EP2446064B1 - Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component - Google Patents

Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component Download PDF

Info

Publication number
EP2446064B1
EP2446064B1 EP10725185.2A EP10725185A EP2446064B1 EP 2446064 B1 EP2446064 B1 EP 2446064B1 EP 10725185 A EP10725185 A EP 10725185A EP 2446064 B1 EP2446064 B1 EP 2446064B1
Authority
EP
European Patent Office
Prior art keywords
steel
steel product
product
hot press
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10725185.2A
Other languages
German (de)
French (fr)
Other versions
EP2446064A1 (en
Inventor
Evelin Ratte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Nirosta GmbH
Original Assignee
Outokumpu Nirosta GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Nirosta GmbH filed Critical Outokumpu Nirosta GmbH
Publication of EP2446064A1 publication Critical patent/EP2446064A1/en
Application granted granted Critical
Publication of EP2446064B1 publication Critical patent/EP2446064B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to a method for producing a hot-press-hardened component and a use of a steel product for producing a hot-press-hardened component.
  • hot-pressed components made of high-strength steels are used in areas of the body that can be exposed to particularly high loads in the event of a crash.
  • steel blanks which are divided from cold or hot rolled steel strip, are heated to a deformation temperature which is generally above the austenitizing temperature of the respective steel and, when heated, are placed in the tool of a forming press.
  • the sheet metal blank or the component formed from it is rapidly cooled by contact with the cool tool.
  • the cooling rates are set so that the component Hardness structure results. It may be sufficient if the component cools down by active contact with the tool without active cooling. However, rapid cooling can also be supported by actively cooling the tool itself.
  • the DE 15 33 381 B1 describes the use of a steel for the production of razor blades, in particular thin ribbon-shaped razor blades with a maximum thickness of 0.038 mm were rolled down.
  • These blades are subjected to a heat treatment which involves an initial heating to a temperature between 1000 and 1150 ° C followed by cooling to room temperature, the cooling being carried out between water-cooled blocks.
  • a subsequent further cooling to below 0 ° C and a related tempering at temperatures between 100 and 450 ° C for a short time should lead to a maximum Vickers hardness. Only after such heat treatment is the cutting edge of the cold blade processed.
  • the object of the invention was to provide a method with which high-strength components protected against corrosive attacks can be manufactured more easily than with the known methods mentioned above.
  • this object has been achieved in that, according to the invention, the work steps specified in claim 1 are carried out when producing a high-strength component from a flat steel product.
  • the solution of the above-mentioned object according to the invention consists in that according to the invention a flat steel product is used for the production of a component.
  • the invention is based on the knowledge that a certain class of known stainless steels is suitable for hot press hardening.
  • the use according to the invention of such stainless steels for hot press hardening has the advantage that there is no risk of corrosion, neither during hot shaping nor during the hardening process, despite the high temperatures involved. Instead, the alloy components contained in the steel used according to the invention protect the processed steel product from corrosive attacks even during these process steps.
  • high-strength components which are optimally protected against corrosion can be produced by hot press hardening without the protective measures which are always necessary in the case of low-alloy steels of the type previously used for hot press hardening.
  • a first group of steels suitable for press hardening are the unstabilized ferrites, which include steel standardized under material number 1.4003. Ferritic steels can completely or partially convert to martensitic when quenching temperatures above the austenitizing temperature. These steels are particularly suitable for direct press hardening, but can also be formed in indirect processes.
  • a sheet metal blank made from a suitable flat steel product is formed in one go into the respective component and subjected to the heat treatment required to set the desired hardness.
  • Martensite Another group of stainless steels suitable for press hardening are Martensite. Above 900 to 1000 ° C, these steels have an austenitic structure with a high solubility for carbon. Martensite forms during their cooling.
  • the steels known under material numbers 1.4021 and 1.4034 are typical representatives of this type of steel.
  • Martensitic-ferritic steels in which the structure contains higher proportions of ferrite in addition to martensite, can also be press-hardened.
  • This group of steels includes, for example, steel standardized under material number 1.4006.
  • Typical martensitic steels have carbon contents of 0.08-1% by weight. They are hardened in air. However, their mechanical strength can be further increased by quenching with higher cooling rates.
  • Martensitic steels with low C contents up to max. 0.06% are partially alloyed with up to 6% nickel. This composition means that austenite is partially formed after quenching and tempering. Steels of this type are referred to as “nickel martensitic” or “supermartensitic”. Such steels are particularly suitable for direct press hardening, but can also be formed in indirect processes.
  • the use of a stainless steel product according to the invention allows for the manufacture of hot press hardened components and the resulting procedure a significantly simplified manufacture of components compared to the state of the art of hot press hardening, the mechanical properties and corrosion protection of which are ideally suited for demanding applications such as the construction of automobile bodies.
  • a component which is hot-press-hardened according to the invention is produced from a steel product which consists of a stainless steel which, as compulsory components (in% by weight), C: 0.010-1.200%, P: up to 0.1%, S: up to 0, 1%, Si: 0.10 - 1.5%, Cr: 10.5 - 20.0% and the balance contains iron and unavoidable impurities.
  • the martensite hardness of the steel can be controlled by the amount of carbon contained in a steel used according to the invention, which is in the range of 0.01-1.2% by weight.
  • Optimal properties of the component produced according to the invention by hot press hardening result in this regard if the steel used according to the invention contains 0.01-1.0% by weight of C, in particular 0.01-0.5% by weight.
  • Levels of 0.1 - 1.5% by weight of Si act as an antioxidant and increase the strength of the steel.
  • the high Cr content of steels used according to the invention contributes significantly to corrosion resistance, particularly in high-temperature use. It leads at room temperature as well as at high temperatures Formation of a Cr oxide layer on the surface, so that the steel product processed according to the invention does not require additional corrosion protection either during the heat treatment or in later practical use.
  • the Cr content in the material is more dimensionally stable at high temperatures, such as are present when the invention is heated to the respective austenitizing temperature TA, than with the corrosion-sensitive MnB grades conventionally used for hot press hardening. Accordingly, it is easier to process steel products used according to the invention at high temperatures.
  • the transport from the heating device to the insertion into the respective pressing tool can also take place without the risk of an oxidation of the surface in ambient air which affects the processing result.
  • An optimally balanced ratio of alloy costs and positive effects of the Cr content of a steel used according to the invention is obtained if its Cr content is between 11 and 19% by weight, in particular 11-15% by weight.
  • the P and S contents are each limited to 0.1% by weight in order to prevent negative effects of these elements on the mechanical properties of the steel processed according to the invention.
  • the steel used according to the invention can optionally include one or more elements from the group "Mn, Mo, Ni, Cu, N, Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi "H” with the proviso that the relevant elements - if present - each is present in the following contents (figures in% by weight) Mn: 0.10 - 3.0%, Mo: 0.05 - 2.50%, Ni: 0.05 - 8.50%, Cu : 0.050 - 3.00%, N: 0.01 - 0.2%, Ti: up to 0.02%, Nb: up to 0.1%, B: up to 0.1%, V: up to 0.2%, Al: 0.001 - 1.5%, Ca: 0.0005 - 0.003%, As: 0.003 - 0.015%, Sn: 0.003 - 0.01%, Sb: 0.002 - 0.01%, Pb: up to 0.01%, Bi: up to 0.01% and H: up
  • Mn in contents of 0.10-3.0% by weight supports the desired austenite formation at high temperatures, so that the hardness structure sought according to the invention is formed.
  • Molybdenum in a content of 0.05 - 2.50% by weight helps to improve the corrosion resistance.
  • Nickel can be present in a stainless steel used according to the invention in a content of 0.05-8.50% by weight, in particular 0.05-7.0% by weight, in order to likewise increase the corrosion resistance and the austenite formation to support high temperatures, such as are achieved in the procedure according to the invention during the heat treatment preceding the press molding. This effect occurs with sufficient effectiveness even at contents of up to 1.5% by weight of nickel, so that the upper limit of the Ni content range can be limited to this value in a practical embodiment of the invention.
  • Cu can also be used in a steel used according to the invention to support the formation of the hardness structure desired austenite formation in contents of 0.050 - 3.00 wt .-% are added.
  • the martensite hardness of the steel used according to the invention can also be controlled via nitrogen contents of 0.01-0.2% by weight, in particular 0.01-0.02% by weight.
  • Ti in contents of up to 0.02% by weight minimizes the risk of cracking during the casting of the stainless steel required in the course of the production of a steel product processed according to the invention.
  • Contents of up to 0.1% by weight of niobium also contribute to improving the formability of the steel during the production of the steel product used according to the invention.
  • B in contents of up to 0.1% by weight, in particular 0.05% by weight also has a positive effect on the avoidance of cracks during the strip casting of a steel processed according to the invention and reduces the risk of surface ripping in conventional continuous casting.
  • the martensite hardness of the steel processed according to the invention can also be controlled by adding boron.
  • V in contents of up to 0.2% by weight, in particular 0.1% by weight, like Nb improves the formability during the casting of the steel used according to the invention.
  • Al in contents of 0.001-1.50% by weight, in particular 0.001-0.03% by weight, and Ca in contents of 0.0005-0.003% by weight contribute to optimizing the degree of purity Steel used according to the invention during its casting in strip or continuous casting.
  • Sn in contents of 0.003-0.01% by weight, Sb in contents of 0.002-0.01% by weight, Pb in contents of up to 0.01% by weight .-% and Bi in contents of up to 0.01% by weight are added to steel according to the invention in order to avoid crack formation during strip casting or to avoid surface defects when hot-rolling cast steel used according to the invention.
  • the contents of H in a steel processed according to the invention are finally limited to up to 0.0025% by weight in order to prevent the formation of so-called “delayed cracking", i.e. to avoid a delayed, hydrogen-induced crack formation under the conditions prevailing in practical use.
  • the steel product used according to the invention and assembled in the manner explained above can be a flat steel product produced by hot or cold rolling, that is to say, for example, a blank obtained from a hot or cold-rolled stainless steel sheet or strip.
  • a semi-finished product as a steel product which has been preformed from a corresponding flat steel product before it is processed in a manner according to the invention.
  • the steel product used according to the invention can be a so-called “tailored blank” made up of at least two interconnected Steel flat product blanks can be formed, which differ from each other in terms of their thickness or physical properties.
  • differently loaded sections of the component produced and procured according to the invention can be assigned optimally adapted materials to the loads that occur.
  • only a partial section of the flat steel product used according to the invention consists of a stainless steel of the composition specified according to the invention, while another section is produced from a conventional low-alloy and rust-sensitive steel, if this takes into account the respective local conditions and loads is indicated under which the component produced according to the invention is used in practice.
  • the formation of the hardness structure in the component obtained according to the invention after hot press hardening can be controlled by the level of the austenitizing temperature reached in each case.
  • the steel product processed according to the invention is heated in the course of step b) to an austenitizing temperature which is above the Ac3 temperature of the stainless steel (Ac3 temperature: temperature at which the conversion into Austenite is complete).
  • Ac3 temperature temperature at which the conversion into Austenite is complete.
  • the rapid cooling of the hot-press-hardened component according to the invention required to form the hardness structure can take place in a known manner in the pressing tool itself, which is provided with a suitable cooling device for this purpose.
  • the cooling can also take place in a separate working step after the hot press molding, if it is ensured that the component still has a sufficiently high temperature after the end of the hot press process.
  • both the heating of the steel product before hot press molding and the cooling after hot press molding can be restricted to certain sections of the steel product if zones with different mechanical properties are to be produced on the finished component.
  • the flat steel product is preferably heated in a closed oven. However, heating by induction or conduction is also conceivable.
  • a component that is highly resilient at any point can be produced in accordance with the invention by heating and cooling the shaped steel part in such a way that a hardness structure is formed over its entire volume.
  • cooling speeds of a maximum of 25 K / s, in particular a maximum of 20 K / s are sufficient in the procedure according to the invention, and particularly good work results are obtained when the cooling speed is at a maximum of 15 K / s is limited.
  • the cooling rate should be at least 0.1 K / s, in particular at least 0.2 - 1.3 K / s. Cooling rates above 25 K / s have shown that there is an unintentionally rapid hardening, which leads to limited formability. Cooling rates of between 5 and 20 K / s are preferably set, with increasing cooling rate higher strengths can be achieved in the component.
  • the formation of the individual zones of different characteristics can also be influenced by heating certain zones of the surfaces of the compression molding tool that come into contact with the steel product, so that cooling of the steel product that leads to a hardness structure, for example, is reliably avoided there.
  • Components produced in accordance with the invention regularly have a tensile strength of at least 900 MPa in the areas in which they have a hardness structure and there they have an elongation A80 of at least 2%.
  • components manufactured by hot press hardening of a steel product produced from a stainless steel are particularly suitable as parts of bodies for motor vehicles, commercial vehicles or rail vehicles, for airplanes or high-strength structural elements.
  • Fig. 1 shows a diagram in which the elongation at break A80 in% is plotted against the tensile strength Rm in MPa for various steels.
  • the strength of the press-hardened components is converted into a tensile strength Rm via the hardness and the tables given in DIN 50150.
  • the values for Vickers hardness HV10 and tensile strength shown in DIN 50150 are determined for unalloyed and low-alloy steels.
  • Sheet metal parts were formed from the blanks produced from steels S1 - S7 by direct, press hardening. The Vickers hardness HV10 was then measured for the sheet metal parts obtained in this way and the tensile strength was determined therefrom in the manner described in DIN 50150.
  • Table 4 HV10 Rm [MPa] Rm [MPa] A80 measured determined according to DIN 50150 measured DIN 10002 S1, S1 ' 335 1075 1030 8.8 S2 417 1120 S3 470 1520 S4, S4 ' 397 1278 1350 6.5 S5, S5 ' 500 1630 1621 4.1 S6 561 1848 S7 360 1155
  • Table 5 Steel S3 Steel S4 Steel S5 Steel S6 Steel S7 Steel S8 t8 / 5 [s] K [K / s] HV10 HV10 HV10 HV10 HV10 HV10 40 7.50 419 501 587 672 679 375 150 2.00 499 200 1.50 654 649 230 1.30 415 600 0.50 575 485 650 0.46 467 700 0.43 387 523 3500 0.09 250 5000 0.06 421
  • cooling rates are sufficient to form the hardness structure, which are clearly below the cooling rates usually used in press hardening.
  • the steels processed in accordance with the invention still convert martensitically with slow cooling. This has an advantageous effect on the production process, since the forming tool does not have to be cooled as much, particularly in the case of single-stage, direct mold hardening.
  • Components produced by direct die hardening often still undergo heat treatment in practice. This is particularly the case when the molded parts are components for motor vehicle bodies that are stove-enamelled in the course of their further processing.
  • the influence of such or a comparable tempering treatment on the strength and elongation values of the press-molded components in the manner according to the invention is on the basis of components made of one of the steels S2, S3 and S7, produced in the manner according to the invention by direct press-hardening, which have been tempered under the conditions given in Table 6 and for which, in the course of the tempering treatment, those shown in Table 6 likewise specified properties.
  • Table 6 stolen Tempering temperature [° C] HV10 Rm, determined according to DIN 50150 [MPa] S2 170 351 1130 250 350 1126 500 346 1110 S3 170 467 1510 250 467 1510 500 454 1470 S7 170 356 1145 250 341 1145 500 311 998
  • tempering in the temperature range of 170-500 ° C. covered by the tests leads at most to a very slight decrease in the strength of the components produced according to the invention.
  • a board made of S9 steel has been processed. After solution annealing, the board had a tensile strength Rm of 816 MPa.
  • the board obtained in this way was then formed into a component to simulate the compression molding process and held at 820 ° C. for a period of 30 minutes, and then in the tool depending on the area of the component or the time of contact to be quenched with a cooling rate of approx. 15 K / s.
  • the component had a hardness HV10 of 340, which corresponds to a tensile strength Rm of approximately 1015 MPa.
  • FIG. 1 The attached diagram shows the elongation A80 over the tensile strength Rm for components E1, E2, E3 produced in the manner according to the invention from blanks composed of steels S1, S4 and S5.
  • Fig. 1 for two components, which are made by conventional hot press hardening from the commonly used for this purpose, C ⁇ 0.2%, Si ⁇ 0.4%, Mn ⁇ 1.4%, P ⁇ 0.025%, S ⁇ 0.01%, Cr + Mo ⁇ 0.5%, Ti ⁇ 0.05% and B ⁇ 0.005% (data in% by weight) containing MBW 1500 steel, which indicate elongation values A80 above the respective tensile strength value Rm.
  • components E1, E2 produced from the ferritic steel S1 and the martensitic steel S4 have a combination of elongation value and tensile strength that is superior to that of conventionally produced components, while the third component produced according to the invention has better tensile strength with still good elongation values.
  • components produced according to the invention are more corrosion-resistant or do not require any additional corrosion protection coatings.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines warmpressgehärteten Bauteils und eine Verwendung eines Stahlproduktes zur Herstellung eines warmpressgehärteten Bauteils.The invention relates to a method for producing a hot-press-hardened component and a use of a steel product for producing a hot-press-hardened component.

Um die im modernen Karosseriebau bestehende Forderung nach geringem Gewicht bei gleichzeitig maximaler Festigkeit und Schutzwirkung zu erfüllen, werden heutzutage in solchen Bereichen der Karosserie, die im Fall eines Crashs besonders hohen Belastungen ausgesetzt sein können, aus hochfesten Stählen warmpressgeformte Bauteile eingesetzt.In order to meet the existing requirement in modern body construction for low weight with maximum strength and protective effect, hot-pressed components made of high-strength steels are used in areas of the body that can be exposed to particularly high loads in the event of a crash.

Beim Warmpresshärten werden Stahlplatinen, die von kalt- oder warmgewalztem Stahlband abgeteilt sind, auf eine in der Regel oberhalb der Austenitisierungstemperatur des jeweiligen Stahls liegende Verformungstemperatur erwärmt und im erwärmten Zustand in das Werkzeug einer Umformpresse gelegt. Im Zuge der anschließend durchgeführten Umformung erfährt der Blechzuschnitt bzw. das aus ihm geformte Bauteil durch den Kontakt mit dem kühlen Werkzeug eine schnelle Abkühlung. Die Abkühlraten sind dabei so eingestellt, dass sich im Bauteil Härtegefüge ergibt. Dabei kann es ausreichend sein, wenn das Bauteil ohne aktive Kühlung alleine durch den Kontakt mit dem Werkzeug abkühlt. Unterstützt werden kann eine schnelle Abkühlung jedoch auch dadurch, dass das Werkzeug selbst aktiv gekühlt wird.In hot press hardening, steel blanks, which are divided from cold or hot rolled steel strip, are heated to a deformation temperature which is generally above the austenitizing temperature of the respective steel and, when heated, are placed in the tool of a forming press. In the course of the subsequent shaping, the sheet metal blank or the component formed from it is rapidly cooled by contact with the cool tool. The cooling rates are set so that the component Hardness structure results. It may be sufficient if the component cools down by active contact with the tool without active cooling. However, rapid cooling can also be supported by actively cooling the tool itself.

Wie im Artikel "Potenziale für den Karosserieleichtbau", erschienen in der Messezeitung der ThyssenKrupp Automotiv AG zur 61. Internationalen Automobilausstellung in Frankfurt, 15. - 25. Sept. 2005 , berichtet, wird das Warmpresshärten in der Praxis insbesondere für die Herstellung von hochfesten Karosseriebauteilen aus borlegierten Stählen angewendet. Ein typisches Beispiel für einen solchen Stahl ist unter der Bezeichnung "22MnB5" bekannt und im Stahlschlüssel 2004 unter der Werkstoffnummer 1.5528 zu finden. As in the article "Potentials for lightweight body construction", appeared in the trade fair newspaper of ThyssenKrupp Automotiv AG for the 61st International Motor Show in Frankfurt, September 15-25, 2005 , reports, hot press hardening is used in practice especially for the production of high-strength body components made of boron-alloyed steels. A typical example of such a steel is known under the designation "22MnB5" and can be found in the steel key 2004 under the material number 1.5528.

Den Vorteilen der bekannten MnB-Stählen steht in der Praxis jedoch der Nachteil gegenüber, dass hochmanganhaltige Stähle zu unbeständig gegen Nasskorrosion und nur schwer zu passivieren sind. Diese im Vergleich zu niedriger legierten Stählen bei Einwirken erhöhter Chloridionen-Konzentrationen große Neigung zu lokal zwar begrenzter, jedoch intensiver Korrosion macht die Verwendung von zur Werkstoffgruppe der hochlegierten Stahlbleche gehörenden Stählen gerade im Karosseriebau schwierig. Zudem neigen hochmanganhaltige Stähle zu Flächenkorrosion, wodurch das Spektrum ihrer Verwendung ebenfalls einschränkt wird.In practice, however, the advantages of the known MnB steels are offset by the disadvantage that steels with a high manganese content are too resistant to wet corrosion and are difficult to passivate. This, in comparison to lower alloyed steels when exposed to increased chloride ion concentrations, has a great tendency towards locally limited but intensive corrosion, which makes the use of steels belonging to the material group of high-alloy steel sheets difficult, particularly in body construction. In addition, high-manganese steels tend to surface corrosion, which also limits the range of their use.

Daher ist vorgeschlagen worden, auch Stahlflachprodukte, die aus hochmanganhaltigen Stählen erzeugt sind, in an sich bekannter Weise mit einem metallischen Überzug zu versehen, der den Stahl vor korrosivem Angriff schützt. Dabei ergab sich allerdings das Problem, dass sich solche Stahlflachprodukte nur schlecht benetzen lassen und infolgedessen die bei einer Kaltverformung von dem Überzug erforderliche Haftung auf dem Stahlsubstrat unzureichend ist.It has therefore been proposed to also use flat steel products which are produced from high-manganese steels known to provide a metallic coating that protects the steel from corrosive attack. However, this gave rise to the problem that such flat steel products are difficult to wet and, as a result, the adhesion to the steel substrate required by the cold-forming process is insufficient.

Es sind eine große Zahl von Vorschlägen gemacht worden, um aus einem hochmanganhaltigen Stahl erzeugte Stahlflachprodukte mit einem vor Korrosion schützenden Überzug zu versehen, der den in der Praxis gestellten Anforderungen gerecht wird ( DE 10 2005 008 410 B3 , WO 2006/042931 A1 , WO 2006/042930 , DE 10 2006 039 307 B3 und viele andere). Diesen Vorschlägen gemeinsam ist, dass das jeweils zu beschichtende Stahlflachprodukt in einem aufwändigen und aufgrund der zu beachtenden Bedingungen prozesstechnisch schwer zu beherrschenden Glühschritt geglüht werden muss, um anschließend in einem geeigneten Beschichtungsverfahren mit dem Korrosionsschutzüberzug versehen zu werden. Des Weiteren wurde aufgezeigt, dass die Beschichtung der Stahlflachprodukte insbesondere an den Rollen der Öfen zu Abrieb führt. In Folge dieses Verschleißes sind ein frühzeitiger Austausch oder andere Instandhaltungsmaßnahmen erforderlich, mit denen lange Stillstandszeiten verbunden sind.A large number of proposals have been made to provide flat steel products made from a high-manganese steel with a protective coating against corrosion that meets the practical requirements ( DE 10 2005 008 410 B3 , WO 2006/042931 A1 , WO 2006/042930 , DE 10 2006 039 307 B3 and many others). These proposals have in common that the steel flat product to be coated in each case has to be annealed in a complex annealing step that is difficult to master due to the conditions to be observed in order to be subsequently provided with the corrosion protection coating in a suitable coating process. It was also shown that the coating of the flat steel products leads to abrasion, particularly on the rollers of the furnaces. As a result of this wear, early replacement or other maintenance measures are required, which are associated with long downtimes.

Neben dem voranstehend erläuterten Stand der Technik ist aus der DE 15 33 381 B1 die Verwendung eines Stahls zur Herstellung von Rasierklingen beschrieben, wobei es sich dabei insbesondere um dünne bandförmige Rasierklingen handelt, die auf eine Dicke von maximal 0,038 mm heruntergewalzt wurden. Diese Klingen werden einer Wärmebehandlung unterzogen, die eine anfängliche Erhitzung auf eine Temperatur zwischen 1000 und 1150 °C umfasst, auf die eine Abkühlung auf Raumtemperatur folgt, wobei die Abkühlung zwischen wassergekühlten Blöcken durchgeführt wird. Eine anschließende weitere Abkühlung auf unter 0 °C und eine damit verknüpfte Vergütung bei Temperaturen zwischen 100 und 450 °C für kurze Zeit sollen dabei zu einer maximalen Vickershärte führen. Erst nach einer solchen Wärmebehandlung erfolgt die Bearbeitung der Schneidkanten der kalten Klinge.In addition to the prior art explained above, the DE 15 33 381 B1 describes the use of a steel for the production of razor blades, in particular thin ribbon-shaped razor blades with a maximum thickness of 0.038 mm were rolled down. These blades are subjected to a heat treatment which involves an initial heating to a temperature between 1000 and 1150 ° C followed by cooling to room temperature, the cooling being carried out between water-cooled blocks. A subsequent further cooling to below 0 ° C and a related tempering at temperatures between 100 and 450 ° C for a short time should lead to a maximum Vickers hardness. Only after such heat treatment is the cutting edge of the cold blade processed.

In der DE 694 23 930 T2 ist des Weiteren ein rostfreier Martensitstahl beschrieben, der sich einfach verarbeiten lassen soll und dabei eine gute Warm- und Kaltverformbarkeit bzw. Schmiedbarkeit, gute mechanische Eigenschaften aufweisen und sich zudem gut Wärmebehandeln lassen soll. Dabei wird betont, dass manche martensitischen Stahlsorten weichgeglüht werden, wenn der betreffende Werkstoff anspruchsvollen Verarbeitungsgängen unterzogen werden soll.In the DE 694 23 930 T2 Furthermore, a stainless martensite steel is described which should be easy to process and which should have good hot and cold formability or forgeability, good mechanical properties and should also be easy to heat treat. It emphasizes that some martensitic steel grades are soft-annealed if the material in question is to be subjected to demanding processing steps.

In der FR 2 864 108 A1 ist schließlich rostfreier Stahl beschrieben, der eine austenitische Mikrostruktur mit einer homogenen Verteilung an Martensit-Inseln zwischen 0,1 bis 0,2 Vol.-% aufweist. Die Möglichkeit, einen solchen Stahl durch Warmpressformen zu einem Bauteil zu verformen, das durch unmittelbar auf die Warmformgebung folgendes Härten die geforderte Festigkeit erhält, ist nicht erwähnt.In the FR 2 864 108 A1 Finally, stainless steel is described which has an austenitic microstructure with a homogeneous distribution of martensite islands between 0.1 and 0.2% by volume. The possibility of shaping such a steel by hot press forming into a component which is given the required strength by hardening immediately following the hot shaping is not mentioned.

Vor diesem Hintergrund bestand die Aufgabe der Erfindung darin, ein Verfahren zu nennen, mit dem sich hochfeste, vor korrosiven Angriffen geschützte Bauteile einfacher herstellen lassen als mit den voranstehend erwähnten bekannten Verfahren.Against this background, the object of the invention was to provide a method with which high-strength components protected against corrosive attacks can be manufactured more easily than with the known methods mentioned above.

Darüber hinaus sollte eine Verwendung eines Stahlprodukts genannt werden, welches sich besonders gut für eine vereinfachte Herstellung von hochfesten Bauteilen eignet, die unempfindlich gegen Korrosion sind.In addition, the use of a steel product should be mentioned, which is particularly well suited for the simplified production of high-strength components which are insensitive to corrosion.

In Bezug auf das Verfahren ist diese Aufgabe dadurch gelöst worden, dass erfindungsgemäß bei der Herstellung eines hochfesten Bauteils aus einem Stahlflachprodukt die in Anspruch 1 angegebenen Arbeitsschritte durchlaufen werden.With regard to the method, this object has been achieved in that, according to the invention, the work steps specified in claim 1 are carried out when producing a high-strength component from a flat steel product.

In Bezug auf die Verwendung besteht die Lösung der oben genannten Aufgabe erfindungsgemäß darin, dass erfindungsgemäß für die Herstellung eines Bauteils ein Stahlflachprodukt nach Maßgabe des Anspruchs 12 verwendet wird.With regard to the use, the solution of the above-mentioned object according to the invention consists in that according to the invention a flat steel product is used for the production of a component.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous refinements of the invention are specified in the dependent claims and are explained in detail below, like the general inventive concept.

Der Erfindung liegt die Erkenntnis zu Grunde, dass sich eine bestimmte Klasse von an sich bekannten nicht rostenden Stählen zum Warmpresshärten eignet. Neben einem optimalen Gebrauchs- und Korrosionsverhalten im praktischen Einsatz hat die erfindungsgemäße Verwendung solcher nicht rostender Stähle für das Warmpresshärten den Vorteil, dass weder während der Warmformgebung noch während des Härtungsvorgangs trotz der dabei gegebenen hohen Temperaturen die Gefahr einer Korrosion besteht. Stattdessen schützen die in dem erfindungsgemäß verwendeten Stahl enthaltenen Legierungsbestandteile das verarbeitete Stahlprodukt auch während dieser Verfahrensschritte vor korrosiven Angriffen. Infolgedessen können bei erfindungsgemäßer Vorgehensweise und Verwendung hochfeste und optimal vor Korrosion geschützte Bauteile durch Warmpresshärten erzeugt werden, ohne dass dazu die bei niedrig legierten Stählen des bisher für das Warmpresshärten eingesetzten Typs stets erforderlich Schutzmaßnahmen ergriffen werden. So ist es bei erfindungsgemäßer Vorgehensweise weder erforderlich, das jeweils verarbeitete Stahlprodukt mit einem vor Korrosion schützenden Überzug zu versehen, noch müssen bei der Erwärmung besondere Vorkehrungen zum Schutz des Stahlproduktes vor Korrosion oder zur Herstellung einer bestimmten Oberflächenbeschaffenheit getroffen werden.The invention is based on the knowledge that a certain class of known stainless steels is suitable for hot press hardening. In addition to optimal usage and corrosion behavior in the In practice, the use according to the invention of such stainless steels for hot press hardening has the advantage that there is no risk of corrosion, neither during hot shaping nor during the hardening process, despite the high temperatures involved. Instead, the alloy components contained in the steel used according to the invention protect the processed steel product from corrosive attacks even during these process steps. As a result, with the procedure and use according to the invention, high-strength components which are optimally protected against corrosion can be produced by hot press hardening without the protective measures which are always necessary in the case of low-alloy steels of the type previously used for hot press hardening. Thus, in the procedure according to the invention, it is neither necessary to provide the respectively processed steel product with a protective coating against corrosion, nor do special precautions have to be taken during heating to protect the steel product against corrosion or to produce a certain surface finish.

Eine erste Gruppe der für das Presshärten geeigneten Stähle sind die unstabilisierten Ferrite, zu denen beispielsweise der unter der Werkstoffnummer 1.4003 genormte Stahl zählt. Ferritische Stähle können beim Abschrecken von Temperaturen oberhalb der Austenitisierungstemperatur vollständig oder teilweise martensitisch umwandeln. Diese Stähle eignen sich vor allem für das direkte Presshärten, können aber auch in indirekten Verfahren umgeformt werden.A first group of steels suitable for press hardening are the unstabilized ferrites, which include steel standardized under material number 1.4003. Ferritic steels can completely or partially convert to martensitic when quenching temperatures above the austenitizing temperature. These steels are particularly suitable for direct press hardening, but can also be formed in indirect processes.

Beim direkten, auch "einstufig" genannten Presshärten wird eine aus einem geeigneten Stahlflachprodukt konfektionierte Blechplatine in einem Zug zu dem jeweiligen Bauteil geformt und der zum Einstellen der jeweils gewünschten Härte erforderlichen Wärmebehandlung unterzogen.In direct, also called "one-step" press hardening, a sheet metal blank made from a suitable flat steel product is formed in one go into the respective component and subjected to the heat treatment required to set the desired hardness.

Beim indirekten, auch "zweistufig" genannten Pressformhärten wird die jeweilige Blechplatine in einem ersten Schritt zu dem jeweiligen Bauteil geformt. Das erhaltene Bauteil wird dann auf Härtetemperatur erwärmt und in einem weiteren Pressformwerkzeug im Zuge einer abschließenden Pressformgebung in der für die Einstellung des jeweils gewünschten Härtegefüges erforderlichen Weise wärmebehandelt.In the case of indirect press mold hardening, which is also referred to as "two-stage", the respective sheet metal blank is formed into the respective component in a first step. The component obtained is then heated to the hardening temperature and heat-treated in a further press mold in the course of a final press shaping in the manner required for setting the desired hardness structure in each case.

Eine weitere Gruppe der für das Presshärten geeigneten nicht rostenden Stähle sind Martensite. Diese Stähle weisen oberhalb von 900 bis 1000 °C ein austenitisches Gefüge mit einer hohen Löslichkeit für Kohlenstoff auf. Während ihrer Abkühlung entsteht Martensit. Als typische Vertreter dieser Stahlsorte sind die unter den Werkstoffnummern 1.4021 und 1.4034 bekannten Stähle zu nennen.Another group of stainless steels suitable for press hardening are Martensite. Above 900 to 1000 ° C, these steels have an austenitic structure with a high solubility for carbon. Martensite forms during their cooling. The steels known under material numbers 1.4021 and 1.4034 are typical representatives of this type of steel.

Auch martensitisch-ferrritische Stähle, bei denen das Gefüge neben Martensit höhere Anteile an Ferrit enthält, können pressformgehärtet werden. Zu dieser Gruppe von Stählen zählt beispielsweise der unter der Werkstoffnummer 1.4006 genormte Stahl.Martensitic-ferritic steels, in which the structure contains higher proportions of ferrite in addition to martensite, can also be press-hardened. This group of steels includes, for example, steel standardized under material number 1.4006.

Typische martensitische Stähle weisen Kohlenstoffgehalte von 0,08 - 1 Gew.-% auf. Sie werden an Luft gehärtet. Ihre mechanische Festigkeit kann aber durch Abschrecken mit höheren Abkühlraten weiter erhöht werden.Typical martensitic steels have carbon contents of 0.08-1% by weight. They are hardened in air. However, their mechanical strength can be further increased by quenching with higher cooling rates.

Martensitische Stähle mit geringen C-Gehalten bis max. 0,06 % werden teilweise mit bis zu 6 % Nickel legiert. Diese Zusammensetzung bewirkt, dass nach dem Vergüten teilweise Austenit entsteht. Stähle dieser Art werden als "nickelmartensitisch" oder auch "supermartensitisch" bezeichnet. Solche Stähle eignen sich vor allem für das direkte Presshärten, können aber auch in indirekten Verfahren umgeformt werden.Martensitic steels with low C contents up to max. 0.06% are partially alloyed with up to 6% nickel. This composition means that austenite is partially formed after quenching and tempering. Steels of this type are referred to as "nickel martensitic" or "supermartensitic". Such steels are particularly suitable for direct press hardening, but can also be formed in indirect processes.

Bei ausscheidungshärtenden Stählen, wie beispielsweise dem unter der Werkstoffnummer 1.4568 geführten Stahl, führt nach dem Lösungsglühen und Abschrecken die Ausscheidung intermetallischer Verbindungen sowie von Carbiden, Nitriden und Kupferphasen aus dem martensitischen Gefüge zu einer erhöhten Festigkeit. Im direkten Presshärten können auf diesem Wege Festigkeiten bis etwa 1000 MPa erreicht werden. Nach einer anschließenden Anlassbehandlung kann die Festigkeit um bis zu 500 MPa angehoben werden. Durch die gute Kaltumformbarkeit sind diese Stähle auch für indirekte Verfahren gut geeignet. Ebenfalls besteht durch Einbringen einer gleichmäßigen Kaltverformung (Nachwalzen) vor dem Umformen ein weiteres Härtungspotenzial.With precipitation hardening steels, such as the steel listed under material number 1.4568, after solution annealing and quenching, the precipitation of intermetallic compounds as well as carbides, nitrides and copper phases from the martensitic structure leads to increased strength. In direct press hardening, strengths of up to around 1000 MPa can be achieved in this way. After a subsequent tempering treatment, the strength can be increased by up to 500 MPa. Due to the good cold formability, these steels are also well suited for indirect processes. There is also further hardening potential by introducing uniform cold forming (re-rolling) before forming.

Im Ergebnis erlaubt die erfindungsgemäße Verwendung von einem nicht rostenden Stahlprodukt für die Herstellung von warmpressgehärteten Bauteilen und die sich daraus ergebende Verfahrensweise eine gegenüber dem Stand der Technik des Warmpresshärtens deutlich vereinfachte Herstellung von Bauteilen, die hinsichtlich ihrer mechanischen Eigenschaften und ihres Korrosionsschutzes optimal für anspruchsvolle Anwendungen, wie beispielsweise den Bau von Automobilkarosserien, geeignet sind.As a result, the use of a stainless steel product according to the invention allows for the manufacture of hot press hardened components and the resulting procedure a significantly simplified manufacture of components compared to the state of the art of hot press hardening, the mechanical properties and corrosion protection of which are ideally suited for demanding applications such as the construction of automobile bodies.

Ein erfindungsgemäß warmpressgehärtetes Bauteil wird aus einem Stahlprodukt erzeugt, das aus einem nicht rostenden Stahl besteht, der als Pflichtbestandteile (in Gew.-%) C: 0,010 - 1,200 %, P: bis zu 0,1 %, S: bis zu 0,1 %, Si: 0,10 - 1,5 %, Cr: 10,5 - 20,0 % und als Rest Eisen und unvermeidbare Verunreinigungen enthält.A component which is hot-press-hardened according to the invention is produced from a steel product which consists of a stainless steel which, as compulsory components (in% by weight), C: 0.010-1.200%, P: up to 0.1%, S: up to 0, 1%, Si: 0.10 - 1.5%, Cr: 10.5 - 20.0% and the balance contains iron and unavoidable impurities.

Durch die in einem erfindungsgemäß verwendeten Stahl enthaltene, im Bereich von 0,01 - 1,2 Gew.-% liegende Menge an Kohlenstoff lässt sich die Martensithärte des Stahls steuern. Optimale Eigenschaften des erfindungsgemäß durch Warmpresshärten erzeugten Bauteils ergeben sich in dieser Hinsicht dann, wenn der erfindungsgemäß verwendete Stahl 0,01 - 1,0 Gew.-% C, insbesondere 0,01 - 0,5 Gew.-%, enthält.The martensite hardness of the steel can be controlled by the amount of carbon contained in a steel used according to the invention, which is in the range of 0.01-1.2% by weight. Optimal properties of the component produced according to the invention by hot press hardening result in this regard if the steel used according to the invention contains 0.01-1.0% by weight of C, in particular 0.01-0.5% by weight.

Gehalte von 0,1 - 1,5 Gew.-% Si wirken als Antioxidant und erhöhen die Festigkeit des Stahls.Levels of 0.1 - 1.5% by weight of Si act as an antioxidant and increase the strength of the steel.

Der hohe Cr-Anteil erfindungsgemäß verwendeter Stähle trägt insbesondere im Hochtemperatureinsatz wesentlich zur Korrosionsbeständigkeit bei. Er führt bei Raumtemperatur wie auch bei hohen Temperaturen zur Bildung einer Cr-Oxidschicht auf der Oberfläche, so dass das erfindungsgemäß verarbeitete Stahlprodukt weder während der Wärmebehandlung noch im späteren praktischen Einsatz einen zusätzlichen Korrosionsschutz benötigt. Der Cr-Anteil im Werkstoff ist bei hohen Temperaturen, wie sie bei der erfindungsgemäßen Erwärmung auf die jeweilige Austenitisierungstemperatur TA vorliegen, formstabiler als bei den konventionell für das Warmpresshärten verwendeten, korrosionsempfindlichen MnB-Güten. Dementsprechend einfacher ist es, erfindungsgemäß verwendete Stahlprodukte bei hohen Temperaturen zu verarbeiten. Insbesondere kann auch der Transport von der Erwärmungseinrichtung bis zum Einlegen in das jeweilige Presswerkzeug ohne die Gefahr einer das Verarbeitungsergebnis beeinträchtigenden Oxidation der Oberfläche an Umgebungsluft erfolgen. Ein optimal ausgewogenes Verhältnis an Legierungskosten und positiven Wirkungen des Cr-Anteils eines erfindungsgemäß verwendeten Stahls ergibt sich dann, wenn sein Cr-Gehalt zwischen 11 und 19 Gew.-%, insbesondere 11 - 15 Gew.-%, liegt.The high Cr content of steels used according to the invention contributes significantly to corrosion resistance, particularly in high-temperature use. It leads at room temperature as well as at high temperatures Formation of a Cr oxide layer on the surface, so that the steel product processed according to the invention does not require additional corrosion protection either during the heat treatment or in later practical use. The Cr content in the material is more dimensionally stable at high temperatures, such as are present when the invention is heated to the respective austenitizing temperature TA, than with the corrosion-sensitive MnB grades conventionally used for hot press hardening. Accordingly, it is easier to process steel products used according to the invention at high temperatures. In particular, the transport from the heating device to the insertion into the respective pressing tool can also take place without the risk of an oxidation of the surface in ambient air which affects the processing result. An optimally balanced ratio of alloy costs and positive effects of the Cr content of a steel used according to the invention is obtained if its Cr content is between 11 and 19% by weight, in particular 11-15% by weight.

Die Gehalte an P und S sind jeweils auf 0,1 Gew.-% beschränkt, um negativen Auswirkungen dieser Elemente auf die mechanischen Eigenschaften des erfindungsgemäß verarbeiteten Stahls vorzubeugen.The P and S contents are each limited to 0.1% by weight in order to prevent negative effects of these elements on the mechanical properties of the steel processed according to the invention.

Neben den voranstehend genannten Pflichtbestandteilen kann der erfindungsgemäß verwendete Stahl optional eines oder mehrere Elemente aus der Gruppe "Mn, Mo, Ni, Cu, N, Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi, H" mit der Maßgabe enthalten, dass die betreffenden Elemente - sofern anwesend - jeweils in folgenden Gehalten vorhanden sind (Angaben in Gew.-%) Mn: 0,10 - 3,0 %, Mo: 0,05 - 2,50 %, Ni: 0,05 - 8,50 %, Cu: 0,050 - 3,00 %, N: 0,01 - 0,2 %, Ti: bis zu 0,02 %, Nb: bis zu 0,1 %, B: bis zu 0,1 %, V: bis zu 0,2 %, Al: 0,001 - 1,5 %, Ca: 0,0005 - 0,003 %, As: 0,003 - 0,015 %, Sn: 0,003 - 0,01 %, Sb: 0,002 - 0,01 %, Pb: bis zu 0,01 %, Bi: bis zu 0,01 % und H: bis zu 0,0025 %.In addition to the compulsory components mentioned above, the steel used according to the invention can optionally include one or more elements from the group "Mn, Mo, Ni, Cu, N, Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi "H" with the proviso that the relevant elements - if present - each is present in the following contents (figures in% by weight) Mn: 0.10 - 3.0%, Mo: 0.05 - 2.50%, Ni: 0.05 - 8.50%, Cu : 0.050 - 3.00%, N: 0.01 - 0.2%, Ti: up to 0.02%, Nb: up to 0.1%, B: up to 0.1%, V: up to 0.2%, Al: 0.001 - 1.5%, Ca: 0.0005 - 0.003%, As: 0.003 - 0.015%, Sn: 0.003 - 0.01%, Sb: 0.002 - 0.01%, Pb: up to 0.01%, Bi: up to 0.01% and H: up to 0.0025%.

Die Anwesenheit von Mn in Gehalten von 0,10 - 3,0 Gew.-% unterstützt die gewünschte Austenitbildung bei hohen Temperaturen, so dass das erfindungsgemäß angestrebte Härtegefüge gebildet wird.The presence of Mn in contents of 0.10-3.0% by weight supports the desired austenite formation at high temperatures, so that the hardness structure sought according to the invention is formed.

Molybdän in Gehalten von 0,05 - 2,50 Gew.-% trägt zur Verbesserung der Korrosionsbeständigkeit bei.Molybdenum in a content of 0.05 - 2.50% by weight helps to improve the corrosion resistance.

Nickel kann in einem erfindungsgemäß verwendeten nicht rostenden Stahl in Gehalten von 0,05 - 8,50 Gew.-%, insbesondere 0,05 - 7,0 Gew.-%, vorhanden sein, um ebenfalls die Korrosionsbeständigkeit zu erhöhen und die Austenitbildung bei hohen Temperaturen, wie sie bei erfindungsgemäßer Vorgehensweise während der dem Pressformen vorangehenden Wärmebehandlung erreicht werden, zu unterstützen. Diese Wirkung tritt bereits bei Gehalten von bis zu 1,5 Gew.-% Nickel mit ausreichender Effektivität ein, so dass bei einer praxisgerechten Ausgestaltung der Erfindung die Obergrenze des Ni-Gehaltsbereichs auf diesen Wert beschränkt sein kann.Nickel can be present in a stainless steel used according to the invention in a content of 0.05-8.50% by weight, in particular 0.05-7.0% by weight, in order to likewise increase the corrosion resistance and the austenite formation to support high temperatures, such as are achieved in the procedure according to the invention during the heat treatment preceding the press molding. This effect occurs with sufficient effectiveness even at contents of up to 1.5% by weight of nickel, so that the upper limit of the Ni content range can be limited to this value in a practical embodiment of the invention.

Cu kann einem erfindungsgemäß verwendeten Stahl ebenfalls zur Unterstützung der für die Entstehung des Härtegefüges gewünschten Austenitbildung in Gehalten von 0,050 - 3,00 Gew.-% zugegeben werden.Cu can also be used in a steel used according to the invention to support the formation of the hardness structure desired austenite formation in contents of 0.050 - 3.00 wt .-% are added.

Über Stickstoff-Gehalte von 0,01 - 0,2 Gew.-%, insbesondere 0,01 - 0,02 Gew.-%, lässt sich ebenfalls die Martensithärte des erfindungsgemäß verwendeten Stahls steuern.The martensite hardness of the steel used according to the invention can also be controlled via nitrogen contents of 0.01-0.2% by weight, in particular 0.01-0.02% by weight.

Ti in Gehalten von bis zu 0,02 Gew.-% minimiert die Gefahr von Rissbildung während des im Zuge der Herstellung eines erfindungsgemäß verarbeiteten Stahlprodukts erforderlichen Vergießens des nicht rostenden Stahls.Ti in contents of up to 0.02% by weight minimizes the risk of cracking during the casting of the stainless steel required in the course of the production of a steel product processed according to the invention.

Auch Gehalte bis zu 0,1 Gew.-% an Niob tragen zur Verbesserung der Umformbarkeit des Stahles während der Herstellung des erfindungsgemäß verwendeten Stahlproduktes bei.Contents of up to 0.1% by weight of niobium also contribute to improving the formability of the steel during the production of the steel product used according to the invention.

B in Gehalten von bis zu 0,1 Gew.-%, insbesondere 0,05 Gew.-%, wirkt sich ebenfalls positiv auf die Vermeidung von Rissen beim Bandguss eines erfindungsgemäß verarbeiteten Stahls aus und vermindert beim konventionellen Strangguss die Gefahr von Oberflächenaufreißern. Zudem lässt sich durch Zugabe von Bor auch die Martensithärte des erfindungsgemäß verarbeiteten Stahls steuern.B in contents of up to 0.1% by weight, in particular 0.05% by weight, also has a positive effect on the avoidance of cracks during the strip casting of a steel processed according to the invention and reduces the risk of surface ripping in conventional continuous casting. In addition, the martensite hardness of the steel processed according to the invention can also be controlled by adding boron.

V in Gehalten von bis zu 0,2 Gew.-%, insbesondere 0,1 Gew.-%, verbessert wie Nb die Umformbarkeit während des Vergießens des erfindungsgemäß verwendeten Stahls.V in contents of up to 0.2% by weight, in particular 0.1% by weight, like Nb improves the formability during the casting of the steel used according to the invention.

Al in Gehalten von 0,001 - 1,50 Gew.-%, insbesondere 0,001 - 0,03 Gew.-%, und Ca in Gehalten von 0,0005 - 0,003 Gew.-% tragen zur Optimierung des Reinheitsgrades eines erfindungsgemäß verwendeten Stahls während seines Vergießens im Band- oder Strangguss bei.Al in contents of 0.001-1.50% by weight, in particular 0.001-0.03% by weight, and Ca in contents of 0.0005-0.003% by weight contribute to optimizing the degree of purity Steel used according to the invention during its casting in strip or continuous casting.

As in Gehalten von 0,003 - 0,015 Gew.-%, Sn in Gehalten von 0,003 - 0,01 Gew.-%, Sb in Gehalten von 0,002 - 0,01 Gew.-%, Pb in Gehalten von bis zu 0,01 Gew.-% und Bi in Gehalten von bis zu 0,01 Gew.-% werden erfindungsgemäßem Stahl zugegeben, um beim Bandguss Rissbildung zu vermeiden oder um beim Warmwalzen von stranggegossenem erfindungsgemäß verwendetem Stahl Oberflächenfehler zu vermeiden.As in contents of 0.003-0.015% by weight, Sn in contents of 0.003-0.01% by weight, Sb in contents of 0.002-0.01% by weight, Pb in contents of up to 0.01% by weight .-% and Bi in contents of up to 0.01% by weight are added to steel according to the invention in order to avoid crack formation during strip casting or to avoid surface defects when hot-rolling cast steel used according to the invention.

Die Gehalte an H werden bei einem erfindungsgemäß verarbeiteten Stahl schließlich auf bis zu 0,0025 Gew.-% begrenzt, um die Entstehung von so genanntem "Delayed Cracking", d.h. einer verzögerten, Wasserstoffinduzierten Rissbildung unter den im praktischen Gebrauch herrschenden Bedingungen, zu vermeiden.The contents of H in a steel processed according to the invention are finally limited to up to 0.0025% by weight in order to prevent the formation of so-called "delayed cracking", i.e. to avoid a delayed, hydrogen-induced crack formation under the conditions prevailing in practical use.

Bei dem erfindungsgemäß verwendeten, in der voranstehend erläuterten Weise zusammengesetzten Stahlprodukt kann es sich um ein durch Warm- oder Kaltwalzen erzeugtes Stahlflachprodukt, also beispielsweise einen aus einem warm- oder kaltgewalzten nicht rostenden Stahlblech oder -band gewonnenen Zuschnitt handeln. Ebenso ist es aber auch möglich, als Stahlprodukt ein Halbzeug zu verarbeiten, das aus einem entsprechenden Stahlflachprodukt vorgeformt worden ist, bevor es in erfindungemäßer Weise verarbeitet wird.The steel product used according to the invention and assembled in the manner explained above can be a flat steel product produced by hot or cold rolling, that is to say, for example, a blank obtained from a hot or cold-rolled stainless steel sheet or strip. However, it is also possible to process a semi-finished product as a steel product which has been preformed from a corresponding flat steel product before it is processed in a manner according to the invention.

Des Weiteren kann das erfindungsgemäß verwendete Stahlprodukt als so genanntes "Tailored Blank" aus mindestens zwei miteinander verbundenen Stahlflachproduktzuschnitten gebildet sein, die sich hinsichtlich ihrer Dicke oder physikalischen Eigenschaften voneinander unterscheiden. Auf diese Weise lassen sich in der Praxis unterschiedlich belasteten Abschnitten des erfindungsgemäß erzeugten und beschaffenen Bauteils den jeweils auftretenden Belastungen optimal angepasste Materialien zuweisen. So ist es ebenfalls möglich, dass nur ein Teilabschnitt des erfindungsgemäß verwendeten Stahlflachproduktes aus einem nicht rostenden Stahl der erfindungsgemäß vorgegebenen Zusammensetzung besteht, während ein anderer Abschnitt aus einem konventionellen niedrig legierten und rostempfindlichen Stahl erzeugt ist, wenn dies unter Berücksichtigung der jeweils örtlichen Gegebenheiten und Belastungen angezeigt ist, unter denen das erfindungsgemäß erzeugte Bauteil in der Praxis eingesetzt ist.Furthermore, the steel product used according to the invention can be a so-called “tailored blank” made up of at least two interconnected Steel flat product blanks can be formed, which differ from each other in terms of their thickness or physical properties. In this way, in practice, differently loaded sections of the component produced and procured according to the invention can be assigned optimally adapted materials to the loads that occur. It is also possible that only a partial section of the flat steel product used according to the invention consists of a stainless steel of the composition specified according to the invention, while another section is produced from a conventional low-alloy and rust-sensitive steel, if this takes into account the respective local conditions and loads is indicated under which the component produced according to the invention is used in practice.

Das entsprechend ausgebildete Stahlprodukt durchläuft erfindungsgemäß folgende für das Warmpresshärten typische Arbeitsschritte:

  1. a) Bereitstellen eines in der voranstehend erläuterten Weise beschaffenen Stahlproduktes;
  2. b) Durcherwärmen des Stahlprodukts auf eine oberhalb der Ac3-Temperatur des nicht rostenden Stahls liegenden Austenitisierungstemperatur;
  3. c) Warmpresshärten des erwärmten Stahlprodukts zu dem Bauteil in einem Presswerkzeug;
  4. d) Abkühlen mindestens eines Abschnitts des erhaltenen Bauteils mit einer Abkühlgeschwindigkeit, die so hoch ist, dass sich in dem jeweils schnell abgekühlten Abschnitt Härtegefüge bildet.
According to the invention, the appropriately trained steel product goes through the following work steps typical of hot press hardening:
  1. a) providing a steel product procured in the manner explained above;
  2. b) heating the steel product to an austenitizing temperature above the Ac3 temperature of the stainless steel;
  3. c) hot press hardening the heated steel product to the component in a press tool;
  4. d) cooling at least a section of the component obtained with a Cooling speed that is so high that hardness structures form in the rapidly cooled section.

Durch die Höhe der jeweils erreichten Austenitisierungstemperatur lässt sich die Ausbildung des Härtegefüges im nach dem Warmpresshärten erfindungsgemäß erhaltenen Bauteils steuern. Um maximale Festigkeitswerte eines erfindungsgemäß erzeugten Bauteils zu erreichen, wird das erfindungsgemäß verarbeitete Stahlprodukt im Zuge des Arbeitsschritts b) auf eine Austenitisierungstemperatur erwärmt werden, die oberhalb der Ac3-Temperatur des nicht rostenden Stahls liegt (Ac3-Temperatur: Temperatur, bei der die Umwandlung in Austenit abgeschlossen ist). Das in diesem Fall vollständig austenitisierte Gefüge wandelt beim anschließenden Abkühlen vollständig in Martensit um, so das eine hohe Gefügehärte und damit einhergehend maximale Zugfestigkeiten erreicht werden.The formation of the hardness structure in the component obtained according to the invention after hot press hardening can be controlled by the level of the austenitizing temperature reached in each case. In order to achieve maximum strength values of a component produced according to the invention, the steel product processed according to the invention is heated in the course of step b) to an austenitizing temperature which is above the Ac3 temperature of the stainless steel (Ac3 temperature: temperature at which the conversion into Austenite is complete). The structure, which in this case is completely austenitized, converts completely to martensite when it cools down, so that a high structural hardness and the associated maximum tensile strengths are achieved.

Die zur Ausbildung des Härtegefüges erforderliche schnelle Abkühlung des erfindungsgemäß warmpressgehärteten Bauteils kann in an sich bekannter Weise im Presswerkzeug selbst erfolgen, das dazu mit einer geeigneten Kühleinrichtung versehen ist. Alternativ kann die Abkühlung auch nach der Warmpressformgebung in einem separaten Arbeitsschritt erfolgen, wenn gewährleistet ist, dass das Bauteil nach Beendigung des Warmpressvorgangs noch eine ausreichend hohe Temperatur besitzt.The rapid cooling of the hot-press-hardened component according to the invention required to form the hardness structure can take place in a known manner in the pressing tool itself, which is provided with a suitable cooling device for this purpose. Alternatively, the cooling can also take place in a separate working step after the hot press molding, if it is ensured that the component still has a sufficiently high temperature after the end of the hot press process.

In ebenfalls an sich bekannter Weise kann sowohl die Erwärmung des Stahlproduktes vor der Warmpressformgebung als auch die Abkühlung nach der Warmpressformgebung auf bestimmte Abschnitte des Stahlproduktes beschränkt werden, wenn am fertigen Bauteil Zonen mit unterschiedlichen mechanischen Eigenschaften erzeugt werden sollen.In a manner known per se, both the heating of the steel product before hot press molding and the cooling after hot press molding can be restricted to certain sections of the steel product if zones with different mechanical properties are to be produced on the finished component.

Die Erwärmung des Stahlflachproduktes erfolgt bevorzugt in einem geschlossenen Ofen. Denkbar ist aber auch eine Erwärmung durch Induktion oder Konduktion.The flat steel product is preferably heated in a closed oven. However, heating by induction or conduction is also conceivable.

Ein an jeder Stelle hoch belastbares Bauteil lässt sich demgegenüber in erfindungsgemäßer Weise dadurch erzeugen, dass das Stahlformteil so erwärmt und abgekühlt wird, dass sich über sein gesamtes Volumen Härtegefüge bildet.In contrast, a component that is highly resilient at any point can be produced in accordance with the invention by heating and cooling the shaped steel part in such a way that a hardness structure is formed over its entire volume.

Um die Entstehung von Härtegefüge (z.B. vollständig martensitisch) sicher zu gewährleisten, sind bei erfindungsgemäßer Vorgehensweise Abkühlgeschwindigkeiten ausreichend, die maximal 25 K/s, insbesondere maximal 20 K/s, betragen, wobei sich besonders gute Arbeitsergebnisse einstellen, wenn die Abkühlgeschwindigkeit auf maximal 15 K/s beschränkt ist. Um die Entstehung einer ausreichenden Härte zu gewährleisten, sollte die Abkühlrate jedoch mindestens 0,1 K/s, insbesondere mindestens 0,2 - 1,3 K/s betragen. Abkühlraten oberhalb von 25 K/s haben gezeigt, dass es zu einer ungewollt schnellen Aufhärtung kommt, die zu einer eingeschränkten Umformbarkeit führt. Bevorzugt werden Abkühlraten zwischen 5 und 20 K/s eingestellt, wobei mit ansteigender Abkühlrate höhere Festigkeiten im Bauteil erzielt werden können.In order to reliably ensure the formation of hardness structure (e.g. completely martensitic), cooling speeds of a maximum of 25 K / s, in particular a maximum of 20 K / s, are sufficient in the procedure according to the invention, and particularly good work results are obtained when the cooling speed is at a maximum of 15 K / s is limited. In order to ensure sufficient hardness, the cooling rate should be at least 0.1 K / s, in particular at least 0.2 - 1.3 K / s. Cooling rates above 25 K / s have shown that there is an unintentionally rapid hardening, which leads to limited formability. Cooling rates of between 5 and 20 K / s are preferably set, with increasing cooling rate higher strengths can be achieved in the component.

Die Ausbildung der einzelnen Zonen unterschiedlicher Beschaffenheit kann auch dadurch beeinflusst werden, dass bestimmte Zonen der mit dem Stahlprodukt in Berührung kommenden Flächen des Pressformwerkzeugs erwärmt sind, so dass dort eine zu Härtegefüge führende Abkühlung des Stahlprodukts beispielsweise sicher vermieden wird.The formation of the individual zones of different characteristics can also be influenced by heating certain zones of the surfaces of the compression molding tool that come into contact with the steel product, so that cooling of the steel product that leads to a hardness structure, for example, is reliably avoided there.

Erfindungsgemäß erzeugte Bauteile weisen in den Bereichen, in denen sie Härtegefüge besitzen, regelmäßig eine mindestens 900 MPa betragende Zugfestigkeit auf und besitzen dort eine Dehnung A80 von mindestens 2 %.Components produced in accordance with the invention regularly have a tensile strength of at least 900 MPa in the areas in which they have a hardness structure and there they have an elongation A80 of at least 2%.

Aufgrund ihrer praxisgerechten Kombination aus optimierten mechanischen Eigenschaften einerseits und hoher Korrosionsbeständigkeit andererseits eignen sich erfindungsgemäß durch Warmpresshärten eines aus einem nicht rostenden Stahl erzeugten Stahlprodukts hergestellte Bauteile besonders als Teile von Karosserien für Kraftfahrzeuge, Nutzfahrzeuge oder Schienenfahrzeuge, für Flugzeuge oder hochfeste Konstruktionselemente.Due to their practical combination of optimized mechanical properties on the one hand and high corrosion resistance on the other hand, components manufactured by hot press hardening of a steel product produced from a stainless steel are particularly suitable as parts of bodies for motor vehicles, commercial vehicles or rail vehicles, for airplanes or high-strength structural elements.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.The invention is explained in more detail below on the basis of exemplary embodiments.

Fig. 1 zeigt ein Diagramm, in dem für verschiedene Stähle die Bruchdehnung A80 in % über die Zugfestigkeit Rm in MPa aufgetragen ist. Fig. 1 shows a diagram in which the elongation at break A80 in% is plotted against the tensile strength Rm in MPa for various steels.

Die Festigkeit der pressgehärteten Bauteile wird über die Härte und die in der DIN 50150 angegebenen Tabellen in eine Zugfestigkeit Rm überführt. Die in der DIN 50150 ausgewiesenen Werte für die Vickershärte HV10 und die Zugfestigkeit sind für unlegierte und niedriglegierte Stähle ermittelt.The strength of the press-hardened components is converted into a tensile strength Rm via the hardness and the tables given in DIN 50150. The values for Vickers hardness HV10 and tensile strength shown in DIN 50150 are determined for unalloyed and low-alloy steels.

Referenzversuche, die für den Werkstoff 4003 und 4034 durchgeführt worden sind, ergeben eine gute Übereinstimmung der Tabellenwerte mit den an gehärteten Zugversuchsproben gemessenen HV10- bzw. Zugfestigkeitswerten. Die Ergebnisse der Referenzversuche sind in Tabelle 1 angegeben. Tabelle 1 Stahl HV10 (gemessen) Zugfestigkeit (gemessen) [MPa] Zugfestigkeit (Umrechnung) [MPa] 4003 320 1030 1075 4034 499 1629 1630 Reference tests that have been carried out for material 4003 and 4034 show a good agreement between the table values and the HV10 and tensile strength values measured on hardened tensile test samples. The results of the reference tests are given in Table 1. Table 1 stole HV10 (measured) Tensile strength (measured) [MPa] Tensile strength (conversion) [MPa] 4003 320 1030 1075 4034 499 1629 1630

Unter Verwendung von aus Stählen S1 - S9 hergestellten Platinen sind verschiedene Versuche durchgeführt worden. In Tabelle 2 sind die Werkstoffnummern ("Sorte") und die die Eigenschaften bestimmenden Legierungsbestandteile der betreffenden Stähle S1 - S9 eingetragen. Tabelle 2 Sorte C P S Si Cr Sonstige S1 1.4003 0,011 0,025 0,0015 0,32 11,0 Mn: 1,03 S2 1.4006 0,110 0,022 0,0027 0,89 13,61 S3 1.4021 0,265 0,030 0,0021 0,27 13,17 S4 1.4028 0,352 0,021 0,0024 0,37 13,17 S5 1.4034 0,469 0,023 0,0021 0,41 15,31 S6 1.4112 0,930 0,023 0,0019 0,78 18,81 Mo: 1,3 V : 0,12 S7 1.4418 0,031 0,027 0,0023 0,98 16,29 Mo: 1,5 Ni: 6,0 N : 0,03 S8 1.4568 0,070 0,021 0,0025 0,25 18,0 Ni: 7,75 Al: 1,5 S9 1.4532 0,080 0,023 0,0025 0,41 15,7 Ni: 7,75 Mo: 2,49 Al: 1,5 Various tests have been carried out using blanks made of steels S1-S9. Table 2 shows the material numbers ("grade") and the alloy components of the steels S1 - S9 that determine the properties. Table 2 variety C. P S Si Cr Other S1 1.4003 0.011 0.025 0.0015 0.32 11.0 Mn: 1.03 S2 1.4006 0.110 0.022 0.0027 0.89 13.61 S3 1.4021 0.265 0.030 0.0021 0.27 13.17 S4 1.4028 0.352 0.021 0.0024 0.37 13.17 S5 1.4034 0.469 0.023 0.0021 0.41 15.31 S6 1.4112 0.930 0.023 0.0019 0.78 18.81 Mon: 1.3 V: 0.12 S7 1.4418 0.031 0.027 0.0023 0.98 16.29 Mon: 1.5 Ni: 6.0 N: 0.03 S8 1.4568 0.070 0.021 0.0025 0.25 18.0 Ni: 7.75 Al: 1.5 S9 1.4532 0.080 0.023 0.0025 0.41 15.7 Ni: 7.75 Mon: 2.49 Al: 1.5

In Tabelle 3 sind für aus den Stählen S1 - S7 erzeugte Platinen zusätzlich die jeweils vor dem Presshärten ermittelte Zugfestigkeit und Vickershärte HV10 sowie die jeweilige Ac1-, bei der die Umwandlung in Austenit einsetzt, und die Ac3-Temperatur eingetragen, bei der die Umwandlung in Austenit und das Ende der Ferritauflösung abgeschlossen ist.In Table 3, the tensile strength and Vickers hardness HV10 determined before the press hardening and the respective Ac1- at which the transformation into austenite starts and the Ac3 temperature at which the transformation into Austenite and the end of ferrite dissolution is complete.

Um einerseits hohe Umformgrade und andererseits optimale Festigkeiten zu realisieren, wird vorliegend eine auf oberhalb Ac3 liegende Erwärmung vorgenommen, die abhängig vom C- und Cr-Gehalt des nicht rostenden Stahls ist, um zu gewährleisten, dass sich die Ferrite und Karbide gegebenenfalls vollständig auflösen. Karbide können sich bei hohen Umformgraden störend auswirken und beispielsweise zu Rissen im Bauteil führen.In order to achieve a high degree of forming on the one hand and optimum strength on the other hand, heating is carried out to above Ac3, which is dependent on the C and Cr content of the stainless steel, in order to ensure that the ferrites and carbides dissolve completely if necessary. Carbides can have a disruptive effect at high degrees of deformation and, for example, lead to cracks in the component.

Oberhalb von Ac3 kann ein homogener Austenit als auch ein mit zunehmendem C-Gehalt austenitisch-karbidisches Gefüge vorliegen. Tabelle 3 Rm A80 HV10 Ac1 Ac3 S1 498 26,9 154 795 885 S2 532 25,4 162 795 885 S3 591 25,1 191 795 885 S4 513 24,7 198 835 880 S5 655 22,9 209 790 845 S6 763 16,5 258 810 855 S7 1110 8,2 370 600 720 Above Ac3 there can be a homogeneous austenite as well as an austenitic-carbidic structure with increasing C content. Table 3 Rm A80 HV10 Ac1 Ac3 S1 498 26.9 154 795 885 S2 532 25.4 162 795 885 S3 591 25.1 191 795 885 S4 513 24.7 198 835 880 S5 655 22.9 209 790 845 S6 763 16.5 258 810 855 S7 1110 8.2 370 600 720

Aus den aus den Stählen S1 - S7 erzeugten Platinen sind durch direktes, in einem Zuge erfolgendes Pressformhärten Blechformteile geformt worden. Für die so erhaltenen Blechformteile ist dann die Vickershärte HV10 gemessen und daraus die Zugfestigkeit in der in der DIN 50150 beschriebenen Weise ermittelt worden.Sheet metal parts were formed from the blanks produced from steels S1 - S7 by direct, press hardening. The Vickers hardness HV10 was then measured for the sheet metal parts obtained in this way and the tensile strength was determined therefrom in the manner described in DIN 50150.

Zwecks Verifizierung der erhaltenen Bauteileigenschaften sind Zugproben aus den Stählen S1, S4 und S5 direkt pressgehärtet worden. An den gehärteten Proben S1', S4' und S5' wurden dann nach DIN 10002 die Zugfestigkeit Rm und die Dehnung A80 ermittelt.To verify the component properties obtained, tensile specimens made from steels S1, S4 and S5 were directly press hardened. The tensile strength Rm and the elongation A80 were then determined on the hardened samples S1 ', S4' and S5 'in accordance with DIN 10002.

Die in der voranstehend beschriebenen Weise gemessenen und bestimmten Eigenschaften der aus den Stählen S1 - S7 sind in Tabelle 4 eingetragen. Tabelle 4 HV10 Rm [MPa] Rm [MPa] A80 gemessen ermittelt nach DIN 50150 gemessen DIN 10002 S1, S1' 335 1075 1030 8,8 S2 417 1120 S3 470 1520 S4, S4' 397 1278 1350 6,5 S5, S5' 500 1630 1621 4,1 S6 561 1848 S7 360 1155 The properties of the steels S1-S7 measured and determined in the manner described above are entered in Table 4. Table 4 HV10 Rm [MPa] Rm [MPa] A80 measured determined according to DIN 50150 measured DIN 10002 S1, S1 ' 335 1075 1030 8.8 S2 417 1120 S3 470 1520 S4, S4 ' 397 1278 1350 6.5 S5, S5 ' 500 1630 1621 4.1 S6 561 1848 S7 360 1155

Um den Einfluss der Abkühlrate auf die bei erfindungsgemäßer Vorgehensweise erzielte Bauteilhärte zu ermitteln, sind Abkühlversuche durchgeführt worden. Dabei sind in einem zweistufigen Verfahren Platinen, die jeweils aus einem der Stähle S3 - S8 bestanden, zunächst warmpressgeformt, über unterschiedliche Abkühlzeiten t8/5 von 800 °C auf 500 °C und dann bis auf Raumtemperatur abgekühlt worden. Da im Bereich zwischen 800 °C bis 500 °C die wichtigsten Umwandlungen stattfinden, ist in diesem Bereich das Einhalten der erfindungsgemäßen Abkühlrate von besonderer Bedeutung, um gezielt Einfluss auf die Festigkeitswerte nehmen zu können. An den so erhaltenen Bauteilen ist dann jeweils die Vickershärte HV10 gemessen worden. Die Ergebnisse dieser Untersuchungen sowie die im Zuge der Abkühlung erzielten Abkühlraten sind in Tabelle 5 eingetragen. Tabelle 5 Stahl S3 Stahl S4 Stahl S5 Stahl S6 Stahl S7 Stahl S8 t8/5 [s] K [K/s] HV10 HV10 HV10 HV10 HV10 HV10 40 7,50 419 501 587 672 679 375 150 2,00 499 200 1,50 654 649 230 1,30 415 600 0,50 575 485 650 0,46 467 700 0,43 387 523 3500 0,09 250 5000 0,06 421 In order to determine the influence of the cooling rate on the component hardness achieved in the procedure according to the invention, cooling tests have been carried out. In a two-stage process, blanks, each consisting of one of the steels S3 - S8, were first hot-pressed, then cooled down from 800 ° C to 500 ° C and then down to room temperature over different cooling times t8 / 5. Since the most important conversions take place in the range between 800 ° C. to 500 ° C., compliance with the cooling rate according to the invention is of particular importance in this range, in order to be able to influence the strength values in a targeted manner. The Vickers hardness HV10 was then measured in each case on the components obtained in this way. The results of these investigations and the cooling rates achieved in the course of the cooling are entered in Table 5. Table 5 Steel S3 Steel S4 Steel S5 Steel S6 Steel S7 Steel S8 t8 / 5 [s] K [K / s] HV10 HV10 HV10 HV10 HV10 HV10 40 7.50 419 501 587 672 679 375 150 2.00 499 200 1.50 654 649 230 1.30 415 600 0.50 575 485 650 0.46 467 700 0.43 387 523 3500 0.09 250 5000 0.06 421

Demnach sind zur Ausbildung des Härtegefüges jeweils Abkühlraten ausreichend, die deutlich unterhalb der üblicherweise beim Pressformhärten angewendeten Abkühlgeschwindigkeiten liegen. Die erfindungsgemäß verarbeiteten Stähle wandeln bei langsamem Abkühlen immer noch martensitisch um. Dies wirkt sich vorteilhaft auf den Fertigungsprozess aus, da insbesondere beim einstufigen, direkt erfolgenden Pressformhärten das Umformwerkzeug weniger stark gekühlt werden muss.Accordingly, in each case cooling rates are sufficient to form the hardness structure, which are clearly below the cooling rates usually used in press hardening. The steels processed in accordance with the invention still convert martensitically with slow cooling. This has an advantageous effect on the production process, since the forming tool does not have to be cooled as much, particularly in the case of single-stage, direct mold hardening.

Durch direktes Pressformhärten erzeugte Bauteile durchlaufen in der Praxis häufig noch eine Wärmebehandlung. Dies ist insbesondere dann der Fall, wenn es sich bei den Pressformteilen um Bauteile für Kraftfahrzeugkarosserien handelt, die im Zuge ihrer Weiterverarbeitung einbrennlackiert werden. Der Einfluss einer solchen oder einer vergleichbaren Anlassbehandlung auf die Festigkeits- und Dehnungswerte der in erfindungsgemäßer Weise pressformgehärteten Bauteile ist anhand von aus jeweils aus einem der Stähle S2, S3 und S7 bestehenden, in erfindungsgemäßer Weise durch direktes Pressformhärten erzeugten Bauteilen überprüft worden, die unter den in Tabelle 6 angegebenen Bedingungen angelassen worden sind und bei denen sich im Zuge der Anlassbehandlung die in Tabelle 6 ebenfalls angegebenen Eigenschaften eingestellt haben. Tabelle 6 Stahl Anlass-temperatur [°C] HV10 Rm, ermittelt nach DIN 50150 [MPa] S2 170 351 1130 250 350 1126 500 346 1110 S3 170 467 1510 250 467 1510 500 454 1470 S7 170 356 1145 250 341 1145 500 311 998 Components produced by direct die hardening often still undergo heat treatment in practice. This is particularly the case when the molded parts are components for motor vehicle bodies that are stove-enamelled in the course of their further processing. The influence of such or a comparable tempering treatment on the strength and elongation values of the press-molded components in the manner according to the invention is on the basis of components made of one of the steels S2, S3 and S7, produced in the manner according to the invention by direct press-hardening, which have been tempered under the conditions given in Table 6 and for which, in the course of the tempering treatment, those shown in Table 6 likewise specified properties. Table 6 stole Tempering temperature [° C] HV10 Rm, determined according to DIN 50150 [MPa] S2 170 351 1130 250 350 1126 500 346 1110 S3 170 467 1510 250 467 1510 500 454 1470 S7 170 356 1145 250 341 1145 500 311 998

Es zeigt sich, dass ein Anlassen in dem durch die Versuche abgedeckten Temperaturbereich von 170 - 500 °C jeweils allenfalls zu einer sehr geringen Abnahme der Festigkeiten der erfindungsgemäß erzeugten Bauteile führt.It can be seen that tempering in the temperature range of 170-500 ° C. covered by the tests leads at most to a very slight decrease in the strength of the components produced according to the invention.

Um den Prozess des indirekten Presshärtens zu erproben, ist eine aus dem Stahl S9 bestehende Platine verarbeitet worden. Nach einem Lösungsglühen wies die Platine eine Zugfestigkeit Rm von 816 MPa auf. Die so beschaffene Platine ist dann zur Simulation des Pressformvorgangs zu einem Bauteil umgeformt und über eine Dauer von 30 min bei 820 °C gehalten worden, um anschließend im Werkzeug abhängig vom Bauteilbereich bzw. des Kontaktzeitpunkts mit einer Abkühlrate von ca. 15 K/s abgeschreckt zu werden. Nach dem Abschrecken wies das Bauteil eine Härte HV10 von 340 auf, was einer Zugfestigkeit Rm von ca. 1015 MPa entspricht.To test the process of indirect press hardening, a board made of S9 steel has been processed. After solution annealing, the board had a tensile strength Rm of 816 MPa. The board obtained in this way was then formed into a component to simulate the compression molding process and held at 820 ° C. for a period of 30 minutes, and then in the tool depending on the area of the component or the time of contact to be quenched with a cooling rate of approx. 15 K / s. After quenching, the component had a hardness HV10 of 340, which corresponds to a tensile strength Rm of approximately 1015 MPa.

Zum Vergleich ist ein aus demselben Werkstoff S9 bestehendes Blech auf eine Dicke von 1 mm nachgewalzt worden. In Folge der im Zuge des Nachwalzens eingetretenen Verfestigung lag beim nachgewalzten Blech eine Zugfestigkeit von 1500 MPa vor. Das in diesem Zustand nur noch eingeschränkt umformbare nachgewalzte Blech ist anschließend mit einem Biegeradius von 9 mm um 90° abgekantet worden. Das so erhaltene Winkelprofil ist im Ofen bei 550 °C eine Stunde lang angelassen und dann im Werkzeug abgekühlt worden. Die dabei erzielte Abkühlrate betrug 10 K/s. Das abgekantete und ausgehärtete Profil erreicht eine Härte HV10 von 571. Im als Fig. 1 beigefügten Diagramm ist für in erfindungsgemäßer Weise aus Platinen, die aus den Stählen S1, S4, und S5 bestanden, erzeugte Bauteile E1, E2, E3 jeweils die Dehnung A80 über die Zugfestigkeit Rm eingetragen. Zum Vergleich sind in Fig. 1 für zwei Bauteile, die durch konventionelles Warmpressformhärten aus dem für diesen Zweck üblicherweise verwendeten, C ≤ 0,2 %, Si ≤ 0, 4 %, Mn ≤ 1,4 %, P ≤ 0,025 %, S ≤ 0,01 %, Cr+Mo ≤ 0,5 %, Ti ≤ 0,05 % und B ≤ 0,005 % (Angaben in Gew.-%) enthaltenden Stahl MBW 1500 erzeugt worden sind, die Dehnwerte A80 über den jeweiligen Zugfestigkeitswert Rm angeben.For comparison, a sheet of the same material S9 has been re-rolled to a thickness of 1 mm. As a result of the hardening that occurred during the subsequent rolling, the tensile strength of the rolled sheet was 1500 MPa. The rolled sheet, which can only be deformed to a limited extent in this state, was then bent over by 90 ° with a bending radius of 9 mm. The angle profile obtained in this way was left in the oven at 550 ° C. for one hour and then cooled in the tool. The cooling rate achieved was 10 K / s. The folded and hardened profile reaches a hardness HV10 of 571. Im als Fig. 1 The attached diagram shows the elongation A80 over the tensile strength Rm for components E1, E2, E3 produced in the manner according to the invention from blanks composed of steels S1, S4 and S5. For comparison, in Fig. 1 for two components, which are made by conventional hot press hardening from the commonly used for this purpose, C ≤ 0.2%, Si ≤ 0.4%, Mn ≤ 1.4%, P ≤ 0.025%, S ≤ 0.01%, Cr + Mo ≤ 0.5%, Ti ≤ 0.05% and B ≤ 0.005% (data in% by weight) containing MBW 1500 steel, which indicate elongation values A80 above the respective tensile strength value Rm.

Es zeigt sich, dass die aus dem ferritischen Stahl S1 und dem martensitischen Stahl S4 erzeugten Bauteile E1,E2 eine den konventionell erzeugten Bauteilen überlegene Kombination aus Dehnwert und Zugfestigkeit besitzen, während das dritte erfindungsgemäß erzeugte Bauteile eine bessere Zugfestigkeit bei immer noch guten Dehnwerten aufweist. Zudem sind erfindungsgemäß erzeugte Bauteile korrosionsbeständiger bzw. benötigen keine zusätzlichen Korrosionsschutzbeschichtungen.It can be seen that the components E1, E2 produced from the ferritic steel S1 and the martensitic steel S4 have a combination of elongation value and tensile strength that is superior to that of conventionally produced components, while the third component produced according to the invention has better tensile strength with still good elongation values. In addition, components produced according to the invention are more corrosion-resistant or do not require any additional corrosion protection coatings.

Claims (12)

  1. Method for manufacturing a hot press-hardened component for a vehicle body, for aircraft or high-strength construction elements, comprising the following production steps:
    a) providing a steel product produced at least in sections from a stainless steel having the following composition (specified in %.wt.)
    C: 0.010-1.200 %,
    P: up to 0.1 %,
    S: up to 0.1 %,
    Si: 0.10-1.5 %,
    Cr: 10.5-20.0 %
    and optionally one or more elements from the group "Mn, Mo, Ni, Cu, N, Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi, H" with the requirement
    Mn: 0.10-3.0 %,
    Mo: 0.05-2.50 %,
    Ni: 0.05-8.50 %,
    Cu: 0.050-3.00 %,
    N: 0.01-0.2 %,
    Ti: up to 0.02 %,
    Nb: up to 0.1 %,
    B: up to 0.1 %,
    V: up to 0.2 %,
    Al: 0.001-1.50 %,
    Ca: 0.0005-0.003 %,
    As: 0.003-0.015 %,
    Sn: 0.003-0.01 %,
    Sb: 0.002-0.01 %,
    Pb: up to 0.01 %,
    Bi: up to 0.01 %,
    H: up to 0.0025 %,
    remainder iron and unavoidable impurities;
    b) heating the steel product through to an austenisation temperature above the Ac3 temperature of the stainless steel;
    c) hot press-hardening the heated steel product into the component in a pressing die;
    d) cooling at least one section of the component obtained at a cooling rate which is high enough for a martensitic structure to form in the section which is rapidly cooled in each case, wherein the component obtained, in the areas in which it has a martensitic structure, has a tensile strength amounting to at least 900 MPa and an elongation A80 of at least 2 %.
  2. Method according to Claim 1, characterised in that the steel formed part is cooled in the press forming die in such a way that the martensitic structure forms.
  3. Method according to either of the preceding claims, characterised in that the areas of the press forming die coming into contact with the steel product are heated in sections.
  4. Method according to either of Claims 1 and 2, characterised in that the steel formed part is cooled in such a way that a martensitic structure forms over its entire volume.
  5. Method according to any one of the preceding claims, characterised in that the cooling rate, at which the steel product at least in sections is cooled, is at most 25 K/s.
  6. Method according to Claim 5, characterised in that the cooling rate, at which the steel product at least in sections is cooled, is at least 0.1 K/s.
  7. Method according to any one of the preceding claims, characterised in that the steel product is a steel flat product.
  8. Method according to any one of Claims 1 to 6, characterised in that the steel product is a preformed semi-finished product.
  9. Method according to any one of the preceding claims, characterised in that the steel product is formed from at least two steel flat product blanks which are joined to one another and differ from one another in terms of their thickness or physical properties.
  10. Method according to any one of the preceding claims, characterised in that the C content of the stainless steel is limited to 0.5 % wt.
  11. Method according to any one of the preceding claims, characterised in that the Cr content of the stainless steel is 11-19 % wt.
  12. Use of a steel product consisting at least in sections of a stainless steel which contains (in % wt.)
    C: 0.010-1.200 %,
    P: up to 0.1 %,
    S: up to 0.1 %,
    Si: 0.10-1.5 %,
    Cr: 10.5-20.0 %
    and optionally one or more elements from the group "Mn, Mo, Ni, Cu, N, Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi, H" with the requirement Mn: 0.10-3.0 %,
    Mo: 0.05-2.50 %,
    Ni: 0.05-8.50 %,
    Cu: 0.050-3.00 %,
    N: 0.01-0.2 %,
    Ti: up to 0.02 %,
    Nb: up to 0.1 %,
    B: up to 0.1 %,
    V: up to 0.2 %,
    Al: 0.001-1.50 %,
    Ca: 0.0005-0.003 %,
    As: 0.003-0.015 %,
    Sn: 0.003-0.01 %,
    Sb: 0.002-0.01 %,
    Pb: up to 0.01 %,
    Bi: up to 0.01 %,
    H: up to 0.0025 %,
    remainder iron and unavoidable impurities,
    for manufacturing a hot press-hardened component for a vehicle body, for aircraft or high-strength construction elements, wherein the component obtained, in the areas in which it has a martensitic structure, has a tensile strength amounting to at least 900 MPa and an elongation A80 of at least 2 %.
EP10725185.2A 2009-06-24 2010-06-17 Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component Active EP2446064B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009030489A DE102009030489A1 (en) 2009-06-24 2009-06-24 A method of producing a hot press hardened component, using a steel product for the manufacture of a hot press hardened component, and hot press hardened component
PCT/EP2010/058527 WO2010149561A1 (en) 2009-06-24 2010-06-17 Method for producing a hot press cured component, use of a steel product for producing a hot press cured component, and hot press cured component

Publications (2)

Publication Number Publication Date
EP2446064A1 EP2446064A1 (en) 2012-05-02
EP2446064B1 true EP2446064B1 (en) 2020-04-22

Family

ID=42360276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10725185.2A Active EP2446064B1 (en) 2009-06-24 2010-06-17 Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component

Country Status (9)

Country Link
US (1) US9534268B2 (en)
EP (1) EP2446064B1 (en)
JP (1) JP5755644B2 (en)
KR (2) KR101708446B1 (en)
CN (1) CN102803519B (en)
BR (1) BRPI1011811B1 (en)
DE (1) DE102009030489A1 (en)
MX (1) MX2011013403A (en)
WO (1) WO2010149561A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351922B2 (en) * 2008-04-11 2019-07-16 Questek Innovations Llc Surface hardenable stainless steels
WO2009126954A2 (en) 2008-04-11 2009-10-15 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
KR101253838B1 (en) * 2010-12-27 2013-04-12 주식회사 포스코 Method for Manufacturing a Multi Physical Property Part
DE102012105580B3 (en) 2012-06-26 2013-04-25 Voestalpine Stahl Gmbh Press hardening of steel, comprises e.g. cold pre-forming steel sheet, heating and cooling, where press hardness number is determined e.g. for adjusting steel alloy, and which is equal to cooling rate in mold/theoretical press cooling rate
CN102936689B (en) * 2012-11-23 2014-10-22 中天钢铁集团有限公司 High-temperature-resistant bearing steel and production process thereof
CN102925818B (en) * 2012-11-23 2014-07-09 常州东大中天钢铁研究院有限公司 Corrosion-resistant and high-temperature resistant bearing steel and production process thereof
CN103060711B (en) * 2012-12-26 2015-06-03 宁波市鄞州东盟不锈钢制品有限公司 Method for preparing stainless steel for boiler
US20160067760A1 (en) * 2013-05-09 2016-03-10 Nippon Steel & Sumitomo Metal Corporation Surface layer grain refining hot-shearing method and workpiece obtained by surface layer grain refining hot-shearing
DE102013010946B3 (en) * 2013-06-28 2014-12-31 Daimler Ag Method and plant for producing a press-hardened sheet steel component
DE102013108265B4 (en) * 2013-08-01 2018-09-13 Thyssen Krupp Steel Europe AG Assembly of hardened components and method of manufacture
CN103469114A (en) * 2013-08-02 2013-12-25 安徽三联泵业股份有限公司 High-toughness stainless steel material used for water pump shell, and preparation method thereof
CN106062233A (en) * 2014-01-16 2016-10-26 尤迪霍尔姆斯有限责任公司 Stainless steel and a cutting tool body made of the stainless steel
US9499889B2 (en) 2014-02-24 2016-11-22 Honeywell International Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
JP6172383B2 (en) * 2014-03-31 2017-08-02 新日鐵住金株式会社 Hot stamping steel
JP6288248B2 (en) * 2014-03-31 2018-03-07 新日鐵住金株式会社 Hot stamping steel
DE102014217369A1 (en) 2014-09-01 2016-03-03 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. HIGH STRENGTH, MECHANICAL ENERGY ABSORBING AND CORROSION-RESISTANT FORM BODIES OF IRON ALLOYS AND METHOD FOR THE PRODUCTION THEREOF
DE102014017274A1 (en) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Highest strength air hardening multiphase steel with excellent processing properties and method of making a strip from this steel
DE102015216355A1 (en) 2015-08-27 2017-03-02 Volkswagen Aktiengesellschaft Configuration of a body
EP3162558A1 (en) 2015-10-30 2017-05-03 Outokumpu Oyj Component made of metallic composite material and method for the manufacture of the component by hot forming
US10344758B2 (en) * 2016-04-07 2019-07-09 A. Finkl & Sons Co. Precipitation hardened martensitic stainless steel and reciprocating pump manufactured therewith
ES2824461T3 (en) 2017-02-10 2021-05-12 Outokumpu Oy Steel component manufactured by hot forming, method of manufacture and component use
DE102017131247A1 (en) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
DE102017131253A1 (en) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
KR102046232B1 (en) 2017-12-24 2019-11-18 주식회사 포스코 Method for manufacturing blank for forming
US11318640B1 (en) * 2018-04-04 2022-05-03 Edro Specialty Steels, Inc. Method for making a continuously cast slab and the resulting mold plate
WO2019222950A1 (en) * 2018-05-24 2019-11-28 GM Global Technology Operations LLC A method for improving both strength and ductility of a press-hardening steel
CN112534078A (en) 2018-06-19 2021-03-19 通用汽车环球科技运作有限责任公司 Low density press hardened steel with enhanced mechanical properties
CN109433960A (en) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 Drop stamping high-strength steel automobile body covering piece and its manufacturing method, manufacture system
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
CN110788517A (en) * 2019-11-05 2020-02-14 上海欣冈贸易有限公司 Steel alloy for welding material
CN111074268B (en) * 2020-01-02 2020-09-08 北京机科国创轻量化科学研究院有限公司 Iron-based metal powder for ultra-high-speed laser cladding, and preparation method and application thereof
US11492690B2 (en) 2020-07-01 2022-11-08 Garrett Transportation I Inc Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys
CN115305412B (en) * 2021-05-05 2024-02-06 通用汽车环球科技运作有限责任公司 Press hardened steel with combination of excellent corrosion resistance and ultra high strength
CN113444976B (en) * 2021-07-15 2022-01-18 安徽工业大学 High-carbon high-aluminum steel for drilling and lock making and preparation method thereof
US11752566B2 (en) * 2022-01-21 2023-09-12 GM Global Technology Operations LLC Steel workpiece comprising an alloy substrate and a coating, and a method of spot welding the same

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389991A (en) * 1964-12-23 1968-06-25 Armco Steel Corp Stainless steel and method
US3595643A (en) * 1965-10-18 1971-07-27 Sandvikens Jernverks Ab Razor blade of a chromium containing steel
US3702126A (en) * 1970-12-23 1972-11-07 Phillip R Eklund Friction pair for use in aircraft brakes
US4126492A (en) * 1976-02-17 1978-11-21 Honda Giken Kogyo Kabushiki Kaisha Brake disc and process for producing the same
JPS52131966A (en) * 1976-04-28 1977-11-05 Honda Motor Co Ltd Method and device for forming integrallforming type brake disc for use in vehicle
FR2706489B1 (en) * 1993-06-14 1995-09-01 Ugine Savoie Sa Martensitic stainless steel with improved machinability.
JPH07138704A (en) * 1993-11-12 1995-05-30 Nisshin Steel Co Ltd High strength and high ductility dual-phase stainless steel and its production
US5979614A (en) * 1996-09-25 1999-11-09 Nippon Steel Corporation Brake disc produced from martensitic stainless steel and process for producing same
JP2002173742A (en) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd High strength austenitic stainless steel strip having excellent shape flatness and its production method
US7475478B2 (en) * 2001-06-29 2009-01-13 Kva, Inc. Method for manufacturing automotive structural members
DE10215597A1 (en) * 2002-04-10 2003-10-30 Thyssenkrupp Nirosta Gmbh Method for producing a high carbon martensitic steel strip and use of such a steel strip
JP2004238640A (en) * 2003-02-03 2004-08-26 Nippon Steel Corp Method for manufacturing high-strength component superior in shape freezability
FR2864108B1 (en) * 2003-12-22 2006-01-27 Ugine Et Alz France STAINLESS STEEL SHEET HAVING HIGH RESISTANCE AND LENGTH ELONGATION, AND METHOD OF MANUFACTURE
DE102004038626B3 (en) * 2004-08-09 2006-02-02 Voestalpine Motion Gmbh Method for producing hardened components from sheet steel
FR2876708B1 (en) 2004-10-20 2006-12-08 Usinor Sa PROCESS FOR MANUFACTURING COLD-ROLLED CARBON-MANGANESE AUSTENITIC STEEL TILES WITH HIGH CORROSION RESISTANT MECHANICAL CHARACTERISTICS AND SHEETS THUS PRODUCED
FR2876711B1 (en) 2004-10-20 2006-12-08 Usinor Sa HOT-TEMPERATURE COATING PROCESS IN ZINC BATH OF CARBON-MANGANESE STEEL BANDS
DE102004051629B4 (en) * 2004-10-23 2006-08-24 Stahlwerk Ergste Westig Gmbh Stainless martensitic chrome steel
DE102004054795B4 (en) 2004-11-12 2007-04-05 Thyssenkrupp Automotive Ag Process for the production of vehicle components and body component
DE102005008410B3 (en) 2005-02-24 2006-02-16 Thyssenkrupp Stahl Ag Coating steel bands comprises heating bands and applying liquid metal coating
US8852361B2 (en) * 2005-03-17 2014-10-07 Jfe Steel Corporation Stainless steel sheet with excellent heat and corrosion resistances for brake disk
JP4867319B2 (en) * 2005-12-05 2012-02-01 住友金属工業株式会社 Tailored blank material for hot pressing, hot pressing member and manufacturing method thereof
DE102006039307B3 (en) 2006-08-22 2008-02-21 Thyssenkrupp Steel Ag Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer
US9169543B2 (en) * 2007-03-22 2015-10-27 Hitachi Metals, Ltd. Precipitation-hardened, martensitic, cast stainless steel having excellent machinability and its production method
JP5194986B2 (en) * 2007-04-20 2013-05-08 新日鐵住金株式会社 Manufacturing method of high-strength parts and high-strength parts
SE531252C2 (en) * 2007-06-12 2009-02-03 Sandvik Intellectual Property Impact hardened steel beam
US20090242086A1 (en) * 2008-03-31 2009-10-01 Honda Motor Co., Ltd. Microstructural optimization of automotive structures
US7931758B2 (en) * 2008-07-28 2011-04-26 Ati Properties, Inc. Thermal mechanical treatment of ferrous alloys, and related alloys and articles
JP2010174303A (en) * 2009-01-28 2010-08-12 Jfe Steel Corp Steel sheet for die quenching
JP2010174300A (en) * 2009-01-28 2010-08-12 Jfe Steel Corp Steel sheet for die quenching
MY156080A (en) * 2009-06-01 2016-01-15 Jfe Steel Corp Steel sheet for brake disc, and brake disc

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR101708446B1 (en) 2017-02-20
BRPI1011811B1 (en) 2018-01-23
US20120273092A1 (en) 2012-11-01
CN102803519A (en) 2012-11-28
MX2011013403A (en) 2012-04-11
BRPI1011811A2 (en) 2016-03-29
US9534268B2 (en) 2017-01-03
DE102009030489A1 (en) 2010-12-30
EP2446064A1 (en) 2012-05-02
KR20120039533A (en) 2012-04-25
JP2012530847A (en) 2012-12-06
KR20170010090A (en) 2017-01-25
JP5755644B2 (en) 2015-07-29
CN102803519B (en) 2015-08-19
WO2010149561A1 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
EP2446064B1 (en) Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
EP2297367B1 (en) Method for producing a formed steel part having a predominantly ferritic-bainitic structure
EP2547800B1 (en) Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness
EP1309734B2 (en) Highly stable, steel and steel strips or steel sheets cold-formed, method for the production of steel strips and uses of said steel
DE102013010946B3 (en) Method and plant for producing a press-hardened sheet steel component
EP2489748B1 (en) Hot-rolled steel surface product produced from a complex phase steel and method for the manufacture
EP3504349B1 (en) Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type
EP1939308A1 (en) Method for manufacturing a component through hot press hardening and highly rigid component with improved breaking strain
DE4040355A1 (en) METHOD FOR PRODUCING A STEEL STAINLESS STEEL STICK WITH HIGH CARBON CONTENT
EP2664682A1 (en) Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same
DE102019101546A1 (en) MICRO-LAYERED MANGAN-BOR-STEEL
EP3211109B1 (en) Method for producing a thermoforming tool and thermoforming tool made from same
DE102017131247A1 (en) Method for producing metallic components with adapted component properties
EP1865086B1 (en) Use of a steel flat product produced from a manganese boron steel and method of its production
DE102008022401B4 (en) Process for producing a steel molding having a predominantly bainitic structure
WO2020064127A1 (en) Shape-memory alloy, flat steel product made therefrom with pseudo-elastic properties, and method for producing such a flat steel product
DE112008001181B4 (en) Use of a steel alloy for axle tubes and axle tube
DE102008022400B4 (en) Process for producing a steel molding having a predominantly martensitic structure
WO2020058244A1 (en) Method of producing ultrahigh-strength steel sheets and steel sheet therefor
WO2016177473A1 (en) Method for producing thin sheet from a stainless austenitic crmnni steel
EP3978634A1 (en) An at least partially press-hardened steel sheet component and method of producing an at least partially press-hardened steel sheet component
DE102020203421A1 (en) Flat steel product with a ZnCu layer system
EP4283004A1 (en) Flat steel product having improved processing properties
DE102021201150A1 (en) Process for the production of a hot-rolled and heat-treated flat steel product, a correspondingly hot-rolled and heat-treated flat steel product and a corresponding use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170329

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OUTOKUMPU NIROSTA GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016596

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260137

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 34871

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016596

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 34871

Country of ref document: SK

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1260137

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 14

Ref country code: DE

Payment date: 20230620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230616

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230621

Year of fee payment: 14

Ref country code: GB

Payment date: 20230622

Year of fee payment: 14