EP2417645B1 - Piezoelektrische mikroelektromechanische anordnung - Google Patents

Piezoelektrische mikroelektromechanische anordnung Download PDF

Info

Publication number
EP2417645B1
EP2417645B1 EP10717189.4A EP10717189A EP2417645B1 EP 2417645 B1 EP2417645 B1 EP 2417645B1 EP 10717189 A EP10717189 A EP 10717189A EP 2417645 B1 EP2417645 B1 EP 2417645B1
Authority
EP
European Patent Office
Prior art keywords
layer
electrodes
transistor
micro
suspended element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10717189.4A
Other languages
English (en)
French (fr)
Other versions
EP2417645A1 (de
Inventor
Marc Faucher
Didier Theron
Christophe Gaquiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2417645A1 publication Critical patent/EP2417645A1/de
Application granted granted Critical
Publication of EP2417645B1 publication Critical patent/EP2417645B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0098Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means using semiconductor body comprising at least one PN junction as detecting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/005Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0073Integration with other electronic structures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02259Driving or detection means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02393Post-fabrication trimming of parameters, e.g. resonance frequency, Q factor
    • H03H9/02409Post-fabrication trimming of parameters, e.g. resonance frequency, Q factor by application of a DC-bias voltage
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0271Resonators; ultrasonic resonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02511Vertical, i.e. perpendicular to the substrate plane

Definitions

  • the invention relates to a microelectromechanical device whose operation is based on a piezoelectric effect. More particularly, it relates to a microelectromechanical device consisting at least in part of a semiconductor material and having a field effect transistor operating as a mechanical stress sensor.
  • a microelectromechanical device according to the invention can be made of piezoelectric semiconductor materials, such as III-N type semiconductors (Group III element nitrides) or GaAs-based semiconductors.
  • Microelectromechanical devices and systems have undergone significant development in recent decades. Manufactured using techniques borrowed from microelectronics, these devices typically comprise submillimeter-sized mechanical elements (embedded beams, membranes, etc.), as well as actuators for setting said mechanical elements and / or sensors in motion to detect them. the movement of said mechanical elements.
  • NEMS nanoelectromechanical devices and systems
  • MEMS microelectromechanical devices and systems
  • Motion detection at the micromechanical scale still faces significant difficulties, which limit the potential of microelectromechanical systems. This is particularly true for high frequency applications, ie for the detection of oscillations or vibrations at frequencies greater than or equal to about 100 kHz or even up to a few GHz.
  • the technological difficulties are mainly due to the fact that the mechanical energy transmitted by a micromechanical element to a sensor is usually very small.
  • the value of the "gauge factor”, quantifying the mechanical-electrical coupling obtained using capacitive or piezoelectric effects (the most commonly used), is generally low, of the order of 10 -6 .
  • the signals generated by the sensors are often very small compared to noise and parasitic couplings.
  • a resonant type MEMS comprising an actuator forcing the oscillation of a vibrating element, it is sometimes difficult to ensure that the signal from a sensor associated with said vibrating element is truly representative of the movement. of the latter, and is not mainly due to parasitic coupling, electrical or electromagnetic, between the sensor and the actuator.
  • III-N type materials ie the nitrides of group III elements, and in particular AlGaN and GaN, are particularly interesting for microelectromechanical applications because they are both semiconductors and piezoelectric.
  • AlGaN / GaH HEMTs are resistive if (111) substrate grown by gas-source MBE
  • Electronics Letters, Vol. 38, No. 2, pp. 91-92, January 17, 2002 describes the production of a heterostructure by deposition of AlGaN / GaN epitaxial layers on a silicon substrate, and the integration of a high electron mobility transistor (HEMT) in such a heterostructure.
  • HEMT high electron mobility transistor
  • the aim of the invention is to modify the architecture of these micromechanical devices known from the prior art so as to optimize their performances, in particular in terms of gauge and impedance, in particular in high frequency applications.
  • the invention is based in particular on the use of an interconnection structure of the detection transistor having an unusual geometry, of three-dimensional type.
  • this interconnection structure comprises a coplanar waveguide constituted by three conductive tracks connected to drain and source electrodes of said transistor.
  • An interconnection structure comprises at least two conductive tracks, connected to two respective electrodes of the detection transistor, which overlap without electrical contact between them.
  • the overlapping of tracks connected to respective electrodes of the same transistor is generally considered to be a design error in microelectronics, because of parasitic capacitive couplings that it introduces.
  • the present inventors have realized that such geometry has important advantages in the application considered here, because of the particular geometrical constraints imposed by the presence of a suspended micromechanical element (micro-beam or membrane), while, unexpectedly, the capacitive couplings can be maintained at all levels. acceptable.
  • An object of the invention is therefore a microelectromechanical device comprising: a substrate; a first layer of a piezoelectric material deposited on a surface of said substrate; a second layer of a semiconductor material deposited on said first layer; at least one suspended element formed by extensions of said layers extending beyond an edge of said substrate; and a field effect transistor integrated with said second layer and its extension, having at least one channel extending at least partly inside said suspended element, having electrodes connected to conductive tracks extending above said second layer and at least one pass over said edge of the substrate; characterized in that at least two conductive paths connected to two respective electrodes of the field effect transistor overlap, without electrical contact therebetween, so as to form a three-dimensional interconnection structure.
  • At least one drain electrode and one source electrode of said field effect transistor may be connected to electrical tracks forming a coplanar or microstrip waveguide.
  • the suspended element of a microelectromechanical device according to the invention may comprise a fundamental mode of vibration of the beam in a direction perpendicular to the surface of said substrate whose resonance frequency is between 10 MHz and 1 GHz, and preferably between 1 MHz and 100 MHz. In this case we speak of a device operating at high frequency.
  • a microelectromechanical device can be used as a mechanical oscillator for very diverse applications: production of radiofrequency filters or oscillators, chemical or biological sensors, inertial sensors, atomic force microscopy probes, etc. In most of these applications, it may be useful to have a means of adjusting the oscillation frequency of the suspended element of the microelectromechanical device.
  • the present inventors have discovered that such a frequency adjustment can be obtained by applying a first potential difference of appropriate value between the at least two electrodes of the detection transistor, one of which constitutes a drain and the other a source. The application of such a potential difference at the same time makes it possible to polarize the transistor to detect the mechanical oscillations by the detection of the AC component of the current flowing through the channel of said transistor.
  • said actuator when said actuator is formed by a first electrode located above the second layer and by a second electrode for applying a potential difference to a two-dimensional carrier gas formed at the interface between the first and the second layer, the application of a potential difference between the two electrodes of the actuator allows adjustment of an amplitude of an oscillation of said suspended element excited by said actuator; the mechanical oscillations of said suspended element are then detected by measuring an electric current flowing through a channel of said transistor.
  • the frequency and amplitude adjustment of the oscillations do not depend directly on the use of a three-dimensional interconnection structure.
  • the Figure 1A shows a sectional view of a micromechanical device known from the prior art, based on the use of III-N type piezoelectric semiconductor materials, and more specifically AlGaN and GaN.
  • the device is manufactured from an SS substrate, which may be made of Si, SiC, glass, or any other suitable material, on which are deposited two epitaxial layers C 1 and C 2 , respectively GaN and AlGaN (more specifically, Al x GaN 1-x with 0 ⁇ x ⁇ 1, for example Al 0.25 GaN 0.75 ), and a third dielectric layer C 3 , typically SiO 2 , having a passivation function.
  • an SS substrate which may be made of Si, SiC, glass, or any other suitable material, on which are deposited two epitaxial layers C 1 and C 2 , respectively GaN and AlGaN (more specifically, Al x GaN 1-x with 0 ⁇ x ⁇ 1, for example Al 0.25 GaN 0.75 ), and a third dielectric layer C 3 , typically SiO 2 , having a passivation function.
  • Extensions of the layers C 1 - C 3 extend beyond an edge B of the substrate SS to form a suspended element ES, in this case a recessed lever at one end.
  • the edge B is not the lateral edge of the substrate, but the edge of a cavity made by anisotropic etching after the deposition of the layers C 1 - C 3 in order to release the suspended element ES.
  • the layers C 1 and C 3 typically have a thickness of a few hundred nanometers (100 to 500 nm, as an indication), whereas the layer C 2 is substantially thinner (approximately 10 to 100 nm).
  • the dimensions of the suspended element depend on the desired mechanical characteristics: typically, but in a nonlimiting manner, a micro-lever may have a length of between 10 and 1000 ⁇ m and a width of between 100 nm and 100 ⁇ m. It will be noted that the figures are not to scale.
  • the materials constituting the layers C 1 and C 2 are semiconductors having forbidden bands of different widths: they thus form a heterostructure. More precisely, it is known that a two-dimensional gas of electrons (indicated by the reference 2DEG for "2-dimensional electron gas” in English) or, in some cases, of holes, is formed in the layer C 1 , a few nanometers below the interface. Such a two-dimensional carrier gas can be exploited to produce a field effect transistor of the HEMT type which constitutes an excellent mechanical stress sensor, the conductivity of the carrier gas being highly dependent on these constraints. To maximize the transduction, the channel of the transistor must be made near the edge B, or even on horseback of the latter, because it is there that the stresses generated by the oscillations of the suspended element ES are the most important.
  • the electrodes D, S and G of the FET transistor are connected via vias to conductive tracks PC D , PC S and PC G, respectively, deposited above the passivation layer C 3 .
  • the channel of the FET transistor is oriented parallel to the longitudinal axis of the beam ES, while the electrodes S, G and D have an elongated shape and are oriented perpendicularly to said axis. It is also possible to orient the transistor channel perpendicular to the longitudinal axis of the beam and the electrodes parallel to this axis, but such a configuration leads to a lower gauge factor.
  • the invention aims to solve, in whole or in part, the aforementioned problems posed by the prior art.
  • the solution provided by the invention consists in using a three-dimensional interconnection structure, in which at least two conductive tracks connected to two respective electrodes of the detection transistor overlap, without electrical contact between them.
  • the figure 2 shows a sectional view of such a three-dimensional interconnection structure.
  • the use of the third spatial dimension makes it possible to overcome the geometric constraints related to the presence of the suspended element ES, and thus makes it possible to optimize the electrical properties of the transistor.
  • such a three-dimensional interconnection structure makes it possible to connect the drain and source electrode to electrical tracks forming a coplanar waveguide, as will be explained more clearly in the following, which proves to be very advantageous in high frequency applications.
  • the figure 3A shows a plan view of a device according to a first embodiment of the invention
  • the Figures 3B and 3C show sectional views, along the lines BB and CC respectively, of this same device.
  • the FET transistor (shown in dark gray) of this device comprises a symmetrical structure with a central drain electrode D, two source electrodes S 1 and S 2 disposed on either side of this drain, thus defining two transistor channels. , and two gate electrodes G 1 and G 2 above these channels. All the electrodes are oriented in a direction parallel to the longitudinal axis of the beam ES, ie perpendicular to the edge B of the substrate.
  • the drain and source electrodes are prolonged by conductive tracks D, P S1 , P S2 which form, above the SS substrate, a coplanar waveguide (not shown in the figure). These conductive tracks are deposited directly above the second conductive layer.
  • the gate electrodes G 1 , G 2 are connected, via vias or wells V, to a conductive track PC G deposited above the passivation layer C 3 and overlapping the tracks D and P S1 - which gives the interconnection structure its three-dimensional character.
  • the figure 4 shows a plan view of a second embodiment of the invention, which is a variant of the first mode which has just been described.
  • the electrodes of source S 1 , S 2 are formed on a portion of the second layer which extends above the surface of the substrate near the suspended element, and only the drain electrode is formed on the latter.
  • the gate electrodes have a larger surface area than in the case of Figures 3A - 3C .
  • the Figure 5A shows a plan view of a device according to a third embodiment of the invention
  • the Figures 5B and 5C show sectional views, along the lines B1-B2 and C1-C2 respectively, of this same device.
  • the drain-source direction is parallel to the longitudinal axis of the beam which, as explained above, is optimal in terms of gauge factor. Thanks to the interconnection structure of the invention, the width of the channel is substantially equal to that of the beam ES, which makes it possible to minimize its resistance.
  • the drain electrode D is formed on the beam. It is connected, via a via V, to a conductive track PC D deposited above the passivation layer C 3 and overlapping the gate electrode G.
  • This conducting track PC D constitutes the central conductor of a coplanar waveguide, the lateral conductors PC S1 and PC S2 of which are connected to two respective source electrodes S 1 and S 2 , made close to the point of insertion of the beam (that is to say edge B of the substrate).
  • edge B of the SS substrate is not rectilinear, but forms an obtuse angle at the suspended element ES.
  • This allows space for a PC G grid conductive track oriented at an angle to other conductive tracks.
  • said PC G gate conductive track could be deposited above the passivation layer C 3 and overlap the PC source conductive track s1 , as in the embodiment of FIG. figure 6 .
  • the embodiment of the figure 6 is characterized by the use of multiple drain and source electrodes (and thus transistor channels), which increases the signal intensity of detection of mechanical stresses.
  • the different source electrodes are connected to each other by a "bridge" P S consisting of a conductive track deposited above the passivation layer C 3 , ie at the same level as the drain and gate conductive tracks. .
  • microelectromechanical device whose only mechanical element is a beam embedded at one of its ends, and free at the other end, and whose only electrical or electronic element is a transistor detection.
  • Such devices can be used, for example, as accelerometers, but this is an application that is generally "low frequency", while the implementation of the invention proves to be particularly advantageous. at high frequency.
  • the invention is also applicable to different microelectromechanical devices, and in particular to resonant type devices with a double embedded beam.
  • These devices comprise a micromechanical element suspended in the form of a beam, connected to the substrate at its two ends.
  • One of the said ends carries a sensor, such as a detection transistor, and the other an actuator which makes it possible to excite a mode of vibration of the beam at its resonant frequency.
  • the actuator can exploit the piezoelectric properties of the second epitaxial layer C 2 , AlGaN, and be constituted by two electrodes in electrical contact with two opposite faces of this layer. More specifically, an upper electrode may consist of a metallization carried out above the layer C 2 before the deposition of the passivation layer C 3 (see reference EA on FIG. figure 7 ); and a lower electrode may be constituted by the two-dimensional carrier gas 2DEG, whose potential is fixed by an electrical contact made via a via or an ohmic contact passing through said second layer.
  • a resonant MEMS of this type can serve as an electromechanical oscillator for generating a time base, as a filter in radio-electronic applications, or as a probe for atomic force microscopy. It can also be used as a chemical or biological sensor; to do this, it is necessary to functionalize a surface of the lever, so that analytes can be fixed and modify its mass, and therefore its resonant frequency.
  • the figure 7 shows a sectional view of a device of this type, in which the upper electrode EA of the piezoelectric actuator is connected to a track PC EA which forms a third level of metallization and passes over the detection transistor FET and of the PC S source conductive track.
  • a structure has the advantage of allowing access to the actuator and the sensor on the same side of the device.
  • the conductive PC source track S is connected to ground, which makes it possible to avoid any direct capacitive coupling between the actuator and the detector.
  • the figure 8 shows that there is a distributed capacitance C between the PC D drain conductor track and the conductive plane formed by the two-dimensional carrier gas 2DEG inside the transistor channel, assumed to be located at the C 1 -C 2 interface, even if in fact it is a few tens of nanometers (typically 20 - 50 nm) of this interface.
  • the channel of the transistor has a width of 4 microns, and its resistance R c can be estimated at 1 k ⁇ .
  • the surface S to be taken into account is that of the portions of the conductive tracks PC D , PC S and the "bridge" P S which are superimposed on the electrodes D, S, G and the "buried" conducting track PC S .
  • the parasitic capacitance is lower by a factor of about 2, which gives f ⁇ 100 GHz.
  • a MEMS is considered comprising a beam-shaped suspended element consisting of a first layer C 1 and a second piezoelectric layer C 2 (plus, possibly, a third passivation layer which will be ignored thereafter).
  • the two materials constituting the layers C 1 and C 2 are both semiconductors and piezoelectric, although this is a preferred embodiment of the invention. It suffices that the first layer is piezoelectric, and the second semiconductor (preferably monocrystalline, to have good electronic properties).
  • the two layers C 1 and C 2 do not necessarily form a heterostructure, and the FET transistor is not necessarily of the HEMT type.
  • the FET transistor will be made entirely inside the semiconductor layer (piezoelectric or not) C 2 .
  • the latter may consist of a stack of semiconductor sublayers, concentrating the carriers in the lower part of the layer, optionally in the form of a two-dimensional gas.
  • first piezoelectric but non-semiconductor (insulating) layer C 1 and of a second semi-conducting but non-piezoelectric, or very slightly piezoelectric, layer C 2 may be advantageous in certain cases. Indeed, this may allow a better optimization of the properties, respectively piezoelectric and electronic materials.
  • the first layer could also be optimized from the point of view of its mechanical and / or thermal properties without its choice being constrained by the use of a piezoelectric semiconductor.
  • FIGs 9A - 9D allow to appreciate the advantage brought by the use of a detection transistor with respect to a simple piezoelectric stress sensor.
  • These graphs refer to the case of a resonant type MEMS, with a doubly embedded beam, comprising a piezoelectric actuator at one of its ends and a detection FET transistor at the opposite end, and show the dependence of the transconductance Y 21 of the device as a function of the frequency f and the operating point of the FET transistor, characterized by the gate-source voltage (V gs ) and drain-source voltage (Vds).
  • V gs gate-source voltage
  • Vds drain-source voltage
  • Y transconductance 21 expresses the ratio between the drain-source current of the FET transistor and the AC voltage, at the frequency f, applied across the piezoelectric actuator; it thus expresses the electromechanical response of the device.
  • the curves 9A-9D make it possible to determine the operating point of the FET transistor maximizing the detection signal, both in the case of forced vibrations and in that of the free vibrations (without actuator) of the suspended element.
  • the transconductance Y 21 is of several ⁇ S. This value is two orders of magnitude greater than that obtained by using, for the detection of vibrations of the beam, a single piezoelectric sensor identical to the actuator.
  • the figure 10 shows that an adjustment of a factor of about 10 of the normalized amplitude A / A max of the oscillation of the beam can be obtained by applying to the piezoelectric actuator a stationary polarization Vdc-act.
  • Vdc-act a stationary polarization

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Claims (17)

  1. Mikroelektromechanische Anordnung, die Folgendes umfasst:
    - ein Substrat (SS);
    - eine erste Schicht (C1) aus einem piezoelektrischen Material, das auf einer Fläche des Substrats abgeschieden ist;
    - eine zweite Schicht (C2) aus einem halbleitenden Material, das auf der ersten Schicht abgeschieden ist;
    - mindestens ein aufgehängtes Element (ES), das durch Verlängerungen der Schichten gebildet ist, die sich über einen Rand (B) des Substrats hinaus erstrecken;
    - einen Feldeffekttransistor (FET), der in die zweite Schicht und in ihre Verlängerung integriert ist, der mindestens einen Kanal aufweist, der sich zumindest teilweise im Inneren des aufgehängten Elements erstreckt, Elektroden (D, S, G) umfasst, die mit Leiterbahnen (PCD, PCS, PCG) verbunden sind, die sich über der zweiten Schicht erstrecken und von denen mindestens eine über den Rand des Substrats verläuft;
    dadurch gekennzeichnet, dass:
    - mindestens zwei Leiterbahnen, die mit zwei entsprechenden Elektroden des Feldeffekttransistors verbunden sind, sich derart ohne elektrischen Kontakt zueinander überlappen, dass sie eine dreidimensionale Zusammenschaltungsstruktur bilden.
  2. Mikroelektromechanische Anordnung nach Anspruch 1, wobei mindestens eine Drain-Elektrode und eine Source-Elektrode des Feldeffekttransistors mit elektrischen Bahnen verbunden sind, die einen Wellenleiter bilden.
  3. Mikroelektromechanische Anordnung nach einem der vorhergehenden Ansprüche, die auch eine dritte Schicht (C3) umfasst, die aus einem dritten dielektrischen Material hergestellt ist, die zweite Schicht zumindest teilweise bedeckt und auf der mindestens eine der elektrischen Bahnen abgeschieden ist, wobei Durchkontaktierungen (V) in der dritten Schicht hergestellt sind, um die Zusammenschaltung der oder jeder elektrischen Bahn mit den Elektroden des Feldeffekttransistors zu ermöglichen.
  4. Mikroelektromechanische Anordnung nach Anspruch 3, wobei:
    - das Element eine Form aufweist, die zwischen einem Balken, der an seinen zwei Enden eingelassen ist, und einer Scheibe oder Platte ausgewählt ist, die über ihren gesamten Umfang eingelassen ist, wobei der Feldeffekttransistor im Bereich eines Einlassungsteils des Elements gebildet ist;
    - die Anordnung auch ein Stellglied (EA) umfasst, das im Bereich eines Teils des aufgehängten Elements hergestellt ist, das sich von demjenigen unterscheidet, das den Transistor trägt, wobei das Stellglied angepasst ist, um eine Schwingungsform des aufgehängten Elements in eine Richtung senkrecht zur Fläche des Substrats zu erregen; und das Stellglied Elektroden umfasst, die in elektrischem Kontakt mit zwei entgegengesetzten Seiten der zweiten Schicht sind, die aus einem piezoelektrischen halbleitenden Material hergestellt ist.
  5. Mikroelektromechanische Anordnung nach einem der vorhergehenden Ansprüche, wobei die erste Schicht aus einem piezoelektrischen halbleitenden Material hergestellt ist, das sich von demjenigen unterscheidet, das die zweite Schicht bildet, derart, dass die Grenzfläche zwischen der ersten und der zweiten Schicht eine halbleitende Heterostruktur bildet.
  6. Mikroelektromechanische Anordnung nach Anspruch 5, wobei die zweite Schicht auch aus piezoelektrischem halbleitenden Material hergestellt ist, das sich von demjenigen unterscheidet, das die erste Schicht bildet.
  7. Mikroelektromechanische Anordnung nach einem der Ansprüche 5 oder 6, wobei ein zweidimensionales Ladungsträgergas (2DEG) an der Grenzfläche zwischen der ersten und der zweiten Schicht gebildet ist.
  8. Mikroelektromechanische Anordnung nach Anspruch 7, wobei die erste und die zweite Schicht aus unterschiedlichen piezoelektrischen Halbleitermaterialien vom Typ III-N oder GaN gebildet sind.
  9. Mikroelektromechanische Anordnung nach einem der vorhergehenden Ansprüche, wobei der Feldeffekttransistor Folgendes umfasst:
    - eine erste Elektrode (D) mit länglicher Form, die sich auf dem aufgehängten Element in eine Richtung erstreckt, die im Wesentlichen senkrecht zu derjenigen des Randes des Substrats ist, mit einer mittleren Leiterbahn eines Wellenleiters verbunden ist, die sich über der zweiten Schicht erstreckt;
    - zwei zweite Elektroden (S1, S2) mit länglicher Form, die sich auf dem aufgehängten Element in eine Richtung erstrecken, die im Wesentlichen senkrecht zu derjenigen des Randes des Substrats ist, die auf beiden Seiten der ersten Elektrode angeordnet sind und mit jeweiligen seitlichen Leiterbahnen des Wellenleiters verbunden sind, wobei zwei Kanäle des Transistors durch die erste und die zweite Elektrode abgegrenzt sind; und
    - zwei Gate-Elektroden (G1, G2) mit länglicher Form, die sich auf dem aufgehängten Element über entsprechenden Kanälen des Transistors erstrecken, die durch diese letzteren durch isolierende Schichten getrennt sind und mit mindestens einer Leiterbahn verbunden sind, die sich ohne elektrischen Kontakt mit mindestens der mittleren Bahn und einer seitlichen Bahn des Wellenleiters überlappt.
  10. Mikroelektromechanische Anordnung nach einem der Ansprüche 1 bis 8, wobei der Feldeffekttransistor Folgendes umfasst:
    - eine erste Elektrode mit länglicher Form (D), die sich auf dem aufgehängten Element in einer Richtung erstreckt, die im Wesentlichen senkrecht zu derjenigen des Randes des Substrats ist, mit einer mittleren leitfähigen Bahn eines Wellenleiters verbunden ist, die sich über der zweiten Schicht erstreckt;
    - zwei zweite Elektroden (S1, S2), die auf einem Abschnitt der zweiten Schicht gebildet sind, der sich über der Fläche des Substrats in der Nähe des aufgehängten Elements erstreckt, mit zwei jeweiligen seitlichen Leiterbahnen des Wellenleiters verbunden sind, wobei zwei Kanäle des Transistors durch die erste und die zweite Elektrode abgegrenzt sind; und
    - zwei Gate-Elektroden (G1, G2) mit länglicher Form, die sich auf dem aufgehängten Element über jeweiligen Kanälen des Transistors erstrecken, von diesen letzteren durch isolierende Schichten getrennt sind und mit mindestens einer Leiterbahn verbunden sind, die ohne elektrischen Kontakt mindestens die mittlere Bahn und eine seitliche Bahn des Wellenleiters überlappt.
  11. Mikroelektromechanische Anordnung nach Anspruch 2 oder einem der Ansprüche 3 bis 8, sofern diese/r von Anspruch 2 abhängig ist/sind, wobei der Feldeffekttransistor Folgendes umfasst:
    - eine erste Elektrode (D), die auf dem aufgehängten Element hergestellt ist, mit der mittleren Leiterbahn des Wellenleiters verbunden ist; und
    - zwei zweite Elektroden (S1, S2), die auf einem Abschnitt der zweiten Schicht gebildet sind, der sich über der Fläche des Substrats in der Nähe des aufgehängten Elements erstreckt, mit zwei seitlichen Leiterbahnen eines Wellenleiters verbunden sind, wobei ein Kanal des Transistors durch die erste und die zweite Elektrode abgegrenzt ist.
  12. Mikroelektromechanische Anordnung nach Anspruch 11, wobei der Feldeffekttransistor auch eine Gate-Elektrode (G) umfasst, die sich zwischen der ersten und der zweiten Elektrode befindet, die sich über dem Kanal des Transistors erstreckt und mit einer Leiterbahn verbunden ist, die ohne elektrischen Kontakt mindestens die mittlere Bahn des Wellenleiters überlappt.
  13. Mikroelektromechanische Anordnung nach einem der Ansprüche 1 bis 8, wobei der Feldeffekttransistor Folgendes umfasst:
    - mehrere erste Elektroden (D1, D2), die auf dem aufgehängten Element hergestellt sind, in einer Richtung ausgerichtet sind, die im Wesentlichen senkrecht zu derjenigen des Randes des Substrats ist, und mit einer mittleren Leiterbahn eines Wellenleiters verbunden sind, der sich über der zweiten Schicht erstreckt;
    - mehrere zweite Elektroden (S1, S2), die auf dem aufgehängten Element in eine Richtung im Wesentlichen senkrecht zu derjenigen des Randes des Substrats ausgerichtet auf mit den ersten Elektroden abwechselnde Art und Weise hergestellt sind und mit den seitlichen Leiterbahnen eines Wellenleiters verbunden sind, der sich über der zweiten Schicht erstreckt; und
    - mehrere Gate-Elektroden (G1, G2), die sich zwischen entsprechenden Paaren von der ersten und der zweiten Elektrode befinden und mit einer Leiterbahn verbunden sind, die mindestens eine Leiterbahn des Wellenleiters ohne elektrischen Kontakt überlappt.
  14. Mikroelektromechanische Anordnung nach einem der vorhergehenden Ansprüche, wobei das aufgehängte Element (ES) eine Grundschwingungsform des Balkens in eine Richtung senkrecht zur Fläche des Substrats umfasst, deren Resonanzfrequenz zwischen 10 MHz und 1 GHz, und vorzugsweise zwischen 1 MHz und 100 MHz enthalten ist.
  15. Verfahren zur Verwendung einer mikroelektromechanischen Anordnung nach einem der vorhergehenden Ansprüche als mechanischer Oszillator, das Folgendes umfasst:
    - das Anlegen einer ersten Potenzialdifferenz (Vds) zwischen mindestens zwei Elektroden des Transistors, von denen eine einen Drain und die andere eine Source bildet, wobei der Wert der Potenzialdifferenz derart ausgewählt wird, dass eine Regelung der Resonanzfrequenz des Oszillators ermöglicht wird; und
    - die Detektion mechanischer Oszillationen des aufgehängten Elements durch Messung eines elektrischen Stroms, der durch einen Kanal des Transistors fließt.
  16. Verfahren nach Anspruch 15, das auch die Anwendung einer zweiten Potenzialdifferenz (Vgs) zwischen mindestens einer Gate-Elektrode und der Source-Elektrode des Transistors umfasst, wobei die Werte der ersten und zweiten Potenzialdifferenz derart bestimmt werden, dass das Verhältnis zwischen dem Drain-Source-Strom des Transistors und der Amplitude der Schwingungen des aufgehängten Elements maximiert wird.
  17. Verfahren zur Verwendung einer mikroelektromechanischen Anordnung nach Anspruch 4, wobei das Stellglied aus einer ersten Elektrode, die sich über der zweiten Schicht befindet, und aus einer zweiten Elektrode besteht, die das Anlegen einer Potenzialdifferenz an ein zweidimensionales Ladungsträgergas ermöglicht, das an der Grenzfläche zwischen der ersten Schicht und der zweiten Schicht gebildet ist, das Folgendes umfasst:
    - das Anlegen einer Potenzialdifferenz (Vdc-act) zwischen den zwei Elektroden des Stellglieds, derart, dass eine Regelung einer Amplitude einer Schwingung des aufgehängten Elements, die durch das Stellglied erregt wird, ermöglicht wird; und
    - die Detektion von mechanischen Schwingungen des aufgehängten Elements durch Messung eines elektrischen Stroms, der durch einen Kanal des Transistors fließt.
EP10717189.4A 2009-04-10 2010-04-09 Piezoelektrische mikroelektromechanische anordnung Not-in-force EP2417645B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0901794A FR2944274B1 (fr) 2009-04-10 2009-04-10 Dispositif microelectromecanique piezoelectrique
PCT/FR2010/000299 WO2010116061A1 (fr) 2009-04-10 2010-04-09 Dispositif microelectromecanique piezoelectrique

Publications (2)

Publication Number Publication Date
EP2417645A1 EP2417645A1 (de) 2012-02-15
EP2417645B1 true EP2417645B1 (de) 2017-08-02

Family

ID=41381745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10717189.4A Not-in-force EP2417645B1 (de) 2009-04-10 2010-04-09 Piezoelektrische mikroelektromechanische anordnung

Country Status (3)

Country Link
EP (1) EP2417645B1 (de)
FR (1) FR2944274B1 (de)
WO (1) WO2010116061A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971243B1 (fr) 2011-02-09 2013-03-08 Centre Nat Rech Scient Dispositif microelectromecanique avec structure d'actionnement piezoelectrique
FR3051255B1 (fr) 2016-05-11 2018-05-11 Centre National De La Recherche Scientifique Accelerometre vibrant precontraint

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344417B1 (en) * 2000-02-18 2002-02-05 Silicon Wafer Technologies Method for micro-mechanical structures
US7253488B2 (en) * 2002-04-23 2007-08-07 Sharp Laboratories Of America, Inc. Piezo-TFT cantilever MEMS
EP1606600A2 (de) * 2003-03-18 2005-12-21 Microgan GmbH Sensorelemente mit freitragenden balkenstrukturen aus halbleitern auf gruppe-iii-nitridbasis
US7157897B2 (en) * 2003-11-25 2007-01-02 Northwestern University Method and system for electronic detection of mechanical perturbations using BIMOS readouts
US7939994B2 (en) * 2006-05-17 2011-05-10 Microgan Gmbh Micromechanical actuators comprising semiconductors on a group III nitride basis

Also Published As

Publication number Publication date
FR2944274A1 (fr) 2010-10-15
WO2010116061A1 (fr) 2010-10-14
EP2417645A1 (de) 2012-02-15
FR2944274B1 (fr) 2012-03-02

Similar Documents

Publication Publication Date Title
EP2211185B1 (de) Trägheitssensor oder Resonanzsensor in der Oberflächentechnologie zur Erkennung von Abweichungen mit Hilfe eines Dehnungsmessers
EP2018571B1 (de) Bewegungsempfindliche anordnung mit mindestens einem transistor
FR2881913A1 (fr) Transducteur capacitif tres sensible (a micro-usinage) micro-usine a ultrasons
EP2616386B1 (de) In der ebene betätigte resonanzvorrichtung und verfahren zur herstellung der vorrichtung
US8044556B2 (en) Highly efficient, charge depletion-mediated, voltage-tunable actuation efficiency and resonance frequency of piezoelectric semiconductor nanoelectromechanical systems resonators
EP2417645B1 (de) Piezoelektrische mikroelektromechanische anordnung
EP2866020B1 (de) Vorrichtung zur elektromechanischen Erfassung, zur gravimetrischen Erfassung
EP2871773B1 (de) Mikroelektronische/nanoelektronische Vorrichtung, die ein Resonatorennetz mit elektrostatischer Auslösung und anpassbarer Frequenzantwort umfasst, insbesondere für Bandpassfilter
FR3021309A1 (fr) Dispositif microelectronique et/ou nanoelectronique capacitif a compacite augmentee
EP2337222B1 (de) Kompensierter Mikro-/Nanoresonator mit verbesserter kapazitiver Erkennung, und Herstellungsverfahren
EP2201681B1 (de) Auf nanometrischem oder mikrometrischem massstab vibrierende elektromechanische komponente mit verbessertem detektionsniveau
EP2715299B1 (de) Dehnungssensor
FR2920754A1 (fr) Micro systeme comprenant une poutre deformable par flexion et procede de fabrication
EP2673816B1 (de) Mikroelektromechanische vorrichtung mit piezoelektrischer betätigungsstruktur
JP5618374B2 (ja) 機械共振器
EP3159703A1 (de) Mikroelektromechanische vorrichtung und system mit einem wandler mit einer schwachen impedanz
WO2014064273A1 (fr) Reseau de connexion pour nems a agencement ameliore
WO2017140664A1 (fr) Transducteur electromecanique a base de nitrure de gallium dope
FR3089630A1 (fr) Capteur de flux thermique a nanofilaments chauffants
Masmanidis Piezoelectric and Magnetoelastic Strain in the Transduction and Frequency Control of Nanomechanical Resonators
Photodiode GS domain at the nanometer scale presents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010044044

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01L0041090000

Ipc: B81B0003000000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 41/09 20060101ALI20170110BHEP

Ipc: H03H 9/02 20060101ALI20170110BHEP

Ipc: G01L 9/00 20060101ALI20170110BHEP

Ipc: H03H 3/007 20060101ALI20170110BHEP

Ipc: B81B 3/00 20060101AFI20170110BHEP

Ipc: H01L 27/20 20060101ALI20170110BHEP

Ipc: G01L 1/00 20060101ALI20170110BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 914229

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010044044

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GEVERS SA, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170802

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 914229

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170802

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010044044

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180409

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD SA NEUCHATEL CONSEILS EN PROPRIETE INTE, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190415

Year of fee payment: 10

Ref country code: IT

Payment date: 20190411

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190424

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190424

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100409

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200430

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010044044

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430