EP2456613A1 - Device for analysing the topography of a surface of a substrate - Google Patents

Device for analysing the topography of a surface of a substrate

Info

Publication number
EP2456613A1
EP2456613A1 EP10737273A EP10737273A EP2456613A1 EP 2456613 A1 EP2456613 A1 EP 2456613A1 EP 10737273 A EP10737273 A EP 10737273A EP 10737273 A EP10737273 A EP 10737273A EP 2456613 A1 EP2456613 A1 EP 2456613A1
Authority
EP
European Patent Office
Prior art keywords
plane
angle
axis
topography
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10737273A
Other languages
German (de)
French (fr)
Inventor
Francis Pilloud
Matthieu Richard
Benoît ROSSET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bobst Mex SA
Original Assignee
Bobst SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bobst SA filed Critical Bobst SA
Priority to EP10737273A priority Critical patent/EP2456613A1/en
Publication of EP2456613A1 publication Critical patent/EP2456613A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/74Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/006Controlling; Regulating; Measuring; Improving safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/74Auxiliary operations
    • B31B50/88Printing; Embossing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Definitions

  • the present invention relates to a topography device of a surface of a substrate used for the manufacture of packaging.
  • the invention also relates to a method for implementing the topography device according to the invention.
  • the invention finally relates to a folder-gluer machine comprising a topography device according to the invention.
  • a box of drugs it is known to transform an element into a low specific mass plate by passing it through different machines.
  • a sheet of cardboard is an example of a low specific mass plate element.
  • a first known transformation is the printing of a sheet of
  • This operation consists of depositing or projecting on one side of the sheet drops of ink.
  • a second known transformation is the cutting of a sheet of cardboard. This operation consists of cutting shapes in said sheet. Cut shapes are called poses or cutouts. It is also carried out in the cuts to delimit panels and facilitate their subsequent folding. These operations are generally performed in a cutting press.
  • a third known transformation is the stamping of a blank.
  • This operation involves stamping a cutout to reveal bumps (or protuberances) on a face of said cut, for example, to form Braille characters.
  • An example of stamping is disclosed by the Applicant in the patent application EP-A-1932657 whose contents are incorporated by reference in the present description.
  • a fourth known transformation is the gluing of a cut.
  • This operation consists of depositing or projecting drops of glue on one side of the cut.
  • An example of sizing is disclosed in EP-A-1070548, the content of which is also incorporated by reference in the present description.
  • a first object of the invention is to overcome the aforementioned drawbacks by providing a device for controlling the correct formation of reliefs on the surface of a substrate traveling at high speed, reliably and compatible with the requirements of detection, identification and dimensional characterization of the reliefs under conditions
  • the invention relates to a topography device of a
  • a second object of the present invention is to provide a method for implementing a topography device according to the invention.
  • the subject of the invention is a method according to claim 7.
  • a third object of the present invention is to provide a folder-gluer machine equipped with a topography device according to the invention.
  • the invention relates to a folder-gluer machine according to claim 8.
  • the topography device defined in claim 1 it is possible to determine the topography of a surface of a substrate which makes it possible to detect, locate and characterize reliefs on the surface of the substrate.
  • Figure 1 is a perspective view of a topography device
  • Figures 2a and 2c are views of the angles 'b', 'c', 'e' and 'f';
  • Figure 3 is an enlarged sectional view of a plate element having a relief
  • Figure 4 is a representation of the image seen by the linear camera of the device
  • FIG. 5 is a representation of the electrical signal, corresponding to the image of FIG. 3, delivered by the photosensitive elements of the linear camera.
  • FIG. 1 there is shown schematically the topography device implemented for measuring three-dimensional characteristics of reliefs present on the surface 2 of a cardboard substrate 1 traveling in a substantially planar path of X axis.
  • Reference plane is the plane in which the flat portion of the surface 2 of the substrate 1, that is to say the portion devoid of any relief, is inscribed.
  • Y and Z axes define with the X axis an orthonormal reference of the space in which the reference plane is parallel to the XY plane.
  • the device comprises a light source 10 capable of projecting
  • the light source 10 comprises a coherent light source, typically a laser.
  • the structured lighting is obtained by
  • the angle of incidence 'a' under which the substrate is illuminated is mean angle that forms the two plane waves with the normal to the substrate.
  • the structured lighting is constituted by a network of interference fringes, that is to say a periodic modulation of light intensity at the surface 2 of the substrate 1.
  • the interference fringes are rectilinear lines parallel and equidistant in the reference plane, alternately bright and dark.
  • the structured lighting can be obtained by projecting the image of a backlit mask by LEDs or by any other means known to those skilled in the art.
  • a plurality 'n' of rectilinear straight lines S1, S2, ... Sn parallel and equidistant forms the structured illumination profile.
  • the use of structured illumination obtained by laser interferometry makes it possible to project a light beam F with a large depth of field and makes it possible to obtain luminous streaks of constant sharpness and constant pitch throughout the illuminated area of the substrate, despite the fact that oblique illumination.
  • the shortest distance between two successive striations formed in the reference plane is called 'p1'.
  • the distance 'p1' is between 0.01 mm and 0.3 mm, in the example illustrated, the distance 'p1' is equal to 0.2 mm.
  • each streak S extends over a width L at the surface 2 of the substrate 1.
  • the width L is between 0.1 mm and 3 mm, in the example shown, the width L is equal to 3 mm.
  • the light beam F is projected in a mean direction 12 oblique with respect to the substrate 2 at an angle of incidence 'a'.
  • each luminous strip S is a linear segment forming an angle 'b' with the axis X.
  • the angle 'b' is between -45 ° and + 45 °, preferably, b is equal to 0 °.
  • Sn formed on the surface 2 of the substrate 1 is substantially delimited by a rectangle of length L1 and of width L where L1 is equal to p1 x n.
  • This rectangle defines a lighting zone 3 for an observation zone 23.
  • the length L1 is between 10 mm and 100 mm, in the example shown, the length L1 is equal to 42 mm.
  • the light streaks S1, S2,... Sn are made visible by the well-known phenomenon of diffusion at the impact of the light beam F coming from the light source 10, on the surface 2, also called backscatter or diffuse reflection.
  • the device according to the invention also comprises means for measuring the illumination of the surface 2 by said striations S 1 means constituted by a linear camera 20 comprising a linear sensor and an objective (not shown).
  • the linear sensor is of CCD or CMOS type.
  • the linear camera 20 is a high dynamic camera in order to be able to measure the illumination of any surface, whatever its reflectivity in the observation zone.
  • the camera is reduced to a narrow observation band of length L2 and width L3 (not shown), also called measuring line.
  • This measurement line is imaged on the linear sensor of the camera 20 thanks to the lens of the latter.
  • the width L3 is between 0.01 mm and 0.1 mm.
  • the mean direction of observation of the camera 20 is represented by a dotted line 21 forming an angle T with the axis Z (see Figure 2c), the line 21 belongs to the plane XZ and passes through a point A in the middle of the measuring line.
  • the angle f is zero.
  • observation distance are chosen such that the maximum field angle denoted by 'd' is small, taking into account the length L2 of the observation band, so that the observation direction can be almost perpendicular to the Y axis, over the entire length L2.
  • a telecentric-type objective will be used to observe the measurement line in an observation direction
  • the angle 'd' is virtually zero.
  • the observation distance is for example equal to 100 mm.
  • the observation direction is not perpendicular to the Y axis over the entire length L2.
  • the variation of the angle d along L2 will take into account the variation of the angle d along L2 and will apply an appropriate correction method using, for example, a calibration on the plane of L2. reference.
  • the camera 20 with its linear array of photosensitive elements is located in a plane P intersecting the XY plane and the XZ plane.
  • the intersection of the plane P with the plane XY forms an angle 'c' with the axis Y (see Figure 2a).
  • the intersection of the plane P with the plane XZ forms an angle 'e' with the axis Z (see Figure 2b).
  • the angle 'c' is between -30 ° and + 30 °, preferably 'c' is equal to 0 °.
  • the angle 'e' is between -45 ° and + 45 °, preferably 'e' is equal to 0 °.
  • the straight streaks S1, S2, ... Sn are orthogonal to the plane P.
  • the light source 10 and the linear camera 20 are arranged so that the length L1 is at least equal to the length L2.
  • the light source 10 emits preferentially in u ⁇ e length
  • the power of such a light source is of the order of 1 to 100 mW.
  • the camera 20 is for example a linear camera of a single line of 2048 pixels.
  • the one-dimensional image acquired by the camera 20 is stored in a memory 26.
  • the data of the memory 26 are used by a triangulation algorithm described below.
  • an X-axis resolution of 0.2 mm corresponding to the displacement distance of the substrate is obtained. between two successive measurement lines, which is sufficient to reliably deduce the topography of a surface of a substrate passing through the observation zone, such as, for example, the topography of a surface having Braille characters or points glue or other relief on the surface of a substrate, especially a substrate used for the manufacture of packaging.
  • the angle of incidence 'a' is advantageously between 30 ° to 70 °, preferably between 45 ° and 60 °. As will be better understood from FIG. 3, this angle is chosen according to the characteristics
  • the relief is a hump 4 characterized by a height 'h' of approximately 0.2 mm and a diameter 'D' of approximately 1 , 6 mm at its base (typically a Braille dot).
  • a height 'h' of approximately 0.2 mm
  • a diameter 'D' of approximately 1 , 6 mm at its base (typically a Braille dot).
  • Figure 3 shows the hump 4 at the moment when its vertex passes through the plane
  • the streaks S1, S2, ... Sn which are projected on the surface 2 in the mean direction 12 are backscattered in several directions and in particular in the direction of the linear camera 20.
  • the backscattered rays observed by the camera 20 are orthogonal to the surface 2 of the cut.
  • the orthogonal light rays backscattered by the n 'streaks S1, S2, ... Sn in the plane P are respectively called R1, R2, ... R n following the impact of the light beam F on the surface 2. From even, we call 'p2' the shortest distance between two successive orthogonal light rays backscattered in the plane P. Each orthogonal light ray is represented by an arrow R.
  • the surveying device operates on the well known principle of triangulation, principle according to which the angle of incidence 'a' is non-zero, so that a variation in the distance between the camera 20 and the surface 2 results in a lateral shift of the light rays received by the camera 20. It is the measurement of this offset which makes it possible to determine the three-dimensional characteristics of the surface 2 and therefore to check the good formation of the bump 4.
  • a calculator 25 applies a triangulation algorithm to each image acquired by the camera 20.
  • vertical offset is the offset on the Z axis of the light rays received by the camera 20 and where “lateral offset” is the offset on the Y axis of the light rays received by the camera 20.
  • triangulation algorithm is applied line by line, independently of each other. In an alternative embodiment, the triangulation algorithm uses the stored data of several lines
  • FIG. 4 an image 30 of the light streaks S1 is shown
  • FIG 5 there is shown the periodic electrical signal delivered by the network of photosensitive elements.
  • the presence of reliefs on the surface of the cutout in the observation zone causes a spatial shift as explained previously.
  • This offset is indicated by a decrease or an increase in the period T of the signal 40.
  • the period T decreases, this means that the light source 10 illuminates a region of positive slope of the surface 2, at conversely, when the period T increases, it means that the light source 10 illuminates a negative slope region of the surface 2.
  • the period T is substantially constant over the entire length of the network of photosensitive elements.
  • the device according to the invention can be implemented in the manner
  • a light beam F is projected obliquely onto the surface 2 to form 'n' light streaks S1, S2,... Sn, then the spatial shift of the light streaks S1, S2,. Sn is measured for each image. acquired, and finally we apply a triangulation algorithm to each measured offset.
  • the device according to the invention may advantageously be mounted in a folder-gluer machine comprising a carrier for transporting plate elements 1 in a substantially plane path X axis.
  • topographied surface is that of a plate element, it goes without saying that the invention also applies to a substrate in the form of a strip of material.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

The invention relates to a device for analysing the topography of a surface (2) of a substrate (1) travelling on a substantially planar course with axis X, in which the axis X defines with the axes Y and Z an orthonormal frame of reference of the space in which the surface (2) is substantially parallel to the plane XY, said device including a means (10) for structured lighting of said surface (2) suitable for engaging with a means (20) for measuring the light backscattered by said surface (2) in order to analyse the topography of said surface (2) during the travel of said substrate (1), the structured lighting means (10) being capable of projecting a light beam (F) with an angle of incidence 'a' onto the surface (2), such as to form a plurality 'n' of luminous streaks (S1, S2,... Sn) thereon, each luminous streak (S) forming an angle 'b' with the axis X1; device in which the measurement means (20) comprises a linear camera located in a plane P secant to the plane XY and the plane XZ, the intersection of the plane P with the plane XY forming an angle 'c' with the axis Y, the intersection of the plane P with the plane XZ forming an angle 'e' with the axis Z; device in which the angle of incidence 'a' is between 30° and 70°, the angle 'b' is between -45° and +45°, the angle 'c' is between -30° and +30° and the angle 'e' is between -45° and +45°.

Description

Dispositif de topographie d'une surface d'un substrat Device for topography of a surface of a substrate
Domaine technique Technical area
[0001] La présente invention concerne un dispositif de topographie d'une surface d'un substrat utilisé pour la fabrication d'emballage.  The present invention relates to a topography device of a surface of a substrate used for the manufacture of packaging.
[0002] L'invention concerne également un procédé pour la mise en œuvre du dispositif de topographie selon l'invention.  The invention also relates to a method for implementing the topography device according to the invention.
[0003] L'invention concerne enfin une machine plieuse-colleuse comprenant un dispositif de topographie selon l'invention.  The invention finally relates to a folder-gluer machine comprising a topography device according to the invention.
État de la technique antérieure  State of the art
[0004] Pour fabriquer, par exemple, une boîte de médicaments, il est connu de transformer un élément en plaque de faible masse spécifique en le faisant passer dans différentes machines. Une feuille de carton est un exemple d'élément en plaque de faible masse spécifique.  To manufacture, for example, a box of drugs, it is known to transform an element into a low specific mass plate by passing it through different machines. A sheet of cardboard is an example of a low specific mass plate element.
[0005] Une première transformation connue est l'impression d'une feuille de  [0005] A first known transformation is the printing of a sheet of
carton. Cette opération consiste à déposer ou à projeter sur une face de la feuille des gouttes d'encre.  cardboard. This operation consists of depositing or projecting on one side of the sheet drops of ink.
[0006] Une deuxième transformation connue est le découpage d'une feuille de carton. Cette opération consiste à découper des formes dans ladite feuille. Les formes découpées s'appellent des poses ou des découpes. On réalise aussi des refoulages dans les découpes pour délimiter des panneaux et faciliter leur pliage ultérieur. Ces opérations sont généralement réalisées dans une presse à découper.  A second known transformation is the cutting of a sheet of cardboard. This operation consists of cutting shapes in said sheet. Cut shapes are called poses or cutouts. It is also carried out in the cuts to delimit panels and facilitate their subsequent folding. These operations are generally performed in a cutting press.
[0007] Une troisième transformation connue est l'emboutissage d'une découpe.  [0007] A third known transformation is the stamping of a blank.
Cette opération consiste à emboutir une découpe pour faire apparaître des bosses (ou protubérances) sur une face de ladite découpe, par exemple, pour former des caractères Braille. Un exemple d'emboutissage est divulgué par la Demanderesse dans la demande de brevet EP-A- 1932657 dont le contenu est incorporé par référence dans la présente description.  This operation involves stamping a cutout to reveal bumps (or protuberances) on a face of said cut, for example, to form Braille characters. An example of stamping is disclosed by the Applicant in the patent application EP-A-1932657 whose contents are incorporated by reference in the present description.
[0008] Une quatrième transformation connue est l'encollage d'une découpe.  A fourth known transformation is the gluing of a cut.
Cette opération consiste à déposer ou à projeter sur une face de la découpe des gouttes de colle. Un exemple d'encollage est divulgué dans la demande de brevet EP-A-1070548 dont le contenu est également incorporé par référence dans la présente description. This operation consists of depositing or projecting drops of glue on one side of the cut. An example of sizing is disclosed in EP-A-1070548, the content of which is also incorporated by reference in the present description.
[0009] Dans le cadre d'une production en série, il est nécessaire de pouvoir  In the context of mass production, it is necessary to be able to
contrôler en ligne ces différentes transformations afin de s'assurer que les normes de qualité en vigueur sont respectées. En particulier, s'agissant de transformations faisant apparaître des reliefs, comme par exemple des caractères Braille ou des gouttes de colle, il existe des solutions qui permettent de détecter la présence ou non de ces reliefs ainsi que leur emplacement sur des découpes défilant à grande vitesse. Par contre, ces solutions sont incapables de contrôler la bonne formation des reliefs.  monitor these different transformations online to ensure that the current quality standards are met. In particular, in the case of transformations revealing reliefs, such as Braille characters or drops of glue, there are solutions that make it possible to detect the presence or absence of these reliefs as well as their location on scrolling cutouts with large dimensions. speed. On the other hand, these solutions are incapable of controlling the good formation of the reliefs.
[0010] Pour contrôler la bonne formation des reliefs, il faut aussi pouvoir mesurer les caractéristiques tridimensionnelles des reliefs. Des solutions utilisant des caméras matricielles existent mais ces solutions ne sont pas adaptées à une utilisation en ligne parce qu'elles ne peuvent pas mesurer les caractéristiques tridimensionnelles des reliefs dans des conditions de rapidité satisfaisante.  To control the good formation of the reliefs, it is also necessary to measure the three-dimensional characteristics of the reliefs. Solutions using matrix cameras exist but these solutions are not suitable for online use because they can not measure the three-dimensional characteristics of the reliefs under conditions of satisfactory speed.
Exposé de l'invention  Presentation of the invention
[0011] Un premier but de l'invention est de remédier aux inconvénients précités en proposant un dispositif de contrôle de la bonne formation de reliefs à la surface d'un substrat défilant à grande vitesse, de manière fiable et compatible avec les exigences d'une détection, d'un repérage et d'une caractérisation dimensionnelle des reliefs dans des conditions  A first object of the invention is to overcome the aforementioned drawbacks by providing a device for controlling the correct formation of reliefs on the surface of a substrate traveling at high speed, reliably and compatible with the requirements of detection, identification and dimensional characterization of the reliefs under conditions
industrielles.  industrial.
[0012] A cet effet, l'invention a pour objet un dispositif de topographie d'une  For this purpose, the invention relates to a topography device of a
surface d'un substrat selon la revendication 1.  surface of a substrate according to claim 1.
[0013] Un deuxième but de la présente invention est de proposer un procédé pour la mise en œuvre d'un dispositif de topographie selon l'invention.  A second object of the present invention is to provide a method for implementing a topography device according to the invention.
[0014] A cet effet, l'invention a pour objet un procédé selon la revendication 7.  For this purpose, the subject of the invention is a method according to claim 7.
[0015] Un troisième but de la présente invention est de proposer une machine plieuse-colleuse équipée d'un dispositif de topographie selon l'invention.  A third object of the present invention is to provide a folder-gluer machine equipped with a topography device according to the invention.
[0016] A cet effet, l'invention a pour objet une machine plieuse-colleuse selon la revendication 8. [0017] Grâce au dispositif de topographie défini à la revendication 1 , on peut déterminer la topographie d'une surface d'un substrat ce qui permet de détecter, de repérer et de caractériser des reliefs à la surface du substrat. For this purpose, the invention relates to a folder-gluer machine according to claim 8. With the topography device defined in claim 1, it is possible to determine the topography of a surface of a substrate which makes it possible to detect, locate and characterize reliefs on the surface of the substrate.
[0018] En outre, grâce au procédé défini à la revendication 7, on peut mesurer de manière fiable et rapide toutes les caractéristiques dimensionnelles des reliefs présents à la surface du substrat.  In addition, by the method defined in claim 7, it is possible to measure reliably and quickly all the dimensional characteristics of the reliefs present on the surface of the substrate.
[0019] Enfin, grâce à la machine plieuse-colleuse définie à la revendication 8, on peut contrôler la qualité de la formation de reliefs en ligne, c'est-à-dire pendant la production de boîtes, ce contrôle est fait pour chaque découpe, quelle que soit sa vitesse de défilement.  Finally, thanks to the folder-gluer machine defined in claim 8, one can control the quality of the formation of reliefs in line, that is to say during the production of boxes, this control is done for each cutting, regardless of its scroll speed.
[0020] D'autres objets et avantages de l'invention apparaîtront plus clairement au cours de la description d'un mode de réalisation, description qui va être faite en se référant aux dessins annexés.  Other objects and advantages of the invention will appear more clearly in the description of an embodiment, description which will be made with reference to the accompanying drawings.
Description sommaire des figures des dessins  Brief description of drawing figures
[0021] La figure 1 est une vue en perspective d'un dispositif de topographie  Figure 1 is a perspective view of a topography device
conforme à l'invention;  according to the invention;
Les figures 2a et 2c sont des vues des angles 'b', 'c', 'e' et 'f ;  Figures 2a and 2c are views of the angles 'b', 'c', 'e' and 'f';
La figure 3 est une vue en coupe à échelle agrandie d'un élément en plaque comportant un relief;  Figure 3 is an enlarged sectional view of a plate element having a relief;
La figure 4 est une représentation de l'image vue par la caméra linéaire du dispositif;  Figure 4 is a representation of the image seen by the linear camera of the device;
La figure 5 est une représentation du signal électrique, correspondant à l'image de la figure 3, délivré par les éléments photosensibles de la caméra linéaire.  FIG. 5 is a representation of the electrical signal, corresponding to the image of FIG. 3, delivered by the photosensitive elements of the linear camera.
Meilleure manière de réaliser l'invention  Best way to realize the invention
[0022] Sur le dessin de la figure 1 , on a représenté schématiquement le dispositif de topographie mis en œuvre pour la mesure de caractéristiques tridimensionnelles de reliefs présents à la surface 2 d'un substrat en carton 1 défilant selon une trajectoire sensiblement plane d'axe X. On appelle plan de référence le plan dans lequel s'inscrit la portion plane de la surface 2 du substrat 1 , c'est-à-dire la portion exempte de tout relief. Des axes Y et Z définissent avec l'axe X un repère orthonormé de l'espace dans lequel le plan de référence est parallèle au plan XY. [0023] Le dispositif comporte une source de lumière 10 apte à projeter In the drawing of Figure 1, there is shown schematically the topography device implemented for measuring three-dimensional characteristics of reliefs present on the surface 2 of a cardboard substrate 1 traveling in a substantially planar path of X axis. Reference plane is the plane in which the flat portion of the surface 2 of the substrate 1, that is to say the portion devoid of any relief, is inscribed. Y and Z axes define with the X axis an orthonormal reference of the space in which the reference plane is parallel to the XY plane. The device comprises a light source 10 capable of projecting
obliquement, à travers une pupille de sortie 11 , sur la surface 2 du substrat 1 , un faisceau lumineux F adapté pour former un éclairage structuré selon un profil d'illumination déterminé. De préférence, la source de lumière 10 comporte une source de lumière cohérente, typiquement un laser. Avantageusement, l'éclairage structuré est obtenu par  obliquely, through an exit pupil 11, on the surface 2 of the substrate 1, a light beam F adapted to form structured lighting according to a determined illumination profile. Preferably, the light source 10 comprises a coherent light source, typically a laser. Advantageously, the structured lighting is obtained by
interférométrie laser en faisant interférer à la surface 2 du substrat 1 deux ondes planes, spatialement et temporellement cohérentes, issues de la source de lumière 10. Dans ce cas, l'angle d'incidence 'a' sous lequel le substrat est illuminé est l'angle moyen que forme les deux ondes planes avec la normale au substrat. Par cette disposition, l'éclairage structuré est constitué par un réseau de franges d'interférence, c'est-à-dire une modulation périodique d'intensité lumineuse à la surface 2 du substrat 1. Avantageusement encore, les franges d'interférence sont rectilignes parallèles et équidistantes dans le plan de référence, alternativement lumineuses et sombres.  laser interferometry by interfering with the surface 2 of the substrate 1 two plane waves, spatially and temporally coherent, from the light source 10. In this case, the angle of incidence 'a' under which the substrate is illuminated is mean angle that forms the two plane waves with the normal to the substrate. By this arrangement, the structured lighting is constituted by a network of interference fringes, that is to say a periodic modulation of light intensity at the surface 2 of the substrate 1. Advantageously, the interference fringes are rectilinear lines parallel and equidistant in the reference plane, alternately bright and dark.
[0024] En variante, l'éclairage structuré peut être obtenu en projetant l'image d'un masque rétro-éclairé par des LED ou par tout autre moyen connu de l'homme du métier.  Alternatively, the structured lighting can be obtained by projecting the image of a backlit mask by LEDs or by any other means known to those skilled in the art.
[0025] Dans l'exemple illustré, une pluralité 'n' de stries lumineuses rectilignes S1 , S2,...Sn parallèles et équidistantes forme le profil d'illumination structuré. L'utilisation d'un éclairage structuré obtenu par interférométrie laser permet de projeter un faisceau lumineux F avec une grande profondeur de champ et permet d'obtenir des stries lumineuses de netteté constante et de pas constant dans toute la zone illuminée du substrat, malgré l'illumination oblique. On appelle 'p1' la distance la plus courte entre deux stries successives formées dans le plan de référence. De préférence, la distance 'p1' est comprise entre 0,01 mm et 0,3 mm, dans l'exemple illustré, la distance 'p1' est égale à 0,2 mm. Chaque strie S s'étend sur une largeur L à la surface 2 du substrat 1. De préférence, la largeur L est comprise entre 0,1 mm et 3 mm, dans l'exemple illustré, la largeur L est égale à 3 mm. [0026] Le faisceau lumineux F est projeté selon une direction moyenne 12 oblique par rapport au substrat 2 sous un angle d'incidence 'a'. Dans le plan de référence, chaque strie lumineuse S est un segment linéaire formant un angle 'b' avec l'axe X. Avantageusement, l'angle 'b' est compris entre -45° et +45°, de préférence, 'b' est égal à 0°. De plus, on notera que le réseau de stries lumineuses S1, S2,... Sn formé à la surface 2 du substrat 1 est sensiblement délimité par un rectangle de longueur L1 et de largeur L où L1 est égale à p1 x n. Ce rectangle définit une zone d'éclairage 3 pour une zone d'observation 23. De préférence, la longueur L1 est comprise entre 10 mm et 100 mm, dans l'exemple illustré, la longueur L1 est égale à 42 mm. In the illustrated example, a plurality 'n' of rectilinear straight lines S1, S2, ... Sn parallel and equidistant forms the structured illumination profile. The use of structured illumination obtained by laser interferometry makes it possible to project a light beam F with a large depth of field and makes it possible to obtain luminous streaks of constant sharpness and constant pitch throughout the illuminated area of the substrate, despite the fact that oblique illumination. The shortest distance between two successive striations formed in the reference plane is called 'p1'. Preferably, the distance 'p1' is between 0.01 mm and 0.3 mm, in the example illustrated, the distance 'p1' is equal to 0.2 mm. Each streak S extends over a width L at the surface 2 of the substrate 1. Preferably, the width L is between 0.1 mm and 3 mm, in the example shown, the width L is equal to 3 mm. The light beam F is projected in a mean direction 12 oblique with respect to the substrate 2 at an angle of incidence 'a'. In the reference plane, each luminous strip S is a linear segment forming an angle 'b' with the axis X. Advantageously, the angle 'b' is between -45 ° and + 45 °, preferably, b is equal to 0 °. In addition, it will be noted that the network of light striations S1, S2,. Sn formed on the surface 2 of the substrate 1 is substantially delimited by a rectangle of length L1 and of width L where L1 is equal to p1 x n. This rectangle defines a lighting zone 3 for an observation zone 23. Preferably, the length L1 is between 10 mm and 100 mm, in the example shown, the length L1 is equal to 42 mm.
[0027] On rappelle que les stries lumineuses S1, S2,... Sn sont rendues visibles par le phénomène bien connu de diffusion à l'impact du faisceau lumineux F issu de la source de lumière 10, sur la surface 2, aussi appelé rétrodiffusion ou réflexion diffuse.  It is recalled that the light streaks S1, S2,... Sn are made visible by the well-known phenomenon of diffusion at the impact of the light beam F coming from the light source 10, on the surface 2, also called backscatter or diffuse reflection.
[0028] Le dispositif selon l'invention comporte aussi des moyens de mesure de l'éclairement de la surface 2 par lesdites stries S1 moyens constitués par une caméra linéaire 20 comprenant un capteur linéaire et un objectif (non représentés). Le capteur linéaire est de type CCD ou CMOS. The device according to the invention also comprises means for measuring the illumination of the surface 2 by said striations S 1 means constituted by a linear camera 20 comprising a linear sensor and an objective (not shown). The linear sensor is of CCD or CMOS type.
Avantageusement, la caméra linéaire 20 est une caméra à grande dynamique afin de pouvoir mesurer l'éclairement de n'importe quelle surface, quelle que soit sa réflectivité dans la zone d'observation.  Advantageously, the linear camera 20 is a high dynamic camera in order to be able to measure the illumination of any surface, whatever its reflectivity in the observation zone.
[0029] Du fait que la caméra 20 est linéaire, la zone d'observation 23 de la  Since the camera 20 is linear, the observation zone 23 of the
caméra est réduite à une bande d'observation étroite de longueur L2 et de largeur L3 (non représentée), aussi appelée ligne de mesure. Cette ligne de mesure est imagée sur le capteur linéaire de la caméra 20 grâce à l'objectif de cette dernière. La largeur L3 est comprise entre 0,01 mm et 0,1 mm. La direction moyenne d'observation de la caméra 20 est représentée par une ligne pointillée 21 formant un angle T avec l'axe Z (voir figure 2c), la ligne 21 appartient au plan XZ et passe par un point A situé au milieu de la ligne de mesure. Dans un mode de réalisation préféré, l'angle 'f est nul. Par cette disposition, la ligne de mesure imagée par la caméra 20 est nette sur toute la longueur L2 et le grandissement est constant sur toute cette longueur. The camera is reduced to a narrow observation band of length L2 and width L3 (not shown), also called measuring line. This measurement line is imaged on the linear sensor of the camera 20 thanks to the lens of the latter. The width L3 is between 0.01 mm and 0.1 mm. The mean direction of observation of the camera 20 is represented by a dotted line 21 forming an angle T with the axis Z (see Figure 2c), the line 21 belongs to the plane XZ and passes through a point A in the middle of the measuring line. In a preferred embodiment, the angle f is zero. By this arrangement, the imaged measuring line by the camera 20 is sharp throughout the length L2 and the magnification is constant over the entire length.
[0030] Dans le cas particulier où la surface 2 est essentiellement réfléchissante, par exemple quand le substrat est revêtu d'une couche d'aluminium, il est avantageux d'utiliser un angle T égal à l'angle '-a', ceci afin de collecter la lumière réfléchie spéculairement. Dans ce cas, l'homme du métier utilisera des techniques connues pour avoir une image nette sur toute la ligne de mesure.  In the particular case where the surface 2 is substantially reflecting, for example when the substrate is coated with an aluminum layer, it is advantageous to use an angle T equal to the angle '-a', this to collect specularly reflected light. In this case, those skilled in the art will use known techniques to have a clear image throughout the measurement line.
[0031] Le type d'objectif de la caméra 20 et la distance de la caméra 20 à la  The type of lens of the camera 20 and the distance of the camera 20 to the
surface 2, appelée distance d'observation, sont choisis de sorte que l'angle maximal de champ noté 'd' soit faible, compte tenu de la longueur L2 de la bande d'observation, ceci afin que la direction d'observation puisse être quasiment perpendiculaire à l'axe Y, sur toute la longueur L2. Avantageusement, on utilisera un objectif de type télécentrique pour observer la ligne de mesure dans une direction d'observation  surface 2, called observation distance, are chosen such that the maximum field angle denoted by 'd' is small, taking into account the length L2 of the observation band, so that the observation direction can be almost perpendicular to the Y axis, over the entire length L2. Advantageously, a telecentric-type objective will be used to observe the measurement line in an observation direction
perpendiculaire à l'axe Y, sur toute la longueur L2, tout en gardant une distance minimale entre la caméra 20 et la surface 2, dans ce cas, l'angle 'd' est quasiment nul. Pour une distance d'éclairage de 130 mm, la distance d'observation est par exemple égale à 100 mm.  perpendicular to the Y axis, the entire length L2, while keeping a minimum distance between the camera 20 and the surface 2, in this case, the angle 'd' is virtually zero. For a lighting distance of 130 mm, the observation distance is for example equal to 100 mm.
[0032] Dans le cas où l'objectif n'est pas télécentrique, la direction d'observation n'est pas perpendiculaire à l'axe Y sur toute la longueur L2. Dans ce cas, pour faire des mesures précises, l'homme du métier prendra en compte la variation de l'angle 'd' le long de L2 et appliquera une méthode de correction appropriée en utilisant, par exemple, une calibration sur le plan de référence.  In the case where the objective is not telecentric, the observation direction is not perpendicular to the Y axis over the entire length L2. In this case, to make accurate measurements, one skilled in the art will take into account the variation of the angle d along L2 and will apply an appropriate correction method using, for example, a calibration on the plane of L2. reference.
[0033] La caméra 20 avec son réseau linéaire d'éléments photosensibles est située dans un plan P sécant au plan XY et au plan XZ. L'intersection du plan P avec le plan XY forme un angle 'c' avec l'axe Y (voir figure 2a). De même, l'intersection du plan P avec le plan XZ forme un angle 'e' avec l'axe Z (voir figure 2b). Avantageusement, l'angle 'c' est compris entre -30° et +30°, de préférence 'c' est égal à 0°. Avantageusement encore, l'angle 'e' est compris entre -45° et +45°, de préférence 'e' est égal à 0°. Ainsi, dans un mode de réalisation particulier où l'angle 'b' est égal à 0°, où l'angle 'c' est égal à 0° et où l'angle 'e' est égal à 0°, les stries lumineuses rectilignes S1 , S2,...Sn sont orthogonales au plan P. Dans un mode préféré de réalisation, la source lumineuse 10 et la caméra linéaire 20 sont agencées de manière que la longueur L1 soit au moins égale à la longueur L2. The camera 20 with its linear array of photosensitive elements is located in a plane P intersecting the XY plane and the XZ plane. The intersection of the plane P with the plane XY forms an angle 'c' with the axis Y (see Figure 2a). Similarly, the intersection of the plane P with the plane XZ forms an angle 'e' with the axis Z (see Figure 2b). Advantageously, the angle 'c' is between -30 ° and + 30 °, preferably 'c' is equal to 0 °. Advantageously, the angle 'e' is between -45 ° and + 45 °, preferably 'e' is equal to 0 °. Thus, in a particular embodiment where the angle 'b' is equal to 0 °, where the angle 'c' is equal to 0 ° and where the angle 'e' is equal to 0 °, the straight streaks S1, S2, ... Sn are orthogonal to the plane P. In a preferred embodiment, the light source 10 and the linear camera 20 are arranged so that the length L1 is at least equal to the length L2.
[0034] La source lumineuse 10 émet préférentiellement dans uηe longueur  The light source 10 emits preferentially in uηe length
d'onde située entre 400 nm et 1100 nm, la puissance d'une telle source lumineuse est de l'ordre de 1 à 100 mW.  between 400 nm and 1100 nm, the power of such a light source is of the order of 1 to 100 mW.
[0035] La caméra 20 est par exemple une caméra linéaire d'une seule ligne de 2048 pixels. L'image unidimensionnelle acquise par la caméra 20 est stockée dans une mémoire 26. Les données de la mémoire 26 sont utilisées par un algorithme de triangulation décrit plus loin. Ainsi, pour une vitesse d'acquisition de quarante milles lignes par seconde et pour une vitesse de défilement du substrat de 8 mètres par seconde, on obtient une résolution suivant l'axe X de 0,2 mm correspondant à la distance de déplacement du substrat entre deux lignes de mesure successives, ce qui est suffisant pour déduire de manière fiable la topographie d'une surface d'un substrat passant dans la zone d'observation, comme par exemple la topographie d'une surface présentant des caractères Braille ou des points de colle ou tout autre relief à la surface d'un substrat, notamment un substrat utilisé pour la fabrication d'emballage.  The camera 20 is for example a linear camera of a single line of 2048 pixels. The one-dimensional image acquired by the camera 20 is stored in a memory 26. The data of the memory 26 are used by a triangulation algorithm described below. Thus, for an acquisition speed of forty thousand lines per second and for a substrate speed of 8 meters per second, an X-axis resolution of 0.2 mm corresponding to the displacement distance of the substrate is obtained. between two successive measurement lines, which is sufficient to reliably deduce the topography of a surface of a substrate passing through the observation zone, such as, for example, the topography of a surface having Braille characters or points glue or other relief on the surface of a substrate, especially a substrate used for the manufacture of packaging.
[0036] L'angle d'incidence 'a' est avantageusement compris entre 30° à 70°, de préférence entre 45° et 60°. Comme on le comprendra mieux au vu de la figure 3, cet angle est choisi en fonction des caractéristiques  The angle of incidence 'a' is advantageously between 30 ° to 70 °, preferably between 45 ° and 60 °. As will be better understood from FIG. 3, this angle is chosen according to the characteristics
dimensionnelles des reliefs que l'on souhaite topographier.  dimensions of the reliefs that one wishes to survey.
[0037] Sur la figure 3, on a représenté une coupe dans le plan P, à grande  In Figure 3, there is shown a section in the plane P, large
échelle, d'un relief à la surface 2 d'une découpe 1. Dans cet exemple, le relief est une bosse 4 caractérisée par une hauteur 'h' d'environ 0,2 mm et un diamètre 'D' d'environ 1 ,6 mm à sa base (typiquement un point Braille). Avec un angle d'incidence 'a' égal à 45° et une résolution de 0,2 mm, lorsque la découpe 1 traverse le plan P avec une vitesse de 8 m/s, sept ou huit relevés topographiques de la bosse 4 peuvent être effectués successivement, ce qui est suffisant pour en déduire les caractéristiques tridimensionnelles de ladite bosse. scale, of a relief at the surface 2 of a cutout 1. In this example, the relief is a hump 4 characterized by a height 'h' of approximately 0.2 mm and a diameter 'D' of approximately 1 , 6 mm at its base (typically a Braille dot). With an angle of incidence 'a' equal to 45 ° and a resolution of 0.2 mm, when the cutout 1 crosses the plane P with a speed of 8 m / s, seven or eight topographic surveys of the hump 4 can be done successively, which is sufficient to deduce the three-dimensional characteristics of said hump.
[0038] La figure 3 montre la bosse 4 au moment où son sommet traverse le plan  Figure 3 shows the hump 4 at the moment when its vertex passes through the plane
P. Les stries S1 , S2,...Sn qui sont projetés sur la surface 2 selon la direction moyenne 12 sont rétrodiffusées dans plusieurs directions et en particulier en direction de la caméra linéaire 20. Dans le cas particulier où l'objectif de la caméra linéaire 20 est du type télécentrique et que l'angle 'e' est nul, les rayons rétrodiffusés observés par la caméra 20 sont orthogonaux à la surface 2 de la découpe. On appelle respectivement R1 , R2,... Rn les rayons lumineux orthogonaux rétrodiffusés par les 'n' stries S1 , S2,...Sn dans le plan P suite à l'impact du faisceau lumineux F sur la surface 2. De même, on appelle 'p2' la distance la plus courte entre deux rayons lumineux orthogonaux successifs rétrodiffusés dans le plan P. Chaque rayon lumineux orthogonal est représenté par une flèche R. P. The streaks S1, S2, ... Sn which are projected on the surface 2 in the mean direction 12 are backscattered in several directions and in particular in the direction of the linear camera 20. In the particular case where the objective of the linear camera 20 is telecentric type and the angle 'e' is zero, the backscattered rays observed by the camera 20 are orthogonal to the surface 2 of the cut. The orthogonal light rays backscattered by the n 'streaks S1, S2, ... Sn in the plane P are respectively called R1, R2, ... R n following the impact of the light beam F on the surface 2. From even, we call 'p2' the shortest distance between two successive orthogonal light rays backscattered in the plane P. Each orthogonal light ray is represented by an arrow R.
[0039] La direction moyenne d'observation 21 de la caméra linéaire 20 étant perpendiculaire à la surface 2, la caméra 20 voit les rayons lumineux orthogonaux R1 , R2,... Rn rétrodiffusés dans le plan P. A cause de la bosse 4, ces rayons lumineux orthogonaux ne sont pas équidistants sur toute la longueur L1 , autrement dit, la distance 'p2' est variable. En effet, tant qu'aucun relief ne se trouve dans la zone d'observation, la caméra 20 est sollicitée par de la lumière rétrodiffusée en concordance avec le profil d'illumination structuré. En revanche, dès lors qu'un relief se trouve à l'intérieur de la zone d'observation, il s'opère un décalage spatial des stries lumineuses S1 , S2,... Sn et, de ce fait, de la sollicitation des éléments photosensibles correspondants de la caméra 20. Cela est dû au fait que le dispositif de topographie selon l'invention fonctionne sur le principe bien connu de triangulation, principe suivant lequel l'angle d'incidence 'a' est non nul, de sorte qu'une variation de la distance entre la caméra 20 et la surface 2 se traduit par un décalage latéral des rayons lumineux reçus par la caméra 20. C'est la mesure de ce décalage qui permet de déterminer les caractéristiques tridimensionnelles de la surface 2 et donc de vérifier la bonne formation de la bosse 4. Pour cela, un calculateur 25 applique un algorithme de triangulation à chaque image acquise par la caméra 20. Un exemple connu d'algorithme de triangulation est donné par la formule suivante : "décalage latéral" = tan('a') x "décalage vertical" ; où tan('a') est la tangente de l'angle d'incidence 'a', où The mean direction of observation 21 of the linear camera 20 being perpendicular to the surface 2, the camera 20 sees the orthogonal light rays R1, R2, ... R n backscattered in the plane P. Because of the hump 4, these orthogonal light rays are not equidistant over the entire length L1, in other words, the distance 'p2' is variable. Indeed, as long as no relief is in the observation area, the camera 20 is biased by backscattered light in accordance with the structured illumination profile. On the other hand, since a relief is located inside the observation zone, there is a spatial shift of the luminous streaks S1, S2,... Sn and, consequently, of the solicitation of corresponding photosensitive elements of the camera 20. This is due to the fact that the surveying device according to the invention operates on the well known principle of triangulation, principle according to which the angle of incidence 'a' is non-zero, so that a variation in the distance between the camera 20 and the surface 2 results in a lateral shift of the light rays received by the camera 20. It is the measurement of this offset which makes it possible to determine the three-dimensional characteristics of the surface 2 and therefore to check the good formation of the bump 4. For this, a calculator 25 applies a triangulation algorithm to each image acquired by the camera 20. A known example of a triangulation algorithm is given by the following formula: "lateral offset" = tan ('a') x "vertical offset"; where tan ('a') is the tangent of the angle of incidence 'a', where
"décalage vertical" est le décalage sur l'axe Z des rayons lumineux reçus par la caméra 20 et où "décalage latéral" est le décalage sur l'axe Y des rayons lumineux reçus par la caméra 20. Dans l'exemple illustré, l'algorithme de triangulation est appliqué ligne par ligne, indépendamment les unes des autres. Dans une variante de réalisation, l'algorithme de triangulation utilise les données mémorisées de plusieurs lignes  "vertical offset" is the offset on the Z axis of the light rays received by the camera 20 and where "lateral offset" is the offset on the Y axis of the light rays received by the camera 20. In the illustrated example, triangulation algorithm is applied line by line, independently of each other. In an alternative embodiment, the triangulation algorithm uses the stored data of several lines
adjacentes.  adjacent.
[0040] En pratique, si l'angle d'incidence 'a' dépasse 70°, la détection de reliefs devient très sensible mais le relevé topographique devient moins fiable du fait que des ombres des reliefs peuvent apparaître. Si, par contre, l'angle d'incidence 'a' descend en-dessous de 30°, la sensibilité décroît rapidement du fait que le décalage des stries lumineuses S1 , S2,... Sn devient moins visible.  In practice, if the angle of incidence 'a' exceeds 70 °, the detection of reliefs becomes very sensitive but the topographic survey becomes less reliable because shadows of the reliefs can appear. If, on the other hand, the angle of incidence 'a' drops below 30 °, the sensitivity decreases rapidly because the shift of the light streaks S1, S2,... Sn becomes less visible.
[0041] A la figure 4, on a représenté une image 30 des stries lumineuses S1 , In FIG. 4, an image 30 of the light streaks S1 is shown,
S2,... Sn, vues par la caméra 20 lorsque la bosse 4 est dans la position de la figure 3. La caméra 20 étant linéaire, celle-ci ne voit qu'un seul point lumineux de chaque strie. Les zones sombres W représentent les éléments photosensibles de la caméra 20 qui reçoivent de la lumière. Le signal électrique 40 correspondant est représenté sur la Figure 5. S2, ... Sn, seen by the camera 20 when the hump 4 is in the position of Figure 3. The camera 20 being linear, it sees only one light point of each streak. The dark areas W represent the photosensitive elements of the camera 20 which receive light. The corresponding electrical signal 40 is shown in FIG. 5.
[0042] A la figure 5, on a représenté le signal électrique périodique délivré par le réseau d'éléments photosensibles. La présence de reliefs à la surface de la découpe dans la zone d'observation provoque un décalage spatial comme expliqué précédemment. Ce décalage est repéré par une diminution ou une augmentation de la période T du signal 40. Dans l'exemple illustré, lorsque la période T diminue, cela signifie que la source de lumière 10 illumine une région de dénivellation positive de la surface 2, à l'inverse, lorsque la période T augmente, cela signifie que la source de lumière 10 illumine une région de dénivellation négative de la surface 2. [0043] On notera qu'en l'absence de relief à la surface de la découpe dans la zone d'observation, la période T est sensiblement constante sur toute la longueur du réseau d'éléments photosensibles. In Figure 5, there is shown the periodic electrical signal delivered by the network of photosensitive elements. The presence of reliefs on the surface of the cutout in the observation zone causes a spatial shift as explained previously. This offset is indicated by a decrease or an increase in the period T of the signal 40. In the illustrated example, when the period T decreases, this means that the light source 10 illuminates a region of positive slope of the surface 2, at conversely, when the period T increases, it means that the light source 10 illuminates a negative slope region of the surface 2. Note that in the absence of relief at the surface of the cut in the observation area, the period T is substantially constant over the entire length of the network of photosensitive elements.
[0044] Le dispositif selon l'invention peut être mis en œuvre de la manière  The device according to the invention can be implemented in the manner
suivante: on projette obliquement sur la surface 2 un faisceau lumineux F pour y former 'n' stries lumineuses S1 , S2,... Sn, ensuite on mesure le décalage spatial des stries lumineuses S1 , S2,... Sn pour chaque image acquise, et enfin on applique un algorithme de triangulation à chaque décalage mesuré.  Next: a light beam F is projected obliquely onto the surface 2 to form 'n' light streaks S1, S2,... Sn, then the spatial shift of the light streaks S1, S2,. Sn is measured for each image. acquired, and finally we apply a triangulation algorithm to each measured offset.
[0045] Le dispositif selon l'invention peut avantageusement être monté dans une machine plieuse-colleuse comprenant un transporteur pour transporter des éléments en plaque 1 selon une trajectoire sensiblement plane d'axe X.  The device according to the invention may advantageously be mounted in a folder-gluer machine comprising a carrier for transporting plate elements 1 in a substantially plane path X axis.
[0046] Bien que la surface topographiée soit celle d'un élément en plaque, il va de soi que l'invention s'applique aussi à un substrat se présentant sous la forme d'une bande de matière.  Although the topographied surface is that of a plate element, it goes without saying that the invention also applies to a substrate in the form of a strip of material.

Claims

Revendications claims
1. Dispositif de topographie d'une surface (2) d'un substrat (1) défilant selon une trajectoire sensiblement plane d'axe X où l'axe X définit avec des axes Y et Z un repère orthonormé de l'espace dans lequel la surface (2) est sensiblement parallèle au plan XY, dispositif comprenant des moyens d'éclairage structuré (10) de ladite surface (2) apte à coopérer avec des moyens de mesure (20) de l'éclairement rétrodiffusé par ladite surface (2) pour topographier ladite surface (2) au cours du défilement dudit substrat (1), les moyens d'éclairage structuré (10) sont aptes à projeter sur la surface (2), sous un angle d'incidence 'a', un faisceau lumineux (F) pour y former une pluralité 'n' de stries lumineuses (S; S1 , S2,... Sn), chaque strie lumineuse (S) formant un angle 'b' avec l'axe X, dispositif dans lequel les moyens de mesure (20) sont constitués par une caméra linéaire située dans un plan P sécant au plan XY et au plan XZ, l'intersection du plan P avec le plan XY formant un angle 'c' avec l'axe Y, l'intersection du plan P avec le plan XZ formant un angle 'e' avec l'axe Z, dispositif dans lequel l'angle d'incidence 'a' est compris entre 30° et 70°, l'angle 'b' est compris entre -45° et +45°, l'angle 'c' est compris entre -30° et +30° et l'angle 'e' est compris entre -45° et +45°.  1. Apparatus for topography of a surface (2) of a substrate (1) traveling in a substantially plane trajectory of X axis where the X axis defines with Y and Z axes an orthonormal reference of the space in which the surface (2) is substantially parallel to the XY plane, a device comprising structured lighting means (10) of said surface (2) capable of cooperating with means (20) for measuring the illumination backscattered by said surface (2 ) for surveying said surface (2) during the running of said substrate (1), the structured lighting means (10) are able to project on the surface (2), at an angle of incidence 'a', a beam light (F) to form a plurality 'n' of light streaks (S; S1, S2, ... Sn), each light streak (S) forming an angle 'b' with the X axis, in which the measuring means (20) are constituted by a linear camera situated in a plane P intersecting at the plane XY and at the plane XZ, the intersection of the plane P with the plane XY forming an angle 'c' with the axis Y, the intersection of the plane P with the plane XZ forming an angle 'e' with the axis Z, device in which the angle of incidence 'a' is between 30 ° and 70 °, the angle 'b' is between -45 ° and + 45 °, the angle 'c' is between -30 ° and + 30 ° and the angle 'e' is between - 45 ° and + 45 °.
2. Dispositif de topographie selon la revendication 1 , caractérisé en ce que  2. Survey device according to claim 1, characterized in that
l'angle d'incidence 'a' est compris entre 45° et 60°.  the angle of incidence 'a' is between 45 ° and 60 °.
3. Dispositif de topographie selon la revendication 1 , caractérisé en ce que  3. Survey device according to claim 1, characterized in that
l'angle 'b' est égal à 0°.  the angle 'b' is equal to 0 °.
4. Dispositif de topographie selon la revendication 1 , caractérisé en ce que  4. Topography device according to claim 1, characterized in that
l'angle 'c' est égal à 0°.  the angle 'c' is equal to 0 °.
5. Dispositif de topographie selon la revendication 1 , caractérisé en ce que  Survey device according to claim 1, characterized in that
l'angle 'e' est égal à 0°.  the angle 'e' is equal to 0 °.
6. Dispositif de topographie selon la revendication 1 , caractérisé en ce que les moyens d'éclairage structuré (10) sont constitués par un interféromètre laser et en ce qu'un réseau de franges d'interférence constitue l'éclairage structuré. 6. Topography device according to claim 1, characterized in that the structured lighting means (10) are constituted by a laser interferometer and in that a network of interference fringes constitutes the structured lighting.
7. Procédé de topographie d'une surface (2) d'un substrat (1) défilant selon une trajectoire sensiblement plane d'axe X où l'axe X définit avec des axes Y et Z un repère orthonormé de l'espace dans lequel la surface (2) est sensiblement parallèle au plan XY, procédé comprenant les étapes suivantes: - projeter obliquement sur la surface (2) un faisceau lumineux (F) pour y former une pluralité 'n' de stries lumineuses (S; S1 , S2,... Sn), 7. A method of topography of a surface (2) of a substrate (1) traveling in a substantially plane path of X axis where the X axis defines with Y and Z axes an orthonormal reference of the space in which the surface (2) is substantially parallel to the XY plane, the method comprising the following steps: projecting a light beam (F) obliquely onto the surface (2) to form a plurality 'n' of light streaks (S; S1, S2, ... Sn),
- prendre des images successives de ladite surface (2) avec une caméra linéaire (20) située dans un plan P sécant au plan XY et au plan XZ,  taking successive images of said surface (2) with a linear camera (20) located in a plane P intersecting at the XY plane and at the XZ plane,
- mesurer le décalage spatial des stries lumineuses (S; S1 , S2,... Sn) pour chaque image acquise,  measuring the spatial offset of the light striations (S; S1, S2, ... Sn) for each image acquired,
- appliquer un algorithme de triangulation à chaque décalage mesuré.  - apply a triangulation algorithm to each measured offset.
8. Machine plieuse-colleuse comprenant un transporteur pour transporter des éléments en plaque (1) selon une trajectoire sensiblement plane d'axe X1 caractérisée en ce qu'elle comprend un dispositif de topographie défini selon la revendication 1. 8. Folder-gluer machine comprising a conveyor for transporting plate elements (1) along a substantially flat trajectory of axis X 1, characterized in that it comprises a surveying device defined according to Claim 1.
9. Dispositif de topographie d'une surface (2) d'un élément en plaque (1) défilant dans une plieuse-colleuse.  9. Device for topography of a surface (2) of a plate element (1) running in a folder-gluer.
10. Dispositif de topographie d'une surface (2) d'un élément en plaque (1) défilant dans une plieuse-colleuse selon une trajectoire sensiblement plane d'axe X où l'axe X définit avec des axes Y et Z un repère orthonormé de l'espace dans lequel la surface (2) est sensiblement parallèle au plan XY, dispositif comprenant des moyens d'éclairage structuré (10) de ladite surface (2) apte à coopérer avec des moyens de mesure (20) de l'éclairement rétrodiffusé par ladite surface (2) pour topographier ladite surface (2) au cours du défilement dudit élément en plaque (1) dans ladite plieuse-colleuse, les moyens d'éclairage structuré (10) sont aptes à projeter sur la surface (2), sous un angle d'incidence 'a', un faisceau lumineux (F) pour y former une pluralité 'n' de stries lumineuses (S; S1 , S2,... Sn), chaque strie lumineuse (S) formant un angle 'b' avec l'axe X, dispositif dans lequel les moyens de mesure (20) sont constitués par une caméra linéaire située dans un plan P sécant au plan XY et au plan XZ, l'intersection du plan P avec le plan XY formant un angle 'c' avec l'axe Y, l'intersection du plan P avec le plan XZ formant un angle 'e' avec l'axe Z, dispositif dans lequel l'angle d'incidence 'a' est compris entre 30° et 70°, l'angle 'b' est compris entre -45° et +45°, l'angle 'c' est compris entre -30° et +30° et l'angle 'e' est compris entre -45° et +45°.  10. Device for topography of a surface (2) of a plate element (1) running in a folder-gluer in a substantially plane path of axis X where the axis X defines with axes Y and Z a reference orthonormal space in which the surface (2) is substantially parallel to the XY plane, the device comprising structured lighting means (10) of said surface (2) able to cooperate with measuring means (20) of the illumination backscattered by said surface (2) for surveying said surface (2) during the scrolling of said plate member (1) in said folder-gluer, the structured lighting means (10) are capable of projecting onto the surface (2) ), at an angle of incidence 'a', a light beam (F) to form a plurality 'n' of light streaks (S; S1, S2, ... Sn), each light streak (S) forming a angle 'b' with the X axis, in which the measuring means (20) is constituted by a linear camera situated in a plane P intersecting at the XY plane and the XZ plane, the intersection of the plane P with the XY plane forming an angle 'c' with the Y axis, the intersection of the plane P with the plane XZ forming an angle 'e' with the axis Z, device in which the angle of incidence 'a' is between 30 ° and 70 °, the angle 'b' is between -45 ° and + 45 °, the angle 'c' is between -30 ° and + 30 ° and the angle 'e' is between -45 ° and + 45 °.
EP10737273A 2009-07-24 2010-07-16 Device for analysing the topography of a surface of a substrate Withdrawn EP2456613A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10737273A EP2456613A1 (en) 2009-07-24 2010-07-16 Device for analysing the topography of a surface of a substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09009607 2009-07-24
PCT/EP2010/004331 WO2011009566A1 (en) 2009-07-24 2010-07-16 Device for analysing the topography of a surface of a substrate
EP10737273A EP2456613A1 (en) 2009-07-24 2010-07-16 Device for analysing the topography of a surface of a substrate

Publications (1)

Publication Number Publication Date
EP2456613A1 true EP2456613A1 (en) 2012-05-30

Family

ID=41728098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10737273A Withdrawn EP2456613A1 (en) 2009-07-24 2010-07-16 Device for analysing the topography of a surface of a substrate

Country Status (8)

Country Link
US (1) US20120127480A1 (en)
EP (1) EP2456613A1 (en)
JP (1) JP2013500462A (en)
KR (1) KR20120069667A (en)
CN (1) CN102470623B (en)
BR (1) BR112012001475A2 (en)
CA (1) CA2766169A1 (en)
WO (1) WO2011009566A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2422969B1 (en) 2010-08-31 2013-09-11 Heidelberger Druckmaschinen AG Folding box gluing machine
EP2574465A1 (en) * 2011-09-26 2013-04-03 Advanced Vision Technology (AVT) Ltd. Three dimensional pattern inspection system
EP2753896B1 (en) * 2012-06-29 2020-09-30 INB Vision AG Method for capturing images of a preferably structured surface of an object and device for image capture
FR3017477B1 (en) * 2014-02-11 2016-02-19 Saint Gobain DEVICE FOR READING AN IDENTIFICATION CODE ON A SLOTTED GLASS SHEET
EP3007133B1 (en) 2014-10-08 2018-06-20 OCE-Technologies B.V. Apparatus and method for defect detection in a printing system
KR20220039059A (en) 2020-09-21 2022-03-29 엘지전자 주식회사 Dishwasher and method for obtaining three-dimensional image thereof
CN113899754A (en) * 2021-11-17 2022-01-07 武汉华星光电半导体显示技术有限公司 Screen wrinkle degree detection method and visual detection equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175232A1 (en) * 2007-07-27 2010-04-14 Omron Corporation Three-dimensional shape measuring device, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3768907A (en) * 1972-07-17 1973-10-30 Us Navy Scanning aperture partially coherent optical correlator
US3814521A (en) * 1972-09-12 1974-06-04 Hoffmann La Roche Object recognition
US4070683A (en) * 1976-03-04 1978-01-24 Altschuler Bruce R Optical surface topography mapping system
DE2948010C2 (en) * 1979-11-29 1983-12-29 Ulrich M. 4520 Melle Landwehr Method and device for determining the dimensions of an object by photographic means
JPS61202128A (en) * 1985-03-06 1986-09-06 Hitachi Ltd Semiconductor laser heterodyne interferometer
CA1313040C (en) * 1988-03-31 1993-01-26 Mitsuaki Uesugi Method and apparatus for measuring a three-dimensional curved surface shape
CA2202176A1 (en) * 1997-01-06 1998-07-06 Alfred L. Girard Method and apparatus for detecting glue on box blanks
JP2000275186A (en) * 1999-03-26 2000-10-06 Toppan Forms Co Ltd Paste-inspecting apparatus and method
US6348097B1 (en) 1999-07-22 2002-02-19 Jimmy R. Garrett Glue wheel
US6369401B1 (en) * 1999-09-10 2002-04-09 Agri-Tech, Inc. Three-dimensional optical volume measurement for objects to be categorized
JP2003300260A (en) * 2002-04-10 2003-10-21 Toppan Printing Co Ltd Pasting device for sac pasting machine
SG123601A1 (en) * 2003-03-10 2006-07-26 Asml Netherlands Bv Focus spot monitoring in a lithographic projectionapparatus
US7154613B2 (en) * 2004-03-15 2006-12-26 Northrop Grumman Corporation Color coded light for automated shape measurement using photogrammetry
US7315383B1 (en) * 2004-07-09 2008-01-01 Mohsen Abdollahi Scanning 3D measurement technique using structured lighting and high-speed CMOS imager
JP3921547B2 (en) * 2004-08-27 2007-05-30 国立大学法人 和歌山大学 Shape measuring method and apparatus using line sensor and line projector
DE102004061951B4 (en) * 2004-12-23 2017-10-12 manroland sheetfed GmbH Quality control procedure for surface variable printed matter
JP4427632B2 (en) * 2005-03-15 2010-03-10 独立行政法人産業技術総合研究所 High-precision 3D shape measuring device
JP2007114071A (en) * 2005-10-20 2007-05-10 Omron Corp Three-dimensional shape measuring apparatus, program, computer-readable storage medium, and three-dimensional shape measuring method
DE102006042907A1 (en) * 2006-09-13 2008-03-27 Phoenix Conveyor Belt Systems Gmbh Device for monitoring a conveyor system
EP1932657B1 (en) 2006-12-14 2010-06-23 Bobst Sa Device for printing in Braille
JP2009036589A (en) * 2007-07-31 2009-02-19 Omron Corp Target for calibration and device, method and program for supporting calibration
US20090094946A1 (en) * 2007-10-16 2009-04-16 Waverly Plastics Company, Inc. Sensor system and method for web manufacturing
DE102007056207B4 (en) * 2007-11-22 2015-10-01 Robert Bosch Gmbh Apparatus and method for obtaining a 3D topography

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175232A1 (en) * 2007-07-27 2010-04-14 Omron Corporation Three-dimensional shape measuring device, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011009566A1 *

Also Published As

Publication number Publication date
CA2766169A1 (en) 2011-01-27
BR112012001475A2 (en) 2019-09-24
CN102470623B (en) 2014-04-02
US20120127480A1 (en) 2012-05-24
WO2011009566A1 (en) 2011-01-27
JP2013500462A (en) 2013-01-07
CN102470623A (en) 2012-05-23
KR20120069667A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2011009566A1 (en) Device for analysing the topography of a surface of a substrate
EP1820670B1 (en) Wheel and tyre set and method of dynamically measuring topological parameters on the internal surface of the relevant part of the tyre
EP2875339B1 (en) Method and device for detecting, in particular, refracting defects
CA2659544C (en) Batching process and facility for industrial bakery products
EP0015820A1 (en) Device for measuring linear speeds without contact and without marking
EP3097407A1 (en) Method and device for the detection in particular of refracting defects
WO1995022740A1 (en) Method for measuring the thickness of a transparent material
EP3394591B1 (en) Observation method of a sample by imaging without a lens
EP1084379A1 (en) Method and device for optoelectric acquisition of shapes by axial illumination
FR3046277A1 (en) METHOD FOR RECOGNIZING FALSE FOOTPRINT BY LIGHTING STRUCTURE
EP3230713B1 (en) Method for obtaining an image of a sample, and associated lens-free imaging system
EP1558918A1 (en) Method and device for the detection of surface defects on the outer wall of a transparent or translucent object
EP1682879B1 (en) Use of optical fourier transform for dimensional control in microelectronics
FR2749086A1 (en) Optical odometer for measuring object velocity
WO2017144347A1 (en) Device for contactless three-dimensional control of a hollow part with an inner surface of revolution, and corresponding method
EP1571412A1 (en) Method and apparatus for contactless measuring of the diameter of a yarn
EP3117181B1 (en) Method for determining three-dimensional images of an object
FR2746705A1 (en) Contactless measurement device for shifts of continuous sheet
FR3088723A1 (en) DEVICE FOR THE OPTICAL DETECTION OF DEFECTS IN A SHEET MATERIAL, PROVIDED WITH A LIGHTING CHAMBER
FR3088724A1 (en) DEVICE FOR THE OPTICAL DETECTION OF DEFECTS IN A SHEET MATERIAL, PROVIDED WITH TWO DETECTION HEADS
EP4182679B1 (en) Measurement equipment for spectroscopic analysis of individual moving objects
EP1806558A1 (en) Method and device for the online determination of the micrometric topography of moving products
EP4034863A1 (en) System and method for controlling the colour of a moving article
WO2020144425A1 (en) Method for associating a marking with an object
FR2751070A1 (en) DEVICE FOR DETERMINING THE SHAPE OF THE SURFACE OF WAVE REFLECTED BY A SUBSTANTIALLY PLANE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOBST MEX SA

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150721

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151201