ou Celquat Hl 00® se présentant sous forme de solides en poudre, est solubilisé dans l'eau à 95°C (pour accélérer la dissolution), en utilisant un agitateur puissant du type Ultra Turrax® à 6000 tr/min jusqu'à ce que la solution soit translucide, tout en maintenant la température à environ 95°C. The cationic starch C * Bond 05949 HR ®, Cationamyl ® 9865 or Hl Celquat ® 00 is in the form of powdered solids is solubilized in water at 95 ° C (to accelerate dissolution), using a stirrer Powerful Ultra Turrax ® at 6000 rpm until the solution is translucent, while maintaining the temperature at around 95 ° C.
Les deux solutions sont mélangées en versant la solution de lignosulfonate Arbo N 18® dans la solution d'amidon cationique. Le milieu liquide s'épaissit puis se fluidifie et peut devenir un mélange de gomme dans l'eau selon les rapports massiques amidon cationique/lignosulfonate. The two solutions are mixed by pouring the lignosulfonate solution Arbo N 18 ® in the cationic starch solution. The liquid medium thickens and then becomes fluid and can become a mixture of gum in water in the mass ratios of cationic starch / lignosulfonate.
2/ MELANGE D'UN ANIONIQUE ET D'UN CATIONIQUE : 2 / MIXING AN ANIONIC AND A CATIONIC:
Différentes combinaisons entre le lignosulfonate Arbo N 18® (polymère anionique) et un amidon cationique ont été obtenues à des concentrations faibles (1 % environ) ou moyennes (5 % environ) : Various combinations of Arbo N 18 ® lignosulfonate (anionic polymer) and a cationic starch have been obtained at low (about 1%) or medium (about 5%) concentrations:
Arbo N 18® (N 18) + Cationamyl 9865® (C98) Arbo N 18 ® (N 18) + Cationamyl 9865 ® (C98)
Arbo N18® (N 18) + Celquat H 100® (HlOO) Arbo ® N18 (N 18) + Celquat H 100 ® (HlOO)
Arbo N18® (N18) + Vector SC 20157® (Vector) Le tableau 1 ci-dessous résume les différents essais effectués et indique les pourcentages des constituants du liant en matière sèche : Arbo ® N18 (N18) + SC 20157 ® Vector (Vector) Table 1 below summarizes the various tests performed and shows the percentages of the constituents of the binder as solids:
Tous ces liants sont pulvérisables à température ambiante. 3/ MELANGE D'UN ANIONIQUE ET D'UN CATIONIQUE A FORTE CONCENTRATION : All these binders are sprayable at room temperature. 3 / MIXING AN ANIONIC AND A CATIONIC WITH HIGH CONCENTRATION:
Un mélange entre le lignosulfonate Arbo N 18® (polymère anio nique) et un amidon cationique a été obtenu à forte concentration (10 %) : A mixture of lignosulfonate Arbo N 18 ® (anio nic polymer) and a cationic starch was obtained with high concentrations (10%):
Arbo N18® (N18) + Cationamyl 9865® (C98) Arbo ® N18 (N18) + Cationamyl 9865 ® (C98)
Le tableau 2 ci-dessous résume l'essai effectué et indique les pourcentages des constituants du liant, en matière sèche : Table 2 below summarizes the test carried out and indicates the percentages of the constituents of the binder, in dry matter:
Ce liant est pulvérisable à température ambiante. This binder is sprayable at room temperature.
4/ MELANGE D'UN ANIONIQUE ET DE DEUX CATIONIQUES : Différentes combinaisons entre le lignosulfonate Arbo Nl 8 (polymère anionique) et deux amidons cationiques ont été obtenues à moyenne (5 % environ) et forte concentration (10 %) : 4 / MIXING OF ANIONIC AND TWO CATIONICS: Different combinations between the lignosulfonate Arbo Nl 8 (anionic polymer) and two cationic starches were obtained at average (5%) and at a high concentration (10%):
Arbo Nl 8® (Nl 8) + Cationamyl 9865® (C98) 1/3 + C*Bond HR 05949® (HR) 2/3 Arbo Nl 8® (Nl 8) + Cationamyl 9865® (C98) 2/3 + C*Bond HR 05949® (HR) 1/3 Le tableau 3 ci-dessous résume les différents essais effectués et indique les pourcentages des constituants du liant, en matière sèche : Arbo Nl 8 ® (Nl 8) + Cationamyl 9865 ® (C98) 1/3 + C * Bond HR 05949 ® (HR) 2/3 Arbo Nl 8 ® (Nl 8) + Cationamyl 9865 ® (C98) 2/3 + C * Bond HR 05949 ® (HR) 1/3 Table 3 below summarizes the different tests carried out and indicates the percentages of the constituents of the binder, in dry matter:
Tous ces liants sont pulvérisables à température ambiante. 5/ MISE EN ŒUVRE INDUSTRIELLE DES MELANGES : All these binders are sprayable at room temperature. 5 / INDUSTRIAL APPLICATION OF MIXTURES:
Cet exemple décrit des essais industriels portant sur des pulvérisations de liants à base de lignosulfonate et d'amidon cationique sur des non tissés de chanvre. Les conditions d'élimination de l'eau et les propriétés du support renforcé (notamment la résistance mécanique) sont indiquées. This example describes industrial tests involving spraying of lignosulfonate binders and cationic starch on hemp nonwovens. The conditions of water removal and the properties of the reinforced support (especially the mechanical strength) are indicated.
Les supports fibreux utilisés pour les traitements de pulvérisation sont des non tissés de fibres de chanvre aiguilleté. Les non tissés témoins sont des non tissés de chanvre aiguilletés bruts, ayant subi le même traitement (chauffage/calandrage) que les non tissés pulvérisés. The fibrous supports used for the spray treatments are nonwovens of needled hemp fiber. Control nonwovens are raw needled hemp nonwovens, having undergone the same treatment (heating / calendering) as sprayed nonwovens.
Les liants sont pulvérisés à l'aide d'un pulvérisateur manuel (type pistolet pour ajout de liquides fluides) sur chaque face de l'échantillon à un taux d'environ 2% en matière sèche. La vitesse d'avance du non tissé dans le four et la température sont réglées afin de sécher l'échantillon dans de bonnes conditions, sans décomposition (1200C pendant 45 secondes). The binders are sprayed with a hand sprayer (gun type for addition of fluid liquids) on each side of the sample at a rate of about 2% dry matter. The speed of advance of the nonwoven in the oven and the temperature are adjusted in order to dry the sample under good conditions, without decomposition (120 ° C. for 45 seconds).
Les essais industriels sont effectués avec les liants 3, 1 ' et 2' de concentration moyenne (5 % environ). The industrial tests are carried out with binders 3, 1 'and 2' of average concentration (approximately 5%).
Le tableau 4 ci-dessous résume les essais effectués et indique les pourcentages des constituants du liant en matière sèche : Table 4 below summarizes the tests carried out and indicates the percentages of the constituents of the binder in dry matter:
Les liants 3, 1 ' et 2' ont été utilisés dans le présent exemple 5. Les liants 1, 2 et 3 ont été utilisés dans l'exemple 6 suivant. Binders 3, 1 'and 2' were used in this example 5. Binders 1, 2 and 3 were used in Example 6 below.
Le non tissé imprégné et séché est calandre (ou non) en sortie du four, à 900C pour ne pas altérer le non tissé. Pour caractériser l'efficacité des différents liants, des essais de traction ont été réalisés sur les différents échantillons réalisés industriellement. The impregnated and dried nonwoven is calendered (or not) at the outlet of the oven, at 90 ° C. so as not to alter the nonwoven fabric. To characterize the effectiveness of the various binders, tensile tests were carried out on the various samples made industrially.
Conditions expérimentales : Experimental conditions:
- Taille des éprouvettes : 5χ20 cm (une éprouvette dans le sens production et une éprouvette dans le sens travers) ; - Size of the test specimens: 5 χ 20 cm (one specimen in the production direction and one specimen in the cross direction);
Paramètres de l'essai : vitesse de traction 50 mm/mn ;  Test parameters: tensile speed 50 mm / min;
Ecart initial entre les mors : 100 mm. Pour chaque liant pulvérisé, les résultats sont exprimés en  Initial gap between the jaws: 100 mm. For each binder sprayed, the results are expressed in
Résistance maximale réversible à la traction (Fm) ;  Maximum tensile strength (Fm);
Allongement maximum réversible à la traction (εm) ;  Maximum stretch reversible to traction (εm);
Résistance à la rupture (Fr) ;  Resistance to fracture (Fr);
Allongement à la rupture (εr),  Elongation at break (εr),
en sens production et en sens travers. in the sense of production and in the mean direction.
Ces résultats, exprimés en termes de gain (Δ en %) par rapport au non tissé non pulvérisé, sont présentés à la figure 1. Les échantillons de 600 g/m2 ainsi obtenus ont été étudiés et comparés. Les conclusions suivantes peuvent être tirées : These results, expressed in terms of the gain (Δ in%) relative to the unsprayed nonwoven, are presented in FIG. 1. The samples of 600 g / m 2 thus obtained were studied and compared. The following conclusions can be drawn:
Le liant 1 ' (un anionique + un cationique) est le moins efficace ;  The binder 1 '(anionic + cationic) is the least effective;
Le liant 2' (un anionique + deux cationiques avec [HR] > [C98]) améliore toutes les propriétés du non tissé, alors que le liant 3 (solution 3 = un anionique + deux cationiques avec [HR] < [C98]) n'améliore que les propriétés dans le sens allongement ;  The binder 2 '(one anionic + two cationic with [HR]> [C98]) improves all the properties of the nonwoven, while the binder 3 (solution 3 = one anionic + two cationic with [HR] <[C98]) improves only the properties in the elongation direction;
De plus, le liant 2' est pulvérisé à 1,8 % (en matière sèche), contre 2,4 % et 2,5% pour les autres liants 3 et 1 ', respectivement (Figure 1). 6/ ESSAIS COMPLEMENTAIRES EN LABORATOIRE : In addition, the binder 2 'is sprayed at 1.8% (in dry matter), against 2.4% and 2.5% for other binders 3 and 1', respectively (Figure 1). 6 / COMPLEMENTARY LABORATORY TESTS:
Ces essais en laboratoire ont permis de préparer des échantillons comparables entre eux et comparables aux échantillons industriels de l'exemple 5, et ainsi de confirmer les résultats industriels. Les conditions d'élimination de l'eau, les propriétés du support renforcé (notamment la résistance mécanique) sont indiquées. These laboratory tests made it possible to prepare samples comparable to each other and comparable to the industrial samples of Example 5, and thus to confirm the industrial results. The conditions of elimination of the water, the properties of the reinforced support (in particular the mechanical resistance) are indicated.
Les pulvérisations ont été effectuées sur les mêmes non tissés de chanvre aiguilleté de 600 g/cm2, rouis ou non, utilisés dans l'exemple 5. The sprays were carried out on the same nonwoven needled hemp of 600 g / cm 2 , rusty or not, used in Example 5.
Les liants sont pulvérisés à l'aide d'un pulvérisateur manuel (type pistolet pour ajout de produit fluide) sur chaque face de l'échantillon. La vitesse d'avance du non-tissé dans le four et la température sont réglées afin de sécher l'échantillon dans de bonnes conditions (1200C pendant 45 secondes). Les échantillons sont calandres ou non à 900C afin de ne pas altérer le non tissé. The binders are sprayed with a hand sprayer (gun type for fluid addition) on each side of the sample. The speed of advance of the nonwoven in the oven and the temperature are adjusted in order to dry the sample under good conditions (120 ° C. for 45 seconds). The samples are calendered or not at 90 0 C so as not to alter the nonwoven.
Les liants 1, 2 et 3 (cf. tableau 4) sont pulvérisés sur chaque face à 2 % (+/- 0,1 %) au total en matière sèche par rapport à la masse de fibres. Les essais de traction sont effectués sur ces échantillons dans des conditions similaires à ceux de l'exemple 5. The binders 1, 2 and 3 (see Table 4) are sprayed on each side with 2% (+/- 0.1%) in total dry matter relative to the mass of fibers. The tensile tests are carried out on these samples under conditions similar to those of Example 5.
Les résultats, présentés aux figures 2 à 5, sont exprimés en : The results, presented in Figures 2 to 5, are expressed in:
Résistance maximale réversible à la traction (Fm), notée Rmax ;  Maximum tensile strength (Fm), denoted Rmax;
- Allongement maximum réversible à la traction (εm). - Maximum stretch reversible to traction (εm).
Les figures montrent la modification en % des caractéristiques mécaniques apportées par le liant par rapport aux supports témoins (non tissés bruts calandres ou non). D'une manière générale, la résistance maximale Fm (Rmax sur les figures) est nettement améliorée (de 30 à 120 %). The figures show the change in% of the mechanical characteristics provided by the binder with respect to the control supports (non-woven blanks, calendered or not). In general, the maximum resistance Fm (Rmax in the figures) is significantly improved (from 30 to 120%).
L'allongement maximum réversible à la traction correspondant (εm) est peu modifié ou négatif. Si l'on considère le ΔFm (Rmax), dans les deux sens machine et travers, on observe que : The corresponding maximum reversible tensile elongation (εm) is little modified or negative. If we consider ΔFm (Rmax), in both machine and through directions, we observe that:
Le liant 3 est le plus adapté pour l'échantillon calandré-roui ;  The binder 3 is most suitable for the calendered-retted sample;
Le liant 2 est le plus adapté pour l'échantillon calandré-non roui ;  The binder 2 is the most suitable for the calendered-non-rusty sample;
- Le liant 2 est le plus adapté pour l'échantillon non calandré-roui ; - The binder 2 is the most suitable for the non-calendered-rusty sample;
Le liant 3 est le plus adapté pour l'échantillon non calandré-non roui.  The binder 3 is the most suitable for the non-calendered-non-rusty sample.
Il MODIFICATION DU SOLVANT : Un mélange entre le lignosulfonate Arbo N 18® (polymère anio nique) et un amidon cationique (Vector SC 20157®) a été effectué à une concentration faible (1 % environ), en présence d'un alcool lourd. MODIFICATION OF THE SOLVENT: A mixture of Arbo N 18 ® lignosulfonate (anionic polymer) and a cationic starch (Vector SC 20157 ® ) was made at a low concentration (about 1%) in the presence of a heavy alcohol.
Ainsi, un alcool lourd, en l'occurrence du glycérol, est ajouté dans la formulation de liant à hauteur de 1 % par rapport aux matières sèches. Le glycérol est placé dans la solution de Vector SC 20157®. La solution Vector SC 20157® + Glycérol est alors ajoutée dans le lignosulfonate : Thus, a heavy alcohol, in this case glycerol, is added in the binder formulation at a level of 1% relative to the solids. Glycerol is placed in the solution of Vector SC 20157 ® . The Vector SC 20157 ® + Glycerol solution is then added to the lignosulfonate:
Arbo N18® (N18) + Vector SC 20157® (Vector) + Glycérol Arbo N18 ® (N18) + Vector SC 20157 ® (Vector) + Glycerol
Le tableau 5 résume l'essai effectué et indique les pourcentages des constituants du liant, en matière sèche: Table 5 summarizes the test carried out and indicates the percentages of the constituents of the binder, in dry matter:
Le liant est pulvérisable à température ambiante. L'échantillon obtenu est plus souple au toucher. The binder is sprayable at room temperature. The resulting sample is softer to the touch.
8/ RESISTANCE AUX LAVAGES ET AUX FROTTEMENTS : 8 / RESISTANCE TO WASHING AND FRICTION:
Des essais de résistance aux lavages et aux frottements d'un liant appliqué sur tissu de coton ont été réalisés. Tests of resistance to washing and rubbing of a binder applied to cotton fabric were carried out.
Le liant dont la composition est indiquée dans le tableau 6 ci-dessous est appliqué par enduction sur un tissu de coton de 130 g/m2. The binder whose composition is shown in Table 6 below is applied by coating on a cotton fabric of 130 g / m 2 .
Le tissu est séché dans un four à 1200C pendant 45 secondes. The fabric is dried in an oven at 120 ° C. for 45 seconds.
A - Essai de résistance aux lavages : Une éprouvette du tissu préparé ci-dessus est lavée. Le tissu est lavé 2 fois à 400C en présence de lessive ECE sans perborate selon la norme NF EN 26330. A - Test of resistance to washing: A test piece of the fabric prepared above is washed. The fabric is washed twice at 40 ° C. in the presence of ECE lye without perborate according to standard NF EN 26330.
En sortie de lavages, l'échantillon est séché. Une faible partie du liant placé en excès sur le coton a été éliminé aux lavages. La majorité du liant est restée sur le tissu après lavages. Le liant placé sur coton par enduction est résistant après 2 lavages. At the end of washes, the sample is dried. A small portion of the binder placed in excess on the cotton was removed at the washings. The majority of the binder remained on the fabric after washing. The binder placed on cotton by coating is resistant after 2 washes.
B - Essai de résistance aux frottements : B - Friction resistance test:
Le test est réalisé sur une éprouvette du tissu préparé ci-dessus selon la norme NF EN ISO 105-X12 (test au crockmeter). The test is carried out on a specimen of the fabric prepared above according to standard NF EN ISO 105-X12 (crockmeter test).
Le liant ne doit pas générer de poudre lors des diverses manipulations du textile (à la fabrication, au stockage, à la pose ou pendant l'utilisation). Afin de vérifier cette propriété, un essai de résistance à l'abrasion est fait au crockmeter. Le support abrasif est du coton. The binder must not generate powder during the various manipulations of the textile (during manufacture, storage, installation or during use). In order to verify this property, an abrasion resistance test is done on the crockmeter. The abrasive medium is cotton.
L 'éprouvette est fixée sur la partie cylindrique de l'appareil puis déposée sur le support en coton abrasif. On actionne ensuite la manivelle. Sous l'effet du poids, il y a friction entre l'éprouvette et le support en coton abrasif blanc (Essais effectués avec 150 allers- retours rapides). Aucune trace de liant, qui est de couleur marron, n'est observée sur le support abrasif blanc ; l'éprouvette de tissu enduit est intacte. Les résultats sont satisfaisants, le liant placé sur coton par enduction est résistant après 150 allers-retours. The test piece is fixed on the cylindrical part of the apparatus and then deposited on the abrasive cotton support. The crank is then actuated. Under the effect of the weight, there is friction between the specimen and the support in white abrasive cotton (Tests carried out with 150 fast returns). No trace of binder, which is brown in color, is observed on the white abrasive medium; the coated fabric test piece is intact. The results are satisfactory, the binder placed on cotton by coating is resistant after 150 round trips.
9/ ESSAIS DE BIODEGRADATION EN TERRE : 9 / EARTH BIODEGRADATION TESTS:
Une des méthodes de mesure de la biodégradation de textiles est la norme NF EN ISO 11721-1 (juin 2001) : Détermination de la résistance aux microorganismes des textiles contenant de la cellulose - Essais d'enfouissement - Partie 1 : Evaluation d'un traitement d'imputrescibilité. One of the methods for measuring the biodegradation of textiles is the standard NF EN ISO 11721-1 (June 2001): Determination of the resistance to microorganisms in textiles containing cellulose - Landfill tests - Part 1: Evaluation of a treatment rot-proof.
Le liant dont la composition est indiquée dans le tableau 7 ci-dessous est appliqué par pulvérisation sur un tissu de coton blanc de 130 g/m2. Le taux d'imprégnation est de 8,0 % en matière sèche. The binder whose composition is shown in Table 7 below is sprayed onto a white cotton fabric of 130 g / m 2 . The impregnation rate is 8.0% dry matter.
Le tissu est séché dans un four à 1200C pendant 45 secondes. The fabric is dried in an oven at 120 ° C. for 45 seconds.
Le tissu traité ainsi que le tissu non traité sont enfouis en terre pendant 8 et 15 jours. Les tissus sont sortis de terre, nettoyés et pesés. The treated fabric and the untreated fabric are buried in the soil for 8 and 15 days. The tissues are taken out of the ground, cleaned and weighed.
Les observations sont indiquées dans le tableau 8 : Observations are shown in Table 8:
Après 15 jours d'enfouissement, le liant placé sur le coton s'est dégradé en grande partie dans la terre, dans les conditions du test. Le coton traité s'est peu dégradé : le coton commence à se dégrader lorsque la totalité du liant a disparu après 15 jours. Le liant s'est comporté comme un agent retardateur de biodégradation. En revanche, le coton non traité a commencé à se dégrader (10 % de perte de poids). After 15 days of burial, the binder placed on the cotton was degraded largely in the soil, under the conditions of the test. The treated cotton has not deteriorated much: the cotton begins to degrade when the totality of the binder disappeared after 15 days. The binder has behaved as a biodegradation retarding agent. In contrast, untreated cotton began to degrade (10% weight loss).
Il apparaît clairement que la solution technique proposée dans le cadre de l'invention présente de nombreux avantages, notamment : It is clear that the technical solution proposed in the context of the invention has many advantages, in particular:
solution économique (chauffage uniquement pour sécher, et non pour fondre ni polymériser) et écologique avec l'absence d'utilisation de produits issus du pétrole et la possibilité d'utilisation exclusive de matières premières végétales, préparées dans l'eau ;  economical solution (heating only to dry, not to melt or polymerize) and ecological with the absence of use of products derived from petroleum and the possibility of exclusive use of vegetable raw materials, prepared in water;
maintien de la biodégradation du produit textile final : l'ajout du liant selon l'invention n'inhibe pas la chaîne naturelle de biodégradation en terre, de formation d'humus et de biomasse ;  maintaining the biodegradation of the final textile product: the addition of the binder according to the invention does not inhibit the natural chain of biodegradation in soil, formation of humus and biomass;
procédé aisé : application du liant par simple pulvérisation ou enduction, suivie d'un séchage ;  easy process: application of the binder by simple spraying or coating, followed by drying;
performances mécaniques conformes aux attentes, notamment lorsque le textile est un non tissé ;  mechanical performance in line with expectations, especially when the textile is a nonwoven;
- fixation solide du liant aux fibres prévenant son élimination par la pluie (cas des agrotextiles), par l'humidité (cas d'utilisation dans le transport) ou par la lessive- solid fixation of the binder to the fibers preventing its elimination by the rain (case of agrotextiles), by the moisture (case of use in the transport) or by the laundry
(cas des textiles pour habillement et ameublement). (case of textiles for clothing and furniture).

Claims

REVENDICATIONS
1. Utilisation d'un mélange contenant au moins deux polymères et/ou molécules organiques d'origine naturelle, l'un anionique et l'autre cationique respectivement, comme liant pour support textile. 1. Use of a mixture containing at least two polymers and / or organic molecules of natural origin, one anionic and the other cationic respectively, as binder for textile support.
2. Utilisation selon la revendication 1, caractérisée en ce que les polymères et/ou molécules d'origine naturelle sont biodégradables. 2. Use according to claim 1, characterized in that the polymers and / or molecules of natural origin are biodegradable.
3. Utilisation selon la revendication 1 ou 2, caractérisée en ce que le polymère anionique est choisi dans le groupe suivant : dérivé de lignine, d'alginate ou de cellulose, amidon anionique, sels de carboxyméthylcellulose ou d'acide hyaluronique, avantageusement du lignosulfonate, et encore plus avantageusement du lignosulfonate de sodium. 3. Use according to claim 1 or 2, characterized in that the anionic polymer is chosen from the following group: lignin derivative, alginate or cellulose, anionic starch, carboxymethylcellulose or hyaluronic acid salts, preferably lignosulfonate and still more preferably sodium lignosulfonate.
4. Utilisation selon la revendication 1 ou 2, caractérisée en ce que la molécule anionique est un sel d'acide gras, avantageusement un oléate ou un laurylsulfate. 4. Use according to claim 1 or 2, characterized in that the anionic molecule is a fatty acid salt, preferably an oleate or a lauryl sulphate.
5. Utilisation selon l'une des revendications précédentes, caractérisée en ce que le polymère cationique est un dérivé d'amidon ou un dérivé ou sel de chitosane. 5. Use according to one of the preceding claims, characterized in that the cationic polymer is a starch derivative or a derivative or salt of chitosan.
6. Utilisation selon l'une des revendications précédentes, caractérisée en ce que le rapport massique entre polymères et/ou molécules anioniques et cationiques est compris entre entre 1/10 et 10/1, avantageusement entre 20/80 et 80/20. 6. Use according to one of the preceding claims, characterized in that the mass ratio between polymers and / or anionic and cationic molecules is between 1/10 and 10/1, preferably between 20/80 and 80/20.
7. Procédé de dépôt d'un liant sur un support textile comprenant les étapes suivantes : 7. Method of depositing a binder on a textile support comprising the following steps:
application, sur le support textile, d'un mélange contenant :  application, on the textile support, of a mixture containing:
• au moins deux polymères et/ou molécules organiques d'origine naturelle, l'un anionique et l'autre cationique respectivement;  At least two polymers and / or organic molecules of natural origin, one anionic and the other cationic respectively;
« au moins un solvant ;  At least one solvent;
élimination d'au moins un solvant.  removing at least one solvent.
8. Procédé selon la revendication 7, caractérisé en ce que les polymères et/ou molécules d'origine naturelle sont biodégradables. 8. Method according to claim 7, characterized in that the polymers and / or molecules of natural origin are biodegradable.
9. Procédé selon la revendication 7 ou 8, caractérisé en ce que le polymère anio nique est choisi dans le groupe suivant : dérivé de lignine, d'alginate ou de cellulose, amidon anionique, sels de carboxyméthylcellulose ou d'acide hyaluronique, avantageusement du lignosulfonate, et encore plus avantageusement du lignosulfonate de sodium. 9. Process according to claim 7 or 8, characterized in that the anionic polymer is chosen from the following group: lignin, alginate or cellulose derivative, anionic starch, carboxymethylcellulose or hyaluronic acid salts, advantageously lignosulfonate, and even more preferably sodium lignosulfonate.
10. Procédé selon la revendication 7 ou 8, caractérisé en ce que la molécule anionique est un sel d'acide gras, avantageusement un oléate ou un laurylsulfate. 10. Process according to claim 7 or 8, characterized in that the anionic molecule is a fatty acid salt, advantageously an oleate or a lauryl sulphate.
11. Procédé selon l'une des revendications 7 à 10, caractérisé en ce que le polymère cationique est un dérivé d'amidon ou un dérivé ou sel de chitosane. 11. Method according to one of claims 7 to 10, characterized in that the cationic polymer is a starch derivative or a derivative or salt of chitosan.
12. Procédé selon l'une des revendications 7 à 11, caractérisé en ce que le rapport massique entre polymères et/ou molécules anioniques et cationiques est compris entre 1/10 et 10/1, avantageusement entre 20/80 et 80/20. 12. Method according to one of claims 7 to 11, characterized in that the mass ratio between polymers and / or anionic and cationic molecules is between 1/10 and 10/1, preferably between 20/80 and 80/20.
13. Procédé selon l'une des revendications 7 à 12 caractérisé en ce que le mélange se présente sous la forme d'une solution. 13. Method according to one of claims 7 to 12 characterized in that the mixture is in the form of a solution.
14. Procédé selon l'une des revendications 7 à 13 caractérisé en ce que le solvant est un solvant aqueux. 14. Method according to one of claims 7 to 13 characterized in that the solvent is an aqueous solvent.
15. Procédé selon la revendication 14 caractérisé en ce que le solvant est constitué d'eau. 15. The method of claim 14 characterized in that the solvent consists of water.
16. Procédé selon la revendication 14 caractérisé en ce que le solvant est constitué d'eau additionnée d'au moins un alcool. 16. The method of claim 14 characterized in that the solvent is water added with at least one alcohol.
17. Procédé selon l'une des revendications 7 à 16 caractérisé en ce que les polymères et/ou molécules représentent au plus 20 % en poids du mélange en matière sèche. 17. Method according to one of claims 7 to 16 characterized in that the polymers and / or molecules represent at most 20% by weight of the dry matter mixture.
18. Procédé selon l'une des revendications 7 à 17 caractérisé en ce que l'application du mélange sur le support textile est réalisée par pulvérisation. 18. Method according to one of claims 7 to 17 characterized in that the application of the mixture on the textile support is carried out by spraying.
19. Procédé selon l'une des revendications 7 à 18 caractérisé en ce que l'application est réalisée selon un rapport massique entre la matière sèche du mélange et les fibres du support textile compris entre 0,1 et 20%, avantageusement entre 2 et 5%. 19. Method according to one of claims 7 to 18 characterized in that the application is carried out in a mass ratio between the dry material of the mixture and the fibers of the textile support between 0.1 and 20%, preferably between 2 and 5%.
20. Procédé selon l'une des revendications 7 à 19 caractérisé en ce que l'élimination du solvant est réalisée par séchage, avantageusement à une température comprise entre 100 et 1200C. 20. Method according to one of claims 7 to 19 characterized in that the removal of the solvent is carried out by drying, preferably at a temperature between 100 and 120 0 C.
21. Procédé selon l'une des revendications 7 à 20 caractérisé en ce que les polymères et/ou molécules anioniques et cationiques sont appliqués sur le support textile à l'aide de mélanges distincts, avantageusement en solution dans un solvant ou à l'état solide. 21. Method according to one of claims 7 to 20 characterized in that the polymers and / or anionic and cationic molecules are applied to the textile support with the aid of separate mixtures, preferably in solution in a solvent or in the state solid.
EP10745379A 2009-07-20 2010-06-30 Combination of natural cationic and anionic materials as a binder for a textile substrate Withdrawn EP2456818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0955010A FR2948132B1 (en) 2009-07-20 2009-07-20 ASSOCIATION OF NATURAL CATIONIC AND ANIONIC PRODUCTS AS BINDER FOR TEXTILE SUPPORT
PCT/FR2010/051370 WO2011010038A1 (en) 2009-07-20 2010-06-30 Combination of natural cationic and anionic materials as a binder for a textile substrate

Publications (1)

Publication Number Publication Date
EP2456818A1 true EP2456818A1 (en) 2012-05-30

Family

ID=41478514

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10745379A Withdrawn EP2456818A1 (en) 2009-07-20 2010-06-30 Combination of natural cationic and anionic materials as a binder for a textile substrate

Country Status (3)

Country Link
EP (1) EP2456818A1 (en)
FR (1) FR2948132B1 (en)
WO (1) WO2011010038A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO3387B1 (en) 2011-12-16 2019-03-13 Glaxosmithkline Llc Derivatives of betulin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565062A (en) * 1990-04-10 1996-10-15 National Starch And Chemical Investment Holding Corporation EVA polymers for use as beater saturants
DE4241513A1 (en) * 1992-12-10 1994-06-16 Ruetgerswerke Ag Binder mixture
AU776069B2 (en) * 1999-11-08 2004-08-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Process and composition for preparing a lignocellulose-based product, and the product obtained by the process
DE102007036394A1 (en) * 2007-07-31 2009-02-05 Henkel Ag & Co. Kgaa Textile care agent with amine group-containing cellulose ether

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011010038A1 *

Also Published As

Publication number Publication date
FR2948132B1 (en) 2011-08-26
FR2948132A1 (en) 2011-01-21
WO2011010038A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
dos Santos et al. The use of cellulose nanofillers in obtaining polymer nanocomposites: properties, processing, and applications
EP2593508A1 (en) Novel cellulose composite materials
Paquet et al. Surface modification of cellulose by PCL grafts
FR2927084A1 (en) PROCESS FOR THE PREPARATION OF THERMOPLASTIC COMPOSITIONS BASED ON PLASTICIZED STARCH AND COMPOSITIONS THUS OBTAINED
FR2927087A1 (en) SOLUBLE STARCH THERMOPLASTIC COMPOSITIONS AND PROCESS FOR PREPARING SUCH COMPOSITIONS.
Nurazzi et al. Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: A review
FR2927083A1 (en) Preparing thermoplastic composition based on amylaceous soluble material, comprises selecting a soluble amylaceous material and a binding agents and incorporating the binding agent in amylaceous soluble material by thermomechanical mixing
BE1001196A5 (en) Product fiber nonwoven.
Kwak et al. High-toughness natural polymer nonwoven preforms inspired by silkworm cocoon structure
FR2894164A1 (en) PREPARATION OF SUPERHYDROPHOBIC FIBROUS SUBSTRATES
Moriam et al. Hydrophobization of the man-made cellulosic fibers by incorporating plant-derived hydrophobic compounds
EP3189189A1 (en) Paper medium, method for manufacturing same and secure document manufactured using same
CA3059509C (en) Systems and methods to produce treated cellulose filaments and thermoplastic composite materials comprising treated cellulose filaments
WO2012089929A1 (en) Hydrophobic microfibrous cellulose and method of producing the same
EP2456818A1 (en) Combination of natural cationic and anionic materials as a binder for a textile substrate
Ramesh et al. Processing and properties of jute (Corchorus olitorius L.) fibres and their sustainable composite materials: a review
Abate et al. Coir fiber-based cellulose, nanocellulose, and their cutting-edge applications
Ilyas et al. Introduction to nanocellulose production from biological waste
CN103703180A (en) Binder and process for producing fabrics containing cyclodextrins fixed by the binder
Ahmad The influence of micro-and nano-sisal fibres on the morphology and properties of different polymers
EP1994217B1 (en) Capsules with a modified surface for grafting onto fibres
Sakuri et al. The effect of alkali and fumigation treatments on king pineapple fiber properties and interfacial bonding of king pineapple fiber/unsaturated polyester on microcrystalline cellulose reinforced composite
Paul et al. Paper and cardboard reinforcement by impregnation with environmentally friendly high‐performance polymers for food packaging applications
KR101856496B1 (en) Modified microfibrillated cellulose and preparation method thereof
Chin et al. Pretreatment of empty fruit bunch fiber: Its effect as a reinforcing material in composite panels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140703

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141114