EP2411745B1 - System for cryogenic cooling for consumer cooling with temporally variable load - Google Patents

System for cryogenic cooling for consumer cooling with temporally variable load Download PDF

Info

Publication number
EP2411745B1
EP2411745B1 EP10712464.6A EP10712464A EP2411745B1 EP 2411745 B1 EP2411745 B1 EP 2411745B1 EP 10712464 A EP10712464 A EP 10712464A EP 2411745 B1 EP2411745 B1 EP 2411745B1
Authority
EP
European Patent Office
Prior art keywords
gas
valves
consumer
delivery
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10712464.6A
Other languages
German (de)
French (fr)
Other versions
EP2411745A1 (en
Inventor
Guy Bornard
Patrick Bonnay
Fanny Clavel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2411745A1 publication Critical patent/EP2411745A1/en
Application granted granted Critical
Publication of EP2411745B1 publication Critical patent/EP2411745B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the invention relates to a cryogenic system for cooling a consumer having a variable thermal load over time; it applies in particular to the cooling of superconducting magnets.
  • a cryogenic system for cooling a consumer generally comprises a fluid circuit in which pressurized heat transfer gas (N 2 or He) flows from a compression stage to a "cold box", where it is cooled and partially liquefied by relaxation.
  • the cold box contains a bath of liquefied gas, in thermal contact with the consumer to cool.
  • the heat transferred by the consumer to the bath (“heat load”) causes the evaporation of a portion of the gas, which is removed from the cold box to the compression stage, so as to close the circuit.
  • a system of this type is particularly suitable for cooling a consumer having a constant or slowly variable heat load, but is not very effective when the thermal load varies significantly on a time scale of the order of minutes, even seconds. Such conditions are encountered especially during the cooling of the superconducting magnets, and in particular magnets used in research tokamaks on controlled nuclear fusion.
  • the document FR 2 919 713 describes a method and a cryogenic installation according to the preamble of claim 1, particularly suitable for cooling consumers with a variable thermal load over time.
  • the solution proposed by this document is to provide, in the cold section of the instalation, a liquefied gas accumulator. This accumulator makes it possible to store cold fluid when the value of the thermal load is low, and to supply it to the consumer when the heat load increases.
  • the accumulator thus behaves like a filter that decouples the variability of the thermal load of the cryogenic circuit, which can continue to operate at constant speed and be sized on the basis of the average thermal load - and no peak - of the consumer.
  • the invention aims to provide a cryogenic system for cooling a consumer having a variable thermal load over time, not having the aforementioned drawbacks of the prior art.
  • An idea underlying the invention is to modify the system so as to allow operation of the cryogenic circuit in dynamic mode, instead of circumventing the problem by "filtering" the variability of the thermal load by a cold fluid accumulator.
  • a cryogenic system of conventional type can work satisfactorily in dynamic mode, provided to be provided with a suitable control means.
  • the inventors have understood that the adaptation of a conventional cryogenic system to a variable load can be achieved by means of automatic techniques, without the need for significantly modify its material structure, and in particular that of its cold part.
  • the adaptation of an existing installation can therefore be carried out at a limited cost, and the design of installations specifically dedicated to consumers with variable thermal load is greatly simplified.
  • An object of the invention is therefore a cryogenic system for cooling a consumer having a variable thermal load over time, comprising: a cold box in thermal contact with said consumer, supplied with compressed heat transfer gas by a supply duct and connected to a discharge pipe for discharging said gas at a lower pressure; and a pressure control assembly in said supply and discharge conduits having a plurality of controlled valves and a control device for controlling the opening of said valves; characterized in that said control device is a multivariable controller adapted to generate opening control signals of said valves as a function of measured values and pressure setpoints in said supply and discharge conduits on the basis of a mathematical model of the system taking into account a coupling between the pressure values in the supply and discharge pipes via said cold box.
  • the Figure 1A illustrates, in a simplified way, the structure and operation of a conventional type CRY helium-liquefied refrigerator-liquefier.
  • Such an installation comprises a cryogenic circuit comprising a high pressure line CHP, a low pressure line CBP, a compression stage CMP and a cold box BF.
  • the compression stage CMP may comprise one or more compressors, for example of the screw type, as well as an unrepresented deoiler.
  • the gas - Helium in particular - compressed by the compression stage flows in the high pressure line, or supply line CHP, at a pressure P HP of the order of 15 -20 bar, in the direction of the cold box BF; the mass flow rate of the compressor, assumed to be constant, is indicated by Q CMP .
  • the flow of heat transfer gas (Helium) is subdivided in two: a flow rate Q JT passes through a Joule-Thomson V JT expansion valve (after a possible pre-cooling with liquid nitrogen , not shown), while the remaining flow passes through an expansion turbine TD.
  • a flow rate Q JT passes through a Joule-Thomson V JT expansion valve (after a possible pre-cooling with liquid nitrogen , not shown), while the remaining flow passes through an expansion turbine TD.
  • the gas cooled by its passage through the turbine TD is injected into countercurrent exchangers and used to pre-cool the flow through the Joute-Thomson valve, upstream. of the latter, according to the principle of Claude's cycle.
  • the Q V JT / Q L JT ratio depends in particular on the upstream temperature of the expansion valve.
  • a consumer CONS represented by an electrical resistance, is in thermal communication with the bath BT.
  • This consumer dissipates in the form of heat a power ⁇ ("thermal load") which causes the evaporation of a flow rate Q W of liquid gas.
  • This flow rate Q W as well as the flow rate Q V JT and the flow rate passing through the expansion turbine, are discharged from the cold box via the low pressure discharge pipe CBP (P BP of the order of 1.05 bar) towards the CMP compressor.
  • a gas storage tank RS at a pressure P RS , intermediate between P BP and P HP (for example, of the order of 9 bar) is connected to the low pressure pipe CBP via a first valve controlled VC 1 , and to the high-pressure pipe CHP via a second valve VC 2 controlled.
  • first valve VC 1 When the first valve VC 1 is open, a flow rate Q VC1 of gas is injected into the installation from the reserve RS; conversely, when the second valve VC 2 is open, a flow rate Q VC2 of gas is removed from the installation to be stored in the reserve RS.
  • Both valves VC 1 , VC 2 must never be opened at the same time.
  • a third valve VC 3 controls the operating point of the installation by opening and closing a bypass path of the cold box, crossed by a flow rate Q VC3 gas.
  • Valves VC 1 . VC 2 and VC 3 are controlled by two independent regulators, generally of the PID type (proportional - integral - derivative) to maintain the pressure values P BP and P HP close to respective reference values P 0 BP and P 0 HP .
  • PID type proportional - integral - derivative
  • a first regulator PID1 generates a control signal SC 3 of the valve VC 3 as a function of the difference P BP - P 0 BP in order to regulate the pressure in the discharge pipe CBP.
  • a second regulator PID2 generates a control signal SC 12 of the valves VC 1 and VC 2 as a function of the difference P HP -P 0 HP in order to regulate the pressure in the supply duct CHP.
  • the optimal control (that is to say, which minimizes the cost function) can be obtained by solving an algebraic equation of Riccati.
  • this problem can be solved by applying a technique known as "control switching".
  • the system to be controlled is modeled by a plurality of independent subsystems, each with its own controller, of which the actual system "switches".
  • the cryogenic plant SYS can be modeled using two partial models describing the operation of the plant in material supply and withdrawal respectively.
  • two vector control signals are generated, one for each partial model; a control selector chooses which of these control signals must be effectively applied to the installation.
  • the partial models are linearized around the point of operation of the installation, which can not be done for a "global" model that is supposed to account for the behavior of the system in both regimes at the same time.
  • a regulator embodying the principles of the invention will be described in more detail with reference to the figure 2 .
  • the pressure values P HP and P BP measured in the CHP and CBP ducts respectively, are input to a mathematical model MOD of the CRY installation, consisting of two submodels or partial models MP 1 , MP 2 , representing the operation of the installation in terms of intake and removal of material respectively.
  • These models make it possible to associate with the temporal variations of the pressures P HP and P BP "virtual" variations of opening of the valves CV 1 , CV 2 .
  • the partial models make it possible to calculate "virtual openings" O V 1 .
  • O V 2 of said valves which, if real, would produce the observed pressure fluctuations (which, in reality, are generated mainly by thermal load variations, not measured directly).
  • the first DC regulator 1 is intended to control the CRY cryogenic installation in material supply regime: to do this, it generates control signals (or a first vector signal of control) SC 1 and SC ' 3 for controlling the valves CV 1 and CV 3 respectively. On the other hand, this regulator does not act on the valve CV 2 which, in material supply regime, is supposed to remain in the closed state.
  • the second DC 2 regulator is intended to control the CRY cryogenic installation in material removal regime: to do this, it generates control signals (or a second vector control signal) SC 2 and SC " 3 intended to control the valves CV 2 and CV 3 respectively. for against, this controller does not act on the valve CV 1 which, on the withdrawal system, is expected to remain in the closed state.
  • Non-linear DC 1 , DC 2 controllers could also be used, providing only physically feasible opening signals; in this case, the control selection would be by identifying which of the signals SC 1 and SC 2 is closest to zero.
  • the linearized equations also make it possible to calculate the "virtual openings" O V 1 , O V 2 as a function of the pressures P BP , P HP measured.
  • FIG. Figures 3A - 3C compare the behavior of a system according to the invention with a system of the prior art, of the type shown in FIG. Figure 1A .
  • the heat transfer gas is helium, and the thermal bath B is at a temperature of 4.2 K.
  • Tests were carried out by sending to a consumer (electrical resistance) power pulses of 300W of rectangular shape, lasting 50 s and with a period of 100 s.
  • Curves ⁇ INV and ⁇ REF on the figure 3A show the corresponding thermal loads, the variation of which is damped by the thermal inertia of the consumer.
  • the exponent “INV” indicates the measurements relating to the system of the invention, while “REF” denotes the reference measurements, made on the conventional system.
  • FIGS. 4A - 4C show the curves ⁇ INV , P INV BP and P INV HP for a test using slots of thermal power of 1000 W. Under these conditions, the system of the prior art stops working (the compressor stops), whereas in the system of invention the pressure fluctuations are maintained at acceptable levels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipeline Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Feedback Control In General (AREA)

Description

L'invention porte sur un système cryogénique pour le refroidissement d'un consommateur présentant une charge thermique variable dans le temps ; elle s'applique notamment au refroidissement des aimants supraconducteurs.The invention relates to a cryogenic system for cooling a consumer having a variable thermal load over time; it applies in particular to the cooling of superconducting magnets.

Un système cryogénique pour le refroidissement d'un consommateur comporte généralement un circuit fluidique dans lequel du gaz caloporteur sous pression (N2 ou He) circule d'un étage de compression à une « boîte froide », où il est refroidit et partiellement liquéfié par détente. La boîte froide contient un bain de gaz liquéfié, en contact thermique avec le consommateur à refroidir. La chaleur cédée par le consommateur au bain (« charge thermique ») provoque l'évaporation d'une partie du gaz, qui est évacué de la boîte froide vers l'étage de compression, de manière à boucler le circuit. Un tel système est décrit, par exemple, dans l'article de J.-C. Boissin et al. « Cryogénie : mise en oeuvre des basses températures », Technique de l'ingénieur, traité Génie énergétique, B 2 382 , voir en particulier la section 1.3.7 et la figure 20.A cryogenic system for cooling a consumer generally comprises a fluid circuit in which pressurized heat transfer gas (N 2 or He) flows from a compression stage to a "cold box", where it is cooled and partially liquefied by relaxation. The cold box contains a bath of liquefied gas, in thermal contact with the consumer to cool. The heat transferred by the consumer to the bath ("heat load") causes the evaporation of a portion of the gas, which is removed from the cold box to the compression stage, so as to close the circuit. Such a system is described, for example, in the article of J.-C. Boissin et al. "Cryogenics: implementation of low temperatures", Engineering Technique, Energy Engineering contract, B 2,382 see in particular section 1.3.7 and figure 20.

Un système de ce type convient particulièrement pour le refroidissement d'un consommateur présentant une charge thermique constante ou lentement variable, mais s'avère peu efficace lorsque la charge thermique varie d'une manière importante sur une échelle temporelle de l'ordre des minutes, voire des secondes. De telles conditions se rencontrent notamment lors du refroidissement des aimants supraconducteurs, et en particulier des aimants utilisés dans les tokamaks de recherche sur la fusion nucléaire contrôlée.A system of this type is particularly suitable for cooling a consumer having a constant or slowly variable heat load, but is not very effective when the thermal load varies significantly on a time scale of the order of minutes, even seconds. Such conditions are encountered especially during the cooling of the superconducting magnets, and in particular magnets used in research tokamaks on controlled nuclear fusion.

La manière conventionnelle de gérer le refroidissement des consommateurs présentant des charges thermiques variables, par exemple pulsées, consiste à surdimensionner le système cryogénique sans modifier sensiblement son architecture. Une telle solution est peu satisfaisante du point de vue économique.The conventional way of managing the cooling of consumers having variable thermal loads, for example pulsed, is to oversize the cryogenic system without modifying substantially its architecture. Such a solution is unsatisfactory from the economic point of view.

Le document FR 2 919 713 décrit un procédé et une installation cryogénique selon le préambule de la revendication 1, particulièrement adaptés au refroidissement de consommateurs présentant une charge thermique variable dans le temps. La solution proposée par ce document consiste à prévoir, dans la section froide de l'instaltation, un accumulateur de gaz liquéfié. Cet accumulateur permet de stocker du fluide froid lorsque la valeur de la charge thermique est faible, et de le fournir au consommateur lorsque la charge thermique augmente.The document FR 2 919 713 describes a method and a cryogenic installation according to the preamble of claim 1, particularly suitable for cooling consumers with a variable thermal load over time. The solution proposed by this document is to provide, in the cold section of the instalation, a liquefied gas accumulator. This accumulator makes it possible to store cold fluid when the value of the thermal load is low, and to supply it to the consumer when the heat load increases.

L'accumulateur se comporte ainsi comme un filtre qui découple la variabilité de la charge thermique du circuit cryogénique, qui peut continuer à fonctionner à régime constant et être dimensionné sur la base de la charge thermique moyenne - et pas de pic - du consommateur.The accumulator thus behaves like a filter that decouples the variability of the thermal load of the cryogenic circuit, which can continue to operate at constant speed and be sized on the basis of the average thermal load - and no peak - of the consumer.

L'inconvénient de cette solution est qu'elle comporte une augmentation significative du volume et de la complexité de la région froide de l'installation, ce qui a des répercussions défavorables sur son encombrement et son coût.The disadvantage of this solution is that it involves a significant increase in the volume and complexity of the cold region of the installation, which has adverse repercussions on its size and cost.

L'invention vise à procurer un système cryogénique pour le refroidissement d'un consommateur présentant une charge thermique variable dans le temps, ne présentant pas les inconvénients précités de l'art antérieur.The invention aims to provide a cryogenic system for cooling a consumer having a variable thermal load over time, not having the aforementioned drawbacks of the prior art.

Une idée à la base de l'invention consiste à modifier le système de manière à permettre un fonctionnement du circuit cryogénique en régime dynamique, au lieu de contourner le problème en « filtrant » la variabilité de la charge thermique par un accumulateur de fluide froid.An idea underlying the invention is to modify the system so as to allow operation of the cryogenic circuit in dynamic mode, instead of circumventing the problem by "filtering" the variability of the thermal load by a cold fluid accumulator.

En outre, les inventeurs se sont rendus compte du fait qu'un système cryogénique de type conventionnel peut fonctionner de manière satisfaisante en régime dynamique, à condition d'être pourvu d'un moyen de régulation adapté. Autrement dit, les inventeurs ont compris que l'adaptation d'un système cryogénique conventionnel à une charge variable peut être obtenue grâce à des techniques relevant de l'automatique, sans besoin de modifier de manière significative sa structure matérielle, et en particulier celle de sa partie froide. L'adaptation d'une installation existante peut donc être réalisée à un coût limité, et la conception d'installations spécifiquement dédiées à des consommateurs à charge thermique variable se trouve fortement simplifiée.In addition, the inventors have realized that a cryogenic system of conventional type can work satisfactorily in dynamic mode, provided to be provided with a suitable control means. In other words, the inventors have understood that the adaptation of a conventional cryogenic system to a variable load can be achieved by means of automatic techniques, without the need for significantly modify its material structure, and in particular that of its cold part. The adaptation of an existing installation can therefore be carried out at a limited cost, and the design of installations specifically dedicated to consumers with variable thermal load is greatly simplified.

Un objet de l'invention est donc un système cryogénique pour le refroidissement d'un consommateur présentant une charge thermique variable dans le temps, comprenant : une boîte froide en contact thermique avec ledit consommateur, alimentée en gaz caloporteur comprimé par un conduit d'amenée et reliée à un conduit de refoulement pour évacuer ledit gaz à une pression plus faible ; et un ensemble de régulation des pressions dans lesdits conduits d'amenée et de refoulement comportant une pluralité de vannes commandées et un dispositif de commande pour piloter l'ouverture desdites vannes ; caractérisé en ce que ledit dispositif de commande est un régulateur multivariable adapté pour générer des signaux de commande d'ouverture desdites vannes en fonction de valeurs mesurées et de valeurs de consigne des pressions dans lesdits conduits d'amenée et de refoulement sur la base d'un modèle mathématique du système prenant en compte un couplage entre les valeurs de pression dans les conduites d'amenée et de refoulement par l'intermédiaire de ladite boîte froide.An object of the invention is therefore a cryogenic system for cooling a consumer having a variable thermal load over time, comprising: a cold box in thermal contact with said consumer, supplied with compressed heat transfer gas by a supply duct and connected to a discharge pipe for discharging said gas at a lower pressure; and a pressure control assembly in said supply and discharge conduits having a plurality of controlled valves and a control device for controlling the opening of said valves; characterized in that said control device is a multivariable controller adapted to generate opening control signals of said valves as a function of measured values and pressure setpoints in said supply and discharge conduits on the basis of a mathematical model of the system taking into account a coupling between the pressure values in the supply and discharge pipes via said cold box.

Selon des modes de réalisation particuliers de l'invention :

  • Ledit dispositif de commande peut comporter : un premier régulateur pour générer un premier signal de pilotage desdites vannes sur la base d'un premier modèle partiel du système ; un deuxième régulateur pour générer un deuxième signal de pilotage desdites vannes sur la base d'un deuxième modèle partiel du système, différent dudit premier modèle partiel ; et un sélecteur de commande pour appliquer sélectivement auxdites vannes le premier ou le deuxième signal de commande.
  • Ledit système de régulation peut comprendre : une réserve de stockage de gaz caloporteur à une pression intermédiaire entre celle dudit conduit d'amenée et celle dudit conduit de refoulement ; une première vanne commandée, disposée entre ladite réserve de stockage et ledit conduit de refoulement, pour permettre une injection de gaz dans ce dernier à partir de ladite réserve ; une deuxième vanne commandée, disposée entre ladite réserve de stockage et ledit conduit d'amenée, pour permettre une évacuation de gaz depuis ce dernier vers ladite réserve ; et une troisième vanne commandée, disposée entre ledit conduit d'amenée et ledit conduit de refoulement, pour permettre un contournement de la boîte froide.
  • Ledit premier régulateur peut être adapté pour générer un premier signal de commande d'ouverture de la première et de la troisième vanne, à l'exclusion de ladite deuxième vanne, sur la base dudit premier modèle partiel du système ; et ledit deuxième régulateur peut être adapté pour générer un deuxième signal de commande d'ouverture de la deuxième et de la troisième vanne, à l'exclusion de ladite première vanne, sur la base dudit deuxième modèle partiel du système.
  • Ledit premier modèle partiel peut modéliser le comportement du système lorsqu'un volume de gaz est injecté dans le conduit de refoulement, et ledit deuxième modèle partiel peut modéliser le comportement du système lorsqu'un volume de gaz est extrait du conduit d'amenée.
  • Ledit modèle mathématique du système peut modéliser des perturbations de débit du gaz caloporteur induites par des variations temporelles de la charge thermique d'un consommateur en communication thermique avec ladite boîte froide par des variations virtuelles des ouvertures des vannes du système de régulation, ces dernières étant fournies audit dispositif de commande en tant que variables d'entrée à côté des valeurs mesurées et de consigne des pressions
  • Ledit dispositif de commande peut être adapté pour minimiser une fonction de coût dépendant des écarts entre les pressions mesurées dans les conduites d'amenée et de refoulement et les valeurs de consigne respectives, ainsi que de l'amplitude des signaux de commande générés. En particulier, il peut être un régulateur linéaire quadratique.
  • La boîte froide peut contenir une réserve de gaz caloporteur liquéfié qui s'évapore en partie sous l'effet de la charge thermique d'un consommateur, le gaz évaporé étant évacuée par le conduit de refoulement et remplacé par la liquéfaction d'au moins une partie du gaz provenant dudit conduit d'amenée, la variabilité dans le temps des taux d'évaporation et de liquéfaction du gaz induisant de ce fait des perturbations dans la pression à l'intérieur desdits conduits d'amenée et de refoulement.
  • Le consommateur peut être un aimant supraconducteur présentant une charge thermique pulsée.
According to particular embodiments of the invention:
  • Said control device may comprise: a first controller for generating a first control signal of said valves based on a first partial model of the system; a second regulator for generating a second driving signal of said valves based on a second partial model of the system, different from said first partial model; and a control selector for selectively applying to said valves the first or second control signal.
  • Said regulation system may comprise: a heat transfer gas storage tank at an intermediate pressure between that of said supply duct and that of said discharge duct; a first controlled valve disposed between said storage tank and said discharge pipe for allowing gas injection therefrom from said tank; a second controlled valve, disposed between said storage tank and said supply pipe, to allow evacuation of gas from the latter to said tank; and a third controlled valve, disposed between said supply conduit and said delivery conduit, to allow bypass of the cold box.
  • Said first regulator may be adapted to generate a first opening control signal of the first and third valves, excluding said second valve, based on said first partial model of the system; and said second regulator may be adapted to generate a second opening control signal of the second and third valves, excluding said first valve, based on said second partial model of the system.
  • Said first partial model can model the behavior of the system when a volume of gas is injected into the discharge pipe, and said second partial model can model the behavior of the system when a volume of gas is extracted from the supply duct.
  • Said mathematical model of the system can model heat transfer flow disturbances induced by temporal variations of the thermal load of a consumer in thermal communication with said cold box by virtual variations of the openings of the valves of the control system, the latter being supplied to said control device as input variables next to measured values and pressure setpoints
  • Said control device can be adapted to minimize a cost function depending on the differences between the pressures measured in the supply and discharge pipes and the values of respective setpoints, as well as the amplitude of the generated control signals. In particular, it can be a quadratic linear regulator.
  • The cold box may contain a liquefied heat transfer gas reserve which evaporates in part under the effect of the heat load of a consumer, the evaporated gas being discharged through the discharge pipe and replaced by the liquefaction of at least one part of the gas from said supply duct, the variability over time of evaporation rates and liquefaction of the gas thereby inducing disturbances in the pressure inside said supply and discharge ducts.
  • The consumer may be a superconducting magnet having a pulsed thermal load.

D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement :

  • La figure 1A, un schéma d'un système cryogénique selon l'art antérieur;
  • La figure 1B, le principe de « commande partagée »
    (« split range ») mis en oeuvre dans le système de la figure 1A ;
  • La figure 2, un diagramme de principe du moyen de régulation d'un système cryogénique selon un mode de réalisation de l'invention ; et
  • Les figures 3A, 3B et 3C et 4A, 4B, 4C, des graphiques illustrant le comportement d'un système cryogénique selon l'invention sous charge thermique pulsée, et sa comparaison avec l'art antérieur.
Other characteristics, details and advantages of the invention will emerge on reading the description given with reference to the accompanying drawings given by way of example and which represent, respectively:
  • The Figure 1A a diagram of a cryogenic system according to the prior art;
  • The Figure 1B , the principle of "shared control"
    ("Split range") implemented in the system of Figure 1A ;
  • The figure 2 a principle diagram of the regulating means of a cryogenic system according to one embodiment of the invention; and
  • The FIGS. 3A, 3B and 3C and 4A, 4B, 4C , graphs illustrating the behavior of a cryogenic system according to the invention under pulsed thermal load, and its comparison with the prior art.

La figure 1A illustre, de manière simplifiée, la structure et le fonctionnement d'un réfrigérateur-liquéfacteur à hélium CRY de type conventionnel.The Figure 1A illustrates, in a simplified way, the structure and operation of a conventional type CRY helium-liquefied refrigerator-liquefier.

Une telle installation comporte un circuit cryogénique comprenant une conduite à haute pression CHP, une conduite à basse pression CBP, un étage de compression CMP et une boîte froide BF.Such an installation comprises a cryogenic circuit comprising a high pressure line CHP, a low pressure line CBP, a compression stage CMP and a cold box BF.

L'étage de compression CMP peut comporter un ou plusieurs compresseurs, par exemple de type à vis, ainsi qu'un déhuileur non représenté. Le gaz - Hélium en particulier - comprimé par l'étage de compression s'écoule dans la conduite à haute pression, ou conduite d'amenée CHP, à une pression PHP de l'ordre de 15 -20 bar, en direction de la boîte froide BF ; on indique par QCMP le débit massique du compresseur, supposé constant.The compression stage CMP may comprise one or more compressors, for example of the screw type, as well as an unrepresented deoiler. The gas - Helium in particular - compressed by the compression stage flows in the high pressure line, or supply line CHP, at a pressure P HP of the order of 15 -20 bar, in the direction of the cold box BF; the mass flow rate of the compressor, assumed to be constant, is indicated by Q CMP .

A l'intérieur de la boîte froide, le flux de gaz caloporteur (Hélium) se subdivise en deux : un débit QJT traverse une vanne de détente à effet Joule-Thomson VJT (après un pré-refroidissement éventuel à l'azote liquide, non représenté), tandis que le débit restant traverse une turbine de détente TD. Bien que cela ne soit pas représenté sur la figure, le gaz refroidi par son passage à travers la turbine TD est injecté dans des échangeurs à contre-courant et utilisé pour pré-refroidir le flux qui traverse la vanne de Joute-Thomson, en amont de cette dernière, selon le principe du cycle de Claude.Inside the cold box, the flow of heat transfer gas (Helium) is subdivided in two: a flow rate Q JT passes through a Joule-Thomson V JT expansion valve (after a possible pre-cooling with liquid nitrogen , not shown), while the remaining flow passes through an expansion turbine TD. Although this is not shown in the figure, the gas cooled by its passage through the turbine TD is injected into countercurrent exchangers and used to pre-cool the flow through the Joute-Thomson valve, upstream. of the latter, according to the principle of Claude's cycle.

Une fraction QL JT du débit QJT traversant la vanne Joule-Thomson VJT est liquéfiée suite à la détente dans ladite vanne. Le gaz liquide ainsi produit alimente un bain thermique BT, tandis que la fraction QV JT = QJT-QL JT demeure à l'état gazeux. Le rapport QV JT/QL JT dépend notamment de la température amont de la vanne de détente.A fraction Q L JT flow Q JT through the Joule-Thomson V JT valve is liquefied following expansion in said valve. Liquid gas thus produced feeds a thermal bath BT, while the fraction JT = Q V Q L Q JT JT remains in the gaseous state. The Q V JT / Q L JT ratio depends in particular on the upstream temperature of the expansion valve.

Un consommateur CONS, représenté par une résistance électrique, est en communication thermique avec le bain BT. Ce consommateur dissipe sous la forme de chaleur une puissance Θ (« charge thermique ») qui provoque l'évaporation d'un débit QW de gaz liquide. Ce débit QW, ainsi que le débit QV JT et le débit traversant la turbine de détente sont évacués de la boîte froide par le conduit de refoulement à basse pression CBP (PBP de l'ordre de 1,05 bar) vers le compresseur CMP.A consumer CONS, represented by an electrical resistance, is in thermal communication with the bath BT. This consumer dissipates in the form of heat a power Θ ("thermal load") which causes the evaporation of a flow rate Q W of liquid gas. This flow rate Q W , as well as the flow rate Q V JT and the flow rate passing through the expansion turbine, are discharged from the cold box via the low pressure discharge pipe CBP (P BP of the order of 1.05 bar) towards the CMP compressor.

Comme ledit compresseur fonctionne à vitesse - et donc à débit volumétrique - constant, la pression dans les conduits CHP et CBP est régulée grâce à un système de vannes commandées VC1, VC2 et VC3.Since said compressor operates at a constant speed - and therefore at a volumetric flow rate - the pressure in the CHP and CBP ducts is regulated by means of a controlled valve system VC 1 , VC 2 and VC 3 .

Une réserve de stockage de gaz RS à une pression PRS, intermédiaire entre PBP et PHP (par exemple, de l'ordre de 9 bar) est connectée au conduit à basse pression CBP par l'intermédiaire d'une première vanne commandée VC1, et au conduit à haute pression CHP par l'intermédiaire d'une deuxième vanne commandée VC2. Lorsque la première vanne VC1 est ouverte, un débit QVC1 de gaz est injecté dans l'installation à partir de la réserve RS ; inversement, lorsque la deuxième vanne VC2 est ouverte, un débit QVC2 de gaz est évacué de l'installation pour être stocké dans la réserve RS. Les deux vannes VC1, VC2 ne doivent jamais être ouvertes en même temps.A gas storage tank RS at a pressure P RS , intermediate between P BP and P HP (for example, of the order of 9 bar) is connected to the low pressure pipe CBP via a first valve controlled VC 1 , and to the high-pressure pipe CHP via a second valve VC 2 controlled. When the first valve VC 1 is open, a flow rate Q VC1 of gas is injected into the installation from the reserve RS; conversely, when the second valve VC 2 is open, a flow rate Q VC2 of gas is removed from the installation to be stored in the reserve RS. Both valves VC 1 , VC 2 must never be opened at the same time.

Une troisième vanne commandée VC3 fixe le point de fonctionnement de l'installation en ouvrant et fermant une voie de contournement de la boîte froide, traversée par un débit QVC3 de gaz.A third valve VC 3 controls the operating point of the installation by opening and closing a bypass path of the cold box, crossed by a flow rate Q VC3 gas.

D'une manière conventionnelle (voir l'article précité de J.-C. Boissin et al.), les vannes VC1. VC2 et VC3 sont commandées par deux régulateurs indépendants, généralement de type PID (proportionnel - intégral - dérivée) pour maintenir les valeurs de pression PBP et PHP proches de valeurs de consigne respectifs P0 BP et P0 HP.In a conventional manner (see the aforementioned article by J.-C. Boissin et al.), Valves VC 1 . VC 2 and VC 3 are controlled by two independent regulators, generally of the PID type (proportional - integral - derivative) to maintain the pressure values P BP and P HP close to respective reference values P 0 BP and P 0 HP .

Comme le montre la figure 1A, un premier régulateur PID1 engendre un signal de commande SC3 de la vanne VC3 en fonction de la différence PBP- P0 BP afin de réguler la pression dans le conduit de refoulement CBP. De même, un deuxième régulateur PID2 engendre un signal de commande SC12 des vannes VC1 et VC2 en fonction de la différence PHP-P0 HP afin de réguler la pression dans le conduit d'amenée CHP.As shown in Figure 1A a first regulator PID1 generates a control signal SC 3 of the valve VC 3 as a function of the difference P BP - P 0 BP in order to regulate the pressure in the discharge pipe CBP. Likewise, a second regulator PID2 generates a control signal SC 12 of the valves VC 1 and VC 2 as a function of the difference P HP -P 0 HP in order to regulate the pressure in the supply duct CHP.

Le signal SC12 peut commander les deux vannes VC1 et VC2 grâce à un mécanisme de « commande partagée » (« split range ») SR, dont le fonctionnement est illustré sur la figure 1B. On suppose que la valeur du signal SC12 puisse varier entre 0 et 1. Pour SC12=0, la vanne VC1 est complètement ouverte, tandis que la vanne VC2 est fermée. Pour 0<SC12<0,5 l'ouverture de la vanne VC1 diminue linéairement et la vanne VC2 reste fermée. Pour SC12=0,5 les deux vannes sont fermées, et pour 0,5<SC12≤1 la vanne VC2 s'ouvre linéairement tandis que la vanne VC1 reste fermée. De cette manière on peut assurer que les deux vannes ne soient jamais ouvertes en même temps.The signal SC 12 can control the two valves VC 1 and VC 2 by means of a "split-range" mechanism SR, the operation of which is illustrated in FIG. Figure 1B . It is assumed that the value of the signal SC 12 can vary between 0 and 1. For SC 12 = 0, the valve VC 1 is completely open, while the valve VC 2 is closed. For 0 <SC 12 <0.5 the opening of the valve VC 1 decreases linearly and the valve VC 2 remains closed. For SC 12 = 0.5 the two valves are closed, and for 0.5 <SC 12 ≤1 the VC valve 2 opens linearly while valve VC 1 remains closed. In this way it can be ensured that both valves are never open at the same time.

Les inventeurs ce sont rendus compte du fait que cette stratégie de régulation est responsable du comportement dynamique peut satisfaisant de l'installation CRY. En effet, les valeurs de pression dans les conduits à haute et à basse pression sont couplés par l'intermédiaire de la boîte froide BF, mais ce couplage n'est pas pris en compte par les deux régulateurs indépendants PID1 et PID2 ; cela engendre un effet de « pompage » en cas de variation rapide de la charge thermique Θ. En effet, si une perturbation modifie rapidement la valeur de PBH, le premier régulateur PID1 réagit pour la neutraliser ; mais à cause du couplage introduit par la boîte froide, l'action de PID1 perturbe inévitablement la valeur de PHP, ce qui déclenche l'intervention du deuxième régulateur PID2. A son tour, ce dernier perturbe à nouveau la valeur de PBP, et ainsi de suite.The inventors are aware that this control strategy is responsible for the satisfactory dynamic behavior of the CRY installation. Indeed, the pressure values in the high and low pressure pipes are coupled via the cold box BF, but this coupling is not taken into account by the two independent regulators PID1 and PID2; this gives rise to a "pumping" effect in the event of rapid variation of the heat load Θ. Indeed, if a disturbance rapidly changes the value of P BH , the first PID1 regulator reacts to neutralize it; but because of the coupling introduced by the cold box, the action of PID1 inevitably disturbs the value of P HP , which triggers the intervention of the second PID2 regulator. In turn, it again disrupts the value of P BP , and so on.

Cette découverte a permis aux inventeurs de proposer une nouvelle stratégie de commande prenant en compte ledit couplage haute pression/basse pression par l'utilisation d'un régulateur multivariable, par exemple du type linéaire quadratique, en remplacement des deux régulateurs PID indépendants de l'art antérieur.This discovery allowed the inventors to propose a new control strategy taking into account said high pressure / low pressure coupling by the use of a multivariable regulator, for example of the quadratic linear type, replacing the two independent PID regulators of the prior art.

La méthode de commande multivariable dite « linéaire quadratique » est bien connue de l'art antérieur ; voir par exemple les ouvrages :

  • « Contrôle optimale : théorie et applications », Emmanuel Trelat, Editions Vuibert, collections : Mathématiques concrètes, 2e édition ISBN : 9782711722198, en particulier le chapitre 1 ; et
  • « Optimal control: linear quadratics methods » ; de B.D.O Anderson et J.B Moore, Dover publications, ISBN 9780486457666 .
The multivariable control method known as "quadratic linear" is well known from the prior art; see for example the works:
  • "Optimal control: theory and applications", Emmanuel Trelat, Editions Vuibert, collections: Concrete Mathematics, 2nd edition ISBN: 9782711722198, in particular Chapter 1 ; and
  • "Optimal control: linear quadratics methods"; by BDO Anderson and JB Moore, Dover Publications, ISBN 9780486457666 .

Fondamentalement, il s'agit d'un schéma de commande optimale d'un système dynamique défini par un système d'équations différentielles linéaire, dans lequel la fonction de coût est représentée par une fonctionnelle quadratique de l'écart entre les variables de commande (PHP, PBP) et leurs consignes respectives (P0 HP, P0 BP), et des intensités des signaux de commande. Dans ces conditions, la commande optimale (c'est à dire qui minimise la fonction de coût) peut être obtenue par résolution d'une équation algébrique de Riccati.Basically, it is an optimal control scheme of a dynamic system defined by a system of linear differential equations, in which the cost function is represented by a quadratic functional of the difference between the control variables (P HP , P BP ) and their respective setpoints (P 0 HP , P 0 BP ), and intensities of the control signals. Under these conditions, the optimal control (that is to say, which minimizes the cost function) can be obtained by solving an algebraic equation of Riccati.

En fait, la mise en oeuvre d'une régulation multivariable dans l'installation cryogénique de la figure 1A est difficile à cause de la commande partagée SR, qui constitue une contrainte intrinsèquement non-linéaire. En effet, les équations qui régissent le fonctionnement de l'installation ne sont pas les mêmes en régime d'apport de matière (vanne VC1 ouverte) et en régime de retrait de matière (vanne VC2 ouverte).In fact, the implementation of a multivariable regulation in the cryogenic installation of the Figure 1A is difficult because of the SR shared control, which is an intrinsically non-linear constraint. Indeed, the equations that govern the operation of the installation are not the same in material supply regime (valve VC 1 open) and material withdrawal (valve VC 2 open).

Conformément à invention, ce problème peut être résolu en appliquant une technique connue comme « commutation de commande ». Dans cette technique, on modélise le système à commander par une pluralité de sous-systèmes indépendants, chacun pourvu d'un régulateur propre, parmi lesquels le système réel « commute ». En l'espèce, l'installation cryogénique SYS peut être modélisée à l'aide de deux modèles partiels décrivant le fonctionnement de l'installation en régime d'apport et de retrait de matière respectivement. A chaque instant, deux signaux de commande vectoriels sont générés, un pour chaque modèle partiel ; un sélecteur de commande choisit lequel de ces signaux de commande doit être effectivement appliqué à l'installation.According to the invention, this problem can be solved by applying a technique known as "control switching". In this technique, the system to be controlled is modeled by a plurality of independent subsystems, each with its own controller, of which the actual system "switches". In this case, the cryogenic plant SYS can be modeled using two partial models describing the operation of the plant in material supply and withdrawal respectively. At each moment, two vector control signals are generated, one for each partial model; a control selector chooses which of these control signals must be effectively applied to the installation.

Les modèles partiels sont linéarisés autour du point de fonctionnement de l'installation, ce qui ne peut pas être fait pour un modèle « global » censé rendre compte du comportement du système dans les deux régimes à la fois.The partial models are linearized around the point of operation of the installation, which can not be done for a "global" model that is supposed to account for the behavior of the system in both regimes at the same time.

Le principe de la commutation de commande est connu, par exemple, des publications suivantes :

  • D. Liberzon et S. Morse, « Basic Problems in Stability and Design of Switched Systems », IEEE Control Systems Magazine, Octobre 1999, pages 59 - 70 ; et
  • M. Zefran et J. W. Burdick « Design of switching controllers for system with changing dynamics », Proceedings of 37th Conference on Decision and Control, 1998 .
The principle of command switching is known, for example, from the following publications:
  • D. Liberzon and S. Morse, "Basic Problems in Stability and Design of Switched Systems," IEEE Control Systems Magazine, October 1999, pages 59-70 ; and
  • M. Zefran and JW Burdick, "Design of switching controllers for system with changing dynamics," Proceedings of 37th Conference on Decision and Control, 1998 .

Un régulateur mettant en oeuvre les principes de l'invention sera décrit plus en détail en référence à la figure 2.A regulator embodying the principles of the invention will be described in more detail with reference to the figure 2 .

Les valeurs de pression PHP et PBP, mesurées dans les conduits CHP et CBP respectivement, sont fournies en entrée à un modèle mathématique MOD de l'installation CRY, constitué par deux sous-modèles ou modèles partiels MP1, MP2, représentant le fonctionnement de l'installation en régime d'apport et de retrait de matière respectivement. Ces modèles permettent d'associer aux variations temporelles des pressions PHP et PBP des variations « virtuelles » d'ouverture des vannes CV1, CV2. Autrement dit, les modèles partiels permettent de calculer des « ouvertures virtuelles » OV 1. OV 2 desdites vannes qui, si elles étaient réelles, produiraient les fluctuations de pression observées (qui, en réalité, sont engendrées essentiellement par les variations de charge thermique, non mesurées directement). On dit que les perturbations du système sont « ramenées sur les entrées ». Il est important de noter que les deux ouvertures virtuelles dépendent à la fois de PHP et PBP : les modèles du système prennent en compte les couplages existants entre les régions à haute et à basse pression de l'installation.The pressure values P HP and P BP , measured in the CHP and CBP ducts respectively, are input to a mathematical model MOD of the CRY installation, consisting of two submodels or partial models MP 1 , MP 2 , representing the operation of the installation in terms of intake and removal of material respectively. These models make it possible to associate with the temporal variations of the pressures P HP and P BP "virtual" variations of opening of the valves CV 1 , CV 2 . In other words, the partial models make it possible to calculate "virtual openings" O V 1 . O V 2 of said valves which, if real, would produce the observed pressure fluctuations (which, in reality, are generated mainly by thermal load variations, not measured directly). It is said that the disturbances of the system are "brought back to the entrances". It is important to note that the two virtual openings depend on both P HP and P BP : the system models take into account the existing couplings between the high and low pressure regions of the installation.

On dispose ainsi d'un vecteur constitué par six variables scalaires d'entrée, dépendantes du temps : tes pressions mesurées dans les conduits, PHP et PBP ; les valeurs de consigne respectives, P0 HP, P0 BP ; et les « ouvertures virtuelles » OV 1. OV 2. Ce vecteur est fourni en entrée à un dispositif de commande DC, constitué par un premier et un deuxième régulateurs, DC1 et DC2. Ces deux régulateurs - mutuellement indépendants - sont du type linéaire quadratique et basés sur le premier et le deuxième modèle partiel, respectivement.We thus have a vector consisting of six scalar input variables, dependent on time: the pressures measured in the ducts, P HP and P BP ; the respective setpoints, P 0 HP , P 0 BP ; and the "virtual openings" O V 1 . O V 2 . This vector is input to a control device DC consisting of a first and a second regulator, DC 1 and DC 2 . These two mutually independent regulators are of the quadratic linear type and based on the first and second partial models, respectively.

Le premier régulateur DC1 est destiné à commander l'installation cryogénique CRY en régime d'apport de matière : pour ce faire, il engendre des signaux de commande (ou un premier signal vectoriel de commande) SC1 et SC'3 destinés à piloter les vannes CV1 et CV3 respectivement. Par contre, ce régulateur n'agit pas sur la vanne CV2 qui, en régime d'apport de matière, est censée rester à l'état fermé.The first DC regulator 1 is intended to control the CRY cryogenic installation in material supply regime: to do this, it generates control signals (or a first vector signal of control) SC 1 and SC ' 3 for controlling the valves CV 1 and CV 3 respectively. On the other hand, this regulator does not act on the valve CV 2 which, in material supply regime, is supposed to remain in the closed state.

Réciproquement, le deuxième régulateur DC2 est destiné à commander l'installation cryogénique CRY en régime de retrait de matière : pour ce faire, il engendre des signaux de commande (ou un deuxième signal vectoriel de commande) SC2 et SC"3 destinés à piloter les vannes CV2 et CV3 respectivement. Par contre, ce régulateur n'agit pas sur la vanne CV1 qui, en régime de retrait de matière, est censée rester à l'état fermé.Conversely, the second DC 2 regulator is intended to control the CRY cryogenic installation in material removal regime: to do this, it generates control signals (or a second vector control signal) SC 2 and SC " 3 intended to control the valves CV 2 and CV 3 respectively. for against, this controller does not act on the valve CV 1 which, on the withdrawal system, is expected to remain in the closed state.

Il est intéressant de noter que le premier régulateur fournit un signal de commande SC1 de la vanne CV1 même lorsque le système se trouve en régime de retrait de matière ; dans ce cas, cependant, ce signal de commande correspondra à un niveau d'ouverture de ladite vanne non physiquement réalisable - par exemple négatif. Il en va de même pour le signal de commande SC2 engendré par le deuxième régulateur lorsque le système se trouve, en réalité, en régime d'apport de matière. Cela permet à un sélecteur de commande SELC de sélectionner les signaux de commande SCS 1, SCS 2, SCS 3 qui seront réellement appliqués aux vannes CV1, CV2 et CV3 respectivement. Par exemple :

  • Si SC1<0, alors : SCS 1= 0; SCS 2= SC2; SCS 3= SC"3 (fonctionnement en régime de retrait de matière, le régulateur DC2 commande le système) ;
  • Si SC2<0, alors : SCS 1= SC1; SCS 2= 0; SCS 3 = SC'3 (fonctionnement en régime d'apport de matière, le régulateur DC1 commande le système).
It is interesting to note that the first regulator provides a control signal SC 1 of the valve CV 1 even when the system is in the material removal regime; in this case, however, this control signal will correspond to an opening level of said non-physically feasible valve - for example negative. The same applies to the control signal SC 2 generated by the second regulator when the system is, in fact, in the material supply regime. This allows a SELC control selector to select the control signals SC S 1 , SC S 2 , SC S 3 which will actually be applied to the valves CV 1 , CV 2 and CV 3 respectively. For example :
  • If SC 1 <0, then: SC S 1 = 0; SC S 2 = SC 2 ; SC S 3 = SC " 3 (operation in material removal mode, the DC 2 controller controls the system);
  • If SC 2 <0, then: SC S 1 = SC 1 ; SC S 2 = 0; SC S 3 = SC ' 3 (operation in material supply regime, the controller DC 1 controls the system).

On pourrait également utiliser des régulateurs DC1, DC2 non linéaires, fournissant uniquement des signaux d'ouverture physiquement réalisables ; dans ce cas, la sélection de commande se ferait en identifiant lequel parmi les signaux SC1 et SC2 est le plus proche de zéro.Non-linear DC 1 , DC 2 controllers could also be used, providing only physically feasible opening signals; in this case, the control selection would be by identifying which of the signals SC 1 and SC 2 is closest to zero.

On discutera maintenant, de manière synthétique, quelle peut être la forme des modèles partiels utilisés pour la mise en oeuvre de la commande du système.We will now discuss, in a synthetic way, what can be the form of the partial models used for the implementation of the system control.

Le point de départ pour obtenir ces modèles est constitué par les équations de conservation de la masse à l'intérieur des sections à basse pression (mBP) et à haute pression (mHP) du système SYS : { d m BP dt = Q VC 3 + Q VC 1 - Q CMP + Q W + Q JT V d m HP dt = - Q VC 3 - Q VC 2 + Q CMP - Q W - Q JT V

Figure imgb0001
The starting point for obtaining these models is the mass conservation equations inside the low pressure (m BP ) and high pressure (m HP ) sections of the SYS system: { d m BP dt = Q VC 3 + Q VC 1 - Q CMP + Q W + Q JT V d m HP dt = - Q VC 3 - Q VC 2 + Q CMP - Q W - Q JT V
Figure imgb0001

Tous les termes à la droite de ces équations ont été décrits plus haut, en référence à la figure 1A.All the terms to the right of these equations have been described above, with reference to the Figure 1A .

Or:

  • QVC3 dépend linéairement de PHP et non-linéairement du niveau d'ouverture de la vanne VC3, représenté par ouv3 ; le flux gazeux dans le chemin de contoumement étant sonique, le débit ne dépend pas de la pression aval PBP. On peut donc écrire : QVC3=f3(PHP, ouv3).
  • QVC1 dépend linéairement de PRS et non-linéairement du niveau d'ouverture de la vanne VC1, représenté par ouv1 ; le flux gazeux dans le chemin de contournement étant sonique, le débit ne dépend pas de la pression aval PBP. Comme la pression de la réserve PRS est considéré constante, on peut écrire : QVC1=f1(ouv1).
  • QVC2 dépend non-linéairement à la fois de PHP, de la différence PHP-PRS (le flux est subsonique, car la pression amont PHP est inférieur à deux fois la pression aval PRS, par conséquent la pression aval doit être prise en considération) et du niveau d'ouverture de la vanne VC2, représenté par ouv2. En « cachant » la constante PRS dans la fonction non-linéaire f2 on peut donc écrire : QVC2=f2(PHP, ouv2).
  • Qw dépend linéairement du flux thermique (ou charge thermique) Θ du consommateur : QW=KW·Θ.
  • QCMP dépend linéairement de PBP, en supposant que le débit volumétrique du compresseur est constant et que la densité du gaz est proportionnelle à sa pression : QCMP=KCMP· PBP, avec KCMP constant.
  • QV JT dépend essentiellement de la température du gaz au niveau de la vanne de détente VJT ; il s'agit d'un paramètre indépendant des autres, qui peut être considéré constant.
Gold:
  • Q VC3 depends linearly on P HP and non-linearly on the opening level of valve VC 3 , represented by open 3 ; the gas flow in the contoement path being sonic, the flow rate does not depend on the downstream pressure P BP . We can write: Q VC3 = f 3 (P HP , open 3 ).
  • Q VC1 depends linearly on P RS and non-linearly on the opening level of valve VC 1 , represented by open 1 ; the gas flow in the bypass path being sonic, the flow rate does not depend on the downstream pressure P BP . As the pressure of the reserve P RS is considered constant, one can write: Q VC1 = f 1 (open 1 ).
  • Q VC2 depends non-linearly from both P HP , the difference P HP -P RS (the flow is subsonic, because the upstream pressure P HP is less than twice the downstream pressure P RS , therefore the downstream pressure must be taken into consideration) and the opening level of the valve VC 2 , represented by open 2 . By "hiding" the constant P RS in the non-linear function f 2 we can write: Q VC2 = f 2 (P HP , open 2 ).
  • Qw linearly depends on the thermal flux (or thermal load) Θ of the consumer: Q W = K W · Θ.
  • Q CMP depends linearly on P BP , assuming that the volumetric flow rate of the compressor is constant and that the density of the gas is proportional to its pressure: Q CMP = K CMP · P BP , with constant K CMP .
  • Q V JT depends essentially on the gas temperature at the expansion valve V JT ; it is a parameter independent of the others, which can be considered constant.

L'équation d'état du gaz (qui peut être supposé parfait) permet de lier les masses mBP, mHP aux pressions correspondantes PBP, PHP.The equation of state of the gas (which can be supposed perfect) makes it possible to bind masses m BP , m HP to the corresponding pressures P BP , P HP .

En remplaçant ces expressions dans les équations de conservation de la masse on obtient un système de deux équations différentielles non linéaires pour les pressions PBP, PHP : { d m BP dt = F BP P BP P HP ouv 1 ouv 3 Θ d m HP dt = F HP P BP P HP ouv 2 ouv 3 Θ

Figure imgb0002
By replacing these expressions in the conservation equations of the mass one obtains a system of two nonlinear differential equations for the pressures P BP , P HP : { d m BP dt = F BP P BP P HP incpt 1 incpt 3 Θ d m HP dt = F HP P BP P HP incpt 2 incpt 3 Θ
Figure imgb0002

FBP et FHP sont deux fonctions non-linéaires qui peuvent être linéarisées autour de deux points de fonctionnement :

  • un premier point de fonctionnement correspondant au régime d'apport de matière, caractérisé par ouv2=0 ; et
  • un deuxième point de fonctionnement correspondant au régime de retrait de matière, caractérisé par ouv1=0.
F BP and F HP are two non-linear functions that can be linearized around two operating points:
  • a first operating point corresponding to the material feed regime, characterized by O 2 = 0; and
  • a second operating point corresponding to the material withdrawal regime, characterized by open 1 = 0.

La linéarisation de ces équations permet d'écrire les deux sous-systèmes correspondant auxdits points de fonctionnement sous la forme de représentations d'état dans lesquelles les valeurs de pression PBP, PHP définissent les états, les niveaux d'ouverture des vannes ouv1, ouv2 et ouv3 représentent les commandes et la charge thermique Θ constitue une perturbation externe.The linearization of these equations makes it possible to write the two subsystems corresponding to said operating points in the form of state representations in which the pressure values P BP , P HP define the states, the opening levels of the open valves. 1 , open 2 and open 3 represent the controls and the thermal load Θ constitutes an external disturbance.

Les équations linéarisées permettent également de calculer les « ouvertures virtuelles » OV 1, OV 2 en fonction des pressions PBP, PHP mesurées.The linearized equations also make it possible to calculate the "virtual openings" O V 1 , O V 2 as a function of the pressures P BP , P HP measured.

Il est donc possible de concevoir deux régulateurs multivariables pour ces deux sous-systèmes par des techniques conventionnelles. Il est particulièrement avantageux d'utiliser une commande optimale de type linéaire quadratique.It is therefore possible to design two multivariable controllers for these two subsystems using conventional. It is particularly advantageous to use an optimal command of the quadratic linear type.

Les figures 3A - 3C permettent de comparer le comportement d'un système selon l'invention avec un système de l'art antérieur, du type représenté sur la figure 1A. La seule différence entre les deux systèmes, basés sur le réfrigérateur-liquéfacteur cryogénique «400W@1,8K» du Service des Basses Températures de l'Institut de Nanosciences et Cryogénie, Grenoble, France, tient dans la stratégie de régulation adoptée. Le gaz caloporteur est l'Hélium, et le bain thermique B est à une température de 4,2 K.The Figures 3A - 3C compare the behavior of a system according to the invention with a system of the prior art, of the type shown in FIG. Figure 1A . The only difference between the two systems, based on the cryogenic refrigerator-liquefier "400W @ 1,8K" of the Service of Low Temperatures of the Institute of Nanosciences and Cryogenics, Grenoble, France, is in the adopted regulatory strategy. The heat transfer gas is helium, and the thermal bath B is at a temperature of 4.2 K.

Des essais ont été réalisés en envoyant à un consommateur (résistance électrique) des impulsions de puissance de 300W de forme rectangulaire, d'une durée de 50 s et avec une période de 100 s. Les courbes ΘINV et ΘREF sur la figure 3A montrent les charges thermiques correspondantes, dont la variation est amortie par l'inertie thermique du consommateur. L'exposant « INV » indique les mesures se rapportant au système de l'invention, tandis que « REF » dénote les mesures de référence, réalisées sur le système conventionnel.Tests were carried out by sending to a consumer (electrical resistance) power pulses of 300W of rectangular shape, lasting 50 s and with a period of 100 s. Curves Θ INV and Θ REF on the figure 3A show the corresponding thermal loads, the variation of which is damped by the thermal inertia of the consumer. The exponent "INV" indicates the measurements relating to the system of the invention, while "REF" denotes the reference measurements, made on the conventional system.

Les figures 3B et 3C montrent l'évolution des basses pressions (PINV BP, PREF BP) et des hautes pressions (PINV HP, PREF HP), respectivement. On peut remarquer que l'amplitude des variations de PHP et PBP autour de leurs valeurs nominales (P0 HP=16 bar ; P0 BP=1,05 bar) est réduite d'environ un facteur trois à cinq par l'utilisation de la stratégie de commande de l'invention.The Figures 3B and 3C show the evolution of low pressures (P INV BP , P REF BP ) and high pressures (P HP INV , P REF HP ), respectively. It can be noticed that the amplitude of the variations of P HP and P BP around their nominal values (P 0 HP = 16 bar, P 0 BP = 1.05 bar) is reduced by about a factor of three to five by the use of the control strategy of the invention.

Les figures 4A - 4C montrent les courbes ΘINV, PINV BP et PINV HP pour un essai utilisant des créneaux de puissance thermique de 1000 W. Dans ces conditions, le système de l'art antérieur cesse de fonctionner (le compresseur s'arrête), alors que dans le système de invention les fluctuations de pression se maintiennent à des niveaux acceptables.The Figures 4A - 4C show the curves Θ INV , P INV BP and P INV HP for a test using slots of thermal power of 1000 W. Under these conditions, the system of the prior art stops working (the compressor stops), whereas in the system of invention the pressure fluctuations are maintained at acceptable levels.

Claims (10)

  1. A cryogenic system for cooling a consumer (CONS) presenting a thermal load (Θ) that varies over time, the system comprising:
    · a cold box (BF) in thermal contact with said consumer, fed with a compressed heat-conveying gas by a delivery pipe (CHP) and connected to a return pipe (CBP) for exhausting said gas at a lower pressure; and
    · a unit for regulating the pressures in said delivery and return pipes, the unit comprising a plurality of controlled valves (CV1, CV2, CV3) and a control device (MC) for controlling the opening of said valves;
    the system being characterized in that said control device is a multivariable regulator adapted to generate opening control signals (SCS 1, SCS 2, SCS 3) for said valves as a function of measured values (PHP, PBP) and of setpoint values (P0 HP, P0 BP) for the pressures of said delivery and return pipes on the basis of a mathematical model of the system, which model takes account of coupling between the pressure values in the delivery and return pipes via said cold box.
  2. A system according to claim 1, wherein said control device comprises:
    · a first regulator (MC1) for generating a first signal for controlling said valves on the basis of a first partial model of the system;
    · a second regulator (MC2) for generating a second signal for controlling said valves on the basis of a second partial model of the system that is different from said first partial model; and
    · a control selector (SELC) for selectively applying the first or the second control signal to said valves.
  3. A cryogenic system according to either preceding claim, wherein said regulation unit comprises:
    · a supply (RS) of heat-conveying gas at a pressure that is intermediate between the pressure of said delivery pipe and that of said return pipe;
    · a first controlled valve (VC1) arranged between said supply and said return pipe in order to enable gas to be injected into the return pipe from said supply;
    · a second controlled valve (VC2) arranged between said supply and said delivery pipe in order to enable gas to be exhausted from the delivery pipe to said supply; and
    · a third controlled valve (VC3) arranged between said delivery pipe and said return pipe in order to enable the cold box to be bypassed.
  4. A system according to claims 2 and 3, wherein said first regulator is adapted to generate a first control signal (SC1, SC'3) for opening the first and third valves, to the exclusion of said second valve, on the basis of said first partial model of the system; and said second regulator is adapted to generate a second control signal (SC2, SC"3) for opening the second and third valves, to the exclusion of said first valve, on the basis of said second partial model of the system.
  5. A system according to any one of claims 2, 3 in combination with claim 4 or 4, wherein said first partial model models the behavior of the system when a volume of gas is injected into the return pipe, and said second partial model models the behavior of the system when a volume of gas is extracted from the delivery pipe.
  6. A system according to any preceding claim, wherein said mathematical model of the system models the disturbances in the flow rate of the heat-conveying gas that are induced by variations over time in the heat load
    of a consumer in thermal communication with said cold box, by means of virtual variations in the openings of the valves of the regulation system, said virtual openings being supplied to said control device as input variables together with the measured and setpoint values for the pressures.
  7. A system according to any preceding claim, wherein said control device is adapted to minimize a cost function that depends on the differences between the pressures measured in the delivery and return pipes and the respective setpoint values therefor, and also on the amplitudes of the control signals generated.
  8. A system according to claim 7, wherein said control device is a linear quadratic regulator.
  9. A system according to any preceding claim, wherein the cold box contains a supply of liquefied heat-conveying gas (BT) that evaporates in part under the effect of the thermal load of a consumer, the evaporated gas being exhausted via the return pipe and replaced by liquefying at least some of the gas coming from said delivery pipe, the variability over time in the gas evaporation and liquefaction rates, thereby giving rise to disturbances in the pressures within the delivery and return pipes.
  10. A system according to any preceding claim, wherein the consumer is a superconductive magnet that presents a pulsed thermal load.
EP10712464.6A 2009-03-24 2010-03-22 System for cryogenic cooling for consumer cooling with temporally variable load Not-in-force EP2411745B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0901374A FR2943768B1 (en) 2009-03-24 2009-03-24 CRYOGENIC SYSTEM FOR COOLING A CONSUMER HAVING A VARIABLE THERMAL LOAD IN TIME.
PCT/FR2010/000236 WO2010109091A1 (en) 2009-03-24 2010-03-22 Cryogenic system for cooling a consumer having a time-variable heat load

Publications (2)

Publication Number Publication Date
EP2411745A1 EP2411745A1 (en) 2012-02-01
EP2411745B1 true EP2411745B1 (en) 2013-07-10

Family

ID=41171123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10712464.6A Not-in-force EP2411745B1 (en) 2009-03-24 2010-03-22 System for cryogenic cooling for consumer cooling with temporally variable load

Country Status (5)

Country Link
US (1) US20120055664A1 (en)
EP (1) EP2411745B1 (en)
JP (1) JP2012521535A (en)
FR (1) FR2943768B1 (en)
WO (1) WO2010109091A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958025A1 (en) * 2010-03-23 2011-09-30 Air Liquide METHOD AND INSTALLATION OF REFRIGERATION IN PULSE LOAD
FR2985805B1 (en) 2012-01-12 2016-12-23 Commissariat Energie Atomique METHOD FOR CONTROLLING A COMPRESSION DEVICE OF A COOLANT FLUID OF A REFRIGERATING MACHINE
FR3001533B1 (en) 2013-01-29 2015-02-27 Commissariat Energie Atomique METHOD FOR DETERMINING A MODEL OF A THERMODYNAMIC SYSTEM
RU2631841C2 (en) 2013-05-31 2017-09-26 Майекава Мфг. Ко., Лтд. Cooling device based on brayton cycle
US10054357B2 (en) * 2016-10-12 2018-08-21 Raytheon Company Purity monitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735134A (en) * 1996-05-30 1998-04-07 Massachusetts Institute Of Technology Set point optimization in vapor compression cycles
FR2919713B1 (en) * 2007-08-03 2013-12-06 Air Liquide METHOD OF REFRIGERATING A FLUID, SUCH AS A HELIUM, FOR FEEDING A FLUID CONSUMER, AND A CORRESPONDING INSTALLATION

Also Published As

Publication number Publication date
US20120055664A1 (en) 2012-03-08
FR2943768B1 (en) 2011-04-29
EP2411745A1 (en) 2012-02-01
WO2010109091A1 (en) 2010-09-30
FR2943768A1 (en) 2010-10-01
JP2012521535A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
EP2411745B1 (en) System for cryogenic cooling for consumer cooling with temporally variable load
JP5149381B2 (en) Method and corresponding equipment for cooling fluids such as helium for supply to fluid consumers
FR2977015A1 (en) METHOD FOR LIQUEFACTING NATURAL GAS WITH TRIPLE FIRM CIRCUIT OF REFRIGERATING GAS
EP3172500B1 (en) Method for adjusting a cryogenic refrigeration apparatus and corresponding apparatus
EP3763990B1 (en) Device and method for filling tanks
EP2545330B1 (en) Method and equipment for pulsed charge refrigeration
Won et al. An energy-efficient operation system for a natural gas liquefaction process: Development and application to a 100 ton-per-day plant
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
EP2791595A1 (en) Method for regulating a cryogenic cooling system
EP2615394A1 (en) Method for controlling a device for compressing a coolant fluid of a cryogenic machine
EP1511965B1 (en) Method and installation for controlling at least one cryogenic centrifugal compressor, compression line
US8640468B2 (en) Isothermal gas supply and method for minimizing the temperature excursion of a gas mixture released therefrom
US20130139525A1 (en) Method for Estimating the Heat Load Imposed on a Cryogenic Refrigerator, Associated Program Product, and Method for Controlling the Refrigerator
EP3163221B1 (en) Method for adjusting a cryogenic cooling system
Dutta et al. A cycle configuration for large-scale helium refrigerator for fusion devices towards complete mitigation of the effects of pulsed heat load
Bhattacharya et al. Control methodology and test modes during the qualification test of the ITER cold Circulator
FR3007855A1 (en) ELECTRONIC CONTROL DETENDER
Maekawa et al. Dynamic simulation of a helium liquefier
WO2024120762A1 (en) Method and system for cooling a user fluid stream
EP2603839B1 (en) Multiple-level treatment for optimizing one or more fluid separation units
Hansen et al. Process model and capacity upgrades of the CTI-4000 liquid helium coldbox
Dutta et al. Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load
Roobol et al. Operation of the He-liquefier of the AGOR cyclotron

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010008419

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0009000000

Ipc: F25J0001020000

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/00 20060101ALI20121010BHEP

Ipc: F25J 1/02 20060101AFI20121010BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 621198

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010008419

Country of ref document: DE

Effective date: 20130905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 621198

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130710

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130710

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131011

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010008419

Country of ref document: DE

Representative=s name: GODEMEYER BLUM LENZE PARTNERSCHAFT, PATENTANWA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010008419

Country of ref document: DE

Representative=s name: GODEMEYER BLUM LENZE PATENTANWAELTE, PARTNERSC, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

26N No opposition filed

Effective date: 20140411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010008419

Country of ref document: DE

Effective date: 20140411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140322

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140331

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100322

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190320

Year of fee payment: 10

Ref country code: FR

Payment date: 20190329

Year of fee payment: 10

Ref country code: DE

Payment date: 20190312

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010008419

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200322