EP2442013B1 - Lighting device for a motor vehicle with a semiconductor light source and a reflector - Google Patents

Lighting device for a motor vehicle with a semiconductor light source and a reflector Download PDF

Info

Publication number
EP2442013B1
EP2442013B1 EP11184485.8A EP11184485A EP2442013B1 EP 2442013 B1 EP2442013 B1 EP 2442013B1 EP 11184485 A EP11184485 A EP 11184485A EP 2442013 B1 EP2442013 B1 EP 2442013B1
Authority
EP
European Patent Office
Prior art keywords
light
reflector
lighting device
light guide
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11184485.8A
Other languages
German (de)
French (fr)
Other versions
EP2442013A2 (en
EP2442013A3 (en
Inventor
Hubert Zwick
Hermann Kellermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP2442013A2 publication Critical patent/EP2442013A2/en
Publication of EP2442013A3 publication Critical patent/EP2442013A3/en
Application granted granted Critical
Publication of EP2442013B1 publication Critical patent/EP2442013B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/40Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/28Cover glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/337Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector having a structured surface, e.g. with facets or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/251Light guides the light guides being used to transmit light from remote light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255

Definitions

  • the present invention relates to a lighting device for a motor vehicle according to the preamble of claim 1.
  • a lighting device for a motor vehicle according to the preamble of claim 1.
  • Such lighting device is known from DE 10 2008 012 195 A1 known.
  • the structure of another known illumination device follows the principle of generating a light distribution through a parabolic reflector.
  • a parabolic reflector surrounds the semiconductor light source, which is arranged as accurately as possible at its focal point.
  • the light emitted by the semiconductor light source is then parallelized by the reflector and directed onto a transparent pane which covers a light exit opening of the illumination device.
  • the parabolic basic shape of the reflector for example by a subdivision of the parabolic in general parabolic basic shape of the reflection surface of the reflector in individual facets and / or by scattering elements in the transparent disc, which cause a change in the direction of the light passing through the disc, a predetermined light distribution is generated in advance of the illumination device.
  • One known countermeasure is the use of comparatively short focal length paraboloids.
  • the focal length of a parabola corresponds to the distance of its focal point from the vertex.
  • other disadvantages must be taken into account: Either the luminous light exit surface is comparatively small or the required depth is comparatively very large.
  • each semiconductor light source appears as a bright spot.
  • the aim is a homogeneously luminous surface.
  • the comparatively large distance also reduces the larger heat load at a smaller distance, which results from the electrical heat loss which is released in the chip of the semiconductor light source and heats it.
  • the lighting device behaves opposite Positioning inaccuracies of the real semiconductor light source very tolerant, since the light entrance surface of the light guide is flat.
  • Another advantage of the planar light entry surface is that a planar board can be used as a carrier of the chip of the semiconductor light source.
  • Flat sinkers are cheaper and more robust than flexible foldable sinkers, so they can be handled with less effort in manufacturing. Along with the reduced requirement for positioning accuracy, this simplifies manufacturing, which has a cost-reducing effect.
  • focal line of the reflector results in a very homogeneous illumination of the light exit surface of the illumination device.
  • the focal points be it individual points, a continuous line or a contiguous surface, ideally lie in the light exit surface.
  • the advantages of the invention also remain to a significant extent when the focal points are slightly in front of or slightly behind the light exit surface.
  • the illumination device requires only a small, planar circuit board with one or more semiconductor light sources, the light guide and a single reflector and a cover plate. Overall, comparatively large, homogeneously illuminated light exit surfaces can thus be achieved with comparatively little effort.
  • the semiconductor light sources used for automotive lighting devices are often light-emitting diodes (LED) with a comparatively flat light exit surface, which can be arranged very close to the planar light input surface of the light guide. This allows a touching or at least almost touching arrangement of the semiconductor light sources on the coupling surface. This allows almost complete, only unavoidable Fresnel losses in purchasing coupling of the light in the light guide, which positively affects the efficiency.
  • LED light-emitting diodes
  • the shows Fig. 1 an illumination device 10 for a motor vehicle with a semiconductor light source 12 and a reflector 14.
  • the illumination device 10 has a light 16 of the semiconductor light source receiving and on the reflector 14 directing optical fiber 18.
  • the light guide 18 has a planar, light 16 of the semiconductor light source 12 receiving light entrance surface 20 and a curved light exit surface 22.
  • the reflector 14 has a basic shape, which is formed by pivoting a parabola section 24 about an imaginary axis 26.
  • the light guide 18 and the reflector 14 are arranged relative to each other, and the light exit surface 22 of the light guide 14 is curved so that a focal line 28 of the reflector 14, which results during pivoting by the movement of the focal point 30 of the parabola section 24 in the Light exit surface 22 is located.
  • the light exit surface 22 preferably has the shape of a part of a cylinder jacket which is delimited by two parallel circular arcs 22_1, 22_2 and by two straight line sections 22_3, 22_4.
  • the entire light entering the light guide 18 in this plane is directed onto the reflector 14 and deflected by it in the direction of the imaginary axis 26.
  • the entire volume of the light guide 18 is not used for the conduction of the light 16 of the light source 12 from its light entry surface 20 to its light exit surface 22.
  • the unused partial areas 18_1 and 18_2 are determined by the opening angle of the light propagating in the optical waveguide 18, which in the subject matter of Fig. 1 is limited by the radians of the circular arcs 22_1, 22_2.
  • the non-used for the light pipe sections 18_1, 18_2 of the Light guide 18 are used in one embodiment for fastening purposes and may alternatively be omitted.
  • a cover plate 32 which lies in the light propagation direction above the reflector 14 and which, for example, on its reflector 14 facing surface scattering elements 34 which bulge out convexly from the cover, in one embodiment, a prescribed light distribution from the substantially parallel light beam, the emanating from the reflector 14 generates.
  • the scattering elements 34 are spherical in a preferred embodiment.
  • Fig. 2 shows an alternative embodiment with a flat, no scattering elements having cover plate 38, in which the statutory light distribution is achieved by a faceting of the reflector 14.
  • the respective value of the slope ultimately results from the required light distribution. For example, if light distribution with a bright spot in the extension of the central optical axis 26 is out of Fig. 1 required, a corresponding amount of reflector surface and a concomitant large number of facets 40, 44 must be present with a comparatively steeper course than corresponds to the parabola section 24.
  • a third embodiment provides a combination of a diffuser 34 having cover 32 with a Facet 40, 42, 44 having reflector 14 before.
  • the deflection angle of facets and diffusers add up, so that overall results in a stronger deflection and generally a greater freedom in the design.
  • FIG. 3 shows a plan view of a light guide having a straight and parallel to a straight light entrance surface 48 extending light exit surface 50, together with a light beam 52.
  • the light beam 52 emanates from a lightly arranged in front of the light entrance surface 48 semiconductor light source 12, is on the light entrance surface 48 in coupled to the light guide 46 and coupled out via the light exit surface 50 again.
  • this constellation corresponds to the passage of light through a plane-parallel plate. This means that the opening angle of the light beam 52 in the light guide 46 is smaller than outside the light guide 46 and that the opening angle of the light beam 52 after exiting the light guide 46 is the same size as before the entrance into the light guide 46. In the drawing plane will find so no light bundling by the light guide 46 instead.
  • FIG. 4 shows a light guide 54 of a preferred embodiment.
  • the light guide 54 is characterized in that its light exit surface 58 is delimited by a circular arc, the center of the associated circle being defined by the semiconductor light source 12 arranged closely in front of the light entry surface 56, which may be imagined for this purpose as a punctiform light source.
  • the individual rays of the light beam 52 each approximately perpendicular to the circular arc-shaped curved light exit surface 58 and therefore experience virtually no angle change when passing through this surface. Overall, however, results in a bundle constriction by occurring during coupling via the light entrance surface 56 refraction of light during the transition from air to optically dense light guide material.
  • the Figures 3 and 4 thus show the beam path in a planar light guide and after the exit of the light from the light guide, wherein the exit surface in the case of FIG. 3 parallel to the entrance surface and in the case of Fig. 4 oriented at any point perpendicular to the direction of light.
  • the light distribution emitted via the light exit surface 50 at the end of the optical waveguide 46 thus has the same angular distribution which comprises the light emitted by the semiconductor light source 12.
  • the bundle constriction that occurs when entering the light guide 54, in the embodiment that in the FIG. 4 is shown, obtained at the exit.
  • the FIG. 5 shows a preferred embodiment of a light guide 18 of an embodiment of the lighting device 10 in a cross section.
  • the cross-sectional area is, for example, in the plane that in the FIG. 1 is defined by the semiconductor light source 12 and the parabola portion 24.
  • the illustrated embodiment of the light guide 18 is characterized in that the distance from its upper side 60 to its lower side 62, starting from its light entry surface 20 and tapering towards the light exit surface 22, increases.
  • the cross section has the illustrated trapezoidal shape, in which the shorter of the parallel sides of the trapezium in the light entry surface 20 and the longer of the parallel sides of the trapezium in the light exit surface 22 of the light guide 18 is located.
  • the distance between the upper side 60 and the lower side 62 is selected such that the light emanating from the semiconductor light source 12 and coupled into the light guide 18 totally reflects upon impact with the underside 62 and / or the upper side 60 and thus ultimately leads to the light exit surface 22 is opposite to the light entrance surface 20. Due to the divergent arrangement of the upper side 60 and the lower side 62 of the light guide 18, the angle between a light beam 64 and a central propagation direction 66 or center line of the light guide 18 decreases with each total reflection. The propagating light in the light guide 18 is thus bundled with increasing approach to the light exit surface in the sense of approaching a bundle of parallel beams.
  • the illustrated tilting of the two cover surfaces relative to one another causes the light beam 64 to move in the direction of a widening cross section.
  • the beam is parallelized by twice the angle at which the two surfaces are inclined towards each other.
  • FIG. 5 shows thus in particular the beam path in a plane which is perpendicular to the two top surfaces of the planar light guide.
  • the coupled-in light 64 is transported to the light exit surface 22 by means of total reflection on the two cover surfaces, that is to say on the upper side 60 and on the underside 62. At the exit, bundle widening takes place again due to the refractive index change.
  • Fig. 6 shows how in this way an area is created in which a light fan 65 exits from each point. Light of this fan of light is then by reflection at the reflector 14, which has a parabolic cross section and whose focus is preferably approximately in the center of the light exit surface 22 of the light guide 18 and thus approximately halfway between its top 60 and its bottom 62, in the desired Direction focused.
  • FIG. 7 shows an embodiment with a reflector 67, the reflection surface in the space by a 360 ° around an axis 69 around pivoting around a parabola portion 24 is generated, as shown in the FIG. 1 has been illustrated and explained in the accompanying description.
  • the light propagating in the light guide 18 has an opening angle of about 90 °.
  • four semiconductor light sources 71, 73, 75, 77 arranged so that the opening angle of each lying in the circular light guide 79 light bundles 81 complement each other to a full circle.
  • the circular light guide 79 whose geometry and arrangement relative to the reflector 67, moreover, preferably the geometry of the light guide 18 from the FIG. 1 and whose arrangement corresponds to the reflector 14, has a square recess in the middle. This recess is delimited by 4 surfaces on which the four semiconductor light sources 71, 73, 75, 77 are fixed, wherein each one of the semiconductor light sources 71, 73, 75, 77 is arranged on each surface.
  • the circular light guide 79 with the four semiconductor light sources arranged in a central recess 71, 73, 75, 77 is the subject of FIG. 7 held by a spacer 83 and the reflector 67 supporting support structure in a defined position relative to the reflector 67.
  • the holding position meets the corresponding features of claim 1.
  • FIG. 7 illustrated circular geometry is used to produce a homogeneously illuminated ring and / or circular area, the desired light distribution here also by a diffuser, not shown in the FIG. 1 illustrated and explained in the accompanying description type and / or can be generated by a reflector with facets.
  • a triangular, a pentagonal or a hexagonal recess in the light guide 79 may be used with a corresponding number of semiconductor light sources to achieve an appearance of the lamp with a desired homogeneity.
  • the homogeneity increases in principle with the number of coupling in different directions semiconductor light sources.
  • FIG. 8 shows a plan view of a lighting device with three modules 90, 92, 94 in the FIG. 1 illustrated and explained in the accompanying description type, not here, as in the subject matter of FIG. 7 , with a uniform curvature of its edges to a circle, but with an alternating change of the curvature of the sign of its edges, so with a change between right curvature and left curvature, to an S-shaped light assembly have been composed.
  • the design, in the FIG. 8 has three semiconductor light sources 96, 98, 100, three planar light guides 102, 104, 106 and three reflector sections 108, 110, 112.
  • Each of a semiconductor light source 96, 98, 112 is functionally associated with a light guide 102, 104, 106 and a reflector section 108, 110, 112, wherein the geometries and relative arrangement of a semiconductor light source 96, 98, 100 to their optical fibers 102, 104, 106 and the Geometry of the light guide 102, 104, 106 and its arrangement relative to the associated reflector portion 108, 110, 112 in conjunction with the FIG. 1 corresponds to the relationships described.
  • the curvature does not have to change its sign from module to module 90, 92, 94, but it can also connect one or more modules with a first curvature behavior to one or more modules with a second curvature behavior.
  • a rectangular cover lens can also be illuminated homogeneously by a design of a lighting device according to the invention.
  • Fig. 9 shows a plan view of a lighting device 114 which is adapted to illuminate a rectangle 116 homogeneously.
  • a reflector 117 as in the FIG. 1 is shown in several Segments 118, 120, 122, 124, 126 split.
  • the subject matter of the FIG. 9 on the object of FIG. 1 This applies in particular to the relationships of geometry and arrangement of semiconductor light source, light guide and reflector, as they are described in the FIG. 1 are illustrated and explained in more detail in the accompanying description.
  • the following presentation focuses on deviations of the objects of Figures 9 and 10 from the subject of FIG. 1 ,
  • the division of the reflector 117 takes place at the subject of FIG. 9 preferably as it is in the FIG. 9 illustrated by the example of five segments 118, 120, 122, 124, 126.
  • the number of segments deviates from the number five and may also be less than or greater than five.
  • the angles at which the reflector segments 118, 120, 122, 124, 126 each appear from the semiconductor light source 12, are the same size. Therefore, when the brightness distribution of the radiation emitted by the semiconductor light source 12 is isotropic relative to the angle, the segments 118, 120, 122, 124, 126 receive approximately the same amount of light from the semiconductor light source 12.
  • the angular boundaries between the individual segments 118, 120, 122, 124, 126 are marked by radial rays emanating from the light source 12, which in this context can again be regarded as a point light source.
  • the top view of FIG. 9 an upper circular ring and a lower circular ring are determined such that these circular arcs touch the respective segment in each case at one point.
  • Each reflector segment 118, 120, 122, 124, 126 is thus delimited by an upper and a lower circular arc section and by two radial beams.
  • FIG. 10 shows a perspective view of such a trimmed reflector 117 below a rectangular cover plate 128th
  • FIG. 11 shows an embodiment in which the light exit surface 22 of the light guide 18 partially convex scattering elements 130, in some areas no scattering elements and partially concave scattering elements 132 has.
  • the prescribed light distribution is generated in the context of this embodiment, or at least the generation of the prescribed light distribution is supported.
  • FIG. 12 shows a cross section through an optical fiber 18.1 of a further embodiment, wherein the cross section is here oriented so that it lies for example in the plane in which the parabola section 24 of FIG. 1 lies.
  • FIG. 12 shows, in particular, the possibility of producing a further light exit surface 22.10 of a light guide in order to further increase the homogeneously illuminated surface.
  • the further light exit surface 22.10 in the embodiment shown is located below the first light exit surface 22 with respect to the light emission direction 134 of the illumination device a separate, their associated reflector 14.1, which is illuminated only by the light exiting via the second light exit surface 22.10.
  • the geometry used to generate the second light exit surface 22.10 which in the embodiment of FIG. 10 is shown as stage 136, also be arranged above the first light exit surface 22.
  • stage 136 also be arranged above the first light exit surface 22.
  • An attenuation associated with this traversing by absorption within the optical waveguide 18.1 and by Fresnel losses when entering from below into the optical waveguide 18.1 and when exiting upwards from the optical waveguide 18.1 can then be avoided.
  • FIGS. 13 and 14 illustrate various ways of adapting the space requirements of embodiments of lighting devices according to the invention to the available space, which may be limited for example by design specifications.
  • the adaptation by an obliquely and substantially parallel to an obliquely arranged in the space cover 140 of a lamp or a headlight arrangement of the planar light guide 18.
  • the subject of FIG. 12 the adjustment is done by a corresponding curvature of the light guide 18th

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Description

Die vorliegende Erfindung betrifft eine Beleuchtungseinrichtung für ein Kraftfahrzeug nach dem Oberbegriff des Anspruchs 1. Eine solche Beleuchtungseinrichtung ist aus der DE 10 2008 012 195 A1 bekannt. Aus der EP 1 744 096 A2 und der FR 2 934 353 sind Lichtleiter bekannt, die von Leuchtdioden gespeist werden und als virtuelle Lichtquellen Reflektoren beleuchten.The present invention relates to a lighting device for a motor vehicle according to the preamble of claim 1. Such lighting device is known from DE 10 2008 012 195 A1 known. From the EP 1 744 096 A2 and the FR 2 934 353 Light guides are known that are fed by light emitting diodes and illuminate reflectors as virtual light sources.

Der Aufbau einer weiteren bekannten Beleuchtungseinrichtung folgt dem Prinzip der Erzeugung einer Lichtverteilung durch einen parabolischen Reflektor. Ein solcher Reflektor umgibt die Halbleiterlichtquelle, die möglichst genau in seinem Brennpunkt angeordnet ist. Das von der Halbleiterlichtquelle abgestrahlte Licht wird dann durch den Reflektor parallelisiert und auf eine transparente Scheibe gerichtet, die eine Lichtaustrittsöffnung der Beleuchtungseinrichtung abdeckt. Durch eine Variation der parabolischen Grundform des Reflektors, zum Beispiel durch eine Unterteilung der im Ganzen parabolischen Grundform der Reflexionsfläche des Reflektors in einzelne Facetten und/oder durch Streuelemente in der transparenten Scheibe, die eine Änderung der Richtung des durch die Scheibe hindurchtretenden Lichtes bewirken, wird eine vorbestimmte Lichtverteilung im Vorfeld der Beleuchtungseinrichtung erzeugt.The structure of another known illumination device follows the principle of generating a light distribution through a parabolic reflector. Such a reflector surrounds the semiconductor light source, which is arranged as accurately as possible at its focal point. The light emitted by the semiconductor light source is then parallelized by the reflector and directed onto a transparent pane which covers a light exit opening of the illumination device. By a variation of the parabolic basic shape of the reflector, for example by a subdivision of the parabolic in general parabolic basic shape of the reflection surface of the reflector in individual facets and / or by scattering elements in the transparent disc, which cause a change in the direction of the light passing through the disc, a predetermined light distribution is generated in advance of the illumination device.

Bei der Realisierung dieses Prinzips treten in der Praxis die folgenden Probleme auf: Ein beträchtlicher Teil des von der Halbleiterlichtquelle ausgehenden Lichtes trifft gar nicht erst auf die Parabel. Es wird daher zum Beispiel nicht parallel ausgerichtet, und es erhält daher beim Durchgang durch die zum Beispiel für das Streuen von parallelem Licht eingerichtete Abdeckscheibe nicht die Richtung, die der gewünschten Lichtverteilung entspricht.In realizing this principle, the following problems arise in practice: a considerable part of the light emanating from the semiconductor light source does not even strike the parabola. Therefore, for example, it is not aligned in parallel, and therefore does not receive the direction corresponding to the desired distribution of light when passing through the cover panel, for example, for scattering of parallel light.

Dies führt letztlich dazu, dass der Anteil des korrekt verteilten Lichtes der Halbleiterlichtquelle an dem insgesamt von der Halbleiterlichtquelle abgestrahlten Licht vergleichsweise klein ist, was durch eine Erhöhung der abgestrahlten Lichtleistung und damit in der Regel durch eine Erhöhung der Zahl der Halbleiterlichtquellen ausgeglichen werden muss.This ultimately leads to the fact that the proportion of the correctly distributed light of the semiconductor light source to the total emitted by the semiconductor light source light is relatively small, which must be compensated by increasing the radiated light output and thus usually by increasing the number of semiconductor light sources.

Eine bekannte Gegenmaßnahme besteht in der Verwendung von Paraboloiden mit vergleichsweise kurzer Brennweite. Die Brennweite einer Parabel entspricht dem Abstand ihres Brennpunktes vom Scheitelpunkt. Für den erwünschten Nutzen müssen dabei jedoch andere Nachteile in Kauf genommen werden: Entweder wird die leuchtende Lichtaustrittsfläche vergleichsweise klein oder die benötigte Bautiefe wird vergleichsweise sehr groß.One known countermeasure is the use of comparatively short focal length paraboloids. The focal length of a parabola corresponds to the distance of its focal point from the vertex. For the desired benefit, however, other disadvantages must be taken into account: Either the luminous light exit surface is comparatively small or the required depth is comparatively very large.

Unerwünscht ist auch, dass der untere Rand des durch eine metallische Beschichtung verspiegelten Reflektors bei einer Verkürzung der Brennweite näher an die Halbleiterlichtquelle und deren elektrische Zuleitungen heranrückt, was wegen der Gefahr von Kurzschlüssen unerwünscht ist.It is also undesirable for the lower edge of the reflector, which is mirrored by a metallic coating, to move closer to the semiconductor light source and its electrical leads as the focal length is shortened, which is undesirable because of the danger of short circuits.

Weitere Nachteile ergeben sich daraus, dass die Position der Halbleiterlichtquelle relativ zum Reflektor sehr genau eingehalten werden muss, um die erwünschte Parallelisierung zu erzielen. Da sich ein großes Spritzgussteil, in das mehrere Paraboloide eingeformt sind, beim Erkalten in schwer vorhersehbarer Weise verzieht, müssen in der Regel an Stelle von einem großen Reflektor viele kleine Reflektoren verwendet werden, was die Fertigung erschwert und verteuert.Further disadvantages arise from the fact that the position of the semiconductor light source relative to the reflector must be maintained very accurately in order to achieve the desired parallelization. Since a large injection molded part, in which several paraboloids are formed, warps on cooling in a difficult to predict manner, many small reflectors usually have to be used instead of a large reflector, which makes production more difficult and more expensive.

Die Kosten werden ferner dadurch erhöht, dass mehrere Halbleiterlichtquellen mit zugehörigem Reflektor und elektrischer Energieversorgung dreidimensional angeordnet werden müssen, um eine vergleichsweise große Lichtaustrittsfläche zu gestalten. Betrachtet man eine solche Beleuchtungseinrichtung aus einiger Entfernung, erscheint jede Halbleiterlichtquelle als ein heller Punkt. Angestrebt wird im Gegensatz dazu jedoch eine homogen leuchtende Fläche.The costs are further increased by the fact that a plurality of semiconductor light sources with associated reflector and electrical power supply must be arranged three-dimensionally to make a comparatively large light exit surface. Looking at such a lighting device from a distance, each semiconductor light source appears as a bright spot. In contrast, however, the aim is a homogeneously luminous surface.

Wenn an Stelle von üblichen Reflektoren brechende und total reflektierende Vorsatzoptiken für Halbleiterlichtquellen verwendet werden, treten dieselben Nachteile auf. Verwendet man für die Erzeugung einer homogen leuchtenden Lichtaustrittsfläche Lichtleiter an Stelle von Reflektoren, müssen große Wirkungsgradverluste (Verluste von 85% bis 90%) in Kauf genommen werden.If instead of conventional reflectors refractive and totally reflective attachment optics are used for semiconductor light sources, the same disadvantages occur. If, instead of reflectors, light guides are used to produce a homogeneously luminous light exit surface, large losses in efficiency (losses of 85% to 90%) must be accepted.

Vor diesem Hintergrund besteht die Aufgabe der Erfindung in der Angabe einer Beleuchtungseinrichtung der eingangs genannten Art, die diese Nachteile nicht oder nur in einem geringeren Umfang aufweist.Against this background, the object of the invention in the specification of a lighting device of the type mentioned, which does not have these disadvantages or only to a lesser extent.

Diese Aufgabe wird durch eine Beleuchtungseinrichtung mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a lighting device having the features of claim 1.

Durch diese Merkmale wird eine Beleuchtungseinrichtung mit einer virtuellen Lichtquelle bereitgestellt, die folgende Vorteile aufweist:

  • Durch den im Lichtweg zwischen der Halbleiterlichtquelle und der als virtuelle Lichtquelle dienenden Lichtaustrittsfläche ist der Abstand zwischen dem metallisch verspiegelten Reflektor und den elektrischen Anschlüssen der Halbleiterlichtquelle vergleichsweise groß, was die Gefahr von Kurzschlüssen beseitigt.
By these features is a lighting device with a virtual light source, which has the following advantages:
  • The distance between the metallically mirrored reflector and the electrical connections of the semiconductor light source is comparatively large due to the light exit surface serving as a virtual light source in the light path between the semiconductor light source and eliminating the risk of short circuits.

Darüber hinaus verringert der vergleichsweise große Abstand auch die bei einem kleineren Abstand größere Wärmebelastung, die sich aus der elektrischen Verlustwärme ergibt, die im Chip der Halbleiterlichtquelle frei wird und diesen erwärmt.In addition, the comparatively large distance also reduces the larger heat load at a smaller distance, which results from the electrical heat loss which is released in the chip of the semiconductor light source and heats it.

Die Beleuchtungseinrichtung verhält sich gegenüber Positionierungsungenauigkeiten der realen Halbleiterlichtquelle sehr tolerant, da die Lichteintrittsfläche des Lichtleiters eben ist. Ein weiterer Vorteil der ebenen Lichteintrittsfläche besteht darin, dass eine ebene Platine als Träger des Chips der Halbleiterlichtquelle verwendet werden kann. Ebene Platinen sind preiswerter und robuster als flexibel krümmbare Platinen, so dass sie bei der Fertigung mit weniger Aufwand handhabbar sind. Zusammen mit der verringerten Anforderung an die Positionierungsgenauigkeit vereinfacht dies die Fertigung, was sich kostensenkend auswirkt.The lighting device behaves opposite Positioning inaccuracies of the real semiconductor light source very tolerant, since the light entrance surface of the light guide is flat. Another advantage of the planar light entry surface is that a planar board can be used as a carrier of the chip of the semiconductor light source. Flat sinkers are cheaper and more robust than flexible foldable sinkers, so they can be handled with less effort in manufacturing. Along with the reduced requirement for positioning accuracy, this simplifies manufacturing, which has a cost-reducing effect.

Durch das Zusammenwirken der Merkmale, insbesondere durch die relativ zueinander sehr genau positionierbare Lichtaustrittsfläche der virtuellen Lichtquelle und der in der Lichtaustrittsfläche liegenden Brennlinie des Reflektors ergibt sich eine sehr homogene Ausleuchtung der Lichtaustrittsfläche der Beleuchtungseinrichtung. Die Brennpunkte, seien es einzelne Punkte, eine zusammenhängende Linie oder eine zusammenhängende Fläche, liegen im Idealfall in der Lichtaustrittsfläche. Die Vorteile der Erfindung bleiben aber auch in einem wesentlichen Umfang erhalten, wenn die Brennpunkte etwas vor oder etwas hinter der Lichtaustrittsfläche liegen.Due to the interaction of the features, in particular by the relative to each other very precisely positionable light exit surface of the virtual light source and lying in the light exit surface focal line of the reflector results in a very homogeneous illumination of the light exit surface of the illumination device. The focal points, be it individual points, a continuous line or a contiguous surface, ideally lie in the light exit surface. However, the advantages of the invention also remain to a significant extent when the focal points are slightly in front of or slightly behind the light exit surface.

Unabhängig von der Größe der möglichst homogen auszuleuchtenden Lichtaustrittsfläche benötigt die erfindungsgemäße Beleuchtungseinrichtung nur eine kleine, ebene Platine mit einer oder mehreren Halbleiterlichtquellen, den Lichtleiter und einen einzigen Reflektor und eine Abdeckscheibe. Insgesamt lassen sich vergleichsweise große homogen ausgeleuchtete Lichtaustrittsflächen damit mit einem vergleichsweise geringen Aufwand erzielen.Irrespective of the size of the light output surface, which is to be illuminated as homogeneously as possible, the illumination device according to the invention requires only a small, planar circuit board with one or more semiconductor light sources, the light guide and a single reflector and a cover plate. Overall, comparatively large, homogeneously illuminated light exit surfaces can thus be achieved with comparatively little effort.

Die für Kraftfahrzeugbeleuchtungseinrichtungen verwendeten Halbleiterlichtquellen sind häufig Leuchtdioden (LED) mit einer vergleichsweise ebenen Lichtaustrittsfläche, die sich sehr nahe an der ebenen Lichteinkoppelfläche des Lichtleiters anordnen lassen. Dies erlaubt eine berührende oder zumindest nahezu berührende Anordnung der Halbleiterlichtquellen an der Einkoppelfläche. Dies erlaubt eine nahezu vollständige, nur unvermeidliche Fresnelverluste in Kauf nehmende Einkopplung des Lichtes in den Lichtleiter, was den Wirkungsgrad positiv beeinflusst.The semiconductor light sources used for automotive lighting devices are often light-emitting diodes (LED) with a comparatively flat light exit surface, which can be arranged very close to the planar light input surface of the light guide. This allows a touching or at least almost touching arrangement of the semiconductor light sources on the coupling surface. This allows almost complete, only unavoidable Fresnel losses in purchasing coupling of the light in the light guide, which positively affects the efficiency.

Weitere Vorteile ergeben sich aus den abhängigen Ansprüchen, der Beschreibung und den beigefügten Figuren.Further advantages will be apparent from the dependent claims, the description and the attached figures.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.

Zeichnungendrawings

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen, jeweils in schematischer Form:

Fig. 1
ein Ausführungsbeispiel einer erfindungsgemäßen Beleuchtungseinrichtung mit Streuelemente aufweisenden Abdeckscheibe;
Fig. 2
eine alternative Ausgestaltung mit einer glatten Abdeckscheibe;
Fig. 3
eine Draufsicht auf einen Lichtleiter mit plan-parallelen Lichteintritts- und Lichtaustrittsflächen;
Fig. 4
eine Draufsicht auf einen Lichtleiter mit einer gekrümmten Lichtaustrittsfläche;
Fig. 5
eine bevorzugte Ausgestaltung eines Lichtleiters einer Ausgestaltung der Beleuchtungsvorrichtung in einem Querschnitt;
Fig. 6
den technischen Effekt dieser Ausgestaltung in Form eines Lichtfächers;
Fig. 7
eine Ausgestaltung mit einem ringförmigen Parabolreflektor;
Fig. 8
eine Draufsicht auf eine Beleuchtungseinrichtung mit einer S-förmigen Zusammenstellung von drei Modulen der in der Figur 1 dargestellten Art;
Fig. 9
eine Draufsicht auf eine Beleuchtungseinrichtung, die dazu eingerichtet ist, ein Rechteck homogen zu beleuchten;
Fig. 10
eine perspektivische Darstellung eines entsprechend einer Rechteckprojektion beschnittenen Reflektors;
Fig. 11
eine Ausgestaltung, bei der die Lichtaustrittsfläche des Lichtleiters Streuelemente verschiedener Art aufweist; und
Fig. 12
einen Querschnitt durch einen Lichtleiter einer weiteren Ausgestaltung
Fig. 13
eine Möglichkeit der Anpassung des Platzbedarfs einer Ausgestaltungen einer erfindungsgemäßen Beleuchtungseinrichtungen an Bauraumerfordernisse; und
Fig. 14
eine weitere Möglichkeit einer solchen Anpassung.
Embodiments of the invention are illustrated in the drawings and are explained in more detail in the following description. In each case, in schematic form:
Fig. 1
an embodiment of a lighting device according to the invention with scattering elements having cover plate;
Fig. 2
an alternative embodiment with a smooth cover;
Fig. 3
a plan view of a light guide with plane-parallel light entrance and light exit surfaces;
Fig. 4
a plan view of a light guide with a curved light exit surface;
Fig. 5
a preferred embodiment of a light guide of a configuration of the lighting device in a cross section;
Fig. 6
the technical effect of this embodiment in the form of a fan of light;
Fig. 7
an embodiment with an annular parabolic reflector;
Fig. 8
a plan view of a lighting device with an S-shaped combination of three modules in the FIG. 1 represented type;
Fig. 9
a plan view of a lighting device which is adapted to illuminate a rectangle homogeneous;
Fig. 10
a perspective view of a pruned according to a rectangular projection reflector;
Fig. 11
an embodiment in which the light exit surface of the light guide has scattering elements of different types; and
Fig. 12
a cross section through a light guide of another embodiment
Fig. 13
a possibility of adapting the space requirement of an embodiment of a lighting device according to the invention to installation space requirements; and
Fig. 14
another possibility of such an adjustment.

Gleiche Bezugszeichen verweisen dabei in den verschiedenen Figuren jeweils auf gleiche oder zumindest ihrer Funktion nach gleiche Elemente.Identical reference numbers refer in the various figures to identical or at least functionally identical elements.

Im Einzelnen zeigt die Fig. 1 eine Beleuchtungseinrichtung 10 für ein Kraftfahrzeug mit einer Halbleiterlichtquelle 12 und einem Reflektor 14. Die Beleuchtungseinrichtung 10 weist einen Licht 16 der Halbleiterlichtquelle aufnehmenden und auf den Reflektor 14 richtenden Lichtleiter 18 auf. Der Lichtleiter 18 weist eine ebene, Licht 16 der Halbleiterlichtquelle 12 aufnehmende Lichteintrittsfläche 20 und eine gekrümmte Lichtaustrittsfläche 22 auf. Der Reflektor 14 weist eine Grundform auf, die durch Schwenken eines Parabelabschnitts 24 um eine gedachte Achse 26 entsteht. Dabei sind der Lichtleiter 18 und der Reflektor 14 relativ zueinander so angeordnet, und die Lichtaustrittsfläche 22 des Lichtleiters 14 ist so gekrümmt, dass eine Brennlinie 28 des Reflektors 14, die sich beim Schwenken durch die Bewegung des Brennpunkts 30 des Parabelabschnitts 24 ergibt, in der Lichtaustrittsfläche 22 liegt.In detail, the shows Fig. 1 an illumination device 10 for a motor vehicle with a semiconductor light source 12 and a reflector 14. The illumination device 10 has a light 16 of the semiconductor light source receiving and on the reflector 14 directing optical fiber 18. The light guide 18 has a planar, light 16 of the semiconductor light source 12 receiving light entrance surface 20 and a curved light exit surface 22. The reflector 14 has a basic shape, which is formed by pivoting a parabola section 24 about an imaginary axis 26. In this case, the light guide 18 and the reflector 14 are arranged relative to each other, and the light exit surface 22 of the light guide 14 is curved so that a focal line 28 of the reflector 14, which results during pivoting by the movement of the focal point 30 of the parabola section 24 in the Light exit surface 22 is located.

Die Lichtaustrittsfläche 22 hat bevorzugt die Gestalt eines Teils eines Zylindermantels, der durch zwei parallel verlaufende Kreisbögen 22_1, 22_2 und durch zwei Geradenabschnitte 22_3, 22_4 begrenzt wird.The light exit surface 22 preferably has the shape of a part of a cylinder jacket which is delimited by two parallel circular arcs 22_1, 22_2 and by two straight line sections 22_3, 22_4.

Aus Gründen der Übersichtlichkeit sind von dem Licht 16 der Halbleiterlichtquelle 12 nur Strahlen dargestellt, die in der Ebene liegen, die in der Fig. 1 dadurch definiert ist, dass der Parabelabschnitt 24 ebenfalls in dieser Ebene liegt. Man erkennt, dass das gesamte, in dieser Ebene in den Lichtleiter 18 eintretende Licht auf den Reflektor 14 gerichtet und von diesem in Richtung der gedachten Achse 26 umgelenkt wird. Dabei wird nicht das gesamte Volumen des Lichtleiters 18 für die Leitung des Lichts 16 der Lichtquelle 12 von seiner Lichteintrittsfläche 20 zu seiner Lichtaustrittsfläche 22 genutzt. Die nicht genutzten Teilbereiche 18_1 und 18_2 werden durch den Öffnungswinkel des im Lichtleiter 18 propagierenden Lichtes bestimmt, der beim Gegenstand der Fig. 1 durch das Bogenmaß der Kreisbögen 22_1, 22_2 begrenzt wird. Die nicht zur Lichtleitung genutzten Teilbereiche 18_1, 18_2 des Lichtleiters 18 werden in einer Ausgestaltung für Befestigungszwecke genutzt und können alternativ dazu auch entfallen.For clarity, of the light 16 of the semiconductor light source 12 only rays are shown, which lie in the plane which in the Fig. 1 is defined by the fact that the parabola section 24 also lies in this plane. It can be seen that the entire light entering the light guide 18 in this plane is directed onto the reflector 14 and deflected by it in the direction of the imaginary axis 26. In this case, the entire volume of the light guide 18 is not used for the conduction of the light 16 of the light source 12 from its light entry surface 20 to its light exit surface 22. The unused partial areas 18_1 and 18_2 are determined by the opening angle of the light propagating in the optical waveguide 18, which in the subject matter of Fig. 1 is limited by the radians of the circular arcs 22_1, 22_2. The non-used for the light pipe sections 18_1, 18_2 of the Light guide 18 are used in one embodiment for fastening purposes and may alternatively be omitted.

Durch eine Abdeckscheibe 32, die in Lichtausbreitungsrichtung über dem Reflektor 14 liegt und die zum Beispiel auf ihrer dem Reflektor 14 zugewandten Fläche Streuelemente 34 aufweist, die sich konvex aus der Abdeckscheibe herauswölben, wird in einer Ausgestaltung eine vorgeschriebene Lichtverteilung aus dem weitgehend parallelen Lichtbündel, das vom Reflektor 14 ausgeht, erzeugt. Die Streuelemente 34 sind in einer bevorzugten Ausgestaltung kugelförmig.By a cover plate 32 which lies in the light propagation direction above the reflector 14 and which, for example, on its reflector 14 facing surface scattering elements 34 which bulge out convexly from the cover, in one embodiment, a prescribed light distribution from the substantially parallel light beam, the emanating from the reflector 14 generates. The scattering elements 34 are spherical in a preferred embodiment.

Fig. 2 zeigt eine alternative Ausgestaltung mit einer ebenen, keine Streuelemente aufweisenden Abdeckscheibe 38, bei der die gesetzlich vorgeschriebene Lichtverteilung durch eine Facettierung des Reflektors 14 erzielt wird. Bei dieser Ausgestaltung ist dem Parabelabschnitt 24, der die Grundform des Reflektors 14 bestimmt, eine Modulation in Form von Facetten 40, 42, 44 überlagert, die lokal eine zum Beispiel alternierend um den jeweiligen Wert der Steigung des Parabelabschnitts 24 oszillierende Steigung aufweist. Fig. 2 shows an alternative embodiment with a flat, no scattering elements having cover plate 38, in which the statutory light distribution is achieved by a faceting of the reflector 14. In this embodiment, the parabolic section 24, which determines the basic shape of the reflector 14, a modulation in the form of facets 40, 42, 44 superimposed, which has locally, for example, an alternating to the respective value of the slope of the parabola section 24 slope.

Der jeweilige Wert der Steigung ergibt sich dabei letztlich aus der geforderte Lichtverteilung. Ist zum Beispiel eine Lichtverteilung mit einem hellen Fleck in der Verlängerung der zentralen optischen Achse 26 aus der Fig. 1 gefordert, muss entsprechend viel Reflektorfläche und eine damit einhergehend große Zahl von Facetten 40, 44 mit vergleichsweise steilerem Verlauf als es dem Parabelabschnitt 24 entspricht, vorhanden sein.The respective value of the slope ultimately results from the required light distribution. For example, if light distribution with a bright spot in the extension of the central optical axis 26 is out of Fig. 1 required, a corresponding amount of reflector surface and a concomitant large number of facets 40, 44 must be present with a comparatively steeper course than corresponds to the parabola section 24.

Eine dritte Ausgestaltung sieht eine Kombination einer Streuelemente 34 aufweisenden Abdeckscheibe 32 mit einem Facetten 40, 42, 44 aufweisenden Reflektor 14 vor. Durch eine solche Kombination addieren sich die Ablenkwinkel von Facetten und Streuscheiben, so dass sich insgesamt eine stärkere Ablenkung und allgemein eine größere Freiheit bei der Gestaltung ergibt.A third embodiment provides a combination of a diffuser 34 having cover 32 with a Facet 40, 42, 44 having reflector 14 before. By such a combination, the deflection angle of facets and diffusers add up, so that overall results in a stronger deflection and generally a greater freedom in the design.

Figur 3 zeigt eine Draufsicht auf einen Lichtleiter, der eine gerade und parallel zu einer geraden Lichteintrittsfläche 48 verlaufende Lichtaustrittsfläche 50 besitzt, zusammen mit einem Lichtbündel 52. Das Lichtbündel 52 geht von einer dicht vor der Lichteintrittsfläche 48 angeordneten Halbleiterlichtquelle 12 aus, wird über die Lichteintrittsfläche 48 in den Lichtleiter 46 eingekoppelt und über dessen Lichtaustrittsfläche 50 wieder ausgekoppelt. FIG. 3 shows a plan view of a light guide having a straight and parallel to a straight light entrance surface 48 extending light exit surface 50, together with a light beam 52. The light beam 52 emanates from a lightly arranged in front of the light entrance surface 48 semiconductor light source 12, is on the light entrance surface 48 in coupled to the light guide 46 and coupled out via the light exit surface 50 again.

Da die Lichteintrittsfläche 48 parallel zur Lichtaustrittsfläche 50 angeordnet ist, entspricht diese Konstellation dem Durchgang von Licht durch eine planparallele Platte. Das bedeutet, dass der Öffnungswinkel des Lichtbündels 52 im Lichtleiter 46 kleiner ist als außerhalb des Lichtleiters 46 und dass der Öffnungswinkel des Lichtbündels 52 nach dem Austritt aus dem Lichtleiter 46 gleich groß ist wie vor dem Eintritt in den Lichtleiter 46. In der Zeichenebene findet damit keine Lichtbündelung durch den Lichtleiter 46 statt.Since the light entry surface 48 is arranged parallel to the light exit surface 50, this constellation corresponds to the passage of light through a plane-parallel plate. This means that the opening angle of the light beam 52 in the light guide 46 is smaller than outside the light guide 46 and that the opening angle of the light beam 52 after exiting the light guide 46 is the same size as before the entrance into the light guide 46. In the drawing plane will find so no light bundling by the light guide 46 instead.

Figur 4 zeigt dagegen einen Lichtleiter 54 einer bevorzugten Ausgestaltung. Der Lichtleiter 54 zeichnet sich dadurch aus, dass seine Lichtaustrittsfläche 58 durch einen Kreisbogen begrenzt wird, wobei der Mittelpunkt des zugehörigen Kreises durch die dicht vor der Lichteintrittsfläche 56 angeordnete Halbleiterlichtquelle 12 definiert wird, die man sich zu diesem Zweck als punktförmige Lichtquelle vorstellen darf. Bei dieser Geometrie treffen die einzelnen Strahlen des Lichtbündels 52 jeweils annähernd senkrecht auf die kreisbogenförmig gekrümmte Lichtaustrittsfläche 58 und erfahren daher beim Durchgang durch diese Fläche praktisch keine Winkelveränderung. Insgesamt ergibt sich jedoch eine Bündelverengung durch die beim Einkoppeln über die Lichteintrittsfläche 56 auftretende Lichtbrechung beim Übergang von Luft zum optisch dichteren Lichtleitermaterial. FIG. 4 on the other hand shows a light guide 54 of a preferred embodiment. The light guide 54 is characterized in that its light exit surface 58 is delimited by a circular arc, the center of the associated circle being defined by the semiconductor light source 12 arranged closely in front of the light entry surface 56, which may be imagined for this purpose as a punctiform light source. At this Geometry, the individual rays of the light beam 52 each approximately perpendicular to the circular arc-shaped curved light exit surface 58 and therefore experience virtually no angle change when passing through this surface. Overall, however, results in a bundle constriction by occurring during coupling via the light entrance surface 56 refraction of light during the transition from air to optically dense light guide material.

Die Figuren 3 und 4 zeigen damit den Strahlverlauf in einem flächigen Lichtleiter und nach dem Austritt des Lichts aus dem Lichtleiter, wobei die Austrittsfläche im Fall der Figur 3 parallel zur Eintrittsfläche und im Fall der Fig. 4 an jedem Punkt senkrecht zur Lichtrichtung orientiert ist. Bei der in der Figur 3 dargestellten Ausgestaltung weist die über die Lichtaustrittsfläche 50 am Ende des Lichtleiters 46 ausgestrahlte Lichtverteilung also dieselbe Winkelverteilung auf, die das von der Halbleiterlichtquelle 12 abgestrahlte Licht aufweist. Dagegen bleibt die Bündelverengung, die beim Eintritt in den Lichtleiter 54 auftritt, in der Ausgestaltung, die in der Figur 4 dargestellt ist, beim Austritt erhalten.The Figures 3 and 4 thus show the beam path in a planar light guide and after the exit of the light from the light guide, wherein the exit surface in the case of FIG. 3 parallel to the entrance surface and in the case of Fig. 4 oriented at any point perpendicular to the direction of light. When in the FIG. 3 In the embodiment shown, the light distribution emitted via the light exit surface 50 at the end of the optical waveguide 46 thus has the same angular distribution which comprises the light emitted by the semiconductor light source 12. In contrast, the bundle constriction that occurs when entering the light guide 54, in the embodiment that in the FIG. 4 is shown, obtained at the exit.

Die Figur 5 zeigt eine bevorzugte Ausgestaltung eines Lichtleiters 18 einer Ausgestaltung der Beleuchtungsvorrichtung 10 in einem Querschnitt. Die Querschnittsfläche liegt dabei zum Beispiel in der Ebene, die in der Figur 1 durch die Halbleiterlichtquelle 12 und dem Parabelabschnitt 24 definiert wird. Die dargestellte Ausgestaltung des Lichtleiters 18 zeichnet sich dadurch aus, dass der Abstand von seiner Oberseite 60 zu seiner Unterseite 62 von seiner Lichteintrittsfläche 20 ausgehend und auf die Lichtaustrittsfläche 22 zulaufend, zunimmt. In einer Ausgestaltung besitzt der Querschnitt die dargestellte Trapezform, bei der die kürzere der parallelen Seiten des Trapezes in der Lichteintrittsfläche 20 und die längere der parallelen Seiten des Trapezes in der Lichtaustrittsfläche 22 des Lichtleiters 18 liegt.The FIG. 5 shows a preferred embodiment of a light guide 18 of an embodiment of the lighting device 10 in a cross section. The cross-sectional area is, for example, in the plane that in the FIG. 1 is defined by the semiconductor light source 12 and the parabola portion 24. The illustrated embodiment of the light guide 18 is characterized in that the distance from its upper side 60 to its lower side 62, starting from its light entry surface 20 and tapering towards the light exit surface 22, increases. In one embodiment, the cross section has the illustrated trapezoidal shape, in which the shorter of the parallel sides of the trapezium in the light entry surface 20 and the longer of the parallel sides of the trapezium in the light exit surface 22 of the light guide 18 is located.

Insgesamt ist der Abstand zwischen der Oberseite 60 und der Unterseite 62 so gewählt, dass das von der Halbleiterlichtquelle 12 ausgehende und in den Lichtleiter 18 eingekoppelte Licht beim Auftreffen auf die Unterseite 62 und/oder die Oberseite 60 total reflektiert und damit letztlich zur Lichtaustrittsfläche 22 geleitet wird, die der Lichteintrittsfläche 20 gegenüberliegt. Durch die divergente Anordnung der Oberseite 60 und der Unterseite 62 des Lichtleiters 18 verringert sich der Winkel zwischen einem Lichtstrahl 64 und einer mittleren Propagationsrichtung 66 oder Mittellinie des Lichtleiters 18 mit jeder Totalreflexion. Das im Lichtleiter 18 propagierende Licht wird also mit zunehmender Annäherung an die Lichtaustrittsfläche im Sinne einer Annäherung an ein Bündel paralleler Strahlen gebündelt. Mit anderen Worten: Das dargestellte Verkippen der beiden Deckflächen relativ zueinander bewirkt, dass sich der Lichtstrahl 64 in Richtung eines sich aufweitenden Querschnitts bewegt. Bei jeder Totalreflexion an einer der beiden Deckflächen wird der Strahl um den doppelten Winkel, unter dem die beiden Flächen gegeneinander geneigt sind, parallelisiert.Overall, the distance between the upper side 60 and the lower side 62 is selected such that the light emanating from the semiconductor light source 12 and coupled into the light guide 18 totally reflects upon impact with the underside 62 and / or the upper side 60 and thus ultimately leads to the light exit surface 22 is opposite to the light entrance surface 20. Due to the divergent arrangement of the upper side 60 and the lower side 62 of the light guide 18, the angle between a light beam 64 and a central propagation direction 66 or center line of the light guide 18 decreases with each total reflection. The propagating light in the light guide 18 is thus bundled with increasing approach to the light exit surface in the sense of approaching a bundle of parallel beams. In other words, the illustrated tilting of the two cover surfaces relative to one another causes the light beam 64 to move in the direction of a widening cross section. With each total reflection on one of the two cover surfaces, the beam is parallelized by twice the angle at which the two surfaces are inclined towards each other.

Die Figur 5 zeigt damit insbesondere den Strahlverlauf in einer Ebene, die senkrecht auf den beiden Deckflächen des flächigen Lichtleiters steht. Das eingekoppelte Licht 64 wird mittels Totalreflexion an den beiden Deckflächen, also an der Oberseite 60 und an der Unterseite 62, zur Lichtaustrittsfläche 22 transportiert. Beim Austritt erfolgt wieder eine Bündelaufweitung aufgrund der Brechzahländerung.The FIG. 5 shows thus in particular the beam path in a plane which is perpendicular to the two top surfaces of the planar light guide. The coupled-in light 64 is transported to the light exit surface 22 by means of total reflection on the two cover surfaces, that is to say on the upper side 60 and on the underside 62. At the exit, bundle widening takes place again due to the refractive index change.

Fig. 6 zeigt, wie auf diese Weise eine Fläche erzeugt wird, bei der aus jedem Punkt ein Lichtfächer 65 austritt. Licht dieses Lichtfächers wird dann durch Reflexion an dem Reflektor 14, der einen parabolischen Querschnitt aufweist und dessen Brennpunkt bevorzugt ungefähr in der Mitte der Lichtaustrittsfläche 22 des Lichtleiters 18 und damit etwa auf halber Höhe zwischen seiner Oberseite 60 und seiner Unterseite 62 liegt, in die gewünschte Richtung fokussiert. Fig. 6 shows how in this way an area is created in which a light fan 65 exits from each point. Light of this fan of light is then by reflection at the reflector 14, which has a parabolic cross section and whose focus is preferably approximately in the center of the light exit surface 22 of the light guide 18 and thus approximately halfway between its top 60 and its bottom 62, in the desired Direction focused.

Figur 7 zeigt eine Ausgestaltung mit einem Reflektor 67, dessen Reflexionsfläche im Raum durch eine um 360° um eine Achse 69 herum erfolgendes Verschwenken eines Parabelabschnitts 24 erzeugt wird, wie er in der Figur 1 dargestellt und in der zugehörigen Beschreibung erläutert worden ist. In der Ausgestaltung, die in der Figur 1 dargestellt ist, besitzt das im Lichtleiter 18 propagierende Licht einen Öffnungswinkel von etwa 90°. Beim Gegenstand der Figur 7 sind vier Halbleiterlichtquellen 71, 73, 75, 77 so angeordnet, dass sich die Öffnungswinkel ihrer jeweils im kreisrunden Lichtleiter 79 liegenden Lichtbündel 81 etwa zu einem Vollkreis ergänzen. FIG. 7 shows an embodiment with a reflector 67, the reflection surface in the space by a 360 ° around an axis 69 around pivoting around a parabola portion 24 is generated, as shown in the FIG. 1 has been illustrated and explained in the accompanying description. In the embodiment, in the FIG. 1 is shown, the light propagating in the light guide 18 has an opening angle of about 90 °. At the subject of FIG. 7 four semiconductor light sources 71, 73, 75, 77 arranged so that the opening angle of each lying in the circular light guide 79 light bundles 81 complement each other to a full circle.

Der kreisrunde Lichtleiter 79, dessen Geometrie und Anordnung relativ zum Reflektor 67 im Übrigen bevorzugt der Geometrie des Lichtleiters 18 aus der Figur 1 und dessen Anordnung relativ zum Reflektor 14 entspricht, weist in der Mitte eine quadratische Ausnehmung auf. Diese Ausnehmung wird von 4 Flächen begrenzt, an denen die vier Halbleiterlichtquellen 71, 73, 75, 77 fixiert sind, wobei je eine der Halbleiterlichtquellen 71, 73, 75, 77 an jeder Fläche angeordnet ist.The circular light guide 79, whose geometry and arrangement relative to the reflector 67, moreover, preferably the geometry of the light guide 18 from the FIG. 1 and whose arrangement corresponds to the reflector 14, has a square recess in the middle. This recess is delimited by 4 surfaces on which the four semiconductor light sources 71, 73, 75, 77 are fixed, wherein each one of the semiconductor light sources 71, 73, 75, 77 is arranged on each surface.

Der kreisrunde Lichtleiter 79 mit den vier in einer zentralen Ausnehmung angeordneten Halbleiterlichtquellen 71, 73, 75, 77 wird beim Gegenstand der Figur 7 durch einen Abstandshalter 83 und eine dem Reflektor 67 tragende Trägerstruktur in einer definierten Position relativ zu dem Reflektor 67 gehalten. Die Halteposition erfüllt die entsprechenden Merkmale des Anspruchs 1.The circular light guide 79 with the four semiconductor light sources arranged in a central recess 71, 73, 75, 77 is the subject of FIG. 7 held by a spacer 83 and the reflector 67 supporting support structure in a defined position relative to the reflector 67. The holding position meets the corresponding features of claim 1.

Die in der Figur 7 dargestellte kreisförmige Geometrie dient zur Erzeugung einer homogen beleuchteten Ring- und/oder Kreisfläche, wobei die gewünschte Lichtverteilung auch hier durch eine nicht dargestellte Streuscheibe der in der Figur 1 dargestellten und in der zugehörigen Beschreibung erläuterten Art und/oder durch einen Reflektor mit Facetten erzeugt werden kann.The in the FIG. 7 illustrated circular geometry is used to produce a homogeneously illuminated ring and / or circular area, the desired light distribution here also by a diffuser, not shown in the FIG. 1 illustrated and explained in the accompanying description type and / or can be generated by a reflector with facets.

An Stelle einer viereckigen Ausnehmung, wie sie in der Figur 7 dargestellt ist, kann auch eine dreieckige, eine fünfeckige oder eine sechseckige Ausnehmung im Lichtleiter 79 mit entsprechend vielen Halbleiterlichtquellen verwendet werden, um ein Erscheinungsbild der Leuchte mit einer gewünschten Homogenität zu erzielen. Je mehr Ecken die Ausnehmung aufweist, desto mehr Einkoppelflächen weist sie auf und desto mehr Halbleiterlichtquellen können verwendet werden. Die Homogenität steigt im Prinzip mit der Anzahl der in verschiedene Richtungen einkoppelnden Halbleiterlichtquellen.In place of a quadrangular recess, as in the FIG. 7 is shown, a triangular, a pentagonal or a hexagonal recess in the light guide 79 may be used with a corresponding number of semiconductor light sources to achieve an appearance of the lamp with a desired homogeneity. The more corners the recess has, the more coupling surfaces it has and the more semiconductor light sources can be used. The homogeneity increases in principle with the number of coupling in different directions semiconductor light sources.

Figur 8 zeigt eine Draufsicht auf eine Beleuchtungseinrichtung mit drei Modulen 90, 92, 94 der in der Figur 1 dargestellten und in der zugehörigen Beschreibung erläuterten Art, die hier nicht, wie beim Gegenstand der Figur 7, mit gleichmäßiger Krümmung ihrer Kanten zu einem Kreis, sondern mit einem alternierenden Wechsels der Krümmung des Vorzeichens ihrer Kanten, also mit einem Wechsel zwischen Rechtskrümmung und Linkskrümmung, zu einer S-förmigen Leuchtenanordnung zusammengesetzt worden sind. FIG. 8 shows a plan view of a lighting device with three modules 90, 92, 94 in the FIG. 1 illustrated and explained in the accompanying description type, not here, as in the subject matter of FIG. 7 , with a uniform curvature of its edges to a circle, but with an alternating change of the curvature of the sign of its edges, so with a change between right curvature and left curvature, to an S-shaped light assembly have been composed.

Die Ausgestaltung, die in der Figur 8 dargestellt ist, weist drei Halbleiterlichtquellen 96, 98, 100, drei flächige Lichtleiter 102, 104, 106 und drei Reflektorabschnitte 108, 110, 112 auf. Jeweils eine Halbleiterlichtquelle 96, 98, 112 ist funktional einem Lichtleiter 102, 104, 106 und einem Reflektorabschnitt 108, 110, 112 zugeordnet, wobei die Geometrien und relative Anordnung einer Halbleiterlichtquelle 96, 98, 100 zu ihrem Lichtleiter 102, 104, 106 und die Geometrie des Lichtleiters 102, 104, 106 und seine Anordnung relativ zum zugehörigen Reflektorabschnitt 108, 110, 112 den in Verbindung mit der Figur 1 beschriebenen Zusammenhängen entspricht.The design, in the FIG. 8 has three semiconductor light sources 96, 98, 100, three planar light guides 102, 104, 106 and three reflector sections 108, 110, 112. Each of a semiconductor light source 96, 98, 112 is functionally associated with a light guide 102, 104, 106 and a reflector section 108, 110, 112, wherein the geometries and relative arrangement of a semiconductor light source 96, 98, 100 to their optical fibers 102, 104, 106 and the Geometry of the light guide 102, 104, 106 and its arrangement relative to the associated reflector portion 108, 110, 112 in conjunction with the FIG. 1 corresponds to the relationships described.

An Stelle von drei S-förmig aneinandergereihten Modulen können auch zwei, vier, fünf oder beliebig viele Module mit alternierender Krümmung aneinandergesetzt werden. Die Krümmung muss auch nicht von Modul zu Modul 90, 92, 94 ihr Vorzeichen wechseln, sondern es können auch ein oder mehrere Module mit einem ersten Krümmungsverhalten an ein oder mehrere Module mit einem zweiten Krümmungsverhalten anschließen.Instead of three S-shaped modules lined up, two, four, five or any number of modules with alternating curvature can be put together. The curvature does not have to change its sign from module to module 90, 92, 94, but it can also connect one or more modules with a first curvature behavior to one or more modules with a second curvature behavior.

Durch geeignetes Anordnen, Skalieren und Beschneiden von Reflektorabschnitten kann auch eine rechteckige Abschlussscheibe homogen durch eine Ausgestaltung einer erfindungsgemäßen Beleuchtungseinrichtung ausgeleuchtet werden.By suitably arranging, scaling and trimming reflector sections, a rectangular cover lens can also be illuminated homogeneously by a design of a lighting device according to the invention.

Fig. 9 zeigt eine Draufsicht auf eine Beleuchtungseinrichtung 114, die dazu eingerichtet ist, ein Rechteck 116 homogen zu beleuchten. Dazu wird ein Reflektor 117, wie er in der Figur 1 dargestellt ist, in mehrere Segmente 118, 120, 122, 124, 126 aufgeteilt. Im Übrigen basiert der Gegenstand der Figur 9 auf dem Gegenstand der Figur 1. Dies gilt insbesondere für die Zusammenhänge von Geometrie und Anordnung von Halbleiterlichtquelle, Lichtleiter und Reflektor, wie sie in der Figur 1 dargestellt sind und in der zugehörigen Beschreibung näher erläutert werden. Insofern konzentriert sich die folgende Darstellung auf Abweichungen der Gegenstände der Figuren 9 und 10 vom Gegenstand der Figur 1. Fig. 9 shows a plan view of a lighting device 114 which is adapted to illuminate a rectangle 116 homogeneously. For this purpose, a reflector 117, as in the FIG. 1 is shown in several Segments 118, 120, 122, 124, 126 split. Incidentally, the subject matter of the FIG. 9 on the object of FIG. 1 , This applies in particular to the relationships of geometry and arrangement of semiconductor light source, light guide and reflector, as they are described in the FIG. 1 are illustrated and explained in more detail in the accompanying description. In this respect, the following presentation focuses on deviations of the objects of Figures 9 and 10 from the subject of FIG. 1 ,

Die Aufteilung des Reflektors 117 erfolgt beim Gegenstand der Figur 9 bevorzugt so, wie es in der Figur 9 am Beispiel von fünf Segmenten 118, 120, 122, 124, 126 dargestellt ist. Die Zahl der Segmente weicht jedoch je nach Ausgestaltung von der Zahl fünf ab und kann auch kleiner oder größer als fünf sein. In einer Ausgestaltung sind die Winkel, unter denen die Reflektorsegmente 118, 120, 122, 124, 126 jeweils von der Halbleiterlichtquelle 12 aus erscheinen, gleichgroß. Bei einer bezüglich des Winkels isotropen Helligkeitsverteilung der von der Halbleiterlichtquelle 12 ausgehenden Strahlung empfangen die Segmente 118, 120, 122, 124, 126 daher in etwa jeweils gleich viel Licht von der Halbleiterlichtquelle 12.The division of the reflector 117 takes place at the subject of FIG. 9 preferably as it is in the FIG. 9 illustrated by the example of five segments 118, 120, 122, 124, 126. However, depending on the embodiment, the number of segments deviates from the number five and may also be less than or greater than five. In one embodiment, the angles at which the reflector segments 118, 120, 122, 124, 126 each appear from the semiconductor light source 12, are the same size. Therefore, when the brightness distribution of the radiation emitted by the semiconductor light source 12 is isotropic relative to the angle, the segments 118, 120, 122, 124, 126 receive approximately the same amount of light from the semiconductor light source 12.

Die Winkelgrenzen zwischen den einzelnen Segmenten 118, 120, 122, 124, 126 werden durch Radialstrahlen markiert, die von der Lichtquelle 12 ausgehen, die in diesem Zusammenhang wieder als Punktlichtquelle betrachtet werden kann. Für jedes Segment 118, 120, 122, 124, 126 wird in der Draufsicht der Figur 9 ein oberer Kreisring und ein unterer Kreisring so bestimmt, dass diese Kreisbögen das jeweilige Segment jeweils in einem Punkt berühren. Jedes Reflektorsegment 118, 120, 122, 124, 126 wird damit durch einen oberen und einen unteren Kreisbogenabschnitt und durch zwei Radialstrahlen begrenzt. In der Summe lässt sich mit diesen Segmenten 118, 120, 122, 124, 126 das Rechteck 116 vollständig überdecken, wobei die Reflektorsegmente 118, 120, 122, 124, 126jedoch teilweise über das Rechteck 116 hinausstehen. Die über das Rechteck 116 hinausstehenden Teile der Segmente 118, 120, 122, 124, 126 dienen unter der Voraussetzung, dass die Reflektorsegmente 118, 120, 122, 124, 126 parallel gerichtetes Licht senkrecht zur Zeichenebene abstrahlen, nicht zur Beleuchtung des Rechtecks 116. Sie können daher abgeschnitten werden.The angular boundaries between the individual segments 118, 120, 122, 124, 126 are marked by radial rays emanating from the light source 12, which in this context can again be regarded as a point light source. For each segment 118, 120, 122, 124, 126, the top view of FIG FIG. 9 an upper circular ring and a lower circular ring are determined such that these circular arcs touch the respective segment in each case at one point. Each reflector segment 118, 120, 122, 124, 126 is thus delimited by an upper and a lower circular arc section and by two radial beams. In sum, it is possible with these segments 118, 120, 122, 124, 126 completely cover the rectangle 116, the reflector segments 118, 120, 122, 124, 126, however, partially projecting beyond the rectangle 116. The protruding beyond the rectangle 116 parts of the segments 118, 120, 122, 124, 126 are provided on the condition that the reflector segments 118, 120, 122, 124, 126 radiate collimated light perpendicular to the plane, not to illuminate the rectangle 116th They can therefore be cut off.

Die Figur 10 zeigt eine perspektivische Darstellung eines derart beschnittenen Reflektors 117 unterhalb einer rechteckigen Abdeckscheibe 128.The FIG. 10 shows a perspective view of such a trimmed reflector 117 below a rectangular cover plate 128th

Die Figur 11 zeigt eine Ausgestaltung, bei der die Lichtaustrittsfläche 22 des Lichtleiters 18 bereichsweise konvexe Streuelemente 130, bereichsweise keine Streuelemente und bereichsweise konkave Streuelemente 132 aufweist. Durch eine Variation der Anordnung und Geometrie der Streuelemente 130, 132 wird im Rahmen dieser Ausgestaltung die vorgeschriebene Lichtverteilung erzeugt, oder es wird die Erzeugung der vorgeschriebenen Lichtverteilung zumindest Unterstützt.The FIG. 11 shows an embodiment in which the light exit surface 22 of the light guide 18 partially convex scattering elements 130, in some areas no scattering elements and partially concave scattering elements 132 has. By a variation of the arrangement and geometry of the scattering elements 130, 132, the prescribed light distribution is generated in the context of this embodiment, or at least the generation of the prescribed light distribution is supported.

Figur 12 zeigt einen Querschnitt durch einen Lichtleiter 18.1 einer weiteren Ausgestaltung, wobei der Querschnitt hier so orientiert ist, dass er zum Beispiel in der Ebene liegt, in der der Parabelabschnitt 24 der Figur 1 liegt. Figur 12 zeigt insbesondere die Möglichkeit, eine weitere Lichtaustrittsfläche 22.10 eines Lichtleiters zu erzeugen, um die homogen erleuchtete Fläche weiter zu vergrößern. Die weitere Lichtaustrittsfläche 22.10 liegt in der dargestellten Ausgestaltung in Bezug auf die Lichtabstrahlrichtung 134 der Beleuchtungseinrichtung unterhalb der ersten Lichtaustrittsfläche 22 und besitzt einen eigenen, ihr zugeordneten Reflektor 14.1, der nur von dem über die zweite Lichtaustrittsfläche 22.10 austretenden Licht beleuchtet wird. FIG. 12 shows a cross section through an optical fiber 18.1 of a further embodiment, wherein the cross section is here oriented so that it lies for example in the plane in which the parabola section 24 of FIG. 1 lies. FIG. 12 shows, in particular, the possibility of producing a further light exit surface 22.10 of a light guide in order to further increase the homogeneously illuminated surface. The further light exit surface 22.10 in the embodiment shown is located below the first light exit surface 22 with respect to the light emission direction 134 of the illumination device a separate, their associated reflector 14.1, which is illuminated only by the light exiting via the second light exit surface 22.10.

Alternativ dazu kann die zur Erzeugung der zweiten Lichtaustrittsfläche 22.10 dienende Geometrie, die in der Ausgestaltung der Figur 10 als Stufe 136 dargestellt ist, auch oberhalb von der ersten Lichtaustrittsfläche 22 angeordnet sein. Dies hat den Vorteil, dass das an einem zugeordneten, dann ebenfalls oberhalb der ersten Lichtaustrittsfläche 22 angeordneten Reflektor 14 reflektierte Licht nicht mehr die Lichtleiterfläche quer zur Hauptausbreitungsrichtung zwischen der Halbleiterlichtquelle 12 und der ersten Lichtaustrittsfläche 22 durchqueren muss. Eine mit diesem Durchqueren verbundene Abschwächung durch Absorption innerhalb des Lichtleiters 18.1 und durch Fresnelverluste beim Eintritt von unten in den Lichtleiter 18.1 und beim Austritt nach oben aus dem Lichtleiter 18.1 kann dann vermieden werden.Alternatively, the geometry used to generate the second light exit surface 22.10, which in the embodiment of FIG FIG. 10 is shown as stage 136, also be arranged above the first light exit surface 22. This has the advantage that the light reflected at an associated reflector 14, which is then likewise arranged above the first light exit surface 22, no longer has to traverse the light guide surface transversely to the main propagation direction between the semiconductor light source 12 and the first light exit surface 22. An attenuation associated with this traversing by absorption within the optical waveguide 18.1 and by Fresnel losses when entering from below into the optical waveguide 18.1 and when exiting upwards from the optical waveguide 18.1 can then be avoided.

Die Figuren 13 und 14 veranschaulichen verschiedene Möglichkeiten der Anpassung des Platzbedarfs von Ausgestaltungen erfindungsgemäßer Beleuchtungseinrichtungen an den zur Verfügung stehenden Bauraum, der zum Beispiel durch Designvorgaben eingeschränkt sein kann. Beim Gegenstand der Figur 13 erfolgt die Anpassung durch eine schräg und im wesentlichen parallel zu einer schräg im Raum angeordneten Abdeckscheibe 140 einer Leuchte oder eines Scheinwerfers erfolgende Anordnung des flächigen Lichtleiters 18. Beim Gegenstand der Figur 12 erfolgt die Anpassung durch eine entsprechende Krümmung des Lichtleiters 18.The FIGS. 13 and 14 illustrate various ways of adapting the space requirements of embodiments of lighting devices according to the invention to the available space, which may be limited for example by design specifications. At the subject of FIG. 13 the adaptation by an obliquely and substantially parallel to an obliquely arranged in the space cover 140 of a lamp or a headlight arrangement of the planar light guide 18. The subject of FIG. 12 the adjustment is done by a corresponding curvature of the light guide 18th

Claims (9)

  1. A lighting device (10) for a motor vehicle, having a semiconductor source (12) and a reflector (14), wherein the lighting device (10) has a fiber-optical light guide (18) receiving light (16) from the semiconductor source (12) and aiming it at the reflector (14), wherein the reflector (14) has a basic shape created by pivoting of a parabolic portion (24) about an imaginary axis (26), and the light guide has a plane light input face receiving light (16) from the semiconductor source (12) and a curved light output face (22), which is defined by a circular arc, characterized in that the center point of the circle belonging to the circular arc is defined by the semiconductor source (12) located just in front of the light input face of the light guide; and that the light guide (18) and the reflector (14) are located relative to one another in such a way, and the light output face (22) of the light guide (18) is curved in such a way, that a focal line (28) of the reflector (14), which line occurs upon pivoting as a result of the motion of the focal point (30) of the parabolic portion (24), is located in the light output face (22).
  2. The lighting device (10) of claim 1, characterized in that the light output face (22) has the form of a part of a cylinder jacket that is defined by two circular arcs (22_1, 22_2), which extend parallel, and two rectilinear portions (22_3, 22_4).
  3. The lighting device (10) of claim 1, characterized in that partial areas (18_1, 18_2) of the light guide (18), which are not used for conducting the light (16) of the light source (12) from its light input face (20) to its light output face (22), are used for fastening purposes, and the unused areas are determined by the opening angle of the light being propagated in the light guide (18).
  4. The lighting device (10) of one of the foregoing claims, characterized in that a covering disk (32), which in the light propagation direction is located above the reflector (14), has scattering elements (34) on its face oriented toward the reflector (14) that curve in convex fashion outward from the covering disk (32).
  5. The lighting device (10) of one of the foregoing claims, characterized in that a modulation, in the form of facets (40, 42, 44), which locally has a slope oscillating in alternation about the respective value of the slope of the parabolic portion (24), is superimposed on a parabolic portion (24) that determines the basic shape of the reflector (14).
  6. The lighting device (10) of one of the foregoing claims, characterized in that it has a covering disk (32) that has scattering elements (34) and has a reflector (14) that has facets (40, 42, 44).
  7. The lighting device (10) of one of the foregoing claims, characterized in that the light guide (18) has an increasing spacing between its top side (60) and its underside (62), beginning at its light input face (20) and extending toward the light output face (22).
  8. The lighting device (10) of one of the foregoing claims, characterized in that the reflector (67) has a reflection face which is generated by means of a pivoting, by 360° about an axis (69), of a parabolic portion (24) in space.
  9. The lighting device (10) of one of the foregoing claims, characterized in that the lighting device (10) has a circular fiber-optical light guide (79), which in the middle has a recess that is defined by faces on which semiconductor sources (71, 73, 75, 77) are fixed, and one of each of the semiconductor sources (71, 73, 75, 77) is located on each face.
EP11184485.8A 2010-10-15 2011-10-10 Lighting device for a motor vehicle with a semiconductor light source and a reflector Not-in-force EP2442013B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010048660A DE102010048660A1 (en) 2010-10-15 2010-10-15 Lighting device for a motor vehicle with a semiconductor light source and a reflector

Publications (3)

Publication Number Publication Date
EP2442013A2 EP2442013A2 (en) 2012-04-18
EP2442013A3 EP2442013A3 (en) 2014-05-07
EP2442013B1 true EP2442013B1 (en) 2018-04-11

Family

ID=45470253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11184485.8A Not-in-force EP2442013B1 (en) 2010-10-15 2011-10-10 Lighting device for a motor vehicle with a semiconductor light source and a reflector

Country Status (2)

Country Link
EP (1) EP2442013B1 (en)
DE (1) DE102010048660A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004349A1 (en) * 2011-02-17 2012-08-23 Automotive Lighting Reutlingen Gmbh Lighting device of a motor vehicle
DE102012215124B4 (en) * 2012-08-24 2018-11-08 Automotive Lighting Reutlingen Gmbh Lighting device with multiple light sources and light guide bodies and a reflector
DE102013205303A1 (en) 2013-03-26 2014-10-02 Automotive Lighting Reutlingen Gmbh Lighting device for a motor vehicle
DE102013215471A1 (en) 2013-08-06 2015-03-05 Automotive Lighting Reutlingen Gmbh Plate-shaped light guide element made of a transparent material and light module for a motor vehicle lighting device with such a light guide element
DE102013110345A1 (en) * 2013-09-19 2015-04-02 Hella Kgaa Hueck & Co. Lighting device for vehicles
DE112014005269B4 (en) * 2013-11-19 2020-03-12 Mitsubishi Electric Corporation Front light module and front light device
CN106536279B (en) * 2014-07-15 2020-04-28 亮锐控股有限公司 Vehicle lighting module
JP6479412B2 (en) 2014-10-24 2019-03-06 スタンレー電気株式会社 Vehicle lighting
DE102015202595A1 (en) 2015-02-12 2016-08-18 Automotive Lighting Reutlingen Gmbh Lighting device of a vehicle
DE102015205732A1 (en) 2015-03-30 2016-10-06 Automotive Lighting Reutlingen Gmbh A plate-shaped light guide element, light guide element arrangement with a plurality of such light guide elements and motor vehicle light with such a light guide element or such a light guide element arrangement
FR3079596B1 (en) * 2018-03-30 2022-12-30 Valeo Vision OPTICAL DEVICE WITH OPTICAL GUIDE AND INDEXED REFLECTOR
CN108758546A (en) * 2018-08-09 2018-11-06 华域视觉科技(上海)有限公司 Dipped beam lamp reflector, dipped beam car light and automobile
DE102018125438A1 (en) * 2018-10-15 2020-04-16 HELLA GmbH & Co. KGaA Lighting device for vehicles
DE102019129369A1 (en) * 2019-10-30 2021-05-06 Marelli Automotive Lighting Reutlingen (Germany) GmbH Light module, lighting device and motor vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027821B2 (en) * 2003-03-11 2007-12-26 株式会社小糸製作所 Vehicle lighting
JP4049260B2 (en) * 2003-03-11 2008-02-20 株式会社小糸製作所 Vehicle lighting
DE10311317A1 (en) * 2003-03-14 2004-09-23 Volkswagen Ag Lighting device for vehicle, e.g. flashing light in external mirror, has several output coupling structures arranged on surface of light conductor to lie essentially at reflector surfaces focal point
DE10336162B4 (en) * 2003-08-07 2009-05-28 Odelo Gmbh Lighting unit with light source and light guide
DE102005032650A1 (en) * 2005-07-13 2007-02-01 Hella Kgaa Hueck & Co. Lamp for vehicles
DE102008012195A1 (en) * 2008-03-03 2009-09-10 Hella Kgaa Hueck & Co. Illumination device for motor vehicle, has flat light conducting element containing two flat sides and multiple narrow sides connected by flat sides, where light source is provided to narrow side of flat light conducting element
FR2934353B1 (en) * 2008-07-25 2011-03-11 Valeo Vision Sas OPTICAL SYSTEM WITH LARGE EMISSION SURFACE LIGHTING FUNCTION FOR MOTOR VEHICLE
DE102008038668A1 (en) * 2008-08-12 2010-02-18 Hella Kgaa Hueck & Co. Signal light for use in motor vehicle for production of e.g. rear light, has lateral surface segment forming light decoupling surface of rod-shaped light guiding element and arranged at longitudinal side of light guiding element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102010048660A1 (en) 2012-04-19
EP2442013A2 (en) 2012-04-18
EP2442013A3 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
EP2442013B1 (en) Lighting device for a motor vehicle with a semiconductor light source and a reflector
EP2719940B1 (en) Light module
EP2688769B1 (en) Vehicle lamp for lighting the interior of the vehicle
EP2587125B1 (en) Headlamp projection module for a motor vehicle
EP2857740B1 (en) Motor vehicle lighting device
EP3080513B1 (en) Motor-vehicle lighting device
DE102013212353B4 (en) Motor vehicle lighting device with a light guide arrangement having coupling optics and transport and shaping optics
EP1674789B1 (en) Lamp unit comprising a light source, a light conducting body and a light redirecting part
EP3012521B1 (en) Light for a motor vehicle
EP1978296A2 (en) Light conduction body and illumination unit with light conduction body
EP2607774A2 (en) Motor vehicle lighting device with a long and flat luminescent area
EP2871405A2 (en) Optical fibre, optical fibre structure and vehicle lighting device
EP3168657A1 (en) Attachment lens and attachment lens assembly with multiple attachment lenses
EP2490052A1 (en) Illumination device of a motor vehicle
EP2372235A2 (en) Vehicle light with an optical fibre lens adapter
EP3812653A1 (en) Signal light with a light guide
WO2015043819A1 (en) Lighting device for vehicles
DE102017125236A1 (en) Cover for a light module and light module
DE102008012195A1 (en) Illumination device for motor vehicle, has flat light conducting element containing two flat sides and multiple narrow sides connected by flat sides, where light source is provided to narrow side of flat light conducting element
DE102012215124A1 (en) Illumination device for use as e.g. tail lamp, has paraboloider reflector arranged optical downstream of light module, and light guidance bodies whose light exit surface is arranged in focal spots of reflector
EP3473918B1 (en) Lighting device for a motor vehicle headlight
EP2253880A2 (en) Light for vehicles
DE102019112343A1 (en) Motor vehicle light
DE102015202595A1 (en) Lighting device of a vehicle
DE102015218134A1 (en) Luminaire light module for a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/12 20060101ALI20140328BHEP

Ipc: F21V 13/04 20060101ALI20140328BHEP

Ipc: F21V 7/00 20060101ALI20140328BHEP

Ipc: F21S 8/10 20060101AFI20140328BHEP

Ipc: F21V 5/00 20060101ALI20140328BHEP

Ipc: F21V 13/12 20060101ALI20140328BHEP

17P Request for examination filed

Effective date: 20141014

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011014027

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041141000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 43/14 20180101ALI20180111BHEP

Ipc: F21S 41/33 20180101ALI20180111BHEP

Ipc: F21S 41/20 20180101ALI20180111BHEP

Ipc: F21S 41/147 20180101ALI20180111BHEP

Ipc: F21S 41/24 20180101ALI20180111BHEP

Ipc: F21S 43/20 20180101ALI20180111BHEP

Ipc: F21S 43/251 20180101ALI20180111BHEP

Ipc: F21S 41/141 20180101AFI20180111BHEP

Ipc: F21S 43/40 20180101ALI20180111BHEP

INTG Intention to grant announced

Effective date: 20180202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 988421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014027

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180411

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180712

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014027

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

RIC2 Information provided on ipc code assigned after grant

Ipc: F21S 41/24 20180101ALI20180111BHEP

Ipc: F21S 41/33 20180101ALI20180111BHEP

Ipc: F21S 43/14 20180101ALI20180111BHEP

Ipc: F21S 41/141 20180101AFI20180111BHEP

Ipc: F21S 43/40 20180101ALI20180111BHEP

Ipc: F21S 41/20 20180101ALI20180111BHEP

Ipc: F21S 43/251 20180101ALI20180111BHEP

Ipc: F21S 43/20 20180101ALI20180111BHEP

Ipc: F21S 41/147 20180101ALI20180111BHEP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

26N No opposition filed

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181010

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190919

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 988421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190918

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180411

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111010

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011014027

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031