EP2433002B1 - Propulseur a plasma a effet hall - Google Patents

Propulseur a plasma a effet hall Download PDF

Info

Publication number
EP2433002B1
EP2433002B1 EP10728782.3A EP10728782A EP2433002B1 EP 2433002 B1 EP2433002 B1 EP 2433002B1 EP 10728782 A EP10728782 A EP 10728782A EP 2433002 B1 EP2433002 B1 EP 2433002B1
Authority
EP
European Patent Office
Prior art keywords
conductive
semi
plasma thruster
plasma
thruster according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10728782.3A
Other languages
German (de)
English (en)
Other versions
EP2433002A1 (fr
Inventor
Serge Barral
Stéphan J. ZURBACH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Fundamental Technological Research Po
Safran Aircraft Engines SAS
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
SNECMA SAS
Institute Of Fundamental Technological Research Polish Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES, Centre National de la Recherche Scientifique CNRS, SNECMA SAS, Institute Of Fundamental Technological Research Polish Academy Of Sciences filed Critical Centre National dEtudes Spatiales CNES
Publication of EP2433002A1 publication Critical patent/EP2433002A1/fr
Application granted granted Critical
Publication of EP2433002B1 publication Critical patent/EP2433002B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • H01J27/14Other arc discharge ion sources using an applied magnetic field
    • H01J27/143Hall-effect ion sources with closed electron drift
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators

Definitions

  • the present invention relates to a Hall effect plasma thruster comprising a main annular ionization and acceleration channel having an open downstream end, at least one cathode, an annular anode concentric to the main annular channel, a pipe and a distributor. for supplying ionizable gas to the channel and a magnetic circuit for creating a magnetic field in said main annular channel.
  • the invention relates in particular to Hall effect plasma thrusters used for the electric propulsion of satellites.
  • the life of Hall effect plasma thrusters is essentially determined by the erosion of the ceramic insulating channel under the effect of ion bombardment. Indeed, due to the topography of the electrical potential in the channel, part of the ions created is accelerated radially towards the walls.
  • the discharge channels of the Hall effect thrusters currently consist of homogeneous insulating ceramic, usually based on boron nitride and silica (BN-SIO 2 materials ). Boron nitride ceramics allow Hall effect thrusters to achieve high performance in terms of efficiency, but exhibit high erosion rates under ion bombardment that limit the life of the propellants to about 10,000 hours as well. as their operation at higher specific impulses.
  • the document US 2002/008455 A1 describes an example of a Hall effect plasma thruster.
  • the present invention aims to overcome the aforementioned drawbacks and in particular to increase the life of the Hall effect plasma thrusters while maintaining a high energy efficiency.
  • a Hall effect plasma thruster comprising a main annular ionization and acceleration channel having an open downstream end, at least one cathode, an annular anode concentric with the annular channel.
  • main a pipe and a distributor for supplying ionizable gas to the channel and a magnetic circuit for creating a magnetic field in said main annular channel, characterized in that the main annular channel comprises internal and external annular wall portions located at the adjacent said open end each comprising an assembly of juxtaposed conductive rings or semi-conductors in the form of lamellae separated by thin layers of insulation.
  • each conductive or semiconductor ring is divided into segments arranged in angular sectors and isolated from each other.
  • each conductive or semiconductor ring is arranged in staggered relation to the segments of neighboring conductive or semiconductor rings.
  • the thin insulating layers are disposed on all sides of a conductive or semiconductor ring with the exception of the face defining a portion of the inner wall of the main annular channel.
  • the assembly of conductive or semiconductor rings may extend over a length of the inner and outer annular walls less than the total length of the main annular channel.
  • the conductive or semiconductor rings are made of graphite whereas the thin insulating layers are made of dielectric material and in particular of pyrolytic boron nitride.
  • the thickness of the conductive or semiconductor rings is of the order of the electronic Larmor radius.
  • the conductive or semiconductor rings have a thickness of between 0.7 and 0.9 mm while the thin insulating layers have a thickness of between 0.04 and 0.08 mm.
  • a pseudo-insulating discharge channel is made from a stack of rings or portions of rings made of a conductive or semiconductor material and covered with a thin layer of insulating ceramic.
  • the invention thus optimizes the structure of the discharge channels of the Hall effect plasma thrusters by implementing a partitioning of conducting or semiconducting walls into segments. isolated small dimensions which results in a sharp decrease in the short-circuit current which avoids a significant loss of efficiency.
  • the propulsion of telecommunication satellites is associated with strong economic stakes and the improvements that can be made to Hall effect plasma sources - currently recognized as the best performing for station keeping - are of great interest.
  • the present invention responds directly to the trend of increased mission times required of geostationary satellites by improving the longevity of Hall effect plasma thrusters.
  • the present invention also makes it possible to operate thrusters with higher specific pulses (Isp) while maintaining a significant service life. It can therefore provide a significant competitive advantage of Hall effect plasma thruster propulsion.
  • Hall effect plasma thruster also called stationary plasma thruster (PPS)
  • PPS stationary plasma thruster
  • the anode 125 and the ionizable gas distributor can inject the fuel (such as xenon) into the propellant and collect the electrons from the plasma discharge.
  • the fuel such as xenon
  • the hollow cathode 140 has the function of generating the electrons which allow the creation of a plasma in the propellant and the neutralization of the jet of ions ejected by the propellant.
  • the magnetic circuit comprises an internal pole 134, an external pole 136, a magnetic yoke connecting the internal 134 and outer 136 poles, with a central ferromagnetic core 133 and peripheral ferromagnetic bars 135, one or more coils 131 arranged around the central core 133 and coils 132 disposed around peripheral bars 135.
  • the magnetic circuit allows the confinement of the plasma and the creation of a strong magnetic field E at the output of the thruster which allows the acceleration of ions up to speeds of the order of 20 km / s.
  • the discharge channel 120 allows the confinement of the plasma and its composition determines the performance of the propellant.
  • the discharge channel 120 is ceramic.
  • the thrust of the engine is ensured by the ejection of a jet of ions at high speed.
  • this jet being slightly divergent, the collision of high energy ions with the channel wall leads to erosion of the ceramic output of the propellant.
  • the discharge channel 120 comprises at least a portion 127 of the inner annular wall and at least a portion 128 of the outer annular wall, located in the vicinity of the open end 129 of the channel, which are not made of solid ceramic, but which each comprise an assembly of conductive rings or semi-conductors 150 juxtaposed in the form of lamellae separated by thin layers of insulator 152 (see figure 2 ).
  • the object of the invention is to significantly reduce the erosion of the thruster discharge channel. It also reduces energy losses and discharge instabilities that usually affect Hall effect thrusters using a discharge channel of electrically conductive or semiconductor material. While using materials such as graphite and carbides more resistant than ceramics with respect to ion bombardment, thanks to an assembly of conductive or semiconductor rings (for example in graphite) separated by thin layers of insulation (for example boron nitride), the invention makes it possible at the same time to reduce the erosion of the channel and to reduce the instabilities of discharge.
  • the discharge channel 120 of a plasma thruster can thus comprise both a traditional upstream ceramic part with a bottom wall 123 and outer cylindrical walls 121 and internal 122 and a downstream part located between the part upstream and the opening 129 and comprising outer cylindrical walls 128 and internal 127 with a laminated structure composed of juxtaposed conductive or semi-conducting rings 150, which are insulated by thin layers of insulator 152 but have an uncoated surface 151 of insulation on the inner side facing the inner space 124 of the annular channel 120.
  • the rings 150 are furthermore positioned in a plurality of isolated angular sections each extending over an angular sector ⁇ ( Figures 3 and 3A ).
  • angular sector
  • the segments 150a of a conductive or semiconductor ring 150 are arranged in staggered relation to the segments 150b of the neighboring rings 150 ( Fig. 3 ).
  • the thin insulating layers 152, 153, 154, 155 are disposed on all sides of a segment of a conductive or semiconductor ring 150 with the exception of the face 151 defining a portion of the inner wall of the main annular channel 120.
  • the assembly of conductive rings 150 extends over a length of the inner and outer annular walls of between 20 and 50% and preferably between 30 and 40% of the total length of the main annular channel 120. but this range of values is not limiting.
  • the sizing of the conductive or semiconductor rings 150 can be established from the calculation of the electronic currents received and emitted by the walls. As a first approximation, it can be shown that the short-circuit current flowing in the walls is proportional to the ionic current collected, which at constant electronic temperature and plasma density is approximately proportional to the conductive surface in contact with the plasma.
  • the potential difference seen by a conductive element is approximately proportional to its axial extent.
  • all losses by Joule effect by short circuit of the plasma is approximately proportional to the thickness of the rings.
  • the short-circuit current becomes negligible in the currents related to the secondary electronic emission (which are the only ones that exist in the case of an insulator) when the thickness of the rings is of the order of electronic Larmor radius. This defines the critical thickness of the rings to obtain a pseudo-insulating channel.
  • the conductive rings 150 for example made of graphite with a low coefficient of expansion, may have a thickness of between 0.7 and 0.9 mm and typically of 0.8 mm.
  • the thin insulating layers 152 to 155 can have a thickness of between 0.04 and 0.08 mm, typically 0.05 mm, and can be deposited on the segments of conductive rings. 150 by a chemical vapor deposition process so as to cover each ring segment over its entire surface except at the edge 151 in contact with the plasma.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Description

    Domaine de l'invention
  • La présente invention a pour objet un propulseur à plasma à effet Hall comprenant un canal annulaire principal d'ionisation et d'accélération présentant une extrémité aval ouverte, au moins une cathode, une anode annulaire concentrique au canal annulaire principal, une canalisation et un distributeur pour alimenter en gaz ionisable le canal et un circuit magnétique de création d'un champ magnétique dans ledit canal annulaire principal.
  • L'invention concerne en particulier les propulseurs à plasma à effet Hall mis en oeuvre pour la propulsion électrique de satellites.
  • Art antérieur
  • La durée de vie des propulseurs à plasma à effet Hall est essentiellement déterminée par l'érosion du canal isolant en céramique sous l'effet du bombardement des ions. En effet, en raison de la topographie du potentiel électrique dans le canal, une partie des ions créés est accélérée radialement vers les parois.
  • L'allongement des missions des satellites de télécommunication et l'accroissement des vitesses d'éjection de plasma requises (en particulier pour les propulseurs dits à forte impulsion spécifique) imposent des durées de vie de plus en plus longues que ne peuvent plus satisfaire les céramiques classiques à base de nitrure de bore.
  • La forte résistance vis-à-vis du bombardement ionique de certains matériaux électriquement conducteurs ou semi-conducteurs tels que le graphite en font en théorie des candidats idéaux pour le canal de décharge des propulseurs à effet Hall.
  • L'idée d'utiliser des matériaux conducteurs et le graphite en particulier a été étudiée aux USA par Y. Raitses et al (Université de Princeton). Ces études ont relevé l'avantage du graphite en terme de durée de vie, mais n'ont pas tenté de résoudre le problème de baisse de rendement lié au court-circuitage du plasma.
  • Les faibles rendements constatés avec les matériaux conducteurs ont jusqu'à ce jour empêché la généralisation de leur emploi dans la construction de canaux d'accélération de propulseurs à plasma.
  • Ainsi, les canaux de décharge des propulseurs à effet Hall sont actuellement constitués de céramique isolante homogène, le plus souvent à base de nitrure de bore et de silice (matériaux BN-SIO2). Les céramiques à base de nitrure de bore permettent aux propulseurs à effet Hall d'atteindre des performances élevées en terme de rendement, mais présentent des taux d'érosion élevés sous bombardement ionique qui limitent la durée de vie des propulseurs à environ 10 000 heures ainsi que leur fonctionnement à plus hautes impulsions spécifiques.
    Le document US 2002/008455 A1 décrit un exemple de propulseur à plasma à effet Hall.
  • Définition et objet de l'invention
  • La présente invention a pour but de remédier aux inconvénients précités et en particulier d'accroître la durée de vie des propulseurs à plasma à effet Hall tout en maintenant un rendement énergétique élevé.
  • Ces buts sont atteints, conformément à l'invention, grâce à un propulseur à plasma à effet Hall comprenant un canal annulaire principal d'ionisation et d'accélération présentant une extrémité aval ouverte, au moins une cathode, une anode annulaire concentrique au canal annulaire principal, une canalisation et un distributeur pour alimenter en gaz ionisable le canal et un circuit magnétique de création d'un champ magnétique dans ledit canal annulaire principal, caractérisé en ce que le canal annulaire principal comprend des portions de parois annulaires interne et externe situées au voisinage de ladite extrémité ouverte qui comprennent chacune un assemblage d'anneaux conducteurs ou semi-conducteurs juxtaposés en forme de lamelles séparés par de fines couches d'isolant.
  • Avantageusement, chaque anneau conducteur ou semi-conducteur est divisé en segments disposés selon des secteurs angulaires et isolés les uns des autres.
  • De préférence, les segments de chaque anneau conducteur ou semi-conducteur sont disposés en quinconce par rapport aux segments des anneaux conducteurs ou semi-conducteurs voisins.
  • Selon une caractéristique préférentielle de l'invention, les fines couches d'isolant sont disposées sur toutes les faces d'un anneau conducteur ou semi-conducteur à l'exception de la face définissant une partie de la paroi interne du canal annulaire principal.
  • L'assemblage d'anneaux conducteurs ou semi-conducteurs peut s'étendre sur une longueur des parois annulaires interne et externe inférieure à la longueur totale du canal annulaire principal.
  • Selon un mode particulier de réalisation, les anneaux conducteurs ou semi-conducteurs sont en graphite tandis que les fines couches d'isolant sont en matériau diélectrique et en particulier en nitrure de bore pyrolytique.
  • L'épaisseur des anneaux conducteurs ou semi-conducteurs est de l'ordre du rayon de Larmor électronique.
  • Leur épaisseur maximale a est estimée par l'expression suivante : a < 8 3 r ,
    Figure imgb0001
    r est le rayon de Larmor des électrons, ainsi qu'une condition qui détermine l'angle de découpage azimutal : R . α < 5 abs Ez Et . r
    Figure imgb0002
    avec :
    • ° Ez, Et : champ électrique le long de l'axe et de l'azimut,
    • ° R : rayon de bord de la portion d'anneau en contact avec le plasma,
    • °α : angle de la portion d'anneau
  • Selon un exemple de réalisation, les anneaux conducteurs ou semi-conducteurs présentent une épaisseur comprise entre 0,7 et 0,9 mm tandis que les fines couches d'isolant présentent une épaisseur comprise entre 0,04 et 0,08 mm.
  • Selon l'invention, un canal de décharge pseudo-isolant est réalisé à partir d'un empilement d'anneaux ou de portions d'anneaux faites d'un matériau conducteur ou semi-conducteur et recouverts d'une fine couche de céramique isolante.
  • Ceci permet un accroissement de la durée de vie du propulseur d'un facteur de 3 à 4 sans perte possible de rendement, dès lors que la structure permet de bénéficier des avantages de faible taux d'érosion des matériaux conducteurs sans en subir les inconvénients, et le canal peut se comporter comme un isolant électrique vis-à-vis du plasma avec une limitation au maximum des courants électroniques créés dans le canal de décharge.
  • L'invention optimise ainsi la structure des canaux de décharge des propulseurs à plasma à effet Hall en mettant en oeuvre un partitionnement de parois conductrices ou semi-conductrices en segments isolés de faibles dimensions qui se traduit par une forte diminution du courant de court-circuit qui évite une perte sensible de rendement.
  • La propulsion des satellites de télécommunication est associée à des enjeux économiques forts et les améliorations qui peuvent être apportées aux sources de plasma à effet Hall - reconnues actuellement comme les plus performants pour le maintien à poste - présentent un grand intérêt. La présente invention répond directement à la tendance à l'accroissement des durées de mission demandées aux satellites géostationnaires en améliorant la longévité des propulseurs à plasma à effet Hall.
  • La présente invention permet également de faire fonctionner des propulseurs avec des impulsions spécifiques (Isp) plus élevées tout en conservant une durée de vie significative. Elle peut donc procurer un avantage concurrentiel important de la propulsion par propulseur à plasma à effet Hall.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation, donnés à titre d'exemple, en référence aux dessins annexés, sur lesquels :
    • la figure 1 est une vue schématique en perspective avec arrachement d'un propulseur à plasma à effet Hall auquel est applicable l'invention,
    • la figure 2 est une vue en perspective d'un quart d'un canal de décharge avec structure lamellée selon un exemple de réalisation de l'invention,
    • la figure 3 montre une variante proposée et est une vue en perspective de l'ensemble de la structure lamellée d'un canal de décharge d'un propulseur à plasma à effet Hall selon l'invention,
    • la figure 3A montre une variante proposée et est une vue de détail agrandie d'un segment en matériau conducteur ou semi-conducteur recouvert de dépôts isolants utilisé dans la structure lamellée de la figure 3, et
    • la figure 3B est une section selon la ligne IIIB-IIIB de la figure 3A.
    Description détaillée de modes de réalisation préférentiels
  • On voit sur la figure 1 un exemple de propulseur à plasma à effet Hall, également dénommé propulseur à plasma stationnaire (PPS), auquel est applicable l'invention et qui peut être mis en oeuvre notamment pour la propulsion électrique de satellites.
  • Un tel type de propulseur à effet Hall comprend les éléments principaux suivants :
    • un canal de décharge ou canal annulaire principal d'ionisation et d'accélération 120,
    • une anode annulaire 125 concentrique au canal annulaire principal 120,
    • une canalisation 126 et un distributeur associé à l'anode 125 et au canal annulaire principal 120 pour alimenter celui-ci en un gaz ionisable tel que le xénon,
    • une cathode creuse 140,
    • un circuit magnétique 131 à 136 de création d'un champ magnétique dans le canal annulaire principal.
  • L'anode 125 et le distributeur de gaz ionisable permettent d'injecter le combustible (tel que le xénon) dans le propulseur et de collecter les électrons de la décharge plasma.
  • La cathode creuse 140 a pour fonction de générer les électrons qui permettent la création d'un plasma dans le propulseur ainsi que la neutralisation du jet d'ions éjectés par le propulseur.
  • Le circuit magnétique comprend un pôle interne 134, un pôle externe 136, une culasse magnétique reliant les pôles interne 134 et externe 136, avec un noyau ferromagnétique central 133 et des barreaux ferromagnétiques périphériques 135, une ou plusieurs bobines 131 disposées autour du noyau central 133 et des bobines 132 disposées autour des barreaux périphériques 135.
  • Le circuit magnétique permet le confinement du plasma et la création d'un fort champ magnétique E en sortie du propulseur qui permet l'accélération des ions jusqu'à des vitesses de l'ordre de 20 km/s.
  • Différentes variantes sont possibles pour la réalisation du circuit magnétique et la présente invention n'est pas limitée au mode de réalisation décrit sur la figure 1.
  • Le canal de décharge 120 permet le confinement du plasma et sa composition détermine les performances du propulseur.
  • Traditionnellement, le canal de décharge 120 est en céramique. La poussée du moteur est assurée par l'éjection d'un jet d'ions à haute vitesse. Or, ce jet étant légèrement divergent, la collision des ions à haute énergie avec la paroi du canal conduit à une érosion de la céramique en sortie du propulseur.
  • Pour cette raison, conformément à l'invention, le canal de décharge 120 comprend au moins une portion 127 de la paroi annulaire interne et au moins une portion 128 de la paroi annulaire externe, situées au voisinage de l'extrémité ouverte 129 du canal, qui ne sont pas réalisées en céramique massive, mais qui comprennent chacune un assemblage d'anneaux conducteurs ou semi-conducteurs 150 juxtaposés en forme de lamelles séparées par de fines couches d'isolant 152 (voir figure 2).
  • L'invention a pour but de réduire de façon significative l'érosion du canal de décharge du propulseur. Elle permet également de réduire les pertes énergétiques et les instabilités de décharge qui affectent habituellement les propulseurs à effet Hall utilisant un canal de décharge en matériau électriquement conducteur ou semi-conducteur. Tout en utilisant des matériaux tels que le graphite et les carbures plus résistants que les céramiques vis-à-vis du bombardement ionique, grâce à un assemblage d'anneaux conducteurs ou semi-conducteurs (par exemple en graphite) séparés par de fines couches d'isolant (par exemple en nitrure de bore), l'invention permet à la fois de réduire l'érosion du canal et de diminuer les instabilités de décharge.
  • Le canal de décharge 120 d'un propulseur à plasma selon l'invention peut ainsi comprendre à la fois une partie amont traditionnelle en céramique avec une paroi de fond 123 et des parois cylindriques externe 121 et interne 122 et une partie aval située entre la partie amont et l'ouverture 129 et comprenant des parois cylindriques externe 128 et interne 127 avec une structure lamellée composée d'anneaux conducteurs ou semi-conducteurs 150 juxtaposés, qui sont isolés par de fines couches d'isolant 152 mais présentent une face 151 non recouverte d'isolant du côté interne tourné vers l'espace intérieur 124 du canal annulaire 120.
  • Afin d'éliminer les éventuels courants de court-circuit azimutaux induits par des variations de potentiel le long de l'azimut (défauts de symétrie, ondes azimutales, ...), de façon préférentielle, on procède en outre à un positionnement des anneaux 150 en plusieurs sections angulaires isolées s'étendant chacune sur un secteur angulaire Δθ (figures 3 et 3A). On peut ainsi avoir par exemple entre 10 et 30 segments 150a, 150b dans chaque anneau 150.
  • Avantageusement, les segments 150a d'un anneau conducteur ou semi-conducteur 150 sont disposés en quinconce par rapport aux segments 150b des anneaux voisins 150 (fig. 3).
  • Comme on peut le voir sur la figure 3A, les fines couches d'isolant 152, 153, 154, 155 sont disposées sur toutes les faces d'un segment d'un anneau conducteur ou semi-conducteur 150 à l'exception de la face 151 définissant une partie de la paroi interne du canal annulaire principal 120.
  • A titre d'exemple, l'assemblage d'anneaux conducteurs 150 s'étend sur une longueur des parois annulaires interne et externe comprise entre 20 et 50 % et de préférence entre 30 et 40% de la longueur totale du canal annulaire principal 120, mais cette plage de valeurs n'est pas limitative.
  • Le dimensionnement des anneaux conducteurs ou semi-conducteurs 150 peut être établi à partir du calcul des courants électroniques reçus et émis par les parois. En première approximation, il peut être montré que le courant de court-circuit circulant dans les parois est proportionnel au courant ionique collecté, qui à température électronique et densité plasma constantes est environ proportionnel à la surface conductrice en contact avec le plasma.
  • Par ailleurs, pour un champ électrique axial donné, la différence de potentiel vue par un élément conducteur est environ proportionnelle à son étendue axiale. Il en résulte que pour un canal de taille donnée, l'ensemble des pertes par effet Joule par court-circuit du plasma est environ proportionnel à l'épaisseur des anneaux. On peut également montrer que le courant de court-circuit devient négligeable devant les courants liés à l'émission électronique secondaire (qui sont les seuls qui existent dans le cas d'un isolant) lorsque l'épaisseur des anneaux est de l'ordre du rayon de Larmor électronique. Ceci définit l'épaisseur critique des anneaux permettant d'obtenir un canal pseudo-isolant.
  • A titre d'exemple, les anneaux conducteurs 150, par exemple en graphite à faible coefficient de dilatation, peuvent présenter une épaisseur comprise entre 0,7 et 0,9 mm et typiquement de 0,8 mm.
  • Les fines couches d'isolant 152 à 155, par exemple en nitrure de bore pyrolytique, peuvent présenter une épaisseur comprise entre 0,04 et 0,08 mm, typiquement 0,05 mm, et peuvent être déposées sur les segments d'anneaux conducteurs 150 par un procédé de dépôt chimique en phase vapeur de manière à recouvrir chaque segment d'anneau sur toute sa surface excepté sur le bord 151 en contact avec le plasma.

Claims (11)

  1. Propulseur à plasma à effet Hall comprenant un canal annulaire principal d'ionisation et d'accélération (120) présentant une extrémité aval ouverte (129) et comportant des portions de parois annulaires interne (127) et externe (128) situées au voisinage de ladite extrémité ouverte (129) qui comprennent chacune un assemblage d'anneaux conducteurs ou semi-conducteurs (150), au moins une cathode (140), une anode annulaire (125) concentrique au canal annulaire principal (120), une canalisation (126) et un distributeur pour alimenter en gaz ionisable le canal (120) et un circuit magnétique (131 à 136) de création d'un champ magnétique dans ledit canal annulaire principal (120),
    caractérisé en ce que dans le canal annulaire principal (120), lesdites portions de parois annulaires interne (127) et externe (128) situées au voisinage de ladite extrémité ouverte (129) comprennent chacune un assemblage d'anneaux conducteurs ou semi-conducteurs (150) juxtaposés en forme de lamelles séparés par de fines couches d'isolant (152) dont l'épaisseur est comprise entre 4 et 12 % de celle desdits anneaux conducteurs ou semi-conducteurs (150).
  2. Propulseur à plasma selon la revendication 1, caractérisé en ce que chaque anneau conducteur ou semi-conducteur (150) est divisé en segments disposés selon des secteurs angulaires et isolés les uns des autres.
  3. Propulseur à plasma selon la revendication 2, caractérisé en ce que les segments de chaque anneau conducteur ou semi-conducteur (150) sont disposés en quinconce par rapport aux segments des anneaux conducteurs ou semi-conducteurs voisins (150).
  4. Propulseur à plasma selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les fines couches d'isolant sont disposées sur toutes les faces d'un anneau conducteur ou semi-conducteur (150) à l'exception de la face (151) définissant une partie de la paroi interne du canal annulaire principal (120).
  5. Propulseur à plasma selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'assemblage d'anneaux conducteurs (150) s'étend sur une longueur des parois annulaires interne (127) et externe (128) comprise entre 20 et 50 % de la longueur totale du canal annulaire principal (120).
  6. Propulseur à plasma selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les anneaux conducteurs ou semi-conducteurs (150) sont en graphite.
  7. Propulseur à plasma selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les fines couches d'isolant (152) sont en nitrure de bore pyrolytique.
  8. Propulseur à plasma selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'épaisseur des anneaux conducteurs ou semi-conducteurs (150) est de l'ordre du rayon de Larmor électronique.
  9. Propulseur à plasma selon la revendication 6, caractérisé en ce que les anneaux conducteurs ou semi-conducteurs (150) présentent une épaisseur comprise entre 0,7 et 0,9 mm.
  10. Propulseur à plasma selon les revendications 4 et 7,
    caractérisé en ce que les fines couches d'isolant (152) présentent une épaisseur comprise entre 0,04 et 0,08 mm.
  11. Propulseur à plasma selon les revendications 4 et 7,
    caractérisé en ce que les fines couches d'isolant (152) sont déposées sur les segments d'anneaux conducteurs ou semi-conducteurs (150) par un procédé de dépôt chimique en phase vapeur de manière à recouvrir chaque segment d'anneau sur toute sa surface excepté sur la face (151) en contact avec le plasma qui définit une partie de la paroi interne du canal annulaire principal (120).
EP10728782.3A 2009-05-20 2010-05-19 Propulseur a plasma a effet hall Active EP2433002B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953370A FR2945842B1 (fr) 2009-05-20 2009-05-20 Propulseur a plasma a effet hall.
PCT/FR2010/050963 WO2010133802A1 (fr) 2009-05-20 2010-05-19 Propulseur a plasma a effet hall

Publications (2)

Publication Number Publication Date
EP2433002A1 EP2433002A1 (fr) 2012-03-28
EP2433002B1 true EP2433002B1 (fr) 2018-01-03

Family

ID=41435261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10728782.3A Active EP2433002B1 (fr) 2009-05-20 2010-05-19 Propulseur a plasma a effet hall

Country Status (7)

Country Link
US (1) US9127654B2 (fr)
EP (1) EP2433002B1 (fr)
CN (1) CN102439305A (fr)
ES (1) ES2660213T3 (fr)
FR (1) FR2945842B1 (fr)
RU (1) RU2527267C2 (fr)
WO (1) WO2010133802A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950115B1 (fr) * 2009-09-17 2012-11-16 Snecma Propulseur plasmique a effet hall
US20130026917A1 (en) * 2011-07-29 2013-01-31 Walker Mitchell L R Ion focusing in a hall effect thruster
US9453502B2 (en) * 2012-02-15 2016-09-27 California Institute Of Technology Metallic wall hall thrusters
US9038364B2 (en) 2012-10-18 2015-05-26 The Boeing Company Thruster grid clear circuits and methods to clear thruster grids
US10082133B2 (en) 2013-02-15 2018-09-25 California Institute Of Technology Hall thruster with magnetic discharge chamber and conductive coating
US9260204B2 (en) 2013-08-09 2016-02-16 The Aerospace Corporation Kinetic energy storage and transfer (KEST) space launch system
US10696425B2 (en) 2013-08-09 2020-06-30 The Aerospace Corporation System for imparting linear momentum transfer for higher orbital insertion
CN103945632B (zh) * 2014-05-12 2016-05-18 哈尔滨工业大学 角向速度连续可调的等离子体射流源及该射流源的使用方法
FR3038663B1 (fr) * 2015-07-08 2019-09-13 Safran Aircraft Engines Propulseur a effet hall exploitable en haute altitude
CN105003409A (zh) * 2015-07-16 2015-10-28 兰州空间技术物理研究所 一种霍尔推力器的阴极中心布局
US10428806B2 (en) * 2016-01-22 2019-10-01 The Boeing Company Structural Propellant for ion rockets (SPIR)
CN105736271B (zh) * 2016-02-16 2018-05-08 兰州空间技术物理研究所 一种小口径霍尔推力器
CN105756875B (zh) * 2016-05-12 2018-06-19 哈尔滨工业大学 电离加速一体化空间碎片等离子体推进器
US10850871B2 (en) 2017-04-13 2020-12-01 Northrop Grumman Innovation Systems, Inc. Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft
CN109707583A (zh) * 2018-04-23 2019-05-03 李超 脉冲式冲量循环发动机
CN111156140B (zh) * 2018-11-07 2021-06-15 哈尔滨工业大学 可提高推力分辨率和工质利用率的会切场等离子体推力器
CN110594114B (zh) * 2019-09-04 2020-05-29 北京航空航天大学 双极多模式微阴极弧推力器
CN110594115B (zh) * 2019-10-17 2020-12-11 大连理工大学 一种无放电阴极的环型离子推力器
CN113357113B (zh) * 2021-07-02 2022-08-26 兰州空间技术物理研究所 一种空间电推力器供气绝缘一体化结构
CN114412739A (zh) * 2022-02-24 2022-04-29 兰州空间技术物理研究所 一种大功率霍尔推力器磁路组件
CN115711208B (zh) * 2022-11-22 2023-07-28 哈尔滨工业大学 一种适合高比冲后加载霍尔推力器的供气结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892329A (en) * 1997-05-23 1999-04-06 International Space Technology, Inc. Plasma accelerator with closed electron drift and conductive inserts
US6777862B2 (en) * 2000-04-14 2004-08-17 General Plasma Technologies Llc Segmented electrode hall thruster with reduced plume
DE10130464B4 (de) * 2001-06-23 2010-09-16 Thales Electron Devices Gmbh Plasmabeschleuniger-Anordnung
FR2842261A1 (fr) * 2002-07-09 2004-01-16 Centre Nat Etd Spatiales Propulseur plasmique a effet hall

Also Published As

Publication number Publication date
RU2011149159A (ru) 2013-06-27
CN102439305A (zh) 2012-05-02
US9127654B2 (en) 2015-09-08
WO2010133802A1 (fr) 2010-11-25
EP2433002A1 (fr) 2012-03-28
FR2945842B1 (fr) 2011-07-01
FR2945842A1 (fr) 2010-11-26
US20120117938A1 (en) 2012-05-17
ES2660213T3 (es) 2018-03-21
RU2527267C2 (ru) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2433002B1 (fr) Propulseur a plasma a effet hall
EP0650557B1 (fr) Moteur a plasma a derive fermee d&#39;electrons
EP0781921B1 (fr) Source d&#39;ions à dérive fermée d&#39;électrons
EP0982976B1 (fr) Propulseur à plasma à dérive fermée d&#39;électrons adapté à de fortes charges thermiques
EP1815570B1 (fr) Bougie a plasma radiofrequence
EP0662195A1 (fr) Moteur a plasma de longueur reduite a derive fermee d&#39;electrons.
EP0914560B1 (fr) PROPULSEUR A PLASMA avec DISPOSITIF DE CONCENTRATION DE FAISCEAU D&#39;IONS
FR2950114A1 (fr) Moteur a effet hall avec refroidissement de la ceramique interne
FR2941503A1 (fr) Propulseur a derive fermee d&#39;electrons
FR3038663B1 (fr) Propulseur a effet hall exploitable en haute altitude
EP1520104A2 (fr) Propulseur plasmique a effet hall
EP3526472B1 (fr) Propulseur ionique à décharge plasma externe
EP3250822B1 (fr) Propulseur à effet hall et engin spatial comprenant un tel propulseur
FR2548829A1 (fr) Tube a rayons x a anode tournante muni d&#39;un dispositif d&#39;ecoulement des charges
EP0488852A1 (fr) Cathode améliorée pour tubes hyperfréquence
FR3080154A1 (fr) Procede de fabrication d&#39;un propulseur electrique
FR2826542A1 (fr) Dispositif pour la production d&#39;ions de charges positives variables et a resonnance cyclotronique
FR2999332A1 (fr) Generateur d&#39;ondes hyperfrequences et procede de generation d&#39;ondes associe
FR3052326A1 (fr) Generateur de plasma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150511

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170830

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 960543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010047773

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2660213

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180321

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 960543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180103

Ref country code: CH

Ref legal event code: PFA

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR

Free format text: FORMER OWNER: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: SAFRAN AIRCRAFT ENGINES

Owner name: INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH PO

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010047773

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

26N No opposition filed

Effective date: 20181005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100519

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230420

Year of fee payment: 14

Ref country code: FR

Payment date: 20230420

Year of fee payment: 14

Ref country code: ES

Payment date: 20230601

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230419

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 15