EP2416874B1 - Ejector device for producing a pressurized mixture of liquid and gas, and its use - Google Patents

Ejector device for producing a pressurized mixture of liquid and gas, and its use Download PDF

Info

Publication number
EP2416874B1
EP2416874B1 EP10723191.2A EP10723191A EP2416874B1 EP 2416874 B1 EP2416874 B1 EP 2416874B1 EP 10723191 A EP10723191 A EP 10723191A EP 2416874 B1 EP2416874 B1 EP 2416874B1
Authority
EP
European Patent Office
Prior art keywords
liquid
ejector device
gas
diffuser
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10723191.2A
Other languages
German (de)
French (fr)
Other versions
EP2416874A1 (en
Inventor
Yves Lecoffre
Guillaume Maj
Jacques Marty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies SE
Original Assignee
Total SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total SE filed Critical Total SE
Publication of EP2416874A1 publication Critical patent/EP2416874A1/en
Application granted granted Critical
Publication of EP2416874B1 publication Critical patent/EP2416874B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/463Arrangements of nozzles with provisions for mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3125Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characteristics of the Venturi parts
    • B01F25/31253Discharge
    • B01F25/312533Constructional characteristics of the diverging discharge conduit or barrel, e.g. with zones of changing conicity

Definitions

  • the present invention relates to an ejector device for forming a pressurized mixture of liquid and gas.
  • the document WO-01/34285 describes such an ejector device comprising a suction chamber, a cylindrical tube and a diffuser of conical shape and flaring in a longitudinal direction.
  • a nozzle injects a high velocity liquid into the suction chamber, which then sucks gas through an inlet.
  • the cylindrical tube is located between the suction chamber and the diffuser, so that the liquid and the gas are mixed in this cylindrical tube before entering the diffuser.
  • Such an ejector device makes it possible to obtain compression ratios (see definition below) of the order of 4 to 8.
  • a gas having at the inlet a pressure of 2 atm can be compressed to a pressure 16 atm. It is very difficult to go beyond.
  • the document DE 1068223 B1 also describes such a device.
  • the present invention aims to improve an ejector device of this type, in particular to optimize its energy efficiency and increase the compression ratio.
  • the mixture of liquid and gas can be made at different axial positions inside the diffuser, and the ejector device then allows operation over a wide range of compression ratio.
  • the energy performance of the ejector device is optimized.
  • the longitudinal direction referred to in this description is understood to be the direction indicated by a dashed line X on the figure 1 , and corresponds to the direction of flow in the ejector device 1 between the upstream side located to the left and the downstream side located to the right in this figure.
  • the outlet opening 4 therefore forms at the outlet of the suction chamber 2 a narrowing also called neck.
  • a first upstream pipe 3a supplies gas to the inlet opening 3 of the suction chamber 2, at a suction pressure p 1 with volume flow Q 1 .
  • a second upstream pipe 5a feeds the injection nozzle 5 with liquid at a supply pressure p 2 with a volume flow rate Q 2 .
  • This end 5b is placed at a withdrawal distance x 2 from the outlet opening 4 of the suction chamber 2.
  • the internal diameter D 2 of the end 5b is optionally smaller than an internal diameter of the nozzle 5, so that said nozzle has at its end 5b a contracted section.
  • the injection nozzle 5 optionally comprises liquid channeling means adapted to obtain in the nozzle after said channeling means, a liquid flow little turbulent, without rotation and whose axial velocity distribution is substantially homogeneous, that is, that is, whose axial velocity distribution in a cross-section of the nozzle is substantially constant.
  • the jet of liquid produced by the nozzle 5 in the suction chamber 2 then remains substantially cylindrical to the outlet opening 4 of said chamber.
  • the liquid jet diverges little in this chamber and does not begin to mix with the gas before the diffuser 6.
  • having a jet of liquid diverges helps to form a mixture of liquid and water. gas.
  • this arrangement makes it possible to obtain a better mixture of liquid and gas in the diffuser 6 and a better compression ratio of this mixture.
  • the means for channeling the liquid in the nozzle 5 may for example be a device having walls extending in the longitudinal direction X, or a device having walls extending in the direction longitudinal X and said walls having a honeycomb shape, or a device comprising a wall in a direction substantially perpendicular to the longitudinal direction X and comprising holes for distributing the liquid flow substantially uniformly in the cross section of the nozzle, or a combination of these devices in the nozzle 5 and arranged one after the other along the longitudinal direction X.
  • the channeling means can then be placed in the nozzle at a short distance from its end 5b, for example at a distance of between 10 and 30 times the internal diameter D 2 of the nozzle 5, and preferably equal to 20 times this diameter. .
  • the diffuser 6 is mounted in the extension of the outlet opening 4 of the suction chamber.
  • This diffuser 6 has along the longitudinal direction X an increasing cross section from said outlet opening 4.
  • This diffuser 6 is for example conically shaped, flaring in the direction of the flow, and is also substantially coaxial to the longitudinal axis X. It therefore has an upstream diameter substantially equal to the diameter D c of the outlet opening 4 of the suction chamber 2, and a downstream diameter D 3 greater than the upstream diameter D c .
  • the diffuser 6 forms a cone having an angle ⁇ d .
  • the angle ⁇ d is defined as the total aperture angle of the cone, and has a low value, at least in a first part of the diffuser 6.
  • a downstream pipe 6a outputs the mixture of liquid and gas at the discharge pressure p 3 .
  • the ejector device 1 of the invention has a diffuser 6 located immediately at the outlet of the suction chamber 2, that is to say without interposition of a cylindrical tube for mixing liquid and gas, so that the mixture occurs directly in the diffuser 6.
  • the inventors have found that such an arrangement allowed the ejector device 1 to operate over a wide range of compression ratio ⁇ c .
  • the ejector device 1 operates as follows.
  • the suction chamber 2 optionally comprises from said distance from the longitudinal axis X radially and longitudinally extending walls, so that the liquid jet does not come into contact with said walls and that the gas contained in this suction chamber 2 is driven with a low turbulent flow, without rotation and whose axial velocity distribution is substantially homogeneous towards the outlet opening 4 of the suction chamber 2.
  • the flow comprises along the X axis, a first, a second and a third zone.
  • the first zone of the flow the two coaxial phases flow relatively independently.
  • the mixing zone the flow changes its structure rather suddenly and becomes a mixture of the liquid and the gas, which is more and more homogeneous. This change in the structure of the flow is accompanied by a fairly sudden slowing down of the liquid phase and an increase in pressure.
  • the third flow zone the two phases flow in the form of a finely mixed emulsion. In this third zone, the flow gradually slows under the effect of the section increase of the diffuser. The kinetic energy of the mixture is then converted into pressure energy.
  • first, second and third zones of the flow are not separated by clear and sharp transitions, the phenomena being continuous.
  • these zones of the flow can move longitudinally in the diffuser 6, in particular by the effect of variations in the discharge pressure p 3 downstream of the diffuser 6.
  • the operation of the ejector device is undisturbed, which shows that such a device is stable and tolerant of variations in operating parameters.
  • the amount of movement of the liquid jet at the inlet of the diffuser 6 is converted into pressure forces applied on either side of the mixing zone. If one makes an analogy with the compressible flows, this conversion can be seen as a shock. If one makes an analogy with the free surface flows, this conversion can be seen as a hydraulic jump.
  • the diffuser 6 of conical shape has a low angle ⁇ d , but not zero.
  • a conical diffuser 6 with an angle ⁇ d higher, for example greater than 10 degrees, does not cause a hydraulic shock as effective and does not achieve such high compression rates.
  • angle ⁇ d, opt for which the compression ratio is maximum, for a given injection speed U 2 .
  • This optimum angle is within a range of values of angle ⁇ d of between 0.1 and 7 degrees, and preferably between 1.5 and 4 degrees.
  • the value of the optimum angle ⁇ d, opt is difficult to determine by calculation a priori.
  • the diffuser 6 comprises along the axis X a first conical portion with a first angle ⁇ d , then a second conical portion with a second angle.
  • the second portion is continuously in the extension of the first portion.
  • the second angle is greater than the first angle.
  • the second angle may be between 5 and 15 degrees, and preferably of the order of 7 degrees.
  • the first portion is intended to accommodate the mixing zone, which must operate under a small angle of divergence to maximize the compression ratio.
  • the second portion provides the final pressure recovery by conversion of the kinetic energy of the mixture. This energy conversion can take place at a higher angle of divergence, for example of the order of 10 °, without generating a significant loss of load.
  • a high compression ratio ⁇ c is obtained at the same time by the first portion with a small divergence angle and a total length of the shortened diffuser 6.
  • the diffuser 6 has a flared shape with a first portion of conical shape with a small first angle, then in continuity a shape having a convex profile.
  • the second convex portion has a gradually increasing angle along the longitudinal direction X from the first angle to an angle, for example less than 15 degrees, and preferably of the order of 10 degrees. The overall length of the diffuser 6 can thus be further shortened without affecting the compression ratio.
  • the diffuser 6 has a flared shape with a shape having a convex profile, said convex profile having a gradually increasing angle along the longitudinal direction X from a first angle ⁇ d to a angle, for example less than 15 degrees, and preferably of the order of 10 degrees.
  • the overall length of the diffuser 6 can thus be further shortened.
  • the first angle ⁇ d of the preceding variants advantageously has a value in the range of 0.1 ° to 7 °, as indicated above.
  • the efficiency ⁇ of the ejector device 1 is the ratio between the compression power P c in the ejector device 1 and the hydraulic power P h provided.
  • the efficiency ⁇ of an ejector device 1 can therefore be measured on experimental devices, or be calculated by a mathematical model of hydraulic flow.
  • the efficiency ⁇ is related to this geometric ratio R of the ejector device 1.
  • the efficiency ⁇ is maximum for a geometric ratio R of between 0.5 and 0.9, or more precisely between 0, 6 and 0.8. This trend has been confirmed by experimental results.
  • a first advantage of this compression parameter ⁇ is that it can be calculated only with the pressure values, measurable on an experimental ejector device.
  • the efficiency ⁇ is related to the value of this compression parameter ⁇ of the ejector device 1.
  • the curves of FIG. figure 4 show this dependence for several values of the driving pressure parameter ⁇ .
  • the efficiency ⁇ is then maximum for a compression parameter ⁇ in the range of 0.4 to 0.6, or preferably equal to approximately 0.5.
  • a second advantage of this compression parameter ⁇ is that, conversely, it can make it possible to determine the liquid supply pressure p 2 adapted to obtain the optimum efficiency ⁇ opt of the ejector device 1.
  • the ejector device 1 can then be used in a gas compressor 10 as presented in FIG. figure 5 .
  • the supply circuit 17 then supplies the ejector device 1 of the gas compressor 10 with liquid.
  • the separator device 13 is either a gravity separator or a cyclonic separator.
  • a bypass circuit 14a bypasses the heat exchanger 15 of the return circuit 14 and includes a valve 14b.
  • This branch circuit 14a is adapted to adjust the temperature of the hydraulic circuit.
  • the heat exchanger 15 is also fed with a cold fluid, for example water, by a cooling circuit 15a and a pump 15b.
  • a cold fluid for example water
  • the gas compressor 10 operates as follows.
  • the ejector device 1 mixes the gas with a liquid injected at high speed, and compresses this mixture of gas and liquid at a high pressure.
  • the mixture is separated in the separator device 13, which then supplies at the gas outlet 12 a high pressure gas, and the return circuit 14 also a high pressure liquid.
  • the heat exchanger 15 makes it possible to extract heat from the liquid.
  • the pump 16 increases the pressure of the liquid before supplying the supply circuit 17 and the ejector device 1.
  • the ejector device 1 comprises an injection nozzle adapted to inject at high speed said liquid into its suction chamber.
  • the injection nozzle of the ejector device 1 performs a relaxation of the liquid (transformation of the pressure energy of the liquid into kinetic energy).
  • the diffuser of the ejection device 1 performs mixing and compression of the mixture.
  • the pump 16 completes the compression of the liquid to reach the inlet supply pressure of the nozzle of the ejector device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Nozzles (AREA)

Description

La présente invention est relative à un dispositif éjecteur pour former un mélange sous pression de liquide et de gaz.The present invention relates to an ejector device for forming a pressurized mixture of liquid and gas.

Le document WO-01/34285 décrit un tel dispositif éjecteur comprenant une chambre d'aspiration, un tube cylindrique et un diffuseur de forme conique et s'évasant dans une direction longitudinale. Une buse injecte à grande vitesse un liquide dans la chambre d'aspiration, qui aspire alors du gaz par une entrée. Le tube cylindrique est situé entre la chambre d'aspiration et le diffuseur, de telle sorte que le liquide et le gaz se mélangent dans ce tube cylindrique avant d'entrer dans le diffuseur.The document WO-01/34285 describes such an ejector device comprising a suction chamber, a cylindrical tube and a diffuser of conical shape and flaring in a longitudinal direction. A nozzle injects a high velocity liquid into the suction chamber, which then sucks gas through an inlet. The cylindrical tube is located between the suction chamber and the diffuser, so that the liquid and the gas are mixed in this cylindrical tube before entering the diffuser.

Un tel dispositif éjecteur permet d'obtenir des taux de compression (voir définition plus loin) de l'ordre de 4 à 8. Ainsi, un gaz ayant à l'entrée une pression de 2 atm, pourra être comprimé jusqu'à une pression de 16 atm. Il est très difficile d'aller au-delà.Such an ejector device makes it possible to obtain compression ratios (see definition below) of the order of 4 to 8. Thus, a gas having at the inlet a pressure of 2 atm can be compressed to a pressure 16 atm. It is very difficult to go beyond.

Le document DE 1068223 B1 décrit aussi un tel dispositif.The document DE 1068223 B1 also describes such a device.

La présente invention a pour but de perfectionner un dispositif éjecteur de ce type, notamment pour optimiser son efficacité énergétique et augmenter le taux de compression.The present invention aims to improve an ejector device of this type, in particular to optimize its energy efficiency and increase the compression ratio.

Plus particulièrement, l'invention concerne un dispositif éjecteur pour former un mélange sous pression de liquide et de gaz, comprenant une chambre d'aspiration et un diffuseur,
dans lequel la chambre d'aspiration comporte :

  • une buse d'injection pour produire un jet de liquide s'écoulant selon une direction longitudinale ;
  • une entrée de gaz pour admettre dans la chambre d'aspiration un gaz à entraîner par le jet liquide; et
  • une ouverture de sortie pour faire sortir de la chambre d'aspiration, le jet de liquide et le gaz entraîné ;
dans lequel le diffuseur est raccordé à l'ouverture de sortie de la chambre d'aspiration et présente le long de la direction longitudinale une section transversale croissante à partir de ladite ouverture de sortie, le diffuseur à section croissante étant situé immédiatement après l'ouverture de sortie de la chambre d'aspiration, et dans lequel le diffuseur (6) comprend au moins une première portion conique ayant un premier angle compris entre 0,1 et 7 degrés.More particularly, the invention relates to an ejector device for forming a pressurized mixture of liquid and gas, comprising a suction chamber and a diffuser,
wherein the suction chamber comprises:
  • an injection nozzle for producing a jet of liquid flowing in a longitudinal direction;
  • a gas inlet for admitting into the suction chamber a gas to be entrained by the liquid jet; and
  • an outlet opening for exiting the suction chamber, the liquid jet and the gas trained;
wherein the diffuser is connected to the outlet opening of the suction chamber and has along the longitudinal direction an increasing cross section from said outlet opening, the expanding section diffuser being located immediately after the opening outlet of the suction chamber, and wherein the diffuser (6) comprises at least a first conical portion having a first angle of between 0.1 and 7 degrees.

Grâce à ces dispositions, le mélange de liquide et de gaz peut être réalisé à différentes positions axiales à l'intérieur du diffuseur, et le dispositif éjecteur permet alors un fonctionnement sur une large gamme de taux de compression.Thanks to these arrangements, the mixture of liquid and gas can be made at different axial positions inside the diffuser, and the ejector device then allows operation over a wide range of compression ratio.

Dans divers modes de réalisation du dispositif éjecteur selon l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :

  • le premier angle est préférentiellement compris entre 1,5 et 4 degrés ;
  • le diffuseur comprend en outre une deuxième portion conique continument dans le prolongement de la première portion dans la direction longitudinale, ladite deuxième portion ayant un deuxième angle supérieur au premier angle ;
  • le deuxième angle est compris entre 5 et 15 degrés, et de préférence de l'ordre de 7 degrés ;
  • le diffuseur comprend en outre une deuxième portion continument dans le prolongement de la première portion dans la direction longitudinale, ladite deuxième portion ayant une forme de profil convexe ;
  • la deuxième portion convexe a un angle augmentant progressivement le long de la direction longitudinale depuis le premier angle jusqu'à un angle inférieur à 15 degrés, et de préférence de l'ordre de 10 degrés ;
  • le diffuseur est sensiblement coaxial à la buse d'injection et à l'ouverture de sortie de la chambre d'aspiration ;
  • le dispositif éjecteur est tel que :
    • l'ouverture de sortie, aussi appelée col, a une surface de col Sc perpendiculairement à la direction longitudinale,
    • la buse d'injection a une surface de buse S2 intérieurement à la buse et perpendiculairement à la direction longitudinale, et
    • un rapport géométrique R est le rapport entre la surface de buse S2 et à la surface de col Sc, ledit rapport géométrique R étant compris entre 0,5 et 0,9 ;
In various embodiments of the ejector device according to the invention, one or more of the following provisions may also be used:
  • the first angle is preferably between 1.5 and 4 degrees;
  • the diffuser further comprises a second conical portion continuously in the extension of the first portion in the longitudinal direction, said second portion having a second angle greater than the first angle;
  • the second angle is between 5 and 15 degrees, and preferably of the order of 7 degrees;
  • the diffuser further comprises a second portion continuously in the extension of the first portion in the longitudinal direction, said second portion having a convex profile shape;
  • the second convex portion has an incrementally increasing angle along the longitudinal direction from the first angle to an angle of less than 15 degrees, and preferably of the order of 10 degrees;
  • the diffuser is substantially coaxial with the injection nozzle and the outlet opening of the suction chamber;
  • the ejector device is such that:
    • the outlet opening, also called neck, has a neck surface S c perpendicular to the longitudinal direction,
    • the injection nozzle has a nozzle surface S 2 internally to the nozzle and perpendicular to the longitudinal direction, and
    • a geometric ratio R is the ratio between the nozzle surface S 2 and the neck surface S c , said geometric ratio R being between 0.5 and 0.9;

Grâce à cette disposition le dispositif permet de maximiser le taux de compression pour une vitesse d'injection donnée ; et en particulier d'atteindre des taux de compression du mélange très élevés, et par exemple supérieurs à 30, avec un seul étage de dispositif, pourvu que la vitesse du jet liquide soit suffisamment élevée ;

  • le dispositif éjecteur est tel que :
    • la buse d'injection comprend une extrémité dans la direction longitudinale,
    • l'ouverture de sortie a une section circulaire avec un diamètre de col Dc, et
    • l'extrémité se situe à une distance de retrait x2 de l'ouverture de sortie, ladite distance de retrait x2 étant comprise entre une et cinq fois le diamètre de col Dc ;
    - la chambre d'aspiration comporte des parois dans la direction longitudinale s'étendant radialement dans ladite chambre d'aspiration, de telle sorte que le gaz s'écoule dans la chambre d'aspiration avec un écoulement peu turbulent, sans rotation, dont la distribution de vitesses axiales est assez homogène ;
  • la buse d'injection comporte des moyens de canalisation du liquide adaptés pour obtenir dans la buse après lesdits moyens de canalisation, un écoulement du liquide peu turbulent, sans rotation et dont la distribution de vitesses axiales est sensiblement homogène ;
  • les moyens de canalisation du liquide dans la buse sont choisis parmi :
  • un dispositif ayant des parois s'étendant dans la direction longitudinale, et
  • un dispositif ayant des parois s'étendant dans la direction longitudinale et lesdites parois ayant une forme de nid d'abeille, et
  • un dispositif comprenant une paroi dans une direction sensiblement perpendiculaire à la direction longitudinale et comprenant des trous pour répartir le débit de liquide de manière sensiblement uniforme dans la section transversale de la buse.
With this arrangement, the device makes it possible to maximize the compression ratio for a given injection speed; and in particular to achieve very high compression ratios of the mixture, for example greater than 30, with a single device stage, provided that the speed of the liquid jet is sufficiently high;
  • the ejector device is such that:
    • the injection nozzle has an end in the longitudinal direction,
    • the outlet opening has a circular section with a neck diameter Dc, and
    • the end is at a withdrawal distance x 2 of the outlet opening, said withdrawal distance x 2 being between one and five times the neck diameter Dc;
    the suction chamber comprises walls in the longitudinal direction extending radially in said suction chamber, so that the gas flows into the suction chamber with a low turbulence flow, without rotation, the Axial velocity distribution is fairly homogeneous;
  • the injection nozzle comprises means for channeling the liquid adapted to obtain in the nozzle after said channeling means, a liquid flow little turbulent, without rotation and whose axial velocity distribution is substantially homogeneous;
  • the means for channeling the liquid in the nozzle are chosen from:
  • a device having walls extending in the longitudinal direction, and
  • a device having walls extending in the longitudinal direction and said walls having a honeycomb shape, and
  • a device comprising a wall in a direction substantially perpendicular to the longitudinal direction and including holes for distributing the liquid flow substantially uniformly in the cross section of the nozzle.

L'invention se rapporte également à l'utilisation d'un dispositif éjecteur du type précédent, dans lequel :

  • on mesure la pression d'aspiration du gaz p1 à l'entrée de gaz (3), la pression d'alimentation de liquide p2 alimentant la buse d'injection (5), la pression de refoulement p3 du mélange de gaz et de liquide à l'aval du diffuseur (6), et
  • on règle au moins une desdites pressions pour qu'un paramètre de compression Ψ défini par la formule suivante : Ψ = p 3 - p 1 p 2 - p 1 ,
    Figure imgb0001
soit compris entre 0,4 et 0,6.The invention also relates to the use of an ejector device of the above type, in which:
  • the suction pressure of the gas p 1 is measured at the gas inlet (3), the liquid supply pressure p 2 supplying the injection nozzle (5), the delivery pressure p 3 of the gas mixture and liquid downstream of the diffuser (6), and
  • at least one of said pressures is adjusted so that a compression parameter Ψ defined by the following formula: Ψ = p 3 - p 1 p 2 - p 1 ,
    Figure imgb0001
between 0.4 and 0.6.

L'invention se rapporte également à l'utilisation d'un dispositif éjecteur du type précédent, dans lequel :

  • on mesure la pression d'aspiration du gaz p1 à l'entrée de gaz (3), la pression d'alimentation de liquide p2 alimentant la buse d'injection (5), la pression de refoulement p3 du mélange de gaz et de liquide à l'aval du diffuseur (6), et
  • on règle la pression absolue d'alimentation de liquide p2 à plus ou moins vingt pourcent d'une pression optimale p2,opt, telle que : p 2 , opt = 2. p 3 - p 1 .
    Figure imgb0002
The invention also relates to the use of an ejector device of the above type, in which:
  • the suction pressure of the gas p 1 is measured at the gas inlet (3), the liquid supply pressure p 2 supplying the injection nozzle (5), the delivery pressure p 3 of the gas mixture and liquid downstream of the diffuser (6), and
  • adjusting the absolute pressure liquid supply p 2 to plus or minus twenty percent of a maximum pressure p 2, opt, such that: p 2 , Opt = 2. p 3 - p 1 .
    Figure imgb0002

Grâce à ces dispositions d'utilisation, les performances énergétiques du dispositif éjecteur sont optimisées.Thanks to these provisions of use, the energy performance of the ejector device is optimized.

L'invention peut être par exemple utilisée dans un compresseur de gaz comprenant un dispositif éjecteur alimenté avec un gaz d'une part et un liquide d'autre part, et un dispositif séparateur adapté pour recevoir un mélange de liquide et de gaz en provenance du dispositif éjecteur et extraire une composante gazeuse de ce mélange, dans lequel le dispositif éjecteur comprend une chambre d'aspiration et un diffuseur,
dans lequel la chambre d'aspiration comporte :

  • une buse d'injection pour produire un jet de liquide s'écoulant selon une direction longitudinale ;
  • une entrée de gaz pour admettre dans la chambre d'aspiration un gaz entraîné ; et
  • une ouverture de sortie pour faire sortir de la chambre d'aspiration, le jet de liquide et le gaz entraîné ;
dans lequel le diffuseur est raccordé à l'ouverture de sortie de la chambre d'aspiration et présente le long de la direction longitudinale une section transversale croissante à partir de ladite ouverture de sortie, le diffuseur à section croissante étant situé immédiatement après l'ouverture de sortie de la chambre d'aspiration, et
dans lequel le dispositif séparateur de gaz comporte deux sorties, l'une pour le gaz et l'autre pour le liquide.The invention may for example be used in a gas compressor comprising an ejector device fed with a gas on the one hand and a liquid on the other hand, and a separator device adapted to receive a mixture of liquid and gas from the ejector device and extracting a gas component of this mixture, wherein the ejector device comprises a suction chamber and a diffuser,
wherein the suction chamber comprises:
  • an injection nozzle for producing a jet of liquid flowing in a longitudinal direction;
  • a gas inlet to admit into the suction chamber a driven gas; and
  • an outlet opening for exiting the suction chamber, the liquid jet and the entrained gas;
wherein the diffuser is connected to the outlet opening of the suction chamber and has along the longitudinal direction an increasing cross section from said outlet opening, the expanding section diffuser being located immediately after the opening outlet of the suction chamber, and
wherein the gas separator device has two outlets, one for the gas and the other for the liquid.

Dans divers modes de réalisation du compresseur de gaz, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :

  • le diffuseur comprend au moins une première portion conique ayant un premier angle compris entre 0,1 et 7 degrés ;
  • le dispositif séparateur est un séparateur gravitaire ;
  • le dispositif séparateur est un séparateur cyclonique ;
  • le compresseur de gaz comprend en outre une pompe adaptée pour aspirer le liquide sous pression au niveau du dispositif séparateur, et pour alimenter avec ledit liquide la buse d'injection du dispositif éjecteur.
In various embodiments of the gas compressor, one or more of the following may also be used:
  • the diffuser comprises at least a first conical portion having a first angle of between 0.1 and 7 degrees;
  • the separator device is a gravity separator;
  • the separating device is a cyclonic separator;
  • the gas compressor further comprises a pump adapted to suck the pressurized liquid at the separating device, and for supplying with said liquid the injection nozzle of the ejector device.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante d'un de ses modes de réalisation, donné à titre d'exemple non limitatif, en regard des dessins joints.Other features and advantages of the invention will become apparent from the following description of one of its embodiments, given by way of non-limiting example, with reference to the accompanying drawings.

Sur les dessins :

  • la figure 1 est une vue schématique en coupe longitudinale de dispositif éjecteur conforme à l'invention,
  • la figure 2 est un graphique, établi à partir de résultats expérimentaux, montrant le taux de d'entraînement τe (voir définition plus loin) en fonction du taux de compression τc (voir définition plus loin) pour différentes valeurs de la pression d'aspiration p1 du gaz, dans le dispositif éjecteur de la figure 1,
  • la figure 3 est un graphique montrant le rendement théorique du dispositif éjecteur (voir définition plus loin) de la figure 1, pour un taux de compression de l'ordre de 4, en fonction d'un rapport géométrique R pour différentes valeurs de taux d'entraînement,
  • la figure 4 est un graphique montrant le rendement du dispositif éjecteur de la figure 1, en fonction d'un paramètre de compression Ψ pour différentes valeurs du paramètre de pression motrice χ (voir définition plus loin)
  • la figure 5 est une vue schématique d'un compresseur de gaz comprenant le dispositif éjecteur de la figure 1.
On the drawings:
  • the figure 1 is a schematic view in longitudinal section of ejector device according to the invention,
  • the figure 2 is a graph, based on experimental results, showing the entrainment rate τ e (see definition below) as a function of the compression ratio τ c (see definition below) for different values of the suction pressure p 1 of the gas, in the ejector device of the figure 1 ,
  • the figure 3 is a graph showing the theoretical efficiency of the ejector device (see definition below) of the figure 1 for a compression ratio of the order of 4, as a function of a geometric ratio R for different drive rate values,
  • the figure 4 is a graph showing the performance of the ejector device of the figure 1 , as a function of a compression parameter Ψ for different values of the driving pressure parameter χ (see definition below)
  • the figure 5 is a schematic view of a gas compressor comprising the ejector device of the figure 1 .

La direction longitudinale mentionnée dans cette description s'entend comme étant la direction indiquée par un trait mixte X sur la figure 1, et correspond à la direction d'écoulement dans le dispositif éjecteur 1 entre le côté amont situé vers la gauche et le côté aval situé vers la droite sur cette figure.The longitudinal direction referred to in this description is understood to be the direction indicated by a dashed line X on the figure 1 , and corresponds to the direction of flow in the ejector device 1 between the upstream side located to the left and the downstream side located to the right in this figure.

La figure 1 représente une vue schématique en coupe longitudinale d'un dispositif éjecteur 1 selon l'invention. Ce dispositif éjecteur s'étend selon l'axe longitudinal X et comprend le long de cet axe :

  • une chambre d'aspiration 2 adaptée pour aspirer un gaz par l'injection d'un jet de liquide à grande vitesse dans ladite chambre d'aspiration 2, et
  • un diffuseur 6 adapté pour mélanger le liquide et le gaz et comprimer, assez brutalement, ce mélange par un phénomène analogue à un ressaut hydraulique, puis comprimer progressivement ce mélange par conversion de l'énergie cinétique du mélange en énergie de pression.
The figure 1 represents a schematic view in longitudinal section of an ejector device 1 according to the invention. This ejector device extends along the longitudinal axis X and comprises along this axis:
  • a suction chamber 2 adapted to suck a gas by injecting a jet of liquid at high speed into said suction chamber 2, and
  • a diffuser 6 adapted to mix the liquid and the gas and compress, quite abruptly, this mixture by a similar phenomenon to a hydraulic jump, and then gradually compressing the mixture by converting the kinetic energy of the mixture into pressure energy.

La chambre d'aspiration 2 comprend :

  • une ouverture d'entrée 3 latérale par laquelle est amené le gaz,
  • une buse d'injection 5 se terminant par un tube cylindrique sensiblement coaxial à l'axe longitudinal X et débouchant dans ladite chambre d'aspiration, et par laquelle un liquide est injecté à grande vitesse dans ladite chambre d'aspiration, et
  • une ouverture de sortie 4 à l'opposé de la buse 5 dans la direction d'écoulement, coaxiale à l'axe longitudinal X.
The suction chamber 2 comprises:
  • a lateral inlet opening 3 through which the gas is fed,
  • an injection nozzle 5 terminating in a cylindrical tube substantially coaxial with the longitudinal axis X and opening into said suction chamber, and through which a liquid is injected at a high speed into said suction chamber, and
  • an outlet opening 4 opposite the nozzle 5 in the flow direction, coaxial with the longitudinal axis X.

L'ouverture de sortie 4 forme donc en sortie de la chambre d'aspiration 2 un rétrécissement appelé également col. L'ouverture de sortie 4 a une section sensiblement circulaire de diamètre Dc. Elle présente une surface de col Sc, Sc=π.Dc 2/4, perpendiculairement à l'axe longitudinal X.The outlet opening 4 therefore forms at the outlet of the suction chamber 2 a narrowing also called neck. The outlet opening 4 has a substantially circular section of diameter D c . It has a neck surface S c, S c = π.D c 2/4, perpendicularly to the longitudinal axis X.

Une première conduite amont 3a alimente en gaz l'ouverture d'entrée 3 de la chambre d'aspiration 2, à une pression d'aspiration p1 avec un débit volumique Q1.A first upstream pipe 3a supplies gas to the inlet opening 3 of the suction chamber 2, at a suction pressure p 1 with volume flow Q 1 .

Une seconde conduite amont 5a alimente la buse d'injection 5 en liquide, à une pression d'alimentation p2 avec un débit volumique Q2.A second upstream pipe 5a feeds the injection nozzle 5 with liquid at a supply pressure p 2 with a volume flow rate Q 2 .

La buse 5 présente une extrémité 5b dans la chambre d'aspiration 2, de diamètre interne D2 et présentant une surface de buse S2, S2=π.D2 2/4, perpendiculairement à l'axe longitudinal X. Cette extrémité 5b est placée à une distance de retrait x2 de l'ouverture de sortie 4 de la chambre d'aspiration 2. Le diamètre interne D2 de l'extrémité 5b est éventuellement inférieur à un diamètre interne de la buse 5, de telle sorte que ladite buse comporte à son extrémité 5b une section contractée.The nozzle 5 has an end 5b in the suction chamber 2, an internal diameter D 2 and having a nozzle surface S 2, S 2 = π.D 2 2/4, perpendicularly to the longitudinal axis X. This end 5b is placed at a withdrawal distance x 2 from the outlet opening 4 of the suction chamber 2. The internal diameter D 2 of the end 5b is optionally smaller than an internal diameter of the nozzle 5, so that said nozzle has at its end 5b a contracted section.

La buse d'injection 5 comporte éventuellement des moyens de canalisation du liquide adaptés pour obtenir dans la buse après lesdits moyens de canalisation, un écoulement du liquide peu turbulent, sans rotation et dont la distribution des vitesses axiales soit sensiblement homogène, c'est-à-dire dont la distribution de vitesses axiales dans une section transversale de la buse soit sensiblement constante. Le jet de liquide produit par la buse 5 dans la chambre d'aspiration 2 reste alors sensiblement cylindrique jusqu'à l'ouverture de sortie 4 de ladite chambre. Ainsi le jet liquide diverge peu dans cette chambre et ne commence pas à se mélanger avec de le gaz avant le diffuseur 6. Habituellement l'homme du métier considère que, avoir un jet de liquide divergent, aide à former un mélange de liquide et de gaz. Or les inventeurs ont découvert qu'au contraire cette disposition permet d'obtenir un meilleur mélange de liquide et de gaz dans le diffuseur 6 et un meilleur taux de compression de ce mélange.The injection nozzle 5 optionally comprises liquid channeling means adapted to obtain in the nozzle after said channeling means, a liquid flow little turbulent, without rotation and whose axial velocity distribution is substantially homogeneous, that is, that is, whose axial velocity distribution in a cross-section of the nozzle is substantially constant. The jet of liquid produced by the nozzle 5 in the suction chamber 2 then remains substantially cylindrical to the outlet opening 4 of said chamber. Thus the liquid jet diverges little in this chamber and does not begin to mix with the gas before the diffuser 6. Usually the skilled person considers that having a jet of liquid diverges, helps to form a mixture of liquid and water. gas. However, the inventors have discovered that, on the contrary, this arrangement makes it possible to obtain a better mixture of liquid and gas in the diffuser 6 and a better compression ratio of this mixture.

Les moyens de canalisation du liquide dans la buse 5 peuvent par exemple être un dispositif ayant des parois s'étendant dans la direction longitudinale X, ou un dispositif ayant des parois s'étendant dans la direction longitudinale X et lesdites parois ayant une forme de nid d'abeille, ou un dispositif comprenant une paroi dans une direction sensiblement perpendiculaire à la direction longitudinale X et comprenant des trous pour répartir le débit de liquide de manière sensiblement uniforme dans la section transversale de la buse, ou une combinaison de ces dispositifs dans la buse 5 et disposés les uns après les autres le long de la direction longitudinale X.The means for channeling the liquid in the nozzle 5 may for example be a device having walls extending in the longitudinal direction X, or a device having walls extending in the direction longitudinal X and said walls having a honeycomb shape, or a device comprising a wall in a direction substantially perpendicular to the longitudinal direction X and comprising holes for distributing the liquid flow substantially uniformly in the cross section of the nozzle, or a combination of these devices in the nozzle 5 and arranged one after the other along the longitudinal direction X.

Les moyens de canalisation peuvent alors être placés dans la buse à courte distance de son extrémité 5b, par exemple à une distance comprise entre 10 et 30 fois le diamètre interne D2 de la buse 5, et de préférence égale à 20 fois à ce diamètre.The channeling means can then be placed in the nozzle at a short distance from its end 5b, for example at a distance of between 10 and 30 times the internal diameter D 2 of the nozzle 5, and preferably equal to 20 times this diameter. .

Le diffuseur 6 est monté dans le prolongement de l'ouverture de sortie 4 de la chambre d'aspiration. Ce diffuseur 6 présente le long de la direction longitudinale X une section transversale croissante à partir de ladite ouverture de sortie 4. Ce diffuseur 6 est par exemple de forme conique, s'évasant dans la direction de l'écoulement, et est également sensiblement coaxial à l'axe longitudinal X. Il présente donc un diamètre amont sensiblement égal au diamètre Dc de l'ouverture de sortie 4 de la chambre d'aspiration 2, et un diamètre aval D3 supérieur au diamètre amont Dc. Le diffuseur 6 forme un cône ayant un angle αd. L'angle αd est défini comme l'angle d'ouverture totale du cône, et a une valeur faible, au moins dans une première partie du diffuseur 6.The diffuser 6 is mounted in the extension of the outlet opening 4 of the suction chamber. This diffuser 6 has along the longitudinal direction X an increasing cross section from said outlet opening 4. This diffuser 6 is for example conically shaped, flaring in the direction of the flow, and is also substantially coaxial to the longitudinal axis X. It therefore has an upstream diameter substantially equal to the diameter D c of the outlet opening 4 of the suction chamber 2, and a downstream diameter D 3 greater than the upstream diameter D c . The diffuser 6 forms a cone having an angle α d . The angle α d is defined as the total aperture angle of the cone, and has a low value, at least in a first part of the diffuser 6.

Une conduite aval 6a fournit en sortie le mélange de liquide et de gaz à la pression de refoulement p3.A downstream pipe 6a outputs the mixture of liquid and gas at the discharge pressure p 3 .

Contrairement aux dispositifs de l'art antérieur, le dispositif éjecteur 1 de l'invention a un diffuseur 6 situé immédiatement en sortie de la chambre d'aspiration 2, c'est-à-dire sans interposition d'un tube cylindrique pour le mélange du liquide et du gaz, de sorte que le mélange se produit directement dans le diffuseur 6.Unlike the devices of the prior art, the ejector device 1 of the invention has a diffuser 6 located immediately at the outlet of the suction chamber 2, that is to say without interposition of a cylindrical tube for mixing liquid and gas, so that the mixture occurs directly in the diffuser 6.

Les inventeurs ont constaté qu'un tel agencement permettait au dispositif éjecteur 1 de fonctionner sur une large plage de taux de compression τc.The inventors have found that such an arrangement allowed the ejector device 1 to operate over a wide range of compression ratio τ c .

Le taux de compression τc est défini comme étant le rapport entre la pression de refoulement p3 et la pression d'aspiration p1 du gaz : τ c = p 3 p 1

Figure imgb0003
The compression ratio τ c is defined as the ratio between the discharge pressure p 3 and the suction pressure p 1 of the gas: τ vs = p 3 p 1
Figure imgb0003

Le taux d'entraînement τe est défini comme étant le rapport entre le débit volumique Q1 du gaz entraîné à l'ouverture d'entrée 3 et le débit volumique Q2 du liquide injecté au travers de la buse d'injection 5 : τ e = Q 1 Q 2

Figure imgb0004
The entrainment rate τ e is defined as the ratio between the volume flow rate Q 1 of the gas entrained at the inlet opening 3 and the volume flow rate Q 2 of the liquid injected through the injection nozzle 5: τ e = Q 1 Q 2
Figure imgb0004

Le paramètre de pression motrice χ est défini comme étant le rapport entre la pression d'alimentation de liquide p2 alimentant la buse d'injection 5 et la pression d'aspiration de gaz p1 : χ = p 2 p 1

Figure imgb0005
The driving pressure parameter χ is defined as the ratio between the liquid supply pressure p 2 supplying the injection nozzle 5 and the gas suction pressure p 1 : χ = p 2 p 1
Figure imgb0005

Ces paramètres adimensionnels qu'il est possible de déterminer par calcul ou mesure sur des dispositifs d'essai, permettent d'établir des lois de dimensionnement pour assurer un fonctionnement optimisé du dispositif.These adimensional parameters, which can be determined by calculation or measurement on test devices, make it possible to establish design laws to ensure optimized operation of the device.

Des essais ont montré que le taux d'entraînement τe est lié au taux de compression τc. Les courbes de la figure 2 montrent cette dépendance pour plusieurs valeurs de pression d'aspiration p1 du gaz.Tests have shown that the entrainment rate τ e is related to the compression ratio τ c . The curves of the figure 2 show this dependence for several values of suction pressure p 1 of the gas.

Le dispositif éjecteur 1 fonctionne comme suit.The ejector device 1 operates as follows.

Le liquide sort dans la chambre d'aspiration 2 à l'extrémité 5b de la buse 5, sous une pression égale à la pression d'aspiration p1 du gaz et à une vitesse U2. Il forme un jet rectiligne et sensiblement cylindrique dans la chambre d'aspiration 2. Ce jet à grande vitesse participe à l'entraînement du gaz qui entoure le jet vers l'ouverture de sortie 4 de ladite chambre d'aspiration 2. Nous avons donc dans la chambre d'aspiration deux phases sensiblement séparées : une phase liquide, dont la section est un disque, à proximité de l'axe longitudinal X et une phase gazeuse, dont la section est une couronne en contact avec le dit disque, à une certaine distance de cet axe longitudinal et coaxiale à la phase liquide.The liquid exits into the suction chamber 2 at the end 5b of the nozzle 5, at a pressure equal to the suction pressure p 1 of the gas and at a speed U 2 . It forms a rectilinear and substantially cylindrical jet in the suction chamber 2. This high speed jet participates in driving the gas surrounding the jet towards the outlet opening 4 of said suction chamber 2. in the suction chamber two substantially separate phases: a liquid phase, the section of which is a disc, near the longitudinal axis X and a gaseous phase, whose section is a ring in contact with said disk, at a distance from this longitudinal axis and coaxial with the liquid phase.

La chambre d'aspiration 2 comprend éventuellement à partir de ladite distance de l'axe longitudinal X des parois s'étendant radialement et longitudinalement, de telle sorte que le jet liquide ne vienne pas en contact avec lesdites parois et que le gaz contenu dans cette chambre d'aspiration 2 soit entraîné avec un écoulement peu turbulent, sans rotation et dont la distribution des vitesses axiales soit sensiblement homogène vers l'ouverture de sortie 4 de la chambre d'aspiration 2.The suction chamber 2 optionally comprises from said distance from the longitudinal axis X radially and longitudinally extending walls, so that the liquid jet does not come into contact with said walls and that the gas contained in this suction chamber 2 is driven with a low turbulent flow, without rotation and whose axial velocity distribution is substantially homogeneous towards the outlet opening 4 of the suction chamber 2.

Dans le diffuseur 6, l'écoulement comprend le long de l'axe X, une première, une deuxième puis une troisième zone. Dans la première zone de l'écoulement, les deux phases coaxiales s'écoulent de manière relativement séparées. Dans la deuxième zone d'écoulement, dite zone de mélange, l'écoulement change de structure assez brutalement et devient un mélange du liquide et du gaz de plus en plus homogène. Ce changement de structure de l'écoulement s'accompagne d'un ralentissement assez brutal de la phase liquide et d'une augmentation de la pression. Dans la troisième zone d'écoulement, les deux phases s'écoulent sous la forme d'une émulsion finement mélangée. Dans cette troisième zone, l'écoulement ralentit progressivement sous l'effet de l'augmentation de section du diffuseur. L'énergie cinétique du mélange est alors convertie en énergie de pression.In the diffuser 6, the flow comprises along the X axis, a first, a second and a third zone. In the first zone of the flow, the two coaxial phases flow relatively independently. In the second flow zone, called the mixing zone, the flow changes its structure rather suddenly and becomes a mixture of the liquid and the gas, which is more and more homogeneous. This change in the structure of the flow is accompanied by a fairly sudden slowing down of the liquid phase and an increase in pressure. In the third flow zone, the two phases flow in the form of a finely mixed emulsion. In this third zone, the flow gradually slows under the effect of the section increase of the diffuser. The kinetic energy of the mixture is then converted into pressure energy.

Ces première, deuxième et troisième zones de l'écoulement ne sont pas séparées par des transitions franches et nettes, les phénomènes étant continus. D'autre part, ces zones de l'écoulement peuvent se déplacer longitudinalement dans le diffuseur 6, notamment par l'effet de variations de la pression de refoulement p3 en aval du diffuseur 6. Malgré de telles variations, le fonctionnement du dispositif éjecteur est peu perturbé, ce qui montre qu'un tel dispositif est stable et tolérant aux variations des paramètres de fonctionnement.These first, second and third zones of the flow are not separated by clear and sharp transitions, the phenomena being continuous. On the other hand, these zones of the flow can move longitudinally in the diffuser 6, in particular by the effect of variations in the discharge pressure p 3 downstream of the diffuser 6. Despite such variations, the operation of the ejector device is undisturbed, which shows that such a device is stable and tolerant of variations in operating parameters.

D'une manière simplifiée, la quantité de mouvement du jet liquide en entrée du diffuseur 6 est convertie en forces de pression s'appliquant de part et d'autre de la zone de mélange. Si on fait une analogie avec les écoulements compressibles, cette conversion peut être vue comme un choc. Si on fait une analogie avec les écoulements à surface libre, cette conversion peut être vue comme un ressaut hydraulique.In a simplified manner, the amount of movement of the liquid jet at the inlet of the diffuser 6 is converted into pressure forces applied on either side of the mixing zone. If one makes an analogy with the compressible flows, this conversion can be seen as a shock. If one makes an analogy with the free surface flows, this conversion can be seen as a hydraulic jump.

Le diffuseur 6 de forme conique, présente un angle αd faible, mais non nul. Un diffuseur 6 conique avec un angle αd plus élevé, par exemple supérieur à 10 degrés, ne provoque pas un choc hydraulique aussi efficace et ne permet pas d'atteindre des taux de compression aussi élevés.The diffuser 6 of conical shape, has a low angle α d , but not zero. A conical diffuser 6 with an angle α d higher, for example greater than 10 degrees, does not cause a hydraulic shock as effective and does not achieve such high compression rates.

Les inventeurs ont donc constaté qu'il existe un angle optimum αd,opt pour lequel le taux de compression est maximum, pour une vitesse U2 d'injection donnée. Cet angle optimum est compris dans une plage de valeurs d'angle αd comprise entre 0,1 et 7 degrés, et de préférence entre 1,5 et 4 degrés. La valeur de l'angle optimum αd,opt est difficile à déterminer par calcul a priori.The inventors have therefore found that there is an optimum angle α d, opt for which the compression ratio is maximum, for a given injection speed U 2 . This optimum angle is within a range of values of angle α d of between 0.1 and 7 degrees, and preferably between 1.5 and 4 degrees. The value of the optimum angle α d, opt is difficult to determine by calculation a priori.

Dans une variante du dispositif éjecteur 1, le diffuseur 6 comprend le long de l'axe X une première portion conique avec un premier angle αd, puis une deuxième portion conique avec un deuxième angle. La deuxième portion est continument dans le prolongement de la première portion. Le deuxième angle est supérieur au premier angle. Le deuxième angle peut être compris entre 5 et 15 degrés, et de préférence de l'ordre de 7 degrés. La première portion est destinée à accueillir la zone de mélange, qui doit s'opérer sous un faible angle de divergence afin de maximiser le taux de compression. La seconde portion assure la récupération finale de pression par conversion de l'énergie cinétique du mélange. Cette conversion d'énergie peut s'opérer sous un angle de divergence supérieur, par exemple de l'ordre de 10°, sans pour autant engendrer une perte de charge significative. On obtient donc à la fois un taux de compression τc élevé par la première portion à faible angle de divergence et une longueur totale du diffuseur 6 raccourcie.In a variant of the ejector device 1, the diffuser 6 comprises along the axis X a first conical portion with a first angle α d , then a second conical portion with a second angle. The second portion is continuously in the extension of the first portion. The second angle is greater than the first angle. The second angle may be between 5 and 15 degrees, and preferably of the order of 7 degrees. The first portion is intended to accommodate the mixing zone, which must operate under a small angle of divergence to maximize the compression ratio. The second portion provides the final pressure recovery by conversion of the kinetic energy of the mixture. This energy conversion can take place at a higher angle of divergence, for example of the order of 10 °, without generating a significant loss of load. Thus, a high compression ratio τ c is obtained at the same time by the first portion with a small divergence angle and a total length of the shortened diffuser 6.

Dans une autre variante du dispositif éjecteur 1, le diffuseur 6 a une forme évasée avec une première portion de forme conique avec un premier angle faible, puis dans la continuité une forme ayant un profil convexe. La deuxième portion convexe a un angle augmentant progressivement le long de la direction longitudinale X depuis le premier angle jusqu'à un angle, par exemple inférieur à 15 degrés, et de préférence de l'ordre de 10 degrés. La longueur totale du diffuseur 6 peut ainsi encore être raccourcie sans affecter le taux de compression.In another variant of the ejector device 1, the diffuser 6 has a flared shape with a first portion of conical shape with a small first angle, then in continuity a shape having a convex profile. The second convex portion has a gradually increasing angle along the longitudinal direction X from the first angle to an angle, for example less than 15 degrees, and preferably of the order of 10 degrees. The overall length of the diffuser 6 can thus be further shortened without affecting the compression ratio.

Dans encore une autre variante du dispositif éjecteur 1, le diffuseur 6 a une forme évasée avec une forme ayant un profil convexe, ledit profil convexe ayant un angle augmentant progressivement le long de la direction longitudinale X depuis un premier angle αd jusqu'à un angle, par exemple inférieur à 15 degrés, et de préférence de l'ordre de 10 degrés. La longueur totale du diffuseur 6 peut ainsi encore être raccourcie.In yet another variant of the ejector device 1, the diffuser 6 has a flared shape with a shape having a convex profile, said convex profile having a gradually increasing angle along the longitudinal direction X from a first angle α d to a angle, for example less than 15 degrees, and preferably of the order of 10 degrees. The overall length of the diffuser 6 can thus be further shortened.

Le premier angle αd des variantes précédentes a avantageusement une valeur dans la plage de 0,1° à 7°, comme indiqué ci-dessus.The first angle α d of the preceding variants advantageously has a value in the range of 0.1 ° to 7 °, as indicated above.

En outre, le rendement η du dispositif éjecteur 1 est le rapport entre la puissance de compression Pc dans le dispositif éjecteur 1 et à la puissance hydraulique Ph fournie.In addition, the efficiency η of the ejector device 1 is the ratio between the compression power P c in the ejector device 1 and the hydraulic power P h provided.

Si l'on suppose que la compression est sensiblement isotherme, on obtient la puissance de compression Pc suivante : P c = p 1 Q 1 ln p 3 p 1

Figure imgb0006
If it is assumed that the compression is substantially isothermal, the following compression power P c is obtained: P vs = p 1 Q 1 ln p 3 p 1
Figure imgb0006

Lorsqu'une pompe aspire le liquide au niveau du séparateur situé au refoulement du dispositif éjecteur 1, la puissance hydraulique fournie Ph est liée à la différence de pression d'alimentation p2 de liquide dans la buse d'injection 5 et la pression de refoulement p3 en sortie du diffuseur 6, c'est-à-dire : P h = Q 2 p 2 - p 3

Figure imgb0007

d'où le rendement η suivant : η = Q 1 Q 2 p 1 p 2 - p 3 ln p 3 p 1
Figure imgb0008

que l'on peut écrire en fonction des paramètres adimensionnels définis précédemment : η = τ e ln τ c χ - τ c
Figure imgb0009
When a pump draws liquid at the separator located at the discharge of the ejector device 1, the hydraulic power supplied P h is related to the supply pressure difference p 2 of liquid in the injection nozzle 5 and the pressure of delivery p 3 at the outlet of the diffuser 6, that is to say: P h = Q 2 p 2 - p 3
Figure imgb0007

hence the following yield η: η = Q 1 Q 2 p 1 p 2 - p 3 ln p 3 p 1
Figure imgb0008

that we can write according to the adimensional parameters defined previously: η = τ e ln τ vs χ - τ vs
Figure imgb0009

Le rendement η d'un dispositif éjecteur 1 peut donc être mesuré sur des dispositifs expérimentaux, ou être calculé par un modèle mathématique d'écoulement hydraulique.The efficiency η of an ejector device 1 can therefore be measured on experimental devices, or be calculated by a mathematical model of hydraulic flow.

Le rapport géométrique R adimensionnel a été également défini comme étant le rapport de la surface de buse S2 par rapport à la surface de col Sc : R = S 2 S c

Figure imgb0010
The dimensionless geometric ratio R is also defined as being the ratio of the nozzle area S 2 to the neck area S c : R = S 2 S vs
Figure imgb0010

Comme montré par les courbes théoriques de la figure 3, à taux d'entraînement fixé, le rendement η est lié à ce rapport géométrique R du dispositif éjecteur 1. Le rendement η est maximum pour un rapport géométrique R compris entre 0,5 et 0,9, ou plus précisément compris entre 0,6 et 0,8. Cette tendance a été confirmée par des résultats expérimentaux.As shown by the theoretical curves of the figure 3 with a fixed drive ratio, the efficiency η is related to this geometric ratio R of the ejector device 1. The efficiency η is maximum for a geometric ratio R of between 0.5 and 0.9, or more precisely between 0, 6 and 0.8. This trend has been confirmed by experimental results.

Des essais expérimentaux ont également montré que la distance de retrait x2 optimale pour les taux de compression visés est d'une à cinq fois le diamètre de col Dc de l'ouverture de sortie 4 du dispositif éjecteur 1.Experimental tests have also shown that the optimal retraction distance x 2 for the targeted compression ratios is from one to five times the neck diameter D c of the outlet opening 4 of the ejector device 1.

Un autre critère de dimensionnement a été défini en introduisant un nouveau paramètre adimensionnel ψ, dit paramètre de compression et défini comme suit : Ψ = p 3 - p 1 p 2 - p 1

Figure imgb0011
Another dimensioning criterion has been defined in introducing a new dimensionless parameter ψ, called compression parameter and defined as follows: Ψ = p 3 - p 1 p 2 - p 1
Figure imgb0011

Un premier avantage de ce paramètre de compression Ψ est qu'il peut être calculé uniquement avec les valeurs de pression, mesurables sur un dispositif éjecteur expérimental.A first advantage of this compression parameter Ψ is that it can be calculated only with the pressure values, measurable on an experimental ejector device.

Ce paramètre de compression Ψ peut être exprimé en fonction des autres paramètres adimensionnels par l'expression suivante : Ψ = τ c - 1 χ - 1

Figure imgb0012
This compression parameter Ψ can be expressed as a function of the other dimensionless parameters by the following expression: Ψ = τ vs - 1 χ - 1
Figure imgb0012

Pour une vitesse d'injection U2 donnée, le rendement η est lié à la valeur de ce paramètre de compression Ψ du dispositif éjecteur 1. Les courbes de la figure 4 montrent cette dépendance pour plusieurs valeurs du paramètre de pression motrice χ.. Le rendement η est alors maximum pour un paramètre de compression Ψ compris dans l'intervalle de 0,4 à 0,6, ou de préférence égal à 0,5 environ.For a given injection speed U 2 , the efficiency η is related to the value of this compression parameter Ψ of the ejector device 1. The curves of FIG. figure 4 show this dependence for several values of the driving pressure parameter χ. The efficiency η is then maximum for a compression parameter Ψ in the range of 0.4 to 0.6, or preferably equal to approximately 0.5.

Un deuxième avantage de ce paramètre de compression Ψ est que, inversement, il peut permettre de déterminer la pression d'alimentation de liquide p2 adaptée pour obtenir le rendement optimal ηopt du dispositif éjecteur 1.A second advantage of this compression parameter Ψ is that, conversely, it can make it possible to determine the liquid supply pressure p 2 adapted to obtain the optimum efficiency η opt of the ejector device 1.

En effet, l'intervalle précédent pour le paramètre de compression Ψ permet de déterminer que la pression d'alimentation de liquide p2 doit être comprise dans l'intervalle suivant : 1 , 66. p 3 - 0 , 66. p 1 < p 2 < 2 , 5. p 3 - 1 , 5. p 1

Figure imgb0013

avec une valeur centrale de pression d'alimentation de liquide optimale p2,opt de: p 2 , opt = 2. p 3 - p 1
Figure imgb0014
Indeed, the preceding interval for the compression parameter Ψ makes it possible to determine that the liquid supply pressure p 2 must be in the following range: 1 , 66. p 3 - 0 , 66. p 1 < p 2 < 2 , 5. p 3 - 1 , 5. p 1
Figure imgb0013

with a central value of optimum liquid supply pressure p 2, opt of: p 2 , Opt = 2. p 3 - p 1
Figure imgb0014

Le dispositif éjecteur 1 peut alors être utilisé dans un compresseur de gaz 10 tel que présenté en figure 5.The ejector device 1 can then be used in a gas compressor 10 as presented in FIG. figure 5 .

Ce compresseur de gaz 10 comprend :

  • une entrée de gaz 11 à basse pression,
  • une sortie de gaz 12 à haute pression,
  • un circuit hydraulique interne en boucle.
This gas compressor 10 comprises:
  • a gas inlet 11 at low pressure,
  • a gas outlet 12 at high pressure,
  • an internal hydraulic loop circuit.

Le circuit hydraulique comprend en série :

  • un dispositif éjecteur 1 alimenté d'une part avec un gaz basse pression, provenant de l'entrée de gaz 11 et d'autre part avec un liquide haute pression ; ledit dispositif éjecteur 1 fournissant un mélange de gaz et de liquide à pression intermédiaire,
  • un dispositif séparateur 13 alimenté en mélange de gaz et de liquide par le dispositif éjecteur 1 et fournissant d'une part une composante de gaz à la sortie de gaz 12 à pression intermédiaire et un liquide, à même pression intermédiaire, à un circuit de retour 14,
  • un échangeur de chaleur 15 dans le circuit de retour 14 adapté pour maintenir la température du circuit hydraulique à un niveau adéquat,
  • une pompe 16 alimentée par le liquide du circuit de retour 14 et fournissant un liquide de plus haute pression à un circuit d'alimentation 17.
The hydraulic circuit comprises in series:
  • an ejector device 1 fed on the one hand with a low pressure gas, from the gas inlet 11 and on the other hand with a high pressure liquid; said ejector device 1 providing a mixture of gas and intermediate pressure liquid,
  • a separator device 13 fed with a mixture of gas and liquid by the ejector device 1 and supplying on the one hand a gas component at the outlet of gas 12 at intermediate pressure and a liquid, at the same intermediate pressure, to a return circuit 14
  • a heat exchanger 15 in the return circuit 14 adapted to maintain the temperature of the hydraulic circuit at an adequate level,
  • a pump 16 fed by the liquid of the return circuit 14 and supplying a liquid of higher pressure to a supply circuit 17.

Le circuit d'alimentation 17 alimente alors en liquide le dispositif éjecteur 1 du compresseur de gaz 10.The supply circuit 17 then supplies the ejector device 1 of the gas compressor 10 with liquid.

Le dispositif séparateur 13 est soit un séparateur gravitaire, soit un séparateur cyclonique.The separator device 13 is either a gravity separator or a cyclonic separator.

En outre, un circuit de dérivation 14a contourne l'échangeur de chaleur 15 du circuit de retour 14 et comprend une vanne 14b. Ce circuit de dérivation 14a est adapté pour régler la température du circuit hydraulique.In addition, a bypass circuit 14a bypasses the heat exchanger 15 of the return circuit 14 and includes a valve 14b. This branch circuit 14a is adapted to adjust the temperature of the hydraulic circuit.

L'échangeur de chaleur 15 est également alimenté avec un fluide froid, par exemple de l'eau, par un circuit de refroidissement 15a et une pompe 15b.The heat exchanger 15 is also fed with a cold fluid, for example water, by a cooling circuit 15a and a pump 15b.

Le compresseur de gaz 10 fonctionne comme suit.The gas compressor 10 operates as follows.

Le dispositif éjecteur 1 mélange le gaz avec un liquide injecté à haute vitesse, et comprime ce mélange de gaz et de liquide à une haute pression. Le mélange est séparé dans le dispositif séparateur 13, qui fournit alors à la sortie de gaz 12 un gaz à haute pression, et au circuit de retour 14 un liquide à haute pression également. L'échangeur de chaleur 15 permet d'extraire de la chaleur du liquide. La pompe 16 augmente la pression du liquide avant d'alimenter le circuit d'alimentation 17 et le dispositif éjecteur 1. Comme déjà expliqué plus haut, le dispositif éjecteur 1 comprend une buse d'injection adaptée pour injecter à grande vitesse ledit liquide dans sa chambre d'aspiration.The ejector device 1 mixes the gas with a liquid injected at high speed, and compresses this mixture of gas and liquid at a high pressure. The mixture is separated in the separator device 13, which then supplies at the gas outlet 12 a high pressure gas, and the return circuit 14 also a high pressure liquid. The heat exchanger 15 makes it possible to extract heat from the liquid. The pump 16 increases the pressure of the liquid before supplying the supply circuit 17 and the ejector device 1. As already explained above, the ejector device 1 comprises an injection nozzle adapted to inject at high speed said liquid into its suction chamber.

Ainsi, la buse d'injection du dispositif éjecteur 1 réalise une détente du liquide (transformation de l'énergie de pression du liquide en énergie cinétique). Le diffuseur du dispositif d'éjection 1 réalise le mélange et la compression du mélange. La pompe 16 complète la compression du liquide pour atteindre la pression d'alimentation en entrée de la buse du dispositif éjecteur.Thus, the injection nozzle of the ejector device 1 performs a relaxation of the liquid (transformation of the pressure energy of the liquid into kinetic energy). The diffuser of the ejection device 1 performs mixing and compression of the mixture. The pump 16 completes the compression of the liquid to reach the inlet supply pressure of the nozzle of the ejector device.

Claims (14)

  1. Ejector device for forming a pressurized mixture of liquid and gas, comprising a suction chamber (2) and a diffuser (6),
    wherein the suction chamber (2) comprises:
    - an injection nozzle (5) for producing a jet of liquid flowing in a longitudinal direction (X);
    - a gas inlet (3) for admitting into the suction chamber (2) a gas to be driven by the liquid jet; and
    - an outlet opening (4) for discharging the liquid jet and the driven gas from the suction chamber (2);
    wherein the diffuser (6) is connected to the outlet opening (4) of the suction chamber (2) and has, in the longitudinal direction (X), a transversal section that increases from said outlet opening (4), the diffuser (6) with increasing section being situated immediately after the outlet opening (4) of the suction chamber (2), and wherein the diffuser (6) comprises at least one first conical portion that has a first angle of between 0.1 and 7 degrees.
  2. Ejector device according to Claim 1, wherein the first angle is between 1.5 and 4 degrees.
  3. Ejector device according to Claim 1, wherein the diffuser (6) also comprises a second conical portion continually in the extension of the first portion in the longitudinal direction (X), said first portion having a second angle greater than the first angle.
  4. Ejector device according to Claim 3, wherein the second angle is between 5 and 15 degrees, and preferably of the order of 7 degrees.
  5. Ejector device according to Claim 1, wherein the diffuser (6) also comprises a second portion continually in the extension of the first portion in the longitudinal direction (X), said second portion having a convex profile shape.
  6. Ejector device according to Claim 5, wherein the convex second portion has an angle that progressively increases in the longitudinal direction (X) from the first angle to an angle less than 15 degrees, and preferably of the order of 10 degrees.
  7. Ejector device according to any one of the preceding claims, wherein the diffuser (6) is substantially coaxial to the injection nozzle (5) and to the outlet opening (4) of the suction chamber.
  8. Ejector device according to any one of the preceding claims, wherein:
    - the outlet opening (4) has a neck surface Sc perpendicular to the longitudinal direction (X),
    - the injection nozzle (5) has a nozzle surface S2 inside the nozzle and perpendicular to the longitudinal direction (X), and
    - a geometrical ratio R is the ratio between the nozzle surface S2 and the neck surface Sc, said geometrical ratio R being between 0.5 and 0.9.
  9. Ejector device according to any one of the preceding claims, wherein:
    - the injection nozzle (5) has one end (5b) in the longitudinal direction (X),
    - the outlet opening (4) has a circular section with a neck diameter Dc, and
    - the end (5b) is situated a retraction distance x2 from the outlet opening (4), said retraction distance x2 being between one and five times the neck diameter Dc.
  10. Ejector device according to any one of the preceding claims, wherein the suction chamber (2) comprises walls in the longitudinal direction (X) extending radially in said suction chamber (2), so that the gas flows in the suction chamber (2) with a flow with little turbulence, without rotation and with substantially uniform axial speed distribution.
  11. Ejector device according to any one of the preceding claims, wherein the injection nozzle (5) comprises liquid channelling means suitable for obtaining, in the nozzle after such channelling means, a flow of the liquid with little turbulence, without rotation and with substantially uniform axial speed distribution.
  12. Ejector device according to Claim 11, wherein the liquid channelling means in the nozzle (5) are chosen from:
    - a device that has walls extending in the longitudinal direction (X), and
    - a device that has walls extending in the longitudinal direction (X), said walls having a honeycomb shape, and
    - a device comprising a wall in a direction that is substantially perpendicular to the longitudinal direction (X) and comprising holes for distributing the liquid flow in a substantially uniform manner in the transversal section of the nozzle.
  13. Use of an ejector device according any one of the Claims 1 to 12, wherein:
    - the following are measured: the gas suction pressure p1 at the gas inlet (3), the liquid feed pressure p2 feeding the injection nozzle (5), the discharge pressure p3 of the gas and liquid mixture downstream of the diffuser (6), and
    - at least one of said pressures is set so that a compression parameter Ψ defined by the following formula: Ψ = p 3 - p 1 p 2 - p 1 ,
    Figure imgb0017

    is between 0.4 and 0.6.
  14. Use of an ejector device according to any one of the Claims 1 to 12, wherein:
    - the following are measured: the gas suction pressure p1 at the gas inlet (3), the liquid feed pressure p2 feeding the injection nozzle (5), the discharge pressure p3 of the gas and liquid mixture downstream of the diffuser (6), and
    - the liquid feed pressure p2 is set to plus or minus twenty per cent of an optimal pressure p2,opt, such that: p 2 , opt = 2. p 3 - p 1 .
    Figure imgb0018
EP10723191.2A 2009-04-09 2010-04-02 Ejector device for producing a pressurized mixture of liquid and gas, and its use Not-in-force EP2416874B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952369A FR2944218B1 (en) 2009-04-09 2009-04-09 EJECTOR DIPOSITIVE FOR FORMING PRESSURE MIXTURE OF LIQUID AND GAS, AND GAS COMPRESSOR COMPRISING SUCH AN EJECTOR DEVICE
PCT/FR2010/050637 WO2010116076A1 (en) 2009-04-09 2010-04-02 Ejector device for forming a pressurized mixture of liquid and gas, and use thereof

Publications (2)

Publication Number Publication Date
EP2416874A1 EP2416874A1 (en) 2012-02-15
EP2416874B1 true EP2416874B1 (en) 2014-02-26

Family

ID=41343301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10723191.2A Not-in-force EP2416874B1 (en) 2009-04-09 2010-04-02 Ejector device for producing a pressurized mixture of liquid and gas, and its use

Country Status (5)

Country Link
US (1) US20120034106A1 (en)
EP (1) EP2416874B1 (en)
AR (1) AR076244A1 (en)
FR (1) FR2944218B1 (en)
WO (1) WO2010116076A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972365B1 (en) 2011-03-07 2015-04-24 Total Sa CYCLONIC FLOW SEPARATOR.
WO2013003179A1 (en) * 2011-06-27 2013-01-03 Carrier Corporation Ejector mixer
US9618263B2 (en) 2012-12-14 2017-04-11 Flash Rockwell Technologies, Llc Non-thermal drying systems with vacuum throttle flash generators and processing vessels
JP6330426B2 (en) 2014-03-31 2018-05-30 ブラザー工業株式会社 Image reading device
CN104712591B (en) * 2015-01-28 2017-02-22 中海油研究总院 Adjustable jet pump
FR3054618B1 (en) * 2016-07-27 2020-02-14 Valeo Systemes Thermiques GAS-GAS EJECTOR
US20190168175A1 (en) * 2017-12-06 2019-06-06 Larry Baxter Solids-Producing Siphoning Exchanger
FR3085281B1 (en) * 2018-09-04 2023-01-20 Alfano Calogero METHOD AND PLANT FOR PURIFYING A RAW GAS BY A LIQUID SOLVENT
CN112915759B (en) * 2021-01-21 2022-07-08 绍兴越信环保科技有限公司 Solid waste pyrolysis flue gas cooperative treatment process
IT202200007652A1 (en) * 2022-04-19 2023-10-19 Micheletti Eng & Consulting Sagl SYSTEM AND SYSTEM FOR SPRAYING OZONED WATER AT HIGH PRESSURE
CN114743900A (en) * 2022-04-25 2022-07-12 北京北方华创微电子装备有限公司 Vaporization system and semiconductor processing equipment

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1068223B (en) * 1959-11-05 Ernst Schlick, Coburg (Bay.) Device for ventilating or gassing liquids that flow through an injector charged with air or gas
US1430303A (en) * 1920-01-24 1922-09-26 Electric Water Sterilizer And Pressure-mixing device for raw water and ozone
US2695265A (en) * 1949-04-27 1954-11-23 Kellogg M W Co Injection mixer for use in catalytic hydrocarbon conversion processes
FR1154651A (en) * 1953-04-02 1958-04-15 Method and apparatus for compressing gases, water vapor and the like
FR1160155A (en) * 1955-11-12 1958-07-08 Gas injector, especially for high pressure synthesis
US3134338A (en) * 1961-08-07 1964-05-26 A Y Dodge Co Jet pump
US3628879A (en) * 1970-01-23 1971-12-21 Lockheed Aircraft Corp Jet pump
US3838002A (en) * 1972-07-21 1974-09-24 Gen Electric Jet pump for nuclear reactor
AU7074874A (en) * 1973-07-09 1976-01-08 Envirotech Corp Supersonic small bubble generation
ES272224Y (en) * 1983-05-13 1984-05-16 DEVICE FOR THE DOSAGE OF THE VARIOUS PRODUCTS THAT ARE MIXED IN THE IRRIGATION WATER.
DE3545612A1 (en) * 1985-12-21 1987-06-25 Henkel Kgaa METHOD FOR CONTROLLING THE PRESSURE RATIO OF A JET PUMP
US4842417A (en) * 1987-07-01 1989-06-27 Norsk Hydro A.S. Method and apparatus for indirectly measuring a solid-liquid interface equilibrium temperature
JPH0647068B2 (en) * 1990-02-14 1994-06-22 ▲たく▼夫 望月 Different fluid contact mixing dissolution amount adjusting device
JPH0448920A (en) * 1990-06-18 1992-02-18 Inax Corp Ejector and purifying apparatus
RU2107841C1 (en) * 1997-04-21 1998-03-27 Сергей Анатольевич Попов Liquid-gas device
FR2787838B1 (en) * 1998-12-23 2002-01-11 Inst Francais Du Petrole JET PUMPING DEVICE
CN1272094C (en) * 1999-11-09 2006-08-30 纳幕尔杜邦公司 Liquid jet compressor
EP1553364A3 (en) * 2000-06-01 2006-03-22 Denso Corporation Ejector cycle system
JP4206676B2 (en) * 2002-03-07 2009-01-14 株式会社ササクラ Ozone mixing apparatus and ozone mixing method
US6877960B1 (en) * 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system
US20060070675A1 (en) * 2004-10-06 2006-04-06 Maxwell Hsu Pressurized gas-water mixer
EP1647325A1 (en) * 2004-10-12 2006-04-19 Biotek Technology Corp. Pressurized gas-water mixer
PL1902775T3 (en) * 2006-09-19 2009-05-29 Exel Ind Mixer for an enclosure such as a sprinkler tank, tank equipped with such a mixer and sprinkler equipped with such a tank

Also Published As

Publication number Publication date
AR076244A1 (en) 2011-05-26
US20120034106A1 (en) 2012-02-09
FR2944218A1 (en) 2010-10-15
WO2010116076A1 (en) 2010-10-14
FR2944218B1 (en) 2012-06-15
EP2416874A1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
EP2416874B1 (en) Ejector device for producing a pressurized mixture of liquid and gas, and its use
FR2801648A1 (en) Nuclear PWR high-pressure steam injector has axial drain tube in mixing chamber outlet neck to reduce neck section and remove some steam
EP2683458B1 (en) Cyclonic flow separator
EP0069637A2 (en) Method and device for pulverizing a solid fuel
CA2293208A1 (en) Jet pumping device
FR2820780A1 (en) LIQUID PRESSURE INJECTION HEAD FOR DRILLING AN EXCAVATION IN THE SOIL
EP2186545B1 (en) Foam-generating device of a fire hose nozzle
FR2489707A1 (en) APPARATUS FOR PREPARING DISPERSIONS
EP3249155A1 (en) Device for actuating an air motor
EP2421657A1 (en) Nozzle capable of maximizing the quantity of movement produced by a two-phase flow through the relief of a saturating flow
EP0253689B1 (en) Ejector using induced rotation
FR3008452A1 (en) DEVICE FOR THE DIPHASIC RELAXATION OF A SIGNIFICANT SATURATING FLOW
EP1797963B1 (en) Mixing chamber and spraying device comprising said chamber
FR3100581A1 (en) Installation to manufacture electricity
EP0140732A1 (en) Device for picking up a polluting layer from the water surface
FR2783310A1 (en) Snow cannon for ski slopes has mixing chamber with angled water and air inlet injectors
EP3140032A1 (en) Injection device, in particular for injecting a hydrocarbon feedstock into a refining unit.
EP3749444B1 (en) Feedstock injection device of an fcc unit, having a locally larger cross-section
FR2878583A1 (en) Fuel injector nozzle for e.g. direct injection diesel engine of motor vehicle, has injection conduit with inner cylindrical wall against which liquid fuel boundary layer reseals, after passage of bump formed by convex portions
WO2018229424A1 (en) Discharge nozzle configured to project a fluid in the form of a convergent spray
FR3026655A1 (en) DEVICE FOR REDUCING THE BIOMASS PARTICLE SIZE WITH CONTINUOUS OPERATION
FR2759121A1 (en) Suction unit for introducing fluid into conduit in which circulates second fluid
RU38031U1 (en) EJECTOR PRE-PUMP
BE510572A (en)
WO2012080623A1 (en) Propulsion system for ships

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010013755

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0005040000

Ipc: B01F0003040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131011

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 5/04 20060101ALI20131002BHEP

Ipc: F04F 5/46 20060101ALI20131002BHEP

Ipc: B01F 3/04 20060101AFI20131002BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 653226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010013755

Country of ref document: DE

Effective date: 20140410

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20140226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 653226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010013755

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010013755

Country of ref document: DE

Effective date: 20141101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

26N No opposition filed

Effective date: 20141127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100402

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20210422

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210422

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210420

Year of fee payment: 12

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220402