EP2420772B1 - Cooling head for a cooling system - Google Patents

Cooling head for a cooling system Download PDF

Info

Publication number
EP2420772B1
EP2420772B1 EP11450090.3A EP11450090A EP2420772B1 EP 2420772 B1 EP2420772 B1 EP 2420772B1 EP 11450090 A EP11450090 A EP 11450090A EP 2420772 B1 EP2420772 B1 EP 2420772B1
Authority
EP
European Patent Office
Prior art keywords
cooling
connecting lines
coolant
cooling head
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11450090.3A
Other languages
German (de)
French (fr)
Other versions
EP2420772A2 (en
EP2420772A3 (en
Inventor
Johannes Wild
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2420772A2 publication Critical patent/EP2420772A2/en
Publication of EP2420772A3 publication Critical patent/EP2420772A3/en
Application granted granted Critical
Publication of EP2420772B1 publication Critical patent/EP2420772B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Definitions

  • the invention relates to a cooling head for a cooling system for cooling objects to semi-cryogenic temperatures of 283K to 4K with insulation means for insulating the cooling head, wherein the insulation means of the cooling head are formed by a vacuum chamber in which the cooling head is arranged, and with connecting lines connected to the cooling head for supplying and returning a cooled in a cooling unit to preferably semi-cryogenic or cryogenic temperatures coolant to or from the cooling head, wherein insulating means are provided for insulating the connecting lines.
  • the invention further relates to a cooling device with such a cooling head.
  • cooling capacity in vacuum chambers is required.
  • a coolant for example by piping in the vacuum chamber to selectively targeted a place in the vacuum chamber to cool (eg on a copper plate).
  • the coolant may be a coolant (eg glycol) or a refrigerant eg R404A, R410A, propane (R290), methane (R50), liquid nitrogen (R728), liquid argon (R740) or liquid helium.
  • the temperature range of the coolant is approx. Between 283K - 4K. In this case, both the cooling supply line and the vacuum feedthrough into the chamber are a decisive element in order not to lose cooling power along the path from the cooling reservoir or the cooling machine into the vacuum chamber.
  • a vacuum chamber design may not be useful under some circumstances.
  • a refrigeration unit eg a closed-circuit compression refrigeration machine Circuit, a Closed Loop Chiller, a Mixed Gas Joule Thomson Chiller, ect.
  • connection lines are often made with elastomers, e.g. ARMAFLEXĀ® (up to 77K resistant) or insulated with vacuum insulation.
  • elastomers e.g. ARMAFLEXĀ® (up to 77K resistant) or insulated with vacuum insulation.
  • problems such as insulation losses, condensation and the rigidity of the insulation material are to be mentioned.
  • the connecting lines are becoming increasingly inflexible at lower temperatures. When bent in the cooled state, this even leads to the breakage of the insulation material.
  • a vacuum insulation is to be mentioned as a disadvantage that the cost is very high and also the problem of the vacuum implementation is not solved as in the first case.
  • the vacuum supply line usually consists of a tube-in-tube pipe, in which there is a vacuum in the outer tube; Inside the tube, the coolant is transported. The freezing or icing of the vacuum flange or the entire vacuum chamber and the occurrence of condensation are still a problem when not suitable vacuum feedthrough.
  • chillers (Gifford-McMahon Chiller, Pulse Tube Chillers, Mixed Gases Joule Thomson Chiller ect.) That solve the targeted introduction of cold in a vacuum chamber thereby, a part of the production process (heat exchanger, regenerator, etc.) for to carry out the cold directly in the vacuum chamber.
  • the connections supply and discharge to the respective compressor unit of the device
  • the disadvantage is that the devices require a large vacuum chamber, which is undesirable or even unusable for many processes.
  • the WO97 / 33671A1 describes a cooling head for a cooling system for cooling objects with insulation means for insulating the cooling head, wherein the insulation means of the cooling head are formed by a vacuum chamber in which the cooling head is arranged.
  • the WO02 / 01123A1 discloses a cryosurgical instrument having connecting conduits located between a compressor and the cooling head and forming the heat exchanger. Furthermore, the heat exchanger, the connecting lines and the cooling head are in a common vacuum insulation.
  • US5275595A describes a cryosurgical instrument, wherein a heat exchanger is disposed in a flexible tube and acts as a link between a compressor and a cooling head.
  • the US2005 / 086950A1 discloses a closed loop cooling system for cooling multi-component refrigerants at temperatures ranging from 230K to 70K.
  • the invention therefore aims to improve a cooling head and a cooling device such that a cooling of an object efficiently to the lowest possible semi-cryogenic or cryogenic temperatures succeeds and the losses during transport of the coolant are kept as low as possible, the vacuum chamber should be designed as small and handy as possible.
  • a cooling head of the type mentioned above according to the invention substantially further developed such that the insulation means of the connecting lines are formed by a vacuum insulation, wherein the vacuum chamber and the vacuum insulation of the connecting lines are directly related and with a common negative pressure source can be connected, and wherein the connecting lines are led out at the end facing away from the cooling head of the vacuum insulation.
  • the invention uses the vacuum system of the vacuum chamber to suitably the refrigerant on the transport between the vacuum chamber or to isolate the cooling head and the cooling reservoir and to make a vacuum feedthrough.
  • the vacuum chamber itself is located on the connecting lines mounted cooling head (eg copper) through which the refrigerant (eg liquid nitrogen) is coming from the connecting lines coming.
  • the existing vacuum chamber is expanded by the relatively small volume of the vacuum insulation of the connecting lines and at the same time created a vacuum connection between the vacuum insulation of the connecting lines and the vacuum chamber.
  • the vacuum chamber has a passage for the connecting lines, which is designed such that the cavity of the vacuum insulation of the connecting lines is in communication with the interior of the vacuum chamber.
  • the refrigerant-carrying pipe is appropriately led out of the vacuum insulation, as well as vacuum-insulated pipes known from the prior art. It is particularly important to pay attention to the thermal conductivity of the cladding tube of the vacuum insulation and the heat transfer surface. A good vacuum welding during the transition is also important. This transition, which should cause low heat transfer losses, can be further protected by conventional insulation against condensation or ice.
  • the vacuum insulation comprises an enveloping tube surrounding the connecting lines to form a substantially annular hollow space.
  • the buffer tube is according to the invention, as well as the connecting lines flexible.
  • the design is designed such that at least one spacer is arranged in the hollow space between the connecting lines and the enveloping hose. If, as is preferred, the spacer has a corrugated outer and inner contour, it is ensured that between spacers on the one hand and the buffer tube and the connecting lines on the other hand only point or linear contacts arise, due to such Hertzian contacts the heat input can be further reduced from the outside.
  • a particularly simple structure is achieved according to a preferred embodiment, when the common vacuum source is connected to the vacuum chamber.
  • a surrounding surrounding the implementation in particular tubular spacer is arranged, which defines the distance between the cooling head and the inner wall of the vacuum chamber, wherein the spacer has radial openings, so that the interior of the vacuum chamber is in communication with the cavity of the vacuum insulation of the connecting lines.
  • a cooling device comprising a cooling unit with means for cooling a coolant to preferably semi-cryogenic or cryogenic temperatures and a cooling unit separate cooling head connected by means connected to the cooling head flexible connecting lines for feeding and returning the Coolant is connected to the cooling unit.
  • a cooling unit with means for cooling a coolant to preferably semi-cryogenic or cryogenic temperatures
  • a cooling unit separate cooling head connected by means connected to the cooling head flexible connecting lines for feeding and returning the Coolant is connected to the cooling unit.
  • a so-called mixed gas joule Thomson refrigeration unit is used, for example, from the EP 650674 A1 has become known.
  • the invention provides that a cooling unit is provided for cooling the coolant, which has a compressor for compressing the coolant to which the coolant is supplied in the gaseous state and from which the coolant exits in compressed gaseous state, and a compressor connected downstream Aftercooler comprises, from which the mostly gaseous refrigerant is fed to a countercurrent heat exchanger comprising a supply and a return line, which are arranged such that the compressed refrigerant in the supply line is liquefied by heating the flowing through the return line expanded refrigerant, wherein the connecting lines to the Supply and return line are connected, so that the cooling head is flowed through by the coolant in which the coolant evaporates.
  • the compressor, the aftercooler and the countercurrent heat exchanger are arranged together in a stand unit whose housing has a passage for connecting the countercurrent heat exchanger with the vacuum chamber connecting lines.
  • radiator with the interposition of a throttle element, is connected to the supply line of the countercurrent heat exchanger so that the necessary pressure reduction of the refrigerant takes place and the liquefied coolant can evaporate in the refrigeration head.
  • connecting line connecting the supply line of the countercurrent heat exchanger with the cooling head forms the throttle element.
  • the coolant preferably comprises butane and / or isobutane and / or propane and / or propene and / or ethyne and / or ethane and / or ethene and / or methane and / or argon and / or nitrogen.
  • FIG.1 a closed cooling circuit with a cooling unit and a cooling head
  • Fig.2 a sectional view of the cooling head with the connecting lines
  • Figure 3 a section along the line III-III of Fig.2 ,
  • the cooling circuit shown is usually referred to as the mixed gas joule Thomson cooling process and is for example in the document EP 650574 A1 described.
  • the cooling circuit comprises a compressor 1 for compressing the gaseously supplied refrigerant in 2.
  • the refrigerant may be, for example, a gas mixture consisting of propane, ethane, methane and nitrogen.
  • the compressed refrigerant is fed via a line 3 to an oil separator 4, with which the possibly in the compressor 1 with the refrigerant mixing oil is separated.
  • the oil purified by the oil is then fed to an aftercooler 5, in which the heat supplied to the compressor 1 is removed from the refrigerant.
  • the cooled, compressed, but still mostly gaseous refrigerant is then fed via a line 6 to a countercurrent heat exchanger 7, in which the coolant flowing through the refrigerant supply line 8 is cooled and liquefied by the refrigerant flowing in the refrigerant return line 9.
  • the refrigerant supply line 8 and the refrigerant return line 9 may in practice be several meters long and often become helical or spirally wound to achieve a certain compactness of the heat flow heat exchanger.
  • the liquefied refrigerant is depressurized via a throttle 10, so that the refrigerant in the cooling head 11 evaporate and thereby escape the environment evaporation heat.
  • the cooling head 11 is flowed through by the coolant and is therefore designed, for example, as a hollow cylinder.
  • the flowing back from the cooling head 11 refrigerant is heated in countercurrent heat exchanger 7 in the sequence up to room temperature, wherein the refluxing refrigerant cools the flowing refrigerant.
  • the cooling head 11 is therefore made of a thermally conductive material such as copper.
  • the cooling head 11 is connected via connecting lines 13 and 14 to the counterflow heat exchanger 7, so that the cooling unit 15 and the cooling head 11 arranged in a vacuum chamber 16 can be realized as separate structural units.
  • the inventive construction makes it necessary that the cooled and liquefied in the heat exchanger 7 refrigerant is transported via the connecting lines 13 and 14 over a more or less long distance, so that a sufficient insulation of the connecting lines must be ensured.
  • the cooling head with vacuum chamber and the connecting lines are shown in detail.
  • the connecting lines 13 and 14 have a vacuum insulation 17 whose evacuated interior is in communication with the interior of the vacuum chamber 16.
  • the connecting lines 13 and 14 are formed according to the invention as flexible tubes to the handling improve.
  • the vacuum insulation 17 of the connecting line has a flexible HĆ¼llschlauch 18, which may be formed for example as a stainless steel corrugated pipe, which preferably has a steel jacket.
  • spacers 19 are arranged, which may also be made flexible.
  • the spacers 19 preferably have a corrugated outer contour, so that the heat transfer is minimized due to the line contacts achieved with the cladding tube 18 or the connecting lines 13 and 14.
  • the spacer 19 thus serves the mechanical and thus thermal decoupling of the connecting lines 13 and 14 to the cladding tube 18. It should be sufficiently flexible, temperature stable, resistant to aging and degassing (eg Teflon, plastic, stainless steel).
  • Teflon, plastic, stainless steel eg Teflon, plastic, stainless steel.
  • the connecting lines 13 and 14 are led out of the vacuum insulation 17.
  • Low thermal losses at the transition point 20 should be taken into account. This can be achieved by materials with low thermal conductivity and a low transition cross-section (eg stainless steel).
  • the interface 20 may be protected by conventional thermal insulation materials (eg, foamed polystyrene, elastomers).
  • the connecting lines 13 and 14 may be thermally coupled.
  • the connecting lines 13 and 14 can alternatively be guided into each other.
  • the coolant may experience a pressure reduction along the supply line, so that the refrigerant is evaporated in the cooling head as in compression refrigerating machines and heat is dissipated. In this case, the supply line is immediately throttle body.
  • the vacuum insulation 17 is connected to a vacuum flange 21, through which the connecting lines 13 and 14 are passed and fed to the cooling head 11.
  • a spacer 22 is disposed between the cooling head 11 and the vacuum flange 21, which may for example consist of Teflon, ceramic or stainless steel and ausgasungsbestopathy, low temperature suitable, should be resistant to embrittlement and aging. It is important to ensure a sufficient thermal decoupling of the spacer 22 from the vacuum flange 21 and a good atmospheric permeability to the cladding tube 18.
  • the spacer 22 has a plurality of radial openings 24, so that the evacuated interior of the vacuum insulation of the connecting lines with the evacuated interior of the vacuum chamber 16 is in a conductive connection.
  • a flange for connection to a vacuum pump is indicated at 23.
  • the cooling head When the cooling head flows through coolant evenly and when the cooling head is mechanically stabilized by means of spacers, the cooling head is extremely low in vibration.
  • Typical applications for the invention are the cooling of high-power laser amplifiers and various cooling tasks in analytical chemistry, in the field of superconductivity, astronomy and in general in research and development as well as in medical diagnostics.

Description

Die Erfindung betrifft einen KĆ¼hlkopf fĆ¼r eine KĆ¼hlanlage zum KĆ¼hlen von Objekten auf semi-kryogen bzw. kryogene Temperaturen von 283K bis 4K mit Isolationsmitteln zum Isolieren des KĆ¼hlkopfes, wobei die Isolationsmittel des KĆ¼hlkopfes von einer Vakuumkammer gebildet sind, in welcher der KĆ¼hlkopf angeordnet ist, und mit an den KĆ¼hlkopf angeschlossenen Verbindungsleitungen zum Zu- und RĆ¼ckfĆ¼hren eines in einem KĆ¼hlaggregat auf bevorzugt semi-kryogen bzw. kryogene Temperaturen abgekĆ¼hlten KĆ¼hlmittels zum bzw. vom KĆ¼hlkopf, wobei Isolationsmittel zum Isolieren der Verbindungsleitungen vorgesehen sind. Die Erfindung betrifft weiters eine KĆ¼hlvorrichtung mit einem derartigen KĆ¼hlkopf.The invention relates to a cooling head for a cooling system for cooling objects to semi-cryogenic temperatures of 283K to 4K with insulation means for insulating the cooling head, wherein the insulation means of the cooling head are formed by a vacuum chamber in which the cooling head is arranged, and with connecting lines connected to the cooling head for supplying and returning a cooled in a cooling unit to preferably semi-cryogenic or cryogenic temperatures coolant to or from the cooling head, wherein insulating means are provided for insulating the connecting lines. The invention further relates to a cooling device with such a cooling head.

FĆ¼r viele Anwendungen wird KĆ¼hlleistung in Vakuumkammern benƶtigt. Dazu kann man ein KĆ¼hlmittel z.B. durch Rohrleitungen in die Vakuumkammer fĆ¼hren, um gezielt einen betreffenden Ort in der Vakuumkammer zu kĆ¼hlen (z.B. auf einer Kupferplatte). Das KĆ¼hlmittel kann eine KĆ¼hlflĆ¼ssigkeit (z.B. Glykol) oder ein KƤltemittel z.B. R404A, R410A, Propan (R290), Methan (R50), flĆ¼ssiger Stickstoff (R728), flĆ¼ssiges Argon (R740) oder flĆ¼ssiges Helium sein. Der Temperaturbereich der KĆ¼hlmittel liegt ca. zwischen 283K - 4K. Dabei ist sowohl die KĆ¼hlzuleitung als auch die VakuumdurchfĆ¼hrung in die Kammer ein entscheidendes Element, um nicht entlang des Weges vom KĆ¼hlreservoir oder der KƤltemaschine in die Vakuumkammer KĆ¼hlleistung zu verlieren. Die Verluste fĆ¼hren insbesondere bei tieferen Temperaturen zu ungewollter Eis- bzw. Kondenswasserbildung, mechanischen Spannungen und natĆ¼rlich zu einer AufwƤrmung des KĆ¼hlmittels. Auf Grund dieser Verluste kann ein Aufbau mit Vakuumkammer unter gewissen UmstƤnden nicht mehr sinnvoll sein. Insbesondere wenn das gekĆ¼hlte KĆ¼hlmittel von einem KĆ¼hlaggregat zur VerfĆ¼gung gestellt wird, z.B. einer KompressionskƤltemaschine mit geschlossenem Kreislauf, einem Closed Loop Chiller, einem Mixed Gas Joule Thomson Chiller, ect.), das bei einer spezifischen Temperatur nur wenige Watt KƤlteleistung erzeugt.For many applications, cooling capacity in vacuum chambers is required. For this purpose, you can lead a coolant, for example by piping in the vacuum chamber to selectively targeted a place in the vacuum chamber to cool (eg on a copper plate). The coolant may be a coolant (eg glycol) or a refrigerant eg R404A, R410A, propane (R290), methane (R50), liquid nitrogen (R728), liquid argon (R740) or liquid helium. The temperature range of the coolant is approx. Between 283K - 4K. In this case, both the cooling supply line and the vacuum feedthrough into the chamber are a decisive element in order not to lose cooling power along the path from the cooling reservoir or the cooling machine into the vacuum chamber. The losses lead in particular at lower temperatures to unwanted ice or condensation, mechanical stresses and of course to a warming up of the coolant. Due to these losses, a vacuum chamber design may not be useful under some circumstances. In particular, when the cooled coolant is provided by a refrigeration unit, eg a closed-circuit compression refrigeration machine Circuit, a Closed Loop Chiller, a Mixed Gas Joule Thomson Chiller, ect.) That produces only a few watts of cooling capacity at a specific temperature.

GemƤƟ dem Stand der Technik werden die Verbindungsleitungen oftmals mit Elastomeren z.B. ARMAFLEXĀ® (bis zu 77K bestƤndig) oder mittels Vakuumisolierungen isoliert. Bei der Verwendung von Elastomeren sind Probleme wie Isolationsverluste, Kondenswasser und das Starrwerden des Isolationsmaterials zu erwƤhnen. AuƟerdem werden die Verbindungsleitungen bei tiefer werdenden Temperaturen immer unflexibler. Beim Biegen im abgekĆ¼hlten Zustand fĆ¼hrt dies sogar zum Bruch des Isolationsmaterials. Bei der Verwendung einer Vakuumisolierung ist als Nachteil zu nennen, dass die Kosten sehr hoch sind und auƟerdem das Problem der VakuumdurchfĆ¼hrung wie auch im ersten Fall nicht gelƶst ist. Die Vakuumzuleitung besteht in der Regel aus einer Rohr-in-Rohr Leitung, bei der im ƤuƟeren Rohr ein Vakuum herrscht; im Inneren Rohr wird das KĆ¼hlmittel transportiert. Das Einfrieren oder Vereisen des Vakuumflansches bzw. der gesamten Vakuumkammer sowie das Auftreten von Kondenswasser sind weiterhin bei nicht geeigneter VakuumdurchfĆ¼hrung ein Problem.According to the prior art, the connection lines are often made with elastomers, e.g. ARMAFLEXĀ® (up to 77K resistant) or insulated with vacuum insulation. When using elastomers, problems such as insulation losses, condensation and the rigidity of the insulation material are to be mentioned. In addition, the connecting lines are becoming increasingly inflexible at lower temperatures. When bent in the cooled state, this even leads to the breakage of the insulation material. When using a vacuum insulation is to be mentioned as a disadvantage that the cost is very high and also the problem of the vacuum implementation is not solved as in the first case. The vacuum supply line usually consists of a tube-in-tube pipe, in which there is a vacuum in the outer tube; Inside the tube, the coolant is transported. The freezing or icing of the vacuum flange or the entire vacuum chamber and the occurrence of condensation are still a problem when not suitable vacuum feedthrough.

Es gibt auch Hersteller von KƤltemaschinen (Gifford-McMahon Chiller, Pulse Tube Chiller, Mixed Gase Joule Thomson Chiller ect.), die das gezielte Einbringen von KƤlte in eine Vakuumkammer dadurch lƶsen, einen Teil des Erzeugungsprozesses (WƤrmetauscher, Regenerator, etc.) fĆ¼r die KƤlte direkt in der Vakuumkammer vorzunehmen. Die AnschlĆ¼sse (Zuleitung und Ableitung zu der jeweiligen Kompressoreinheit des GerƤtes) haben Umgebungstemperatur und verursachen somit keine der oben erwƤhnten Probleme, wie z.B. das Vereisen, die Entstehung von Kondenswasser sowie das Auftreten von WƤrmeverlusten. Der Nachteil liegt aber darin, dass die GerƤte eine groƟe Vakuumkammer benƶtigen, die fĆ¼r viele Prozesse unerwĆ¼nscht oder gar unbrauchbar ist. Weiters erfordert ein solches KĆ¼hlungssystem ein gutes Vakuumsystem, da das Volumen der Vakuumkammer dementsprechend groƟ sein muss. Bestehende GerƤte (z.B. Polycold-Cryotiger), die das Mixed Gas Joule Thomson Verfahren nĆ¼tzen (siehe EP 650574 A1 ) und den GegenstromwƤrmetauscher mit KĆ¼hlkopf in der Vakuumkammer haben, um KƤlte im Bereich von ca. 230K- 70K zu erzeugen, werden bei hƶheren KĆ¼hlleistungen (ca. >50W), die es erfordern den WƤrmetauscher weiters zu vergrĆ¶ĆŸern, wirtschaftlich nicht mehr sinnvoll bzw. unattraktiv.There are also manufacturers of chillers (Gifford-McMahon Chiller, Pulse Tube Chillers, Mixed Gases Joule Thomson Chiller ect.) That solve the targeted introduction of cold in a vacuum chamber thereby, a part of the production process (heat exchanger, regenerator, etc.) for to carry out the cold directly in the vacuum chamber. The connections (supply and discharge to the respective compressor unit of the device) have ambient temperature and thus cause none of the above-mentioned problems, such as icing, the formation of condensation and the occurrence of heat loss. The disadvantage, however, is that the devices require a large vacuum chamber, which is undesirable or even unusable for many processes. Furthermore, such a cooling system requires a good vacuum system, since the volume of the vacuum chamber must be correspondingly large. Existing devices (eg Polycold Cryotiger) that use the Mixed Gas Joule Thomson process (see EP 650574 A1 ) and have the countercurrent heat exchanger with cooling head in the vacuum chamber to produce cold in the range of about 230K- 70K, at higher cooling capacities (about> 50W), which require further increase the heat exchanger, economically no longer useful or unattractive.

Die WO97/33671A1 beschreibt einen KĆ¼hlkopf fĆ¼r eine KĆ¼hlanlage zum KĆ¼hlen von Objekten mit Isolationsmitteln zum Isolieren des KĆ¼hlkopfes, wobei die Isolationsmittel des KĆ¼hlkopfes von einer Vakuumkammer gebildet sind, in welcher der KĆ¼hlkopf angeordnet ist.The WO97 / 33671A1 describes a cooling head for a cooling system for cooling objects with insulation means for insulating the cooling head, wherein the insulation means of the cooling head are formed by a vacuum chamber in which the cooling head is arranged.

Die WO02/01123A1 offenbart ein kryochirurgisches Instrument, das Verbindungsleitungen aufweist, die sich zwischen einem Kompressor und dem KĆ¼hlkopf befinden und den WƤrmetauscher ausbilden. Weiters befinden sich der WƤrmetauscher, die Verbindungsleitungen und der KĆ¼hlkopf in einer gemeinsamen Vakuumisolierung.The WO02 / 01123A1 discloses a cryosurgical instrument having connecting conduits located between a compressor and the cooling head and forming the heat exchanger. Furthermore, the heat exchanger, the connecting lines and the cooling head are in a common vacuum insulation.

Auch die US5275595A beschreibt ein kryochirurgisches Instrument, wobei ein WƤrmetauscher in einem flexiblen Schlauch angeordnet ist und als Bindeglied zwischen einem Kompressor und einem KĆ¼hlkopf fungiert.Also the US5275595A describes a cryosurgical instrument, wherein a heat exchanger is disposed in a flexible tube and acts as a link between a compressor and a cooling head.

Die US2005/086950A1 offenbart ein in einem geschlossenen Kreislauf gefĆ¼hrtes KĆ¼hlsystem zur KĆ¼hlung von Mehrkomponenten-KƤltemittel auf Temperaturen im Bereich von 230K bis 70K.The US2005 / 086950A1 discloses a closed loop cooling system for cooling multi-component refrigerants at temperatures ranging from 230K to 70K.

Die vorliegende Erfindung ist im unabhƤngigen Anspruch 1 offenbart. Weitere AusfĆ¼hrungen sind in den abhƤngigen AnsprĆ¼chen offenbart.The present invention is disclosed in independent claim 1. Further embodiments are disclosed in the dependent claims.

Die Erfindung zielt daher darauf ab, einen KĆ¼hlkopf sowie eine KĆ¼hlvorrichtung derart zu verbessern, dass eine AbkĆ¼hlung eines Objekts in effizienter Weise auf mƶglichst tiefe semi-kryogene bzw. kryogene Temperaturen gelingt und die Verluste beim Transport des KĆ¼hlmittels mƶglichst gering gehalten werden, wobei die Vakuumkammer gleichzeitig mƶglichst klein und handlich ausgebildet sein soll.The invention therefore aims to improve a cooling head and a cooling device such that a cooling of an object efficiently to the lowest possible semi-cryogenic or cryogenic temperatures succeeds and the losses during transport of the coolant are kept as low as possible, the vacuum chamber should be designed as small and handy as possible.

Zur Lƶsung dieser Aufgabe ist gemƤƟ einem ersten Aspekt der Erfindung ein KĆ¼hlkopf der eingangs genannten Art erfindungsgemƤƟ im Wesentlichen dahingehend weitergebildet, dass die Isolationsmittel der Verbindungsleitungen von einer Vakuumisolierung gebildet sind, wobei die Vakuumkammer und die Vakuumisolierung der Verbindungsleitungen miteinander unmittelbar in Verbindung stehen und mit einer gemeinsamen Unterdruckquelle verbindbar sind, und wobei die Verbindungsleitungen an dem dem KĆ¼hlkopf abgewandten Ende aus der Vakuumisolierung herausgefĆ¼hrt sind. Die Erfindung nutzt also das Vakuumsystem der Vakuumkammer, um in geeigneter Form das KƤltemittel auf dem Transport zwischen der Vakuumkammer bzw. dem KĆ¼hlkopf und dem KĆ¼hlreservoir zu isolieren und eine VakuumdurchfĆ¼hrung zu gestalten. In der Vakuumkammer selbst befindet sich der an den Verbindungsleitungen angebrachte KĆ¼hlkopf (z.B. aus Kupfer), durch welchen das KƤltemittel (z.B. flĆ¼ssiger Stickstoff) von den Verbindungsleitungen kommend geleitet wird. Dabei wird die bestehende Vakuumkammer um das relativ geringe Volumen der Vakuumisolierung der Verbindungsleitungen erweitert und gleichzeitig eine Vakuumverbindung zwischen der Vakuumisolierung der Verbindungsleitungen und der Vakuumkammer geschaffen. Somit wird das Problem der VakuumdurchfĆ¼hrung und die Isolation der Verbindungsleitungen mit geringem Aufwand und Kosten gelƶst. Bevorzugt ist dabei vorgesehen, dass die Vakuumkammer eine DurchfĆ¼hrung fĆ¼r die Verbindungsleitungen aufweist, die derart gestaltet ist, dass der Hohlraum der Vakuumisolierung der Verbindungsleitungen mit dem Innenraum der Vakuumkammer in Verbindung steht.To solve this problem, according to a first aspect of the invention, a cooling head of the type mentioned above according to the invention substantially further developed such that the insulation means of the connecting lines are formed by a vacuum insulation, wherein the vacuum chamber and the vacuum insulation of the connecting lines are directly related and with a common negative pressure source can be connected, and wherein the connecting lines are led out at the end facing away from the cooling head of the vacuum insulation. Thus, the invention uses the vacuum system of the vacuum chamber to suitably the refrigerant on the transport between the vacuum chamber or to isolate the cooling head and the cooling reservoir and to make a vacuum feedthrough. In the vacuum chamber itself is located on the connecting lines mounted cooling head (eg copper) through which the refrigerant (eg liquid nitrogen) is coming from the connecting lines coming. In this case, the existing vacuum chamber is expanded by the relatively small volume of the vacuum insulation of the connecting lines and at the same time created a vacuum connection between the vacuum insulation of the connecting lines and the vacuum chamber. Thus, the problem of the vacuum feedthrough and the insulation of the connecting lines is achieved with little effort and expense. It is preferably provided that the vacuum chamber has a passage for the connecting lines, which is designed such that the cavity of the vacuum insulation of the connecting lines is in communication with the interior of the vacuum chamber.

Am anderen Ende der Verbindungsleitungen, d.h. auf der Seite des KƤltereservoirs, wird die kƤltemittelfĆ¼hrende Leitung aus der Vakuumisolierung, wie auch bei aus dem Stand der Technik bekannten vakuumisolierten Rohren geeignet herausgefĆ¼hrt. Dabei ist insbesondere auf die WƤrmeleitfƤhigkeit des HĆ¼llrohres der Vakuumisolierung und der WƤrmeĆ¼bertragungsflƤche zu achten. Auf eine gute VakuumverschweiƟung beim Ɯbergang ist ebenso zu achten. Dieser Ɯbergang, der geringe WƤrmeĆ¼bertragungsverluste verursachen sollte, kann durch herkƶmmliche Isolationsmittel gegen Kondenswasser oder Eis zusƤtzlich geschĆ¼tzt werden.At the other end of the connection lines, i. on the side of the cold reservoir, the refrigerant-carrying pipe is appropriately led out of the vacuum insulation, as well as vacuum-insulated pipes known from the prior art. It is particularly important to pay attention to the thermal conductivity of the cladding tube of the vacuum insulation and the heat transfer surface. A good vacuum welding during the transition is also important. This transition, which should cause low heat transfer losses, can be further protected by conventional insulation against condensation or ice.

Auf Grund der erfindungsgemƤƟen Ausbildung ist es nun mƶglich, ƤuƟerst effizient, platzsparend (volumensparend), je nach Dimensionierung des jeweiligen KĆ¼hlaggregats beliebige KƤlteleistungen in eine Vakuumkammer einzuleiten. Dabei ist es im Rahmen der Erfindung unwesentlich, ob die Zufuhr des KƤltemittels zur Vakuumkammer bzw. zum KĆ¼hlkopf als Teil eines geschlossen, regenerativen, KƤltekreislaufes (z.B. unter Verwendung einer KompressionskƤltemaschine) oder eines offenen Kreislaufs mit geeigneten KƤltemitteln (z.B. flĆ¼ssigem Stickstoff) stattfindet.Due to the formation of the invention, it is now possible, extremely efficient, space-saving (volume-saving), depending on the dimensions of the respective cooling unit arbitrary Initiate cooling capacities in a vacuum chamber. It is immaterial in the context of the invention, whether the supply of the refrigerant to the vacuum chamber or the cooling head as part of a closed, regenerative, refrigeration cycle (eg using a KompressionskƤltemaschine) or an open circuit with suitable refrigerants (eg liquid nitrogen) takes place.

Ein besonders einfacher Aufbau der Vakuumisolierung der Verbindungsleitungen wird erreicht, wenn entsprechend der Erfindung die Vakuumisolierung einen die Verbindungsleitungen unter Ausbildung eines im Wesentlichen ringfƶrmigen Hohlraumes umgebenden HĆ¼llschlauch umfasst. Der HĆ¼llschlauch ist laut der Erfindung genau so wie die Verbindungsleitungen flexibel. Um zu verhindern, dass die Verbindungsleitungen den HĆ¼llschlauch berĆ¼hren, was zu einem unerwĆ¼nschten WƤrmeĆ¼bergang fĆ¼hren wĆ¼rde, ist die Ausbildung derart ausgebildet, dass im Hohlraum zwischen den Verbindungsleitungen und dem HĆ¼llschlauch wenigstens ein Abstandhalter angeordnet ist. Wenn, wie dies bevorzugt vorgesehen ist, der Abstandhalter eine gewellte AuƟen- und Innenkontur aufweist, wird sichergestellt, dass zwischen Abstandhalter einerseits und dem HĆ¼llschlauch und den Verbindungsleitungen andererseits lediglich punkt- oder linienfƶrmige Kontakte entstehen, wobei auf Grund derartiger Hertz'scher Kontakte der WƤrmeeintrag von auƟen weiter verringert werden kann.A particularly simple construction of the vacuum insulation of the connecting lines is achieved if, according to the invention, the vacuum insulation comprises an enveloping tube surrounding the connecting lines to form a substantially annular hollow space. The buffer tube is according to the invention, as well as the connecting lines flexible. In order to prevent the connecting lines from touching the enveloping hose, which would lead to an undesirable heat transfer, the design is designed such that at least one spacer is arranged in the hollow space between the connecting lines and the enveloping hose. If, as is preferred, the spacer has a corrugated outer and inner contour, it is ensured that between spacers on the one hand and the buffer tube and the connecting lines on the other hand only point or linear contacts arise, due to such Hertzian contacts the heat input can be further reduced from the outside.

Ein besonders einfacher Aufbau wird gemƤƟ einer bevorzugten Weiterbildung erreicht, wenn die gemeinsame Unterdruckquelle an die Vakuumkammer angeschlossen ist.A particularly simple structure is achieved according to a preferred embodiment, when the common vacuum source is connected to the vacuum chamber.

Weiters ist bevorzugt vorgesehen, dass in der Vakuumkammer ein die DurchfĆ¼hrung umgebender, insbesondere rohrfƶrmiger Abstandhalter angeordnet ist, der den Abstand zwischen dem KĆ¼hlkopf und der Innenwand der Vakuumkammer definiert, wobei der Abstandhalter radiale Durchbrechungen aufweist, sodass der Innenraum der Vakuumkammer mit dem Hohlraum der Vakuumisolierung der Verbindungsleitungen in Verbindung steht.Furthermore, it is preferably provided that in the vacuum chamber a surrounding surrounding the implementation, in particular tubular spacer is arranged, which defines the distance between the cooling head and the inner wall of the vacuum chamber, wherein the spacer has radial openings, so that the interior of the vacuum chamber is in communication with the cavity of the vacuum insulation of the connecting lines.

GemƤƟ einem zweiten Aspekt der Erfindung ist eine KĆ¼hlvorrichtung vorgesehen, umfassend ein KĆ¼hlaggregat mit Mitteln zum AbkĆ¼hlen eines KĆ¼hlmittels auf bevorzugt semi-kryogene bzw. kryogene Temperaturen und einen vom KĆ¼hlaggregat gesonderten KĆ¼hlkopf, der mittels an den KĆ¼hlkopf angeschlossenen flexiblen Verbindungsleitungen zum Zu- und RĆ¼ckfĆ¼hren des KĆ¼hlmittels mit dem KĆ¼hlaggregat verbunden ist. In Verbindung mit dem erfindungsgemƤƟen KĆ¼hlkopf ergibt sich dabei die Mƶglichkeit, das KĆ¼hlaggregat und den KĆ¼hlkopf als funktional voneinander getrennte Einheiten auszubilden, sodass im KĆ¼hlkopf selbst keine groƟbauenden Komponenten des KĆ¼hlaggregats, wie beispielsweise ein GegenstromwƤrmetauscher od. dgl., angeordnet werden mĆ¼ssen. Dies ermƶglicht es weiters, ein den jeweiligen BedĆ¼rfnissen entsprechendes KĆ¼hlaggregat mit der jeweils erforderlichen KĆ¼hlleistung vorzusehen, ohne dass der KĆ¼hlkopf in irgendeiner Weise angepasst werden muss und ohne dass die Handhabbarkeit des KĆ¼hlkopfes in irgendeiner Weise beeintrƤchtigt wird. Die erfindungsgemƤƟe Ausbildung des KĆ¼hlkopfes mit den isolierten Verbindungsleitungen ermƶglicht es in einfacher Weise, das im KĆ¼hlaggregat auf die jeweils gewĆ¼nschte Temperatur gekĆ¼hlte KĆ¼hlmittel ohne wesentliche Leistungsverluste im KĆ¼hlkopf zu nutzen.According to a second aspect of the invention, a cooling device is provided, comprising a cooling unit with means for cooling a coolant to preferably semi-cryogenic or cryogenic temperatures and a cooling unit separate cooling head connected by means connected to the cooling head flexible connecting lines for feeding and returning the Coolant is connected to the cooling unit. In conjunction with the cooling head according to the invention thereby gives the opportunity to form the cooling unit and the cooling head as functionally separate units, so that in the cooling head itself no bulky components of the cooling unit, such as a countercurrent heat exchanger. The like., Must be arranged. This makes it possible, furthermore, to provide a cooling unit, which corresponds to the respective requirements, with the required cooling power in each case, without the cooling head having to be adapted in any way and without the handling of the cooling head being impaired in any way. The inventive design of the cooling head with the isolated connection lines makes it possible in a simple manner to use the cooled in the cooling unit to the particular desired temperature coolant without significant power losses in the cooling head.

Bevorzugt kommt ein sogenanntes Mixed Gas Joule Thomson KĆ¼hlaggregat zum Einsatz, das beispielsweise aus der EP 650674 A1 bekannt geworden ist. Die Erfindung sieht in diesem Zusammenhang vor, dass ein KĆ¼hlaggregat zum AbkĆ¼hlen des KĆ¼hlmittels vorgesehen ist, das einen Kompressor zum Komprimieren des KĆ¼hlmittels, dem das KĆ¼hlmittel in gasfƶrmigem Zustand zugefĆ¼hrt ist und aus dem das KĆ¼hlmittel in verdichtetem gasfƶrmigen Zustand austritt, und einen dem Kompressor nachgeschalteten NachkĆ¼hler umfasst, aus dem das zumeist gasfƶrmige KĆ¼hlmittel einem GegenstromwƤrmetauscher umfassend eine Zu- und eine RĆ¼ckleitung zugefĆ¼hrt wird, die derart angeordnet sind, dass das verdichtete KĆ¼hlmittel in der Zuleitung unter ErwƤrmung des durch die RĆ¼ckleitung flieƟenden entspannten KĆ¼hlmittels verflĆ¼ssigt wird, wobei die Verbindungsleitungen an die Zu- und die RĆ¼ckleitung angeschlossen sind, sodass der KĆ¼hlkopf vom KĆ¼hlmittel durchstrƶmt wird, in dem das KĆ¼hlmittel verdampft.Preferably, a so-called mixed gas joule Thomson refrigeration unit is used, for example, from the EP 650674 A1 has become known. In this context, the invention provides that a cooling unit is provided for cooling the coolant, which has a compressor for compressing the coolant to which the coolant is supplied in the gaseous state and from which the coolant exits in compressed gaseous state, and a compressor connected downstream Aftercooler comprises, from which the mostly gaseous refrigerant is fed to a countercurrent heat exchanger comprising a supply and a return line, which are arranged such that the compressed refrigerant in the supply line is liquefied by heating the flowing through the return line expanded refrigerant, wherein the connecting lines to the Supply and return line are connected, so that the cooling head is flowed through by the coolant in which the coolant evaporates.

Eine besonders einfache Handhabbarkeit wird dadurch gewƤhrleistet, dass, wie es einer bevorzugten Weiterbildung entspricht, der Kompressor, der NachkĆ¼hler und der GegenstromwƤrmetauscher gemeinsam in einem StandgerƤt angeordnet sind, dessen GehƤuse eine DurchfĆ¼hrung fĆ¼r die den GegenstromwƤrmetauscher mit der Vakuumkammer verbindenden Verbindungsleitungen aufweist.A particularly simple handling is ensured by the fact that, as it corresponds to a preferred development, the compressor, the aftercooler and the countercurrent heat exchanger are arranged together in a stand unit whose housing has a passage for connecting the countercurrent heat exchanger with the vacuum chamber connecting lines.

Wesentlich beim Mixed Gas Joule Thomson KĆ¼hlaggregat ist, dass der KĆ¼hler unter Zwischenschaltung eines Drosselorgans mit der Zuleitung des GegenstromwƤrmetauschers in Verbindung steht, damit die nƶtige Druckreduktion des KƤltemittels erfolgt und das verflĆ¼ssigte KĆ¼hlmittel im KƤltekopf verdampfen kann. Eine besonders vorteilhafte Konstruktion sieht in diesem Zusammenhang vor, dass die die Zuleitung des GegenstromwƤrmetauschers mit dem KĆ¼hlkopf verbindende Verbindungsleitung das Drosselorgan bildet.Essential in the case of the Mixed Gas Joule Thomson refrigeration unit is that the radiator, with the interposition of a throttle element, is connected to the supply line of the countercurrent heat exchanger so that the necessary pressure reduction of the refrigerant takes place and the liquefied coolant can evaporate in the refrigeration head. A particularly advantageous construction in this context provides that the connecting line connecting the supply line of the countercurrent heat exchanger with the cooling head forms the throttle element.

Bevorzugt umfasst das KĆ¼hlmittel Butan und/oder Iso-Butan und/oder Propan und/oder Propen und/oder Ethin und/oder Ethan und/oder Ethen und/oder Methan und/oder Argon und/oder Stickstoff.The coolant preferably comprises butane and / or isobutane and / or propane and / or propene and / or ethyne and / or ethane and / or ethene and / or methane and / or argon and / or nitrogen.

Die Erfindung wird nun anhand von in der Zeichnung schematisch dargestellten AusfĆ¼hrungsbeispielen nƤher erlƤutert. In dieser zeigt Fig.1 einen geschlossenen KĆ¼hlkreislauf mit einem KĆ¼hlaggregat und einem KĆ¼hlkopf, Fig.2 eine Schnittansicht des KĆ¼hlkopfes mit den Verbindungsleitungen und Fig.3 einen Schnitt gemƤƟ der Linie III-III der Fig.2.The invention will now be explained in more detail with reference to embodiments shown schematically in the drawing. In this shows Fig.1 a closed cooling circuit with a cooling unit and a cooling head, Fig.2 a sectional view of the cooling head with the connecting lines and Figure 3 a section along the line III-III of Fig.2 ,

Der in Fig.1 gezeigte KĆ¼hlkreislauf wird meist als Mixed Gas Joule Thomson KĆ¼hlprozess bezeichnet und ist beispielsweise in dem Dokument EP 650574 A1 beschrieben. Der KĆ¼hlkreislauf umfasst einen Kompressor 1 zum Komprimieren des bei 2 gasfƶrmig zugefĆ¼hrten KƤltemittels. Das KƤltemittel kann beispielsweise eine Gasmischung bestehend aus Propan, Ethan, Methan und Stickstoff sein. Das komprimierte KƤltemittel wird Ć¼ber eine Leitung 3 einem Ɩlabscheider 4 zugefĆ¼hrt, mit dem das sich im Kompressor 1 ggf. mit dem KƤltemittel vermischende Ɩl abgetrennt wird. Das von Ɩl gereinigte KƤltemittel wird anschieƟend einem NachkĆ¼hler 5 zugefĆ¼hrt, in welchem die dem Kompressor 1 zugefĆ¼hrte WƤrme dem KƤltemittel entzogen wird. Das gekĆ¼hlte, komprimierte, aber noch immer zumeist gasfƶrmige KƤltemittel wird anschlieƟend Ć¼ber eine Leitung 6 einem GegenstromwƤrmetauscher 7 zugefĆ¼hrt, in welchem das durch die KƤltemittelzuleitung 8 flieƟende KĆ¼hlmittel vom in der KƤltemittelrĆ¼ckleitung 9 flieƟenden KƤltemittel gekĆ¼hlt und verflĆ¼ssigt wird. Die KƤltemittelzuleitung 8 und die KƤltemittelrĆ¼ckleitung 9 kƶnnen in der Praxis mehrere Meter lang sein und werden oft schraubenlinienfƶrmig oder spiralfƶrmig gewickelt, um eine gewisse Kompaktheit des WƤrmestromwƤrmetauschers zu erreichen. Das verflĆ¼ssigte KƤltemittel wird Ć¼ber eine Drossel 10 entspannt, sodass das KƤltemittel im KĆ¼hlkopf 11 verdampfen und hierdurch der Umgebung VerdampfungswƤrme entziehen kann. Der KĆ¼hlkopf 11 wird vom KĆ¼hlmittel durchstrƶmt und ist daher beispielsweise als hohler Zylinder ausgefĆ¼hrt. Das vom KĆ¼hlkopf 11 rĆ¼ckflieƟende KƤltemittel wird im GegenstromwƤrmetauscher 7 in der Folge bis auf Raumtemperatur erwƤrmt, wobei das rĆ¼ckflieƟende KƤltemittel das hinflieƟende KƤltemittel abkĆ¼hlt. Zum AbkĆ¼hlen eines Objekts, das schematisch mit 12 angedeutet ist, wird dieses in Kontakt mit dem KĆ¼hlkopf 11 gebracht. Der KĆ¼hlkopf 11 besteht daher aus einem thermisch leitfƤhigen Material wie z.B. Kupfer.The in Fig.1 The cooling circuit shown is usually referred to as the mixed gas joule Thomson cooling process and is for example in the document EP 650574 A1 described. The cooling circuit comprises a compressor 1 for compressing the gaseously supplied refrigerant in 2. The refrigerant may be, for example, a gas mixture consisting of propane, ethane, methane and nitrogen. The compressed refrigerant is fed via a line 3 to an oil separator 4, with which the possibly in the compressor 1 with the refrigerant mixing oil is separated. The oil purified by the oil is then fed to an aftercooler 5, in which the heat supplied to the compressor 1 is removed from the refrigerant. The cooled, compressed, but still mostly gaseous refrigerant is then fed via a line 6 to a countercurrent heat exchanger 7, in which the coolant flowing through the refrigerant supply line 8 is cooled and liquefied by the refrigerant flowing in the refrigerant return line 9. The refrigerant supply line 8 and the refrigerant return line 9 may in practice be several meters long and often become helical or spirally wound to achieve a certain compactness of the heat flow heat exchanger. The liquefied refrigerant is depressurized via a throttle 10, so that the refrigerant in the cooling head 11 evaporate and thereby escape the environment evaporation heat. The cooling head 11 is flowed through by the coolant and is therefore designed, for example, as a hollow cylinder. The flowing back from the cooling head 11 refrigerant is heated in countercurrent heat exchanger 7 in the sequence up to room temperature, wherein the refluxing refrigerant cools the flowing refrigerant. For cooling an object, which is schematically indicated by 12, this is brought into contact with the cooling head 11. The cooling head 11 is therefore made of a thermally conductive material such as copper.

ErfindungsgemƤƟ ist der KĆ¼hlkopf 11 Ć¼ber Verbindungsleitungen 13 und 14 mit dem GegenstromwƤrmetauscher 7 verbunden, sodass das KĆ¼hlaggregat 15 und der in einer Vakuumkammer 16 angeordnete KĆ¼hlkopf 11 als voneinander gesonderte bauliche Einheiten realisiert werden kƶnnen. Die erfindungsgemƤƟe Ausbildung macht es erforderlich, dass das im WƤrmetauscher 7 gekĆ¼hlte und verflĆ¼ssigte KƤltemittel Ć¼ber die Verbindungsleitungen 13 und 14 Ć¼ber eine mehr oder minder lange Strecke transportiert wird, sodass eine ausreichende Isolation der Verbindungsleitungen sichergestellt werden muss.According to the invention, the cooling head 11 is connected via connecting lines 13 and 14 to the counterflow heat exchanger 7, so that the cooling unit 15 and the cooling head 11 arranged in a vacuum chamber 16 can be realized as separate structural units. The inventive construction makes it necessary that the cooled and liquefied in the heat exchanger 7 refrigerant is transported via the connecting lines 13 and 14 over a more or less long distance, so that a sufficient insulation of the connecting lines must be ensured.

In Fig.2 sind der KĆ¼hlkopf samt Vakuumkammer sowie die Verbindungsleitungen nƤher dargestellt. Es ist ersichtlich, dass die Verbindungsleitungen 13 und 14 eine Vakuumisolierung 17 aufweisen, deren evakuierter Innenraum mit dem Innenraum der Vakuumkammer 16 in Verbindung steht. Die Verbindungsleitungen 13 und 14 sind entsprechend der Erfindung dabei als flexible Rohre ausgebildet, um die Handhabbarkeit zu verbessern. Die Vakuumisolierung 17 der Verbindungsleitung weist einen flexiblen HĆ¼llschlauch 18 auf, der beispielsweise als Edelstahlwellrohr ausgebildet sein kann, das bevorzugt eine Stahlummantelung aufweist. Zwischen den Verbindungsleitungen 13 und 14, die ebenfalls eine gewellte AuƟenkontur aufweisen kƶnnen, sind Abstandhalter 19 angeordnet, die ebenfalls flexibel ausgefĆ¼hrt sein kƶnnen. Die Abstandhalter 19 weisen bevorzugt eine gewellte AuƟenkontur auf, sodass aufgrund der dadurch erzielten LinienberĆ¼hrungen mit dem HĆ¼llrohr 18 bzw. den Verbindungsleitungen 13 und 14 die WƤrmeĆ¼bertragung minimiert wird. Der Abstandshalter 19 dient somit der mechanischen und damit thermischen Entkopplung der Verbindungsleitungen 13 und 14 zum HĆ¼llrohr 18. Er sollte ausreichend flexibel, temperaturstabil, alterungsbestƤndig und ausgasungsfrei sein (z.B. Teflon, Kunststoff, Edelstahl). An der Stelle 20 sind die Verbindungsleitungen 13 und 14 aus der Vakuumisolierung 17 herausgefĆ¼hrt. Auf geringe thermische Verluste an der Ɯbergangsstelle 20 ist zu achten. Dies kann durch Materialien mit geringer thermischer LeitfƤhigkeit und einem geringen Ɯbergangsquerschnitt erreicht werden (z.B. Edelstahl). ZusƤtzlich kann die Ɯbergangsstelle 20 durch herkƶmmliche Materialien zur WƤrmeisolierung geschĆ¼tzt werden (z.B. geschƤumtes Polystyrol, Elastomere).In Fig.2 the cooling head with vacuum chamber and the connecting lines are shown in detail. It can be seen that the connecting lines 13 and 14 have a vacuum insulation 17 whose evacuated interior is in communication with the interior of the vacuum chamber 16. The connecting lines 13 and 14 are formed according to the invention as flexible tubes to the handling improve. The vacuum insulation 17 of the connecting line has a flexible HĆ¼llschlauch 18, which may be formed for example as a stainless steel corrugated pipe, which preferably has a steel jacket. Between the connecting lines 13 and 14, which may also have a corrugated outer contour, spacers 19 are arranged, which may also be made flexible. The spacers 19 preferably have a corrugated outer contour, so that the heat transfer is minimized due to the line contacts achieved with the cladding tube 18 or the connecting lines 13 and 14. The spacer 19 thus serves the mechanical and thus thermal decoupling of the connecting lines 13 and 14 to the cladding tube 18. It should be sufficiently flexible, temperature stable, resistant to aging and degassing (eg Teflon, plastic, stainless steel). At the point 20, the connecting lines 13 and 14 are led out of the vacuum insulation 17. Low thermal losses at the transition point 20 should be taken into account. This can be achieved by materials with low thermal conductivity and a low transition cross-section (eg stainless steel). In addition, the interface 20 may be protected by conventional thermal insulation materials (eg, foamed polystyrene, elastomers).

Die Verbindungsleitungen 13 und 14 kƶnnen thermisch gekoppelt sein. Die Verbindungsleitungen 13 und 14 kƶnnen alternativ auch ineinander gefĆ¼hrt werden. Je nach Querschnitt und LƤnge der Verbindungsleitung 13 kann das KĆ¼hlmittel eine Druckreduktion entlang der Zuleitung erfahren, sodass das KƤltemittel wie bei KompressionskƤltemaschinen im KĆ¼hlkopf verdampft und WƤrme abgefĆ¼hrt wird. In diesem Fall ist die Zuleitung sogleich Drosselorgan.The connecting lines 13 and 14 may be thermally coupled. The connecting lines 13 and 14 can alternatively be guided into each other. Depending on the cross-section and length of the connecting line 13, the coolant may experience a pressure reduction along the supply line, so that the refrigerant is evaporated in the cooling head as in compression refrigerating machines and heat is dissipated. In this case, the supply line is immediately throttle body.

Die Vakuumisolierung 17 ist mit einem Vakuumflansch 21 verbunden, durch welchen die Verbindungsleitungen 13 und 14 hindurchgefĆ¼hrt und dem KĆ¼hlkopf 11 zugefĆ¼hrt sind. Um die mechanische StabilitƤt des KĆ¼hlkopfs 11 zu verbessern, ist zwischen dem KĆ¼hlkopf 11 und dem Vakuumflansch 21 ein Abstandhalter 22 angeordnet, der beispielsweise aus Teflon, Keramik oder Edelstahl bestehen kann und ausgasungsbestƤndig, tieftemperaturgeeignet, versprƶdungsbestƤndig und alterungsbestƤndig sein sollte. Dabei ist auf eine ausreichende thermische Entkopplung des Abstandshalters 22 vom Vakuumflansch 21 zu achten und auf eine gute atmosphƤrische DurchlƤssigkeit zum HĆ¼llrohr 18. In der Querschnittsansicht gemƤƟ Fig.3 ist ersichtlich, dass der Abstandhalter 22 mehrere radiale Durchbrechungen 24 aufwiest, damit der evakuierte Innenraum der Vakuumisolierung der Verbindungsleitungen mit dem evakuierten Innenraum der Vakuumkammer 16 in leitender Verbindung steht. Ein Flansch bzw. Anschluss zum AnschlieƟen an eine Vakuumpumpe ist mit 23 bezeichnet.The vacuum insulation 17 is connected to a vacuum flange 21, through which the connecting lines 13 and 14 are passed and fed to the cooling head 11. In order to improve the mechanical stability of the cooling head 11, a spacer 22 is disposed between the cooling head 11 and the vacuum flange 21, which may for example consist of Teflon, ceramic or stainless steel and ausgasungsbestƤndig, low temperature suitable, should be resistant to embrittlement and aging. It is important to ensure a sufficient thermal decoupling of the spacer 22 from the vacuum flange 21 and a good atmospheric permeability to the cladding tube 18. In the cross-sectional view according to Figure 3 It can be seen that the spacer 22 has a plurality of radial openings 24, so that the evacuated interior of the vacuum insulation of the connecting lines with the evacuated interior of the vacuum chamber 16 is in a conductive connection. A flange for connection to a vacuum pump is indicated at 23.

Bei gleichmƤƟig mit KĆ¼hlmittel durchstrƶmtem KĆ¼hlkopf und bei mechanischer Stabilisierung des KĆ¼hlkopfes mittels Abstandshalter wird der KĆ¼hlkopf ƤuƟerst vibrationsarm.When the cooling head flows through coolant evenly and when the cooling head is mechanically stabilized by means of spacers, the cooling head is extremely low in vibration.

Typische Anwendungsgebiete fĆ¼r die Erfindung sind die KĆ¼hlung von HochleistungslaserverstƤrkern sowie verschiedene KĆ¼hlaufgaben in der analytischen Chemie, auf dem Gebiet der Supraleitung, der Astronomie sowie generell in der Forschung und Entwicklung sowie in der medizinischen Diagnostik.Typical applications for the invention are the cooling of high-power laser amplifiers and various cooling tasks in analytical chemistry, in the field of superconductivity, astronomy and in general in research and development as well as in medical diagnostics.

Claims (10)

  1. A cooling head (11) with connecting lines (13,14) in a vacuum insulation (17) for a cooling system for cooling objects (12) to semi-cryogenic or cryogenic temperatures from 283K to 4K, in particular 190K to 4K, comprising insulating means for insulating the cooling head (11), wherein the insulating means of the cooling head (11) are formed by a vacuum chamber (16) in which the cooling head (11) is arranged, and connecting lines (13,14) connected to the cooling head (11) for supplying to, and returning from, the cooling head (11) coolant cooled to semi-cryogenic or cryogenic temperatures, wherein insulating means for insulating the connecting lines (13,14) are provided, wherein the insulating means of the connecting lines (13,14) designed as flexible lines are formed by a vacuum insulation (17), wherein the vacuum chamber (16) and the vacuum insulation (17) of the connecting lines (13,14) are in direct communication with each other and can be connected to a shared vacuum source, and wherein the connecting lines (13,14) are led out of the vacuum insulation (17) on their ends facing away from the cooling head (11) and the vacuum chamber (16) comprises a connection (23) for connecting to the shared vacuum source, and wherein the vacuum insulation (17) comprises an enveloping hose (18) surrounding the connecting lines (13,14) while forming a substantially annular hollow space, said enveloping hose being designed as a flexible enveloping hose, and at least one spacer (19) is provided in the hollow space between the connecting lines (13,14) and the enveloping hose (18).
  2. A cooling head (11) according to claim 1, characterized in that the vacuum chamber (16) comprises a passage for the connecting lines (13,14), which is designed such that the hollow space of the vacuum insulation (17) of the connecting lines (13,14) is in communication with the interior of the vacuum chamber (16).
  3. A cooling head (11) according to claim 1 or 2, characterized in that the spacer (19) comprises corrugated outer and inner contours.
  4. A cooling head (11) according to any one of claims 1 to 3, characterized in that an, in particular tubular, spacer (22) surrounding the passage is arranged in the vacuum chamber (16), which spacer defines the distance between the cooling head (11) and the inner wall of the vacuum chamber (16), wherein the spacer (22) comprises radial passages (24) such that the interior of the vacuum chamber (16) is in communication with the hollow space of the vacuum insulation (17) of the connecting lines (13,14) .
  5. A cooling device comprising a cooling unit (15) including means for cooling a coolant to preferably semi-cryogenic or cryogenic temperatures and, separately from the cooling unit (15), a cooling head (11) plus connecting lines (13,14) according to any one of claims 1 to 4, wherein the flexible connecting lines (13,14) are connected to the cooling unit (15) for supplying and returning the coolant.
  6. A cooling device according to claim 5, characterized in that a cooling unit (15) for cooling the coolant is provided, which comprises a compressor (1) for compressing the coolant, to which the coolant is fed in the gaseous state and from which the coolant emerges in the compressed gaseous state, and an aftercooler (5) downstream of the compressor (1), from which the mostly gaseous coolant is fed to a counterflow heat exchanger (7) comprising a supply line (8) and a return line (9), which are arranged such that the compressed coolant is liquefiable in the supply line (8) while heating the expanded coolant flowing through the return line (9), wherein the connecting lines (13,14) are connected to the supply and return lines (8,9) so as to allow the coolant to flow through the cooling head (11), in which the coolant evaporates.
  7. A cooling device according to claim 6, characterized in that the compressor (1), the aftercooler (5) and the counterflow heat exchanger (7) are collectively disposed in a stand-alone appliance whose housing comprises a passage for the connecting lines (13,14) connecting the counterflow heat exchanger (7) to the vacuum chamber (16).
  8. A cooling device according to claim 6 or 7, characterized in that the cooling head (11) is in communication with the supply line (8) of the counterflow heat exchanger (7) via an interposed throttle element (10).
  9. A cooling device according to claim 8, characterized in that the connecting line (13) connecting the supply line (8) of the counterflow heat exchanger (7) to the cooling head (11) forms the throttle element (10).
  10. A cooling device according to any one of claims 6 to 9, characterized in that the coolant comprises butane and/or isobutane and/or propane and/or propene and/or ethine and/or ethane and/or ethene and/or methane and/or argon and/or nitrogen.
EP11450090.3A 2010-07-12 2011-07-12 Cooling head for a cooling system Active EP2420772B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT11782010 2010-07-12

Publications (3)

Publication Number Publication Date
EP2420772A2 EP2420772A2 (en) 2012-02-22
EP2420772A3 EP2420772A3 (en) 2014-12-10
EP2420772B1 true EP2420772B1 (en) 2019-05-08

Family

ID=44585081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11450090.3A Active EP2420772B1 (en) 2010-07-12 2011-07-12 Cooling head for a cooling system

Country Status (2)

Country Link
EP (1) EP2420772B1 (en)
AT (1) AT12158U1 (en)

Family Cites Families (6)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US5275595A (en) * 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
US5337572A (en) 1993-05-04 1994-08-16 Apd Cryogenics, Inc. Cryogenic refrigerator with single stage compressor
DE9316515U1 (en) 1993-10-28 1994-01-13 Brenner Edeltraud Device for printing the contact track of one or more limbs of the human body
US5687574A (en) * 1996-03-14 1997-11-18 Apd Cryogenics, Inc. Throttle cycle cryopumping system for Group I gases
WO2002001123A1 (en) * 2000-06-23 2002-01-03 Mmr Technologies, Inc. Flexible counter-flow heat exchangers
US7114347B2 (en) * 2003-10-28 2006-10-03 Ajay Khatri Closed cycle refrigeration system and mixed component refrigerant

Non-Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2420772A2 (en) 2012-02-22
EP2420772A3 (en) 2014-12-10
AT12158U1 (en) 2011-11-15

Similar Documents

Publication Publication Date Title
DE102005041383B4 (en) NMR apparatus with co-cooled probe head and cryocontainer and method of operation thereof
DE102015215919B4 (en) Method and device for precooling a cryostat
WO2003012803A2 (en) Device for the recondensation by means of a cryogenerator of low-boiling gases of the gas evaporating from a liquid gas container
EP1865516B1 (en) System with a superconductive cable
DE102014218773A1 (en) Automatic thermal decoupling of a cooling head
DE102014011030A1 (en) Fridge and / or freezer
DE10318510A1 (en) Heat storage medium
EP3382411B1 (en) Cryostatic device with a neck pipe with a load-bearing structure and an outer tube surrounding the load bearing structure for reducing cryogenic consumption
EP1742234B1 (en) Supercooled horizontal cryostat assembly
EP1745248B1 (en) Cooling system and method for producing an evaporation plate for a low-temperature cooling system
EP3611528A1 (en) Cryostat arrangement with superconducting magnetic coil system with thermal anchoring of the fixing structure
DE1501715A1 (en) Device for the liquefaction of gases
EP2420772B1 (en) Cooling head for a cooling system
EP1485660B1 (en) Refrigeration plant for colling parts of an installation
AT510064B1 (en) COOLER
EP2281157A1 (en) Refrigerator, in particular household refrigerator, comprising a condenser with heat storage elements
DE202016106860U1 (en) Regenerator for cryocooler with helium as working gas
DE202005010892U1 (en) Sub-cooled horizontal cryostat arrangement, has sub-cooling unit provided in helium tank
EP3147551A1 (en) Flexible conduit
EP2200048A1 (en) Assembly with at least one superconducting cable
DE10317733B3 (en) Voltage converter for HV applications using superconductive transformer within cryostat chamber held at increased pressure by pressure generator incorporated in cooling medium pipeline system
DE102022125163A1 (en) Freezer
DE1954681C (en) Line system for electrical power transmission
EP4194771A1 (en) Refrigeration cycle
DE2263771A1 (en) CRYO CABLE

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/00 20060101ALI20141031BHEP

Ipc: F25D 19/00 20060101ALI20141031BHEP

Ipc: F25B 9/02 20060101AFI20141031BHEP

17P Request for examination filed

Effective date: 20150610

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20190402

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130778

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015678

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015678

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110712

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230727

Year of fee payment: 13

Ref country code: CH

Payment date: 20230802

Year of fee payment: 13

Ref country code: AT

Payment date: 20230720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 13

Ref country code: DE

Payment date: 20230727

Year of fee payment: 13