EP2425031B1 - Sliding bearing element comprising a lead-free aluminum bearing metal layer - Google Patents

Sliding bearing element comprising a lead-free aluminum bearing metal layer Download PDF

Info

Publication number
EP2425031B1
EP2425031B1 EP10718540.7A EP10718540A EP2425031B1 EP 2425031 B1 EP2425031 B1 EP 2425031B1 EP 10718540 A EP10718540 A EP 10718540A EP 2425031 B1 EP2425031 B1 EP 2425031B1
Authority
EP
European Patent Office
Prior art keywords
layer
intermediate layer
bearing element
element according
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10718540.7A
Other languages
German (de)
French (fr)
Other versions
EP2425031A1 (en
Inventor
Thomas Grooteboer
Karl-Heinz Lindner
Karl-Heinz LEBIEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Wiesbaden GmbH
Original Assignee
Federal Mogul Wiesbaden GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul Wiesbaden GmbH filed Critical Federal Mogul Wiesbaden GmbH
Publication of EP2425031A1 publication Critical patent/EP2425031A1/en
Application granted granted Critical
Publication of EP2425031B1 publication Critical patent/EP2425031B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/127Details of intermediate layers, e.g. nickel dams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • Y10S384/90Cooling or heating
    • Y10S384/912Metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • the invention relates to a sliding bearing element with a support layer, a preferably lead-free intermediate layer based on an aluminum alloy and a preferably lead-free bearing metal layer based on an aluminum alloy.
  • the sliding bearing element in the form of a bearing shell has a steel support shell, onto which a foil-like bearing metal layer or overlay is applied by roll-plating. Since the usually high-tin bearing aluminum-based bearing metal layer is known not to be plated with sufficient adhesion to the steel backing layer, the bearing metal layer is first pre-plated with an intermediate layer by roll-plating into a film composite. Initially, an intermediate layer of pure aluminum was used, which allows a very good adhesion to the steel backing layer.
  • This film composite is then applied together in several rolling steps with or without thermal intermediate treatment on the steel backing layer to reduce the layer thicknesses.
  • the finished composite material is then processed by punching or cutting into blanks and processed depending on the finished product by bending or roll forming to a radial bearing.
  • the result is similar US 5,470,666 , Again, the hardness increases from the plain bearing layer over the intermediate layer to the metal backing layer, wherein the hardness of the intermediate layer between 25 HV and 60 HV is set.
  • the thickness of the intermediate layer is 50 to 90% of the total thickness of the bearing metal layer and the intermediate layer.
  • the intermediate layer is thus at least as thick or substantially thicker than the bearing metal layer.
  • the intermediate layer is formed of an aluminum alloy having a total of 0.3 to 5% by weight of alloy components selected from the group consisting of Mn, Cu, Zn, Si, Mg and Fe.
  • the upper limit of the intermediate layer hardness of 60 HV is determined by the conformability which is necessary to balance edge supports, ie an unavoidable misalignment between the shaft and the bearing shaft.
  • the GB 2 271 779 discloses a sliding bearing member having an intermediate layer of up to 1.7 Mn, up to 1.2 Cu, up to 1.8 Mg and balance Al having a hardness of 35-72 Hv.
  • GB 708 472 A a sliding bearing element having a protective layer, an aluminum alloy based intermediate layer, wherein the aluminum alloy of the intermediate layer has a composition of 4.5Cu, 0.6Mn, 1.5Mg and balance aluminum. Statements of hardness are not made herein.
  • the inventors have found that such a high degree of deformation in the intermediate layer occurs in the known bearings under the high specific loads during operation that a displacement of the intermediate layer material takes place in the axial direction.
  • the intermediate layer swells in a sense axially out of the end faces of the plain bearing shells. This phenomenon is in FIG. 2 shown schematically.
  • the sliding bearing shell according to the prior art is in the main load area (for example, in the vicinity of its vertex) shown in fragmentary form in an axial section. It has on its radial outer side a steel support layer 20, thereon an aluminum-based intermediate layer 22 and thereon a bearing metal layer 24.
  • the intermediate layer 22 begins to flow in the axial direction (similar to the roll cladding) and is squeezed out of the bearing beyond the axial end face 26 of the steel support layer 20. With the intermediate layer 22, the bearing metal layer 24 is partially displaced out of the bearing. The bearing metal and the connection between bearing metal and support layer remain undamaged and show no functional failure. However, near the end face 26 cracks 28 between the steel backing layer 20 and the intermediate layer 22 can be seen. These increase in continuation of operation in conjunction with the swollen material of the bearing metal layer and the intermediate layer the risk of detachment and thus a total failure of the camp.
  • the object of the invention is therefore to improve the composite consisting of a bearing metal layer and an intermediate layer, each based on an aluminum alloy, and the steel support layer of the shape that a plastic material deformation of the type described above is largely avoided.
  • the object is achieved by a sliding bearing element with the feature of claim 1.
  • the sliding bearing element according to the invention which is designed in particular in the form of a bearing shell, with a supporting layer,
  • An aluminum alloy-based intermediate layer and an aluminum alloy-based bearing metal layer is characterized in that the aluminum alloy of the intermediate layer has a composition comprising at least 3.5 wt.% to 4.5 wt.% copper, 0.1 wt. -% to 1.5 wt .-% manganese and 0.1 wt .-% to 1.5 wt .-% magnesium, wherein the intermediate layer has a microhardness of 70 HV 0.01 to 110 HV 0.01 and more preferably from 85 HV 0.01 to 100 HV 0.01.
  • the alloy comprises 0.1 wt% to 1.0 wt% silicon, 0.05 wt% to 1.0 wt% iron, 0.05 wt% to 0.5 wt% .-% chromium, 0.05 wt .-% to 0.5 wt .-% zinc, zirconium and titanium in the sum of between 0.05 wt .-% and 0.25 wt .-% and / or other alloying ingredients with not more than 0.1% by weight in detail and 0.25% by weight in total.
  • the hardness of the intermediate layer can be adjusted without sacrificing the bonding strength to the supporting layer, which is preferably made of steel.
  • the adjustment takes place during a roll-plating operation and due to suitable heat treatment before and / or between and / or after the rolling passes.
  • the intermediate layer of the rolled to final gauge slide bearing element has a thickness d 2 of 30 microns to 250 microns and depending on the wall thickness of the bearing shell of 50 microns to 250 microns, more preferably from 80 microns to 175 microns and most preferably from 150 microns to 175 ⁇ m.
  • an intermediate layer of this thickness and with the aforementioned composition is suitable for a comparatively high hardness, in order on the one hand to achieve a sufficient plastic compliance and thus a sufficient shape adaptability.
  • it can be ensured by a high adjustable hardness in connection with the comparatively thick intermediate layer, that the intermediate layer material despite plastic Deformation is only slightly squeezed out of the composite material out.
  • the Vickers hardness test is carried out according to the European standard EN 6507-1 at the intermediate layer of the finished (formed) plain bearing element.
  • the test probe (the indenter) is in this case pressed in the plane direction of the intermediate layer in this in the region of a prepared cutting edge of the sliding bearing element.
  • the cutting edge is preferably prepared by grinding.
  • the silicon in the aluminum alloy of the intermediate layer leads to an increase in the strength of the Al alloy.
  • the aluminum alloy of the intermediate layer in wt .-% manganese 0.4% to 1.0%, magnesium 0.4% to 1.0% and silicon 0.2% to 0.8%. All of these alloying elements serve to increase the strength and hardness of the material.
  • the bearing metal layer of the sliding bearing element preferably has a thickness d 3 of 150 .mu.m to 400 .mu.m and more preferably of 200 .mu.m to 400 .mu.m.
  • the bearing metal layer preferably has an aluminum alloy with 1.0-3% by weight nickel, 0.5-2.5% by weight manganese, 0.02-1.5% by weight copper, a soft phase content of 5-20% by weight. , the usual permissible impurities and residual aluminum.
  • the soft phase fraction is based on the total aluminum alloy particularly preferably 8 to 12 wt .-%.
  • an AlSn11.5Ni1.5Cu0.6Mn0.6 alloy is suitable for the bearing metal layer.
  • tin and / or bismuth are preferable.
  • the bearing metal layer in particular in one of the abovementioned compositions, is preferably adjusted to a Brinell hardness of 50-70 HBW 1/5/30 and more preferably of 50-60 HBW 1/5/30.
  • the intermediate layer and the bearing metal layer and / or between the intermediate layer and the supporting layer there is preferably a roll-bonding compound.
  • FIG. 1 shows the basic structure of a bearing shell according to the invention with a support layer 10, which preferably consists of steel.
  • a support layer 10 which preferably consists of steel.
  • an intermediate layer 12 and a bearing metal layer 14 are plated in this order.
  • the sliding surface 16 is formed, which in sliding contact is in direct contact with a counter-rotor, for example a shaft (not shown).
  • the shaft abuts (indirectly) on the sliding surface 16 and exerts a radial pressure on the sliding bearing element.
  • the sliding bearing element is typically oil lubricated, so that due to the rotation of the shaft, an oil film between this and the sliding surface builds up under hydrodynamic pressure, which prevents direct contact between the shaft and the sliding layer.
  • the intermediate layer 12 and the bearing metal layer 14 may be pre-plated into a two-layer composite before they are plated onto the steel backing layer 10.
  • the intermediate layer of the sliding bearing element according to the invention has a thickness d 2 of 50 ⁇ m to 250 ⁇ m, preferably 150 ⁇ m to 175 ⁇ m.
  • the bearing metal layer has a thickness d 3 of 200 .mu.m to 400 .mu.m, preferably 250 .mu.m to 350 .mu.m.
  • FIG. 3 is a section of a section in the axial direction in the circumferential region of the largest load of a sliding bearing element according to the invention shown after a typical stress.
  • both the intermediate layer 32 directly plated onto the steel support layer 30 and the bearing metal layer 34 plated on the intermediate layer 32 were only slightly squeezed out of the sliding bearing element in the axial direction.
  • both the Walzplattiereducation 36 between the steel support layer 30 and the intermediate layer 32 and the Walzplattiereducation 38 between the intermediate layer 32 and the bearing metal layer 34 in tact so that compared to the known bearing according to FIG. 2 a significantly reduced risk of detachment of the layers and thus a total failure of the warehouse is expected under the same load.
  • FIG. 4 is the pressure profile in a first typical load situation of a new, ie not plastically deformed, radial bearing element in the circumferential direction, indicated by the arrow 40, shown.
  • the same bearing in the same situation is in FIG. 6 in axial section, ie over the bearing width, arrow 60, shown in the circumferential region of the largest load.
  • FIG. 4 is a significant maximum pressure in the region of the vertex, characterized by the dashed line 42, to recognize.
  • the pressure is distributed over a comparatively narrow angular range in the circumferential direction. In the direction of the bearing width 60, the pressure is distributed unevenly such that two significant pressure maxima 62, 64 emerge in the axial end regions, cf.
  • FIG. 4 is the pressure profile in a first typical load situation of a new, ie not plastically deformed, radial bearing element in the circumferential direction, indicated by the arrow 40, shown.
  • the same bearing in the same situation is in FIG. 6 in axial section
  • edge beams which are caused by a load-related deflection of the counter-rotor (the shaft or the shaft journal) and / or by a load-induced deformation of the bearing housing.
  • the high specific loads represented by the pressure peaks cause premature material fatigue and ultimately premature failure of the plain bearing.
  • the intermediate layer is designed so that it has a sufficient plastic deformability, which reduces the pressure peaks after a certain running-in phase.
  • This condition is in the Figures 5 and 7 shown.
  • FIG. 5 is in direct comparison with FIG. 4 to recognize that after the running-in phase, the pressure over a longer peripheral portion distributed and while the maximum of the greatest pressure in the apex 42 is lower. Due to the deformability of the intermediate layer under operating load, there is to some extent a redistribution of the oil film pressures in the gap between the shaft and the plain bearing element. This effect is even more significant in the width direction of the bearing according to FIG. 7 to recognize.
  • the bearing is plastically deformed in the axial end portions such that a portion of the pressure is redistributed to the axial center portion.
  • the pressure maxima 72 and 74 are flattened in favor of a pressure increase in the region of the minimum 76.
  • the specific bearing load is the same, but there is no area with a dangerous excessive specific load, so that a fatigue of the bearing material is expected only after much longer stress.
  • FIG. 8 is the plastic compliance, ie the deformation capacity of the invention sliding bearing elements in comparison with known sliding bearing elements in the direction of the (half) bearing width shown.
  • the curve is shown starting from the plain bearing center at 0 in the axial direction to the axial end of the sliding bearing at 9.
  • the solid solid line "A" represents the plastic compliance of a material composite according to the prior art based on a 75 micron thick intermediate layer of an AlMn1Cu alloy (EN AW-3003) with a hardness of 60 HV 0.01. As already mentioned, such a layer has the flexibility necessary for the improvement of the long-term loading. However, when using this interlayer material, in conjunction with FIG. 2 explained squeezing observed.
  • the latter can only be achieved by using an aluminum alloy for the intermediate layer which has between 3.5% by weight and 4.5% by weight of copper and, after roll-plating and optionally heat-treating, to a microhardness between 70 and 110 HV 0.01, preferably 85 and 100 HV 0.01 is set.
  • Slide bearing elements with this intermediate layer material and different intermediate layer thicknesses were investigated, with an intermediate layer thickness of between 50 ⁇ m and 250 ⁇ m proving to be fundamentally suitable in order to achieve the desired plastic compliance.
  • Particularly preferred are interlayer thicknesses between 150 microns, compare line "D", and 200 microns, compare line "C”, and most preferably between 150 microns and 175 microns, compare line "E".

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)

Description

Die Erfindung betrifft ein Gleitlagerelement mit einer Stützschicht, einer vorzugsweise bleifreien Zwischenschicht auf Basis einer Aluminiumlegierung und einer vorzugsweise bleifreien Lagermetallschicht auf Basis einer Aluminiumlegierung.The invention relates to a sliding bearing element with a support layer, a preferably lead-free intermediate layer based on an aluminum alloy and a preferably lead-free bearing metal layer based on an aluminum alloy.

Derartige Lager sind Gegenstand einer Vielzahl von Druckschriften. Beispielhaft wird auf die Offenlegungsschriften EP 0 672 840 A2 , EP 1 522 750 A1 oder das US-Patent 5,470,666 verwiesen. Das Gleitlagerelement in Form einer Lagerschale weist eine Stützschale aus Stahl auf, auf die eine folienartige Lagermetallschicht oder Laufschicht durch Walzplattieren aufgetragen ist. Da die in der Regel hochzinnhaltige Lagermetallschicht auf Aluminiumbasis bekanntermaßen nicht mit ausreichender Haftung auf die Stahlstützschicht plattiert werden kann, wird die Lagermetallschicht zunächst mit einer Zwischenschicht durch Walzplattieren zu einem Folienverbund vorplattiert. Anfänglich wurde hierbei auf eine Zwischenschicht aus Rein-Aluminium zurückgegriffen, welches eine sehr gute Haftung auf der Stahlstützschicht ermöglicht. Dieser Folienverbund wird dann zusammen in mehreren Walzschritten mit oder ohne thermische Zwischenbehandlung auf die Stahlstützschicht unter Verringerung der Schichtdicken aufgebracht. Der fertige Verbundwerkstoff wird anschließend durch Stanzen oder Schneiden zu Platinen verarbeitet und in Abhängigkeit von dem fertigen Erzeugnis durch Biegen oder Roll-Umformen zu einem Radiallager verarbeitet.Such bearings are the subject of a variety of publications. An example is given to the published patent applications EP 0 672 840 A2 . EP 1 522 750 A1 or that U.S. Patent 5,470,666 directed. The sliding bearing element in the form of a bearing shell has a steel support shell, onto which a foil-like bearing metal layer or overlay is applied by roll-plating. Since the usually high-tin bearing aluminum-based bearing metal layer is known not to be plated with sufficient adhesion to the steel backing layer, the bearing metal layer is first pre-plated with an intermediate layer by roll-plating into a film composite. Initially, an intermediate layer of pure aluminum was used, which allows a very good adhesion to the steel backing layer. This film composite is then applied together in several rolling steps with or without thermal intermediate treatment on the steel backing layer to reduce the layer thicknesses. The finished composite material is then processed by punching or cutting into blanks and processed depending on the finished product by bending or roll forming to a radial bearing.

Vorgenannte Druckschriften basieren auf der Erkenntnis, dass zwar die Haftung der Aluminium-basierten Lagermetallschicht auf der Stahlstützschicht verbessert werden kann, jedoch die Werkstoffeigenschaften der reinen Aluminiumzwischenschicht keine hinreichende Dauerfestigkeit des Verbundwerkstoffes im Betrieb sicherstellen. Deshalb schlägt die EP 0 672 840 A2 vor, anstelle der Rein-Aluminiumfolie eine Zwischenschicht auf Basis einer aushärtbaren Aluminiumlegierung - gegebenenfalls mit Notlaufeigenschaften - auszubilden. Die Härte der so gebildeten Zwischenschicht wird auf einen Wert von etwa 60 HV 0,5 eingestellt und ist damit höher als die Härte der Laufschicht, welche etwa 35 bis 40 HV 0,5 beträgt. Die in Richtung der Lagermetallschicht oder Laufschicht abnehmende Härte soll sich günstig auf die Dauerfestigkeit und damit auf die Belastbarkeit und die Lebensdauer des Gleitlagers auswirken.The aforementioned publications are based on the finding that although the adhesion of the aluminum-based bearing metal layer on the steel backing layer can be improved, however, the material properties of the pure aluminum interlayer do not ensure sufficient fatigue strength of the composite during operation. That's why the beats EP 0 672 840 A2 before, instead of the pure aluminum foil an intermediate layer based on a hardenable aluminum alloy - if necessary with emergency running properties - form. The hardness of the intermediate layer thus formed is set to a value of about 60 HV 0.5 and is thus higher than the hardness of the overlay, which is about 35 to 40 HV 0.5. The decreasing hardness in the direction of the bearing metal layer or running layer should have a favorable effect on the fatigue strength and thus on the load capacity and the life of the sliding bearing.

Zu einem ähnlichen Ergebnis gelangt die US 5,470,666 . Auch hier nimmt die Härte von der Gleitlagerschicht über die Zwischenschicht zur Metallstützschicht hin zu, wobei die Härte der Zwischenschicht zwischen 25 HV und 60 HV eingestellt ist. Die Dicke der Zwischenschicht beträgt 50 bis 90 % der Gesamtdicke der Lagermetallschicht und der Zwischenschicht. Die Zwischenschicht ist also wenigstens genauso dick oder wesentlich dicker als die Lagermetallschicht. Die Zwischenschicht wird aus einer Aluminiumlegierung mit in Summe 0,3 bis 5 Gew.-% an Legierungsbestandteilen gebildet, welche aus der Gruppe bestehend aus Mn, Cu, Zn, Si, Mg und Fe ausgewählt sind. Die Obergrenze der Zwischenschichthärte von 60 HV wird durch die Formanpassungsfähigkeit bestimmt, die zum Ausgleich von Kantenträgem, d.h. einer unvermeidbaren Fehlausrichtung zwischen der Welle und der Lagerachse, notwendig ist.The result is similar US 5,470,666 , Again, the hardness increases from the plain bearing layer over the intermediate layer to the metal backing layer, wherein the hardness of the intermediate layer between 25 HV and 60 HV is set. The thickness of the intermediate layer is 50 to 90% of the total thickness of the bearing metal layer and the intermediate layer. The intermediate layer is thus at least as thick or substantially thicker than the bearing metal layer. The intermediate layer is formed of an aluminum alloy having a total of 0.3 to 5% by weight of alloy components selected from the group consisting of Mn, Cu, Zn, Si, Mg and Fe. The upper limit of the intermediate layer hardness of 60 HV is determined by the conformability which is necessary to balance edge supports, ie an unavoidable misalignment between the shaft and the bearing shaft.

Die GB 2 271 779 offenbart ein Gleitlagerelement mit einer Zwischenschicht aus bis zu 1,7 Mn, bis zu 1,2 Cu, bis zu 1,8 Mg und Rest Al mit einer Härte von 35-72 Hv.The GB 2 271 779 discloses a sliding bearing member having an intermediate layer of up to 1.7 Mn, up to 1.2 Cu, up to 1.8 Mg and balance Al having a hardness of 35-72 Hv.

Weiter offenbart die GB 708 472 A ein Gleitlagerelement mit einer Schützschicht, einer Zwischenschicht auf Basis einer Aluminiumlegierung, bei welchem die Aluminiumlegierung der Zwischenschicht eine Zusammensetzung von 4,5 Cu, 0,6 Mn, 1,5 Mg und Rest Aluminium aufweist. Aussagen zur Härte sind hierin nicht getroffen.Next discloses the GB 708 472 A a sliding bearing element having a protective layer, an aluminum alloy based intermediate layer, wherein the aluminum alloy of the intermediate layer has a composition of 4.5Cu, 0.6Mn, 1.5Mg and balance aluminum. Statements of hardness are not made herein.

Die Erfinder haben festgestellt, dass sich bei den bekannten Lagern unter den hohen spezifischen Lasten im Betrieb ein so hoher Verformungsgrad in der Zwischenschicht einstellt, dass eine Verdrängung des Zwischenschichtmaterials in axialer Richtung erfolgt. Die Zwischenschicht quillt gewissermaßen axial aus den Stirnflächen der Gleitlagerschalen heraus. Dieses Phänomen ist in Figur 2 schematisch dargestellt. Die Gleitlagerschale gemäß dem Stand der Technik ist im Hauptbelastungsbereich (beispielsweise in der Nähe ihres Scheitelpunktes) in einem Axialschnitt ausschnittsweise dargestellt. Sie weist auf ihrer radialen Außenseite eine Stahlstützschicht 20, darauf eine aluminiumbasierte Zwischenschicht 22 und darauf eine Lagermetallschicht 24 auf. Aufgrund der insbesondere im Hauptlastbereich auftretenden hohen spezifischen Lasten beginnt die Zwischenschicht 22 in axialer Richtung (ähnlich wie beim Walzplattieren) zu fließen und wird über die axialen Stirnfläche 26 der Stahlstützschicht 20 hinaus aus dem Lager gequetscht. Mit der Zwischenschicht 22 wird teilweise auch die Lagermetallschicht 24 aus dem Lager heraus verdrängt. Das Lagermetall und die Verbindung zwischen Lagermetall- und Stützschicht bleiben dabei unbeschädigt und zeigen kein funktionales Versagen. Allerdings werden nahe der Stirnfläche 26 Risse 28 zwischen der Stahlstützschicht 20 und der Zwischenschicht 22 erkennbar. Diese erhöhen bei Fortsetzung des Betriebs in Verbindung mit dem herausgequollenen Material der Lagermetallschicht und der Zwischenschicht das Risiko einer Ablösung und damit eines Totalausfalls des Lagers.The inventors have found that such a high degree of deformation in the intermediate layer occurs in the known bearings under the high specific loads during operation that a displacement of the intermediate layer material takes place in the axial direction. The intermediate layer swells in a sense axially out of the end faces of the plain bearing shells. This phenomenon is in FIG. 2 shown schematically. The sliding bearing shell according to the prior art is in the main load area (for example, in the vicinity of its vertex) shown in fragmentary form in an axial section. It has on its radial outer side a steel support layer 20, thereon an aluminum-based intermediate layer 22 and thereon a bearing metal layer 24. Due to the high specific loads occurring in particular in the main load range, the intermediate layer 22 begins to flow in the axial direction (similar to the roll cladding) and is squeezed out of the bearing beyond the axial end face 26 of the steel support layer 20. With the intermediate layer 22, the bearing metal layer 24 is partially displaced out of the bearing. The bearing metal and the connection between bearing metal and support layer remain undamaged and show no functional failure. However, near the end face 26 cracks 28 between the steel backing layer 20 and the intermediate layer 22 can be seen. These increase in continuation of operation in conjunction with the swollen material of the bearing metal layer and the intermediate layer the risk of detachment and thus a total failure of the camp.

Aufgabe der Erfindung ist es deshalb, den Verbund bestehend aus einer Lagermetallschicht und einer Zwischenschicht, jeweils auf Basis einer Aluminiumlegierung, und der Stahlstützschicht der Gestalt zu verbessern, dass eine plastische Materialverformung der vorstehend beschriebenen Art weitgehend vermieden wird.The object of the invention is therefore to improve the composite consisting of a bearing metal layer and an intermediate layer, each based on an aluminum alloy, and the steel support layer of the shape that a plastic material deformation of the type described above is largely avoided.

Die Aufgabe wird erfindungsgemäß durch ein Gleitlagerelement mit dem Merkmal des Patentanspruches 1 gelöst. Das erfindungsgemäße Gleitlagerelement, welches insbesondere in Form einer Lagerschale ausgebildet ist, mit einer Stützschicht, einer Zwischenschicht auf Basis einer Aluminiumlegierung und einer Lagermetallschicht auf Basis einer Aluminiumlegierung ist dadurch gekennzeichnet, dass die Aluminiumlegierung der Zwischenschicht eine Zusammensetzung mit wenigstens den Bestandteilen 3,5 Gew.-% bis 4,5 Gew.-% Kupfer, 0,1 Gew.-% bis 1,5 Gew.-% Mangan und 0,1 Gew.-% bis 1,5 Gew.-% Magnesium aufweist, wobei die Zwischenschicht eine Mikrohärte von 70 HV 0,01 bis 110 HV 0,01 und besonders bevorzugt von 85 HV 0,01 bis 100 HV 0,01 aufweist. Optional weist die Legierung 0,1 Gew.-% bis 1,0 Gew.-% Silizium, 0,05 Gew.-% bis 1,0 Gew.-% Eisen, 0,05 Gew.-% bis 0,5 Gew.-% Chrom, 0,05 Gew.-% bis 0,5 Gew.-% Zink, Zirkonium und Titan in der Summe zwischen 0,05 Gew.-% und 0,25 Gew.-% und/oder andere Legierungsbestandteile mit nicht mehr als 0,1 Gew.-% im Einzelnen und 0,25 Gew.-% in der Summe auf.The object is achieved by a sliding bearing element with the feature of claim 1. The sliding bearing element according to the invention, which is designed in particular in the form of a bearing shell, with a supporting layer, An aluminum alloy-based intermediate layer and an aluminum alloy-based bearing metal layer is characterized in that the aluminum alloy of the intermediate layer has a composition comprising at least 3.5 wt.% to 4.5 wt.% copper, 0.1 wt. -% to 1.5 wt .-% manganese and 0.1 wt .-% to 1.5 wt .-% magnesium, wherein the intermediate layer has a microhardness of 70 HV 0.01 to 110 HV 0.01 and more preferably from 85 HV 0.01 to 100 HV 0.01. Optionally, the alloy comprises 0.1 wt% to 1.0 wt% silicon, 0.05 wt% to 1.0 wt% iron, 0.05 wt% to 0.5 wt% .-% chromium, 0.05 wt .-% to 0.5 wt .-% zinc, zirconium and titanium in the sum of between 0.05 wt .-% and 0.25 wt .-% and / or other alloying ingredients with not more than 0.1% by weight in detail and 0.25% by weight in total.

Insbesondere aufgrund des hohen Kupferanteils lässt sich die Härte der Zwischenschicht ohne Einbußen hinsichtlich der Bindungsfestigkeit zu der vorzugsweise aus Stahl bestehenden Stützschicht einstellen. Das Einstellen geschieht während eines Walzplattiervorgangs und aufgrund geeigneter Wärmebehandlung vor und/oder zwischen und/oder nach den Walzstichen.In particular, due to the high copper content, the hardness of the intermediate layer can be adjusted without sacrificing the bonding strength to the supporting layer, which is preferably made of steel. The adjustment takes place during a roll-plating operation and due to suitable heat treatment before and / or between and / or after the rolling passes.

Bevorzugt weist die Zwischenschicht des auf Endmaß gewalzten Gleitlagerelementes eine Dicke d2 von 30 µm bis 250 µm und in Abhängigkeit von der Wanddicke der Lagerschale von 50 µm bis 250 µm, besonders bevorzugt von 80 µm bis 175 µm und ganz besonders bevorzugt von 150 µm bis 175 µm auf.Preferably, the intermediate layer of the rolled to final gauge slide bearing element has a thickness d 2 of 30 microns to 250 microns and depending on the wall thickness of the bearing shell of 50 microns to 250 microns, more preferably from 80 microns to 175 microns and most preferably from 150 microns to 175 μm.

Die Erfinder haben festgestellt, dass eine Zwischenschicht dieser Dicke und mit der vorgenannten Zusammensetzung bei vergleichsweise hoher Härte geeignet ist, um einerseits eine hinreichende plastische Nachgiebigkeit und somit eine hinreichende Formanpassungsfähigkeit zu erzielen. Andererseits kann durch eine hohe einstellbare Härte in Verbindung mit der vergleichsweise dicken Zwischenschicht sichergestellt werden, dass das Zwischenschichtmaterial trotz plastischer Verformung nur in geringem Maße aus dem Werkstoffverbund heraus gequetscht wird.The inventors have found that an intermediate layer of this thickness and with the aforementioned composition is suitable for a comparatively high hardness, in order on the one hand to achieve a sufficient plastic compliance and thus a sufficient shape adaptability. On the other hand, it can be ensured by a high adjustable hardness in connection with the comparatively thick intermediate layer, that the intermediate layer material despite plastic Deformation is only slightly squeezed out of the composite material out.

Die Härteprüfung nach Vickers erfolgt gemäß der europäischen Norm EN 6507-1 an der Zwischenschicht des fertigen (umgeformten) Gleitlagerelementes. Die Prüfspitze (der Eindringkörper) wird hierbei in Ebenenrichtung der Zwischenschicht in diese im Bereich einer präparierten Schnittkante des Gleitlagerelementes eingedrückt. Die Schnittkante wird vorzugsweise durch Schleifen vorbereitet.The Vickers hardness test is carried out according to the European standard EN 6507-1 at the intermediate layer of the finished (formed) plain bearing element. The test probe (the indenter) is in this case pressed in the plane direction of the intermediate layer in this in the region of a prepared cutting edge of the sliding bearing element. The cutting edge is preferably prepared by grinding.

Das Silizium in der Aluminiumlegierung der Zwischenschicht führt zur Festigkeitssteigerung der Al-Legierung.The silicon in the aluminum alloy of the intermediate layer leads to an increase in the strength of the Al alloy.

Ganz besonders bevorzugt weist die Aluminiumlegierung der Zwischenschicht in Gew.-% auf: Mangan 0,4 % bis 1,0 %, Magnesium 0,4 % bis 1,0 % und Silizium 0,2 % bis 0,8 %. Alle diese Legierungselemente dienen der Festigkeits- und Härtesteigerung des Materials.Most preferably, the aluminum alloy of the intermediate layer in wt .-%: manganese 0.4% to 1.0%, magnesium 0.4% to 1.0% and silicon 0.2% to 0.8%. All of these alloying elements serve to increase the strength and hardness of the material.

Die Lagermetallschicht des Gleitlagerelements weist bevorzugt eine Dicke d3 von 150 µm bis 400 µm und besonders bevorzugt von 200 µm bis 400 µm auf.The bearing metal layer of the sliding bearing element preferably has a thickness d 3 of 150 .mu.m to 400 .mu.m and more preferably of 200 .mu.m to 400 .mu.m.

Die Lagermetallschicht weist bevorzugt eine Aluminiumlegierungen mit 1,0 - 3 Gew.% Nickel, 0,5 - 2,5 Gew.% Mangan, 0,02 -1,5 Gew.% Kupfer, einem Weichphasenanteil von 5 - 20 Gew.%, den üblichen zulässigen Verunreinigungen und Rest Aluminium auf. Der Weichphasenanteil beträgt bezogen auf die gesamte Aluminiumlegierung insbesondere bevorzugt 8 - 12 Gew.-%. Beispielsweise eignet sich eine AlSn11.5Ni1.5Cu0.6Mn0.6-Legierung für die Lagermetallschicht.The bearing metal layer preferably has an aluminum alloy with 1.0-3% by weight nickel, 0.5-2.5% by weight manganese, 0.02-1.5% by weight copper, a soft phase content of 5-20% by weight. , the usual permissible impurities and residual aluminum. The soft phase fraction is based on the total aluminum alloy particularly preferably 8 to 12 wt .-%. For example, an AlSn11.5Ni1.5Cu0.6Mn0.6 alloy is suitable for the bearing metal layer.

Als Weichphasenanteile der Lagermetallschicht sind Zinn und/oder Wismut bevorzugt.As the soft phase portions of the bearing metal layer, tin and / or bismuth are preferable.

Die Lagermetallschicht, insbesondere in einer der vorgenannten Zusammensetzungen, ist vorzugsweise auf eine Brinellhärte von 50-70 HBW 1/5/30 und besonders bevorzugt von 50-60 HBW 1/5/30 eingestellt.The bearing metal layer, in particular in one of the abovementioned compositions, is preferably adjusted to a Brinell hardness of 50-70 HBW 1/5/30 and more preferably of 50-60 HBW 1/5/30.

Zwischen der Zwischenschicht und der Lagermetallschicht und/oder zwischen der Zwischenschicht und der Stützschicht besteht vorzugsweise eine Walzplattierverbindung.Between the intermediate layer and the bearing metal layer and / or between the intermediate layer and the supporting layer, there is preferably a roll-bonding compound.

Weitere Aufgaben, Merkmale und Vorteile werden nachfolgend anhand eines Ausführungsbeispiels mit Hilfe der Zeichnungen näher erläutert. Es zeigen:

Figur 1
einen perspektivischen Ausschnitt eines Ausführungsbeispiels des erfindungsgemäßen Gleitlagerelementes in Form einer Lagerschale;
Figur 2
einen axialen Querschnitt im Scheitelbereich durch eine Lagerschale gemäß Stand der Technik nach Belastung;
Figur 3
einen axialen Querschnitt im Scheitelbereich durch eine erfindungsgemäße Lagerschale nach Belastung;
Figur 4
einen Verlauf des Druckprofils in Umfangsrichtung entlang einer belasteten Lagerschale beim erstmaligen Gebrauch;
Figur 5
den Druckprofilverlauf in Umfangsrichtung entlang der Lagerschale bei derselben Belastung wie gemäß Figur 4, jedoch nach plastischer Umformung;
Figur 6
den Druckprofilverlauf in axialer Richtung im Bereich maximaler Belastung der Lagerschale beim erstmaligen Gebrauch;
Figur 7
der Druckprofilverlauf in axialer Richtung im Bereich maximaler Belastung der Lagerschale nach plastischer Umformung und
Figur 8
die plastische Nachgiebigkeit eines Ausführungsbeispiels der erfindungsgemäßen Lageschale im Bereich maximaler Belastung in axialer Richtung in Abhängigkeit von dem Material bzw. der Härte sowie der Dicke der Zwischenschicht.
Other objects, features and advantages will be explained in more detail using an exemplary embodiment with the aid of the drawings. Show it:
FIG. 1
a perspective section of an embodiment of the sliding bearing element according to the invention in the form of a bearing shell;
FIG. 2
an axial cross section in the apex area by a bearing shell according to the prior art after loading;
FIG. 3
an axial cross section in the apex area by a bearing shell according to the invention after loading;
FIG. 4
a profile of the pressure profile in the circumferential direction along a loaded bearing shell when first used;
FIG. 5
the pressure profile profile in the circumferential direction along the bearing shell at the same load as in accordance with FIG. 4 but after plastic deformation;
FIG. 6
the pressure profile curve in the axial direction in the region of maximum load of the bearing shell during initial use;
FIG. 7
the pressure profile curve in the axial direction in the range of maximum load of the bearing shell after plastic deformation and
FIG. 8
the plastic compliance of an embodiment of the bearing shell according to the invention in the region of maximum load in the axial direction in dependence on the material or the hardness and the thickness of the intermediate layer.

Figur 1 zeigt den prinzipiellen Aufbau einer erfindungsgemäßen Lagerschale mit einer Stützschicht 10, die vorzugsweise aus Stahl besteht. Auf der Stützschicht 10 ist eine Zwischenschicht 12 und eine Lagermetallschicht 14 in dieser Reihenfolge aufplattiert. Auf der Innenseite der Lagermetallschicht 14 ist die Gleitfläche 16 ausgebildet, welche in unmittelbarem Kontakt mit einem Gegenläufer, beispielsweise einer Welle (nicht gezeigt), in gleitendem Kontakt steht. Die Welle liegt (mittelbar) an der Gleitfläche 16 an und übt einen radialen Druck auf das Gleitlagerelement aus. Das Gleitlagerelement ist typischerweise ölgeschmiert, so dass sich bedingt durch die Drehung der Welle ein Ölfilm zwischen dieser und der Gleitfläche unter hydrodynamischem Druck aufbaut, der einen direkten Kontakt zwischen der Welle und der Gleitschicht verhindert. FIG. 1 shows the basic structure of a bearing shell according to the invention with a support layer 10, which preferably consists of steel. On the support layer 10, an intermediate layer 12 and a bearing metal layer 14 are plated in this order. On the inside of the bearing metal layer 14, the sliding surface 16 is formed, which in sliding contact is in direct contact with a counter-rotor, for example a shaft (not shown). The shaft abuts (indirectly) on the sliding surface 16 and exerts a radial pressure on the sliding bearing element. The sliding bearing element is typically oil lubricated, so that due to the rotation of the shaft, an oil film between this and the sliding surface builds up under hydrodynamic pressure, which prevents direct contact between the shaft and the sliding layer.

Aus produktionstechnischen Gründen können die Zwischenschicht 12 und die Lagermetallschicht 14 zu einem zweischichtigen Verbund vorplattiert werden, bevor sie auf die Stahlstützschicht 10 aufplattiert werden. Nach dem Aufplattieren auf die Stahlstützschicht 10 weist die Zwischenschicht des erfindungsgemäßen Gleitlagerelementes eine Dicke d2 von 50 µm bis 250 µm, vorzugsweise 150 µm bis 175 µm auf. Die Lagermetallschicht weist eine Dicke d3 von 200 µm bis 400 µm, vorzugsweise 250 µm bis 350 µm auf.For production-related reasons, the intermediate layer 12 and the bearing metal layer 14 may be pre-plated into a two-layer composite before they are plated onto the steel backing layer 10. After being plated onto the steel support layer 10, the intermediate layer of the sliding bearing element according to the invention has a thickness d 2 of 50 μm to 250 μm, preferably 150 μm to 175 μm. The bearing metal layer has a thickness d 3 of 200 .mu.m to 400 .mu.m, preferably 250 .mu.m to 350 .mu.m.

In Figur 3 ist ausschnittsweise ein Schnitt in axialer Richtung im umfänglichen Bereich der größten Belastung eines erfindungsgemäßen Gleitlagerelementes nach einer typischen Beanspruchung gezeigt. Im Vergleich mit Figur 2 ist zu erkennen, dass sowohl die auf die Stahlstützschicht 30 unmittelbar aufplattierte Zwischenschicht 32 als auch die auf die Zwischenschicht 32 aufplattierte Lagermetallschicht 34 nur geringförmig in axialer Richtung aus den Gleitlagerelement heraus gequetscht wurden. Dabei bleibt in idealer Weise sowohl die Walzplattierverbindung 36 zwischen der Stahlstützschicht 30 und der Zwischenschicht 32 als auch die Walzplattierverbindung 38 zwischen der Zwischenschicht 32 und der Lagermetallschicht 34 in Takt, so dass gegenüber dem bekannten Lager gemäß Figur 2 eine wesentlich reduziertes Risiko einer Ablösung der Schichten und damit eines Totalausfalls des Lagers bei gleicher Belastung erwartet wird.In FIG. 3 is a section of a section in the axial direction in the circumferential region of the largest load of a sliding bearing element according to the invention shown after a typical stress. In comparison with FIG. 2 It can be seen that both the intermediate layer 32 directly plated onto the steel support layer 30 and the bearing metal layer 34 plated on the intermediate layer 32 were only slightly squeezed out of the sliding bearing element in the axial direction. In this case, ideally both the Walzplattierverbindung 36 between the steel support layer 30 and the intermediate layer 32 and the Walzplattierverbindung 38 between the intermediate layer 32 and the bearing metal layer 34 in tact, so that compared to the known bearing according to FIG. 2 a significantly reduced risk of detachment of the layers and thus a total failure of the warehouse is expected under the same load.

In Figur 4 ist das Druckprofil in einer erstmaligen typischen Belastungssituation eines neuen, d.h. nicht plastisch verformten, Radiallagerelementes in Umfangsrichtung, angedeutet durch den Pfeil 40, gezeigt. Dasselbe Lager in derselben Situation ist in Figur 6 im axialen Schnitt, d.h. über die Lagerbreite, Pfeil 60, im umfänglichen Bereich der größten Belastung dargestellt. In Figur 4 ist ein signifikantes Druckmaximum im Bereich des Scheitelpunktes, gekennzeichnet durch die strichpunktierte Linie 42, zu erkennen. Der Druck wird über einen vergleichsweise schmalen Winkelbereich in Umfangsrichtung verteilt. In Richtung der Lagerbreite 60 verteilt sich der Druck dergestalt ungleich, dass in den axialen Endebereichen zwei signifikante Druckmaxima 62, 64 hervortreten, vgl. Figur 6. Diese spiegeln sogenannte "Kantenträger" wieder, welche durch eine belastungsbedingte Durchbiegung des Gegenläufers (der Welle oder des Wellenzapfens) und/oder durch eine belastungsbedingte Verformung des Lagergehäuses verursacht werden. Die durch die Druckspitzen repräsentierten hohen spezifischen Lasten bewirken eine vorzeitige Materialermüdung und letztendlich einen frühzeitigen Totalausfall des Gleitlagers.In FIG. 4 is the pressure profile in a first typical load situation of a new, ie not plastically deformed, radial bearing element in the circumferential direction, indicated by the arrow 40, shown. The same bearing in the same situation is in FIG. 6 in axial section, ie over the bearing width, arrow 60, shown in the circumferential region of the largest load. In FIG. 4 is a significant maximum pressure in the region of the vertex, characterized by the dashed line 42, to recognize. The pressure is distributed over a comparatively narrow angular range in the circumferential direction. In the direction of the bearing width 60, the pressure is distributed unevenly such that two significant pressure maxima 62, 64 emerge in the axial end regions, cf. FIG. 6 , These reflect so-called "edge beams", which are caused by a load-related deflection of the counter-rotor (the shaft or the shaft journal) and / or by a load-induced deformation of the bearing housing. The high specific loads represented by the pressure peaks cause premature material fatigue and ultimately premature failure of the plain bearing.

Um die Standfestigkeit des Gleitlagers zu verbessern ist erfindungsgemäß insbesondere die Zwischenschicht so ausgestaltet, dass sie eine hinreichende plastische Verformbarkeit aufweist, die die Druckspitzen nach einer gewissen Einlaufphase reduziert. Dieser Zustand ist in den Figuren 5 und 7 dargestellt. In Figur 5 ist im direkten Vergleich mit Figur 4 zu erkennen, dass nach der Einlaufphase sich der Druck über einen längeren Umfangsabschnitt verteilt und dabei das Maximum des größten Drucks im Scheitelpunkt 42 geringer wird. Es findet bedingt durch die Verformungsfähigkeit der Zwischenschicht unter Betriebslast gewissermaßen eine Umverteilung der Ölfilmdrücke in dem Spalt zwischen Welle und Gleitlagerelement statt. Noch signifikanter ist dieser Effekt in Breitenrichtung des Lagers gemäß Figur 7 zu erkennen. Das Lager wird in den axialen Endbereichen dergestalt plastisch verformt, dass ein Teil des Druckes auf den axialen Mittelbereich umverteilt wird. Die Druckmaxima 72 und 74 werden zu Gunsten eines Druckanstiegs im Bereich des Minimums 76 abgeflacht. Insgesamt gesehen ist die spezifische Lagerbelastung zwar gleich, es gibt jedoch keinen Bereich mehr mit einer gefährlich überhöhten spezifisch Last, so dass eine Ermüdung des Lagermaterials erst nach sehr viel längerer Beanspruchung erwartet wird.In order to improve the stability of the sliding bearing according to the invention, in particular the intermediate layer is designed so that it has a sufficient plastic deformability, which reduces the pressure peaks after a certain running-in phase. This condition is in the Figures 5 and 7 shown. In FIG. 5 is in direct comparison with FIG. 4 to recognize that after the running-in phase, the pressure over a longer peripheral portion distributed and while the maximum of the greatest pressure in the apex 42 is lower. Due to the deformability of the intermediate layer under operating load, there is to some extent a redistribution of the oil film pressures in the gap between the shaft and the plain bearing element. This effect is even more significant in the width direction of the bearing according to FIG. 7 to recognize. The bearing is plastically deformed in the axial end portions such that a portion of the pressure is redistributed to the axial center portion. The pressure maxima 72 and 74 are flattened in favor of a pressure increase in the region of the minimum 76. Overall, the specific bearing load is the same, but there is no area with a dangerous excessive specific load, so that a fatigue of the bearing material is expected only after much longer stress.

In Figur 8 ist die plastische Nachgiebigkeit, d.h. das Verformungsvermögen erfindungsgemäßer Gleitlagerelemente im Vergleich mit bekannten Gleitlagerelementen in Richtung der (halben) Lagerbreite gezeigt. Die Kurve ist beginnend von der Gleitlagermitte bei 0 in axialer Richtung bis hin zum axialen Ende des Gleitlagers bei 9 dargestellt. Die fette durchgezogene Linie "A" gibt die plastische Nachgiebigkeit eines Werkstoffverbundes gemäß Stand der Technik basierend auf einer 75 µm dicken Zwischenschicht aus einer AlMn1Cu-Legierung (EN AW-3003) mit einer Härte von 60 HV 0,01 wieder. Eine solche Schicht hat wie eingangs bereits erwähnt zwar die für die Verbesserung der Langzeitbelastung notwendige Nachgiebigkeit. Jedoch wird bei Verwendung dieses Zwischenschichtmaterials das in Verbindung mit Figur 2 erläuterte Herausquetschen beobachtet. Allein eine Anhebung der Zwischenschichtdicke unter Verwendung desselben Materials führt zu einer wesentlich zu hohen plastischen Nachgiebigkeit, wie die fette punktierte Linie "B" mit dem signifikanten Minimum bei etwa 6,7 zeigt. Auch kann durch Erhöhung der Dicke der Zwischenschicht allein das Herausquetschen des Zwischenschichtmaterials aus dem Verbundwerkstoff nicht verhindert werden.In FIG. 8 is the plastic compliance, ie the deformation capacity of the invention sliding bearing elements in comparison with known sliding bearing elements in the direction of the (half) bearing width shown. The curve is shown starting from the plain bearing center at 0 in the axial direction to the axial end of the sliding bearing at 9. The solid solid line "A" represents the plastic compliance of a material composite according to the prior art based on a 75 micron thick intermediate layer of an AlMn1Cu alloy (EN AW-3003) with a hardness of 60 HV 0.01. As already mentioned, such a layer has the flexibility necessary for the improvement of the long-term loading. However, when using this interlayer material, in conjunction with FIG. 2 explained squeezing observed. Only an increase in the interlayer thickness using the same material leads to a substantially too high plastic compliance, as the bold dotted line "B" with the significant minimum at about 6.7 shows. Also, by increasing the thickness of the intermediate layer alone, squeezing out of the intermediate layer material from the composite material can not be prevented.

Letzteres gelingt erst durch Verwendung einer Aluminiumlegierung für die Zwischenschicht, welche zwischen 3,5 Gew.-% und 4,5 Gew.-% Kupfer aufweist und nach dem Walzplattieren und gegebenenfalls Wärmebehandeln auf eine Mikrohärte zwischen 70 und 110 HV 0,01, vorzugsweise 85 und 100 HV 0,01 eingestellt ist. Gleitlagerelemente mit diesem Zwischenschichtmaterial und unterschiedlichen Zwischenschichtdicken wurden untersucht, wobei sich eine Zwischenschichtdicke zwischen 50 µm und 250 µm als grundsätzlich geeignet erweist, um die gewünschte plastische Nachgiebigkeit zu erzielen. Besonders bevorzugt sind Zwischenschichtdicken zwischen 150 µm, vergleiche Linie "D", und 200 µm, vergleiche Linie"C", und ganz besonders bevorzugt zwischen 150 µm und 175 µm, vergleiche Linie "E".The latter can only be achieved by using an aluminum alloy for the intermediate layer which has between 3.5% by weight and 4.5% by weight of copper and, after roll-plating and optionally heat-treating, to a microhardness between 70 and 110 HV 0.01, preferably 85 and 100 HV 0.01 is set. Slide bearing elements with this intermediate layer material and different intermediate layer thicknesses were investigated, with an intermediate layer thickness of between 50 μm and 250 μm proving to be fundamentally suitable in order to achieve the desired plastic compliance. Particularly preferred are interlayer thicknesses between 150 microns, compare line "D", and 200 microns, compare line "C", and most preferably between 150 microns and 175 microns, compare line "E".

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Stützschichtbacking
1212
Zwischenschichtinterlayer
1414
LagermetallschichtBearing metal layer
1616
Gleitflächesliding surface
2020
Stützschichtbacking
2222
Zwischenschichtinterlayer
2424
LagermetallschichtBearing metal layer
2626
Stirnseitefront
2828
RissCrack
3030
Stützschichtbacking
3232
Zwischenschichtinterlayer
3434
LagermetallschichtBearing metal layer
3636
Verbundflächecomposite surface
3838
Verbundflächecomposite surface
4040
Umfangsrichtungcircumferentially
4242
Scheitelpunktvertex
6060
Breitenrichtungwidth direction
6262
Druckmaximumpressure maximum
6464
Druckmaximumpressure maximum
7272
Druckmaximumpressure maximum
7474
Druckmaximumpressure maximum
7676
Druckminimumpressure minimum

Claims (12)

  1. Plain bearing element having a support layer (10, 20, 30), an intermediate layer (12, 22, 32) based on an aluminium alloy and a metal bearing layer (14, 24, 34) based on an aluminium alloy, characterised in that
    the aluminium alloy of the intermediate layer (12, 22, 32) has a composition with the following constituent components in percent by weight and the balance being aluminium: copper from 3.5% to 4.5%, manganese from 0.1% to 1.5%, magnesium from 0.1% to 1.5%,
    optionally in addition: silicon from 0.1% to 1.0%,
    optionally in addition: iron from 0.05% to 1.0%, chromium from 0.05% to 0.5%, zinc from 0.05% to 0.5%,
    optionally in addition:
    zirconium and titanium at a total of from 0.05% to 0.25%,
    optionally in addition:
    other alloy components at no more than 0.1% individually and 0.25% in total, the intermediate layer (12, 22, 32) having a microhardness of from 70 HV 0.01 to 110 HV 0.01.
  2. Plain bearing element according to claim 1, characterised in that the intermediate layer (12, 22, 32) has a thickness d2 of from 50 µm to 250 µm.
  3. Plain bearing element according to claim 1, characterised in that the intermediate layer (12, 22, 32) has a thickness d2 of from 150 µm to 175 µm.
  4. Plain bearing element according to any one of the preceding claims, characterised in that
    the aluminium alloy of the intermediate layer (12, 22, 32) has in percent by weight: manganese from 0.4% to 1.0%, magnesium from 0.4% to 1.0%, silicon from 0.2% to 0.8%.
  5. Plain bearing element according to any one of the preceding claims, characterised in that
    the metal bearing layer (14, 24, 34) has a thickness d3 of from 200 µm to 400 µm.
  6. Plain bearing element according to any one of the preceding claims, characterised in that
    the metal bearing layer (14, 24, 34) has an aluminium alloy having from 1.0 to 3% by weight of nickel, from 0.5 to 2.5% by weight of manganese, from 0.02 to 1.5% by weight of copper, a soft phase proportion of from 5 to 20% by weight, the usual permissible impurities and the balance being aluminium.
  7. Plain bearing element according to claim 6, characterised in that the soft phase proportion of the metal bearing layer (14, 24, 34) comprises tin and/or bismuth.
  8. Plain bearing element according to claim 6 or claim 7, characterised in that the soft phase proportion in the metal bearing layer (14, 24, 34) is from 8 to 12% by weight.
  9. Plain bearing element according to any one of the preceding claims, characterised in that
    the metal bearing layer (14, 24, 34) has a Brinell hardness of from 50 to 60 HBW 1/5/30.
  10. Plain bearing element according to any one of the preceding claims, characterised in that,
    between the intermediate layer (12, 22, 32) and the metal bearing layer (14, 24, 34), there is a roll cladding connection.
  11. Plain bearing element according to any one of the preceding claims, characterised in that,
    between the intermediate layer (12, 22, 32) and the support layer (10, 20, 30), there is a roll cladding connection.
  12. Plain bearing element according to any one of the preceding claims, characterised in that
    the plain bearing element is a bearing shell.
EP10718540.7A 2009-04-28 2010-04-26 Sliding bearing element comprising a lead-free aluminum bearing metal layer Active EP2425031B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009002700A DE102009002700B3 (en) 2009-04-28 2009-04-28 Slide bearing element with lead-free aluminum bearing metal layer
PCT/EP2010/055530 WO2010125026A1 (en) 2009-04-28 2010-04-26 Sliding bearing element comprising a lead-free aluminum bearing metal layer

Publications (2)

Publication Number Publication Date
EP2425031A1 EP2425031A1 (en) 2012-03-07
EP2425031B1 true EP2425031B1 (en) 2014-07-02

Family

ID=42664284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10718540.7A Active EP2425031B1 (en) 2009-04-28 2010-04-26 Sliding bearing element comprising a lead-free aluminum bearing metal layer

Country Status (8)

Country Link
US (1) US8771838B2 (en)
EP (1) EP2425031B1 (en)
JP (1) JP5613759B2 (en)
KR (1) KR101716519B1 (en)
CN (1) CN102428196B (en)
BR (1) BRPI1015320B1 (en)
DE (1) DE102009002700B3 (en)
WO (1) WO2010125026A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086556A (en) * 2016-06-15 2016-11-09 张荣斌 A kind of low-noise wearable oiliness bearing

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562808B (en) * 2011-12-15 2015-01-07 广州安达精密工业股份有限公司 Substrate layer for bearing bush
JP5905102B2 (en) * 2012-08-01 2016-04-20 大豊工業株式会社 Manufacturing method of plain bearing
DE102013210662B4 (en) * 2013-06-07 2017-11-09 Federal-Mogul Wiesbaden Gmbh Sliding bearing composite material with aluminum bearing metal layer
DE102013210663B9 (en) 2013-06-07 2015-04-16 Federal-Mogul Wiesbaden Gmbh Sliding bearing composite material with aluminum intermediate layer
EP2985358B1 (en) 2014-08-14 2017-05-03 KS Gleitlager GmbH Friction bearing composite material
WO2016058632A1 (en) 2014-10-14 2016-04-21 Federal-Mogul Wiesbaden Gmbh Composite material for a sliding bearing comprising a hot-plated aluminum bearing metal layer
DE102014220788B4 (en) * 2014-10-14 2016-08-11 Federal-Mogul Wiesbaden Gmbh Sliding bearing composite material with aluminum bearing metal layer
DE102017205338A1 (en) 2017-03-29 2018-10-04 Federal-Mogul Wiesbaden Gmbh Roll-clad aluminum triaxial bearing
US10495141B2 (en) * 2017-07-20 2019-12-03 GM Global Technology Operations LLC Bearing with lightweight backing substrate
CN108893627A (en) * 2018-07-06 2018-11-27 天津千鑫有色金属制品有限公司 A kind of casting technique of high density aluminium alloy castings
GB2607887A (en) * 2021-06-11 2022-12-21 Mahle Int Gmbh Sliding element with intermediate layer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB596260A (en) 1945-07-25 1947-12-31 Vandervell Products Ltd Improvements relating to bearings
FR523853A (en) 1919-10-06 1921-08-26 Aviation Louis Breguet Sa Bushings or other supports for rotating shafts
GB708472A (en) * 1951-12-13 1954-05-05 Glacier Co Ltd Improvements in or relating to plain bearings
CH340777A (en) 1957-04-30 1959-08-31 Straumann Inst Ag Component for watches, which has rubbing surfaces
DE1191114B (en) * 1958-03-14 1965-04-15 Karl Schmidt Ges Mit Beschraen Roll-bonded composite material made of two aluminum alloys for sliding purposes, especially for bearing shells or bearing bushes
FR1380742A (en) 1963-10-25 1964-12-04 Berliet Automobiles friction elements in oxidized light metal and cadmium steel
CA945602A (en) * 1968-02-12 1974-04-16 Gould Inc. Fine dispersion aluminum base bearing and method for making same
JP2564012B2 (en) * 1989-11-27 1996-12-18 大同メタル工業 株式会社 Aluminum-based alloy bearing with reinforced intermediate adhesive layer
JPH0819946B2 (en) * 1992-04-28 1996-03-04 大同メタル工業株式会社 Multi-layer aluminum base alloy bearing with excellent compatibility and fatigue resistance
JP2657143B2 (en) * 1992-10-26 1997-09-24 大同メタル工業株式会社 Multi-layer plain bearing with excellent fatigue resistance and conformability with Al-Sn based bearing alloy sliding layer
JP2769101B2 (en) * 1993-12-27 1998-06-25 大同メタル工業株式会社 Aluminum-based alloy bearing with excellent fatigue resistance
AT400174B (en) * 1994-02-21 1995-10-25 Miba Gleitlager Ag BEARINGS
AU5717096A (en) * 1995-05-01 1996-11-21 Mcdonnell Douglas Corporation Preparation of pre-coated aluminum alloy articles
JP3776228B2 (en) * 1998-02-09 2006-05-17 エヌデーシー株式会社 Heat treatment reinforced aluminum sliding material and method for producing the same
JP3958515B2 (en) * 2000-10-18 2007-08-15 大同メタル工業株式会社 Multilayer bearing and manufacturing method thereof
JP2004360779A (en) * 2003-06-04 2004-12-24 Daido Metal Co Ltd Sliding member comprising multiple layers of aluminum alloy
EP1522750B2 (en) * 2003-10-06 2018-02-14 Taiho Kogyo Co., Ltd Multi-layer sliding bearing
DE102005023541A1 (en) * 2005-05-21 2006-11-23 Federal-Mogul Wiesbaden Gmbh & Co. Kg Slide bearing composite material, use of the sliding bearing composite material and method for producing the sliding bearing composite material
JP5021536B2 (en) * 2008-03-25 2012-09-12 大同メタル工業株式会社 Plain bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086556A (en) * 2016-06-15 2016-11-09 张荣斌 A kind of low-noise wearable oiliness bearing
CN106086556B (en) * 2016-06-15 2017-12-19 南安市威速电子科技有限公司 A kind of low-noise wearable oiliness bearing

Also Published As

Publication number Publication date
US20120114273A1 (en) 2012-05-10
DE102009002700B3 (en) 2010-09-30
CN102428196A (en) 2012-04-25
WO2010125026A1 (en) 2010-11-04
JP2012525494A (en) 2012-10-22
KR101716519B1 (en) 2017-03-14
JP5613759B2 (en) 2014-10-29
BRPI1015320B1 (en) 2018-02-06
US8771838B2 (en) 2014-07-08
EP2425031A1 (en) 2012-03-07
CN102428196B (en) 2015-03-25
BRPI1015320A2 (en) 2016-05-24
KR20120016612A (en) 2012-02-24

Similar Documents

Publication Publication Date Title
EP2425031B1 (en) Sliding bearing element comprising a lead-free aluminum bearing metal layer
EP2931519B1 (en) Plain bearing composite material
EP2673389B1 (en) Sliding bearing composite
AT510062A1 (en) BEARINGS
EP0681114B2 (en) Plain bearing material
EP1977021B1 (en) Sn-containing heavy-duty material composition, method for the production of a heavy-duty coating, and use thereof
EP2715194B1 (en) Piston ring with composite coating
DE4231862A1 (en) METAL BEARING FOR LARGE ENGINES
DE102004025557C5 (en) Multilayer sliding part of an aluminum-based alloy
EP3207166B1 (en) Composite material for a sliding bearing comprising an aluminum bearing metal layer
EP0672840A2 (en) Sliding bearing
DE102018100659B3 (en) plain bearing element
EP3601821A1 (en) Three-material roll-bonded sliding bearing having two aluminium layers
AT518875B1 (en) Multilayer plain bearing element
DE3509944A1 (en) ALUMINUM ALLOY
DE1900049C3 (en) Self-lubricating bearing
DE60001792T2 (en) Aluminum-tin bearing alloy
DE19612657A1 (en) Composite copper alloy bearings
DE3000773C2 (en) Tin-containing aluminum bearing alloy
AT520331B1 (en) Method for producing a plain bearing
AT518876B1 (en) Method for producing a multilayer sliding bearing element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131029

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 675987

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010007375

Country of ref document: DE

Effective date: 20140814

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140702

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141002

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141002

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141102

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010007375

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150426

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100426

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200327

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010007375

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210426

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230322

Year of fee payment: 14