EP2396051A1 - Apparatus for the extracorporeal treatment of blood - Google Patents

Apparatus for the extracorporeal treatment of blood

Info

Publication number
EP2396051A1
EP2396051A1 EP10704748A EP10704748A EP2396051A1 EP 2396051 A1 EP2396051 A1 EP 2396051A1 EP 10704748 A EP10704748 A EP 10704748A EP 10704748 A EP10704748 A EP 10704748A EP 2396051 A1 EP2396051 A1 EP 2396051A1
Authority
EP
European Patent Office
Prior art keywords
radiation source
intensity
electromagnetic radiation
detector
dialysis fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10704748A
Other languages
German (de)
French (fr)
Inventor
Jörn Ahrens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B Braun Avitum AG
Original Assignee
B Braun Avitum AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40885966&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2396051(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by B Braun Avitum AG filed Critical B Braun Avitum AG
Priority to EP10704748A priority Critical patent/EP2396051A1/en
Publication of EP2396051A1 publication Critical patent/EP2396051A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • A61M1/1605Physical characteristics of the dialysate fluid
    • A61M1/1609Physical characteristics of the dialysate fluid after use, i.e. downstream of dialyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • A61M2205/3313Optical measuring means used specific wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3317Electromagnetic, inductive or dielectric measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3324PH measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers

Definitions

  • the invention relates to a device for extracorporeal blood treatment according to the preamble of patent claim 1.
  • waste products, including toxic substances are eliminated by renal replacement therapy, the patient's blood being delivered via a blood supply line from the patient to the artificial kidney or dialyzer.
  • the patient's blood is brought into contact with dialysis fluid via a semipermeable membrane.
  • the dialysis fluid contains different salts in a concentration such that the waste products, including the toxic substances, are conducted by diffusion and convection through the membrane from the patient's blood to the dialysis fluid.
  • the blood thus purified from the waste products is returned to the bloodstream of the patient via a blood discharge line connected to the dialyzer.
  • Kt / V is a parameter for determining the effectiveness of renal replacement therapy, whereby the clearance K stands for the volume flow of the purified urinary substances, t for the treatment time and V for the distribution volume of the patient. Both K and V are each related to the respective waste product.
  • renal replacement therapy efficiency is described as urea waste, such that K describes the urea clearance and V the patient's urea distribution volume, which is essentially the body water of the patient.
  • EP 1 083 948 A1 and EP 2 005 982 A1 it is known to spectrophotometrically using a arranged in the flow measuring device using UV radiation and their absorption by urinary substances in the dialysis fluid Kt / V- Value or reduction rate RR for a given waste product during renal replacement therapy.
  • the object of the invention is therefore to develop a device according to the preamble of claim 1 such that a reliable and unaltered statement about the Kt / V value or the reduction rate RR of a kidney replacement treatment is obtained by the absorption measurement.
  • a further object of the invention is to provide a method whereby a reliable and unadulterated statement about the Kt / V value or the reduction rate RR of a kidney replacement treatment is obtained.
  • the device according to the object is achieved by a device having the features of patent claim 1.
  • Advantageous embodiments of the invention are the subject matter of subclaims 2 to 14.
  • a reliable and unadulterated statement about the Kt / V value or the reduction rate RR of a kidney replacement treatment is obtained by providing means for aging the measuring device during the operating time and occurring changes in the intensity of the electromagnetic radiation of the radiation source and / or compensate for the sensitivity of the detector system during treatment time.
  • the decreasing radiation intensity of the radiation source over its operating time is due primarily to an aging process of the radiation source. Since the working intensity I 0 of the radiation source in such devices is generally smaller than the maximum intensity l max of the radiation source, the reduction in radiation intensity attributable to the operating time can be compensated simply by tracking the radiation intensity of the radiation source. By the detector system, the radiation intensity is thus measured after absorption by unused Dia lysier sheer speed at the beginning of each treatment. As soon as deviations of this radiation intensity from the radiation intensity of the predefined setpoint occur, we compensate for this deviation. This measure means that the absorption measurements of the device according to the invention can be normalized over its entire operating time, since the same radiation intensity after absorption by unused dialysis fluid is always used as the basis.
  • a temperature control is provided as a means for compensation, by which the temperature of the radiation source to a predefined working temperature range .DELTA.T, and / or the temperature of the detector system to a predefined working temperature range .DELTA.T 2 is adjustable.
  • an electronic control with the aid of which the intensity I of the electromagnetic radiation of the radiation source is regulated such that the detector system predefined intensities I 44 , after absorption by unused Dialysis fluid, and / or I 45 , without absorption by unused Dys lysierf 1 üss ⁇ g speed, are detectable.
  • the radiation source is designed as a light-emitting diode which emits electromagnetic radiation of substantially 280 nm in its operating temperature range .DELTA.T. It is furthermore advantageous if the detector system consists of at least one photodetector, preferably two photodetectors. When using only one photodetector, however, it must be assumed that the signal intensity of the radiation emitted by the radiation source is not constant over time in order to always determine the absorption of the dialysis fluid on the same basis. It is therefore much better to use two detectors, one of which measures the intensity of the radiation source and one the intensity of the radiation after passing through the used dialysis fluid.
  • a particularly effective embodiment of the invention is therefore that a partially transmissive mirror or an optical device for beam splitting or deflection is arranged in the beam path of the electromagnetic radiation between the radiation source and the outflow for spent dialysis fluid, so that a portion of the electromagnetic radiation through the consumed Dialysis fluid on the first photodetector and the remaining part is passed directly to the second detector.
  • control variable of the control loop is the intensity of the electromagnetic radiation at the first detector and the manipulated variable the electric current of the radiation source, wherein the then determined intensity at the second detector can be stored as a reference value for the respective renal replacement treatment.
  • the reference intensity determined at the second detector during the respective kidney replacement treatment is the control variable of a second control loop and that the electric current of the radiation source is the manipulated variable of this second control loop.
  • the temperature control has a heat sink for the light emitting diode and / or the detector system or the detectors.
  • the temperature control it is of course also possible for the temperature control to have water cooling for the light-emitting diode and / or the detectors.
  • the temperature control can have one or more fans for the light-emitting diode and / or the detectors.
  • the temperature control alternatively or additionally has one or more electrothermal transducers, for example Peltier elements for controlling the temperature of the light-emitting diode and / or the detectors.
  • one or more electrothermal transducers for example Peltier elements for controlling the temperature of the light-emitting diode and / or the detectors.
  • FIG. 1 shows a schematic representation of an exemplary embodiment of a device according to the invention
  • FIG. 2 shows a schematic representation of an embodiment of a device
  • FIG. 1 shows an exemplary embodiment of a device according to the invention in a state connected to a patient 1.
  • the patient 1 is connected by means of a blood supply line 14 with a dialyzer 10.
  • a blood discharge line 15 returns the purified blood to the patient's bloodstream.
  • the dialyzer 10 is divided by means of a semi-permeable membrane 11 into two chambers 12, 13, wherein the blood to be purified by the first chamber 13 of the patient 1 and through the second chamber 12 dialysis fluid, which is capable of contained in the blood of the patient 1 Waste products and toxic substances.
  • the transport of waste products and toxic substances from the blood of the patient 1 into the dialysis fluid takes place by means of diffusion and convection via the semipermeable membrane 1 1.
  • the dialysis fluid is supplied by means of an inlet 20 of the second chamber 12 of the dialyzer 10.
  • a pump for delivering the dialysis fluid is provided in the inlet 20 as well as a valve 60, through which the dialysis fluid instead of the dialyzer 10 via a bypass past this can be passed into a drain 30 for the dialysis fluid.
  • a valve 61 is also arranged, which is connected by means of the bypass 62 with the valve 60 in the inlet 20.
  • a measuring device 40 is arranged, with which by means of a radiation source 41 for electromagnetic radiation, in particular with a working in the UV light emitting diode 43, and a detector system 42, which in the present embodiment according to Figure 2 from a half mirror 46 and two photodetectors 44, 45, the absorption of the used dialysis fluid can be determined.
  • the mode of operation of the measuring device 40 and of the detector system 42 is as follows: According to the principle of two-beam spectroscopy as shown in FIG.
  • the light-emitting diode 43 emits as radiation 53 UV light of a wavelength of approximately 280 nm, which is divided by the semitransparent mirror 46.
  • a portion 54 of the radiation 53 passes through the semitransparent mirror 46 and the remaining portion 56 of the radiation 53 is reflected by the semitransparent mirror 46 onto the detector 45.
  • the urinary substances contained in the used dialyzing fluid 55 a certain proportion of the electromagnetic radiation of the part 54 is absorbed.
  • the non-urinary substance absorbed portion of the portion 54 is recorded by the detector 44.
  • the portion 56 of the electromagnetic radiation recorded on the detector 45 is thus directly independent of urinary substances in the dialysis fluid 55 and, via the semitransparent mirror, directly proportional to the intensity I of the radiation source.
  • urinary substances contained in the dialyser are contained and these urinary substances absorb electromagnetic radiation of wavelength 280 nm, the absorption of urinary substances in the outflow 30 can be determined with the aid of the intensity determined at the detector 44 , Thus, the course of absorption by urinary substances during the treatment is measurable, which serves as a basis for the calculation of Kt / V.
  • the signal at the detector 44 is reduced as absorption increases. From the course of the absorption, an e-function is then determined, from which the Kt / V value is calculated.
  • U 44 1 signal at the detector 44 at time t during therapy
  • U 45 1 signal at the detector 45 at time t during therapy
  • the problem of aging can occur in particular in the case of the radiation source 41 or the light-emitting diode 43, the outlet 30 and the detector system 42 or the two detectors 44 and 45 and bring about a change in the properties.
  • electronic control it is possible to compensate for changes due to aging and temperature fluctuations very precisely.
  • the electromagnetic radiation of the light-emitting diode 43 loses its intensity due to aging at a constant current during the operating time and also reacts with increasing electromagnetic radiation as the temperature increases.
  • the semipermeable mirror affects by aging in addition to the permeability and the ratio of the beam path between and I 0 and I 44 and I 46 .
  • a constant turbidity may occur.
  • the measuring range or the resolution of the detector system 42 and the detector 44 is optimally used.
  • changes in the system are detected and compensated for by aging, whereby a review of the performance of the Messsvstems done. This ensures that the signal quality, the measuring range, the measurement resolution and the reproducibility are constant throughout the lifetime.
  • the electrical regulation takes place in two steps:
  • the control can also be done with any other type of control, but this would result in a slower transient.
  • the first control process at the beginning of the therapy takes place before the connection of the patient 1 or in the bypass 62, in which by appropriate adjustment of the valves 60 and 61, the pure dialysis fluid is passed to the dialyzer 10, with pure dialysis without ham stricte substances.
  • the control process is carried out on the predefined setpoint of the radiation intensity I 44 S0U ⁇ U 44 50 ,, the detector 44.
  • the compensation of aging by changing the electrical current of the light emitting diode 43.
  • the amplification factors of the electronic detector circuits at the detectors 44 and 45 are adjusted, if the signal quality allows this.
  • the measured value then applied to the detector 45 is stored as the desired value U 45 for the second control process and serves as a setpoint during the therapy in order to compensate for temperature fluctuations.
  • the measured value recording of U 4 takes place at the detector 44.
  • the measured value changes at the detector 44 and the absorption results from:
  • this procedure also allows a constant measuring range and also a constant signal quality.
  • therapy ie during a single renal replacement therapy
  • aging of the detectors 44 and 45 is negligible.
  • the system is then controlled during the kidney replacement treatment to the setpoint U 45 at the detector 45, which allows a stable and constant emitted electromagnetic radiation, regardless of the dialysis fluid flow.
  • the control value of the control is the electric current of the light emitting diode 43, which is proportional to the intensity I 0 of the radiation emitted by the light emitting diode 43.
  • a pure control of the detector 44 by a default value at the beginning, however, does not make sense, since influences during therapy can not be compensated.
  • the specification of the predefined setpoint value in the first control process serves to define the measuring range of the electronics and at the same time defines the measuring resolution of the absorption of the measuring signal.
  • Amplifier circuits within the electronic controller 52 convert the signal from the detectors 44 and 45 into a measurement voltage for which analog-to-digital converters with a microprocessor measurement pickup are available.
  • This adaptation of the amplifier circuits which can be done only before each kidney replacement treatment, could be done automatically before the kidney replacement treatment in parallel with regulation of the current of the light emitting diode 43. During the treatment, however, only a regulation of the current is possible.
  • an optimum operating temperature is achieved for the light-emitting diode 43 and the detectors 44 and 45.
  • the current must be increased as a control variable of the light emitting diode 43 in order to keep the emitted electromagnetic radiation at constant temperatures at increasing temperatures.
  • the current must be reduced as the manipulated variable of the light-emitting diode 43.
  • An increase of the current is possible only in the operating range of the light emitting diode 43 and accelerates the aging process. In a dialysis machine Experience shows that enormous temperature fluctuations occur. Therefore, it makes sense to compensate for temperature fluctuations by a temperature control 51, so that the device can be operated in the optimum temperature range. Such measures also slow down the aging process.
  • the aim of the temperature control is to operate the light-emitting diode 43 and the detectors 45 in the optimum temperature range or to quickly reach the optimum temperature range for these components, so that a temperature change can be reduced to a minimum during the therapy.
  • heating of the system can lead to elevated temperatures at the measuring device 40 or the light-emitting diode 43 and / or the detector array 42 or the detectors 44 and 45.
  • the self-heating of the system results in cooling, whereby a very low temperature is initially present.
  • the temperature stabilization is carried out with a cooling body with water cooling, which couples the flow temperature of the dialysis fluid directly to the heat sink 43 of the LED and / or the detectors 44 & 45
  • the heat capacity of the dialysis fluid is significantly higher than that of the heat sink of the light emitting diode 43 and therefore defines the temperature, which without additional technical effort is possible. This makes it possible to keep the temperature approximately constant in the operating range of the components and to bring the system quickly in the optimum temperature range.
  • Cooling can also be done with other active and passive cooling methods.
  • passive cooling the light-emitting diode 43 or detectors 44 and 45 can be temperature-stabilized via the housing or water cooling.
  • active cooling the use of a fan is possible, which can regulate the temperature depending on the ambient temperature.
  • a direct control with a Peltier element or similar electrothermal transducers for temperature stabilization is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • External Artificial Organs (AREA)
  • Surgical Instruments (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The apparatus has a measuring device provided within a discharge unit (30) for determining absorption of used dialysis fluid flowing through the discharge unit. The measuring device includes a radiation source (41) for monochromatic electromagnetic radiation, and a detector system (42) detects intensity of the electromagnetic radiation. A compensation unit (50) compensates changes that occur in intensity of the electromagnetic radiation of the radiation source and/or sensitivity of the detector system, and is formed as a temperature regulator. An independent claim is also included for a method for compensating intensity changes of an electromagnetic radiation source.

Description

Vorrichtung zur extrakorporalen Blutbehandlung Device for extracorporeal blood treatment
Die Erfindung betrifft eine Vorrichtung zur extrakorporalen Blutbehandlung nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a device for extracorporeal blood treatment according to the preamble of patent claim 1.
Bei Patienten mit reduzierter bzw. überhaupt keiner Nierenfunktion werden Abfallprodukte, einschließlich toxischer Substanzen, mittels einer Nierenersatzbehandlung beseitigt, wobei das Blut des Patienten über einer Blutzuführleitung vom Patienten der künstlichen Niere bzw. dem Dialysator zugeführt wird. In der künstlichen Niere bzw. dem Dialysator wird das Blut des Patienten über eine semipermeable Membran mit Dialysierflüssigkeit in Kontakt gebracht. Die Dialysierflüssigkeit enthält unterschiedliche Salze in einer solchen Konzentration, dass die Abfallprodukte, einschließlich der toxischen Substanzen, mittels Diffusion und Konvektion durch die Membran aus dem Blut des Patienten zur Dialysierflüssigkeit geführt werden. Das so von den Abfallprodukten bereinigte Blut wird über eine an dem Dialysator angeschlossenen Blutabführleitung wieder in den Blutkreislauf des Patienten zurückgeführt.In patients with reduced or no renal function at all, waste products, including toxic substances, are eliminated by renal replacement therapy, the patient's blood being delivered via a blood supply line from the patient to the artificial kidney or dialyzer. In the artificial kidney or the dialyzer, the patient's blood is brought into contact with dialysis fluid via a semipermeable membrane. The dialysis fluid contains different salts in a concentration such that the waste products, including the toxic substances, are conducted by diffusion and convection through the membrane from the patient's blood to the dialysis fluid. The blood thus purified from the waste products is returned to the bloodstream of the patient via a blood discharge line connected to the dialyzer.
Um das Ergebnis einer Nierenersatzbehandlung quantifizieren zu können, ist es notwendig, die Effizienz der Nierenersatzbehandlung unmittelbar bzw. online zu steuern. Deshalb wurde das so genannte Kt/V-Modell entwickelt. Der Kt/V-Wert ist dabei ein Parameter zur Bestimmung der Effektivität einer Nierenersatzbehandlung, wobei die Clearance K für den Volumenstrom der gereinigten harnpflichtigen Substanzen, t für die Behandlungszeit und V für das Verteilungsvolumen des Patienten steht. Dabei sind sowohl K als auch V jeweils auf das auf das jeweilige Abfallprodukt bezogen. In der Regel wird die Effizienz bei einer Nierenersatzbehandlung anhand des Harnstoffes als Abfallprodukt beschrieben, so dass K die Harnstoffclearance und V das Harnstoffverteilungsvolumen des Patienten, welches im Wesentlichen dem Körperwassers des Patienten entspricht, beschreibt.In order to be able to quantify the result of renal replacement therapy, it is necessary to control the efficiency of renal replacement therapy directly or online. Therefore, the so-called Kt / V model was developed. The Kt / V value is a parameter for determining the effectiveness of renal replacement therapy, whereby the clearance K stands for the volume flow of the purified urinary substances, t for the treatment time and V for the distribution volume of the patient. Both K and V are each related to the respective waste product. Typically, renal replacement therapy efficiency is described as urea waste, such that K describes the urea clearance and V the patient's urea distribution volume, which is essentially the body water of the patient.
Aus der EP 1 083 948 A1 und der EP 2 005 982 A1 ist es bekannt, mit Hilfe einer im Ablauf angeordneten Messeinrichtung spektralphotometrisch unter Verwendung von UV-Strahlung und deren Absorption durch harnpflichtige Substanzen in der Dialysierflüssigkeit den Kt/V- Wert bzw. die Reduktionsrate RR für ein bestimmtes Abfallprodukt während der Nierenersatzbehandlung zu bestimmen.From EP 1 083 948 A1 and EP 2 005 982 A1 it is known to spectrophotometrically using a arranged in the flow measuring device using UV radiation and their absorption by urinary substances in the dialysis fluid Kt / V- Value or reduction rate RR for a given waste product during renal replacement therapy.
Bei diesen bekannten Vorrichtungen hat sich allerdings herausgestellt, dass eine gleichmäßige Strahlungsintensität der Strahlungsquelle und eine gleichmäßige Empfindlichkeit des Detektorsystems weder über die Betriebszeit der Strahlungsquelle noch während einer einzelnen Nierenersatzbehandlung gewährleistet werden konnte. Somit basiert die Absorptionsmessung in der verbrauchten Dialysierflüssigkeit während verschiedener Behandlungen und auch während einer Behandlungszeit auf veränderlichen Strahlungsintensitäten der Strahlungsquelle und/oder einem veränderten Ausgangssignal bei konstantem Eingangssignal des Detektorsystems. Dies hat zur Folge, dass der auf der Absorptionsmessung basierende Kt/V-Wert bzw. die auf der Absorptionsmessung basierende Reduktionsrate RR für ein bestimmtes Abfallprodukt nicht den tatsächlichen Gegebenheiten entsprechen. Vielmehr ist die Absorptionsmessung in der verbrauchten Dialysierflüssigkeit und damit die Aussage hinsichtlich des Kt/V-Wertes bzw. der Reduktionsrate RR für ein bestimmtes Abfallprodukt verfälscht.In these known devices, however, it has been found that a uniform radiation intensity of the radiation source and a uniform sensitivity of the detector system could be ensured neither over the operating time of the radiation source nor during a single kidney replacement treatment. Thus, the absorbance measurement in the used dialysis fluid during different treatments and also during a treatment time based on varying radiation intensities of the radiation source and / or a modified output signal with constant input signal of the detector system. As a result, the Kt / V value based on the absorbance measurement or the reduction rate RR based on the absorbance measurement for a particular waste product do not correspond to the actual conditions. Rather, the absorption measurement in the used dialysis fluid and thus the statement regarding the Kt / V value or the reduction rate RR for a specific waste product is falsified.
Aufgabe der Erfindung ist es daher, eine Vorrichtung gemäß dem Oberbegriff des Patentanspruchs 1 derart weiterzubilden, dass durch die Absorptionsmessung eine zuverlässige und unverfälschte Aussage über den Kt/V-Wert bzw. der Reduktionsrate RR einer Nierenersatzbehandlung erhalten wird.The object of the invention is therefore to develop a device according to the preamble of claim 1 such that a reliable and unaltered statement about the Kt / V value or the reduction rate RR of a kidney replacement treatment is obtained by the absorption measurement.
Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Verfügung zu stellen, wodurch eine zuverlässige und unverfälschte Aussage über den Kt/V-Wert bzw. der Reduktionsrate RR einer Nierenersatzbehandlung erhalten wird.A further object of the invention is to provide a method whereby a reliable and unadulterated statement about the Kt / V value or the reduction rate RR of a kidney replacement treatment is obtained.
Gelöst wird die vorrichtungsgemäße Aufgabe durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1. Vorteilhafte Ausgestaltungen der Erfindungen sind Gegenstand der Unteransprüche 2 bis 14. Durch die Erfindung wird eine zuverlässige und unverfälschte Aussage über den Kt/V-Wert bzw. der Reduktionsrate RR einer Nierenersatzbehandlung erhalten, indem Mittel vorgesehen sind, um Alterung der Messeinrichtung während der Betriebszeit und auftretende Änderungen der Intensität der elektromagnetischen Strahlung der Strahlungsquelle und/oder der Empfindlichkeit des Detektorsystems während Behandlungszeit zu kompensieren.The device according to the object is achieved by a device having the features of patent claim 1. Advantageous embodiments of the invention are the subject matter of subclaims 2 to 14. By means of the invention, a reliable and unadulterated statement about the Kt / V value or the reduction rate RR of a kidney replacement treatment is obtained by providing means for aging the measuring device during the operating time and occurring changes in the intensity of the electromagnetic radiation of the radiation source and / or compensate for the sensitivity of the detector system during treatment time.
Es hat sich nämlich herausgestellt, dass die nachlassende Strahlungsintensität der Strahlungsquelle über deren Betriebszeit in erster Linie auf einen Alterungsprozess der Strahlungsquelle zurückzuführen ist. Da die Arbeitsintensität I0 der Strahlungsquelle bei solchen Vorrichtungen in der Regel kleiner als die maximale Intensität lmax der Strahlungsquelle ist, lässt sich das auf die Betriebszeit zurückzuführende Nachlassen der Strahlungsintensität einfach durch ein Nachführen der Strahlungsintensität der Strahlungsquelle kompensieren. Durch das Detektorsystem wird somit zu Beginn jeder Behandlung die Strahlungsintensität nach Absorption durch unverbrauchte Dia lysierflüssig keit gemessen. Sobald Abweichungen dieser Strahlungsintensität von der Strahlungsintensität des vordefinierten Sollwerts auftreten, wir diese Abweichung kompensiert. Diese Maßnahme führt dazu, dass die Absorptionsmessungen der erfindungsgemäßen Vorrichtung über deren gesamte Betriebszeit normierbar sind, da immer die gleiche Strahlungsintensität nach Absorption durch unverbrauchte Dialysierflüssigkeit zu Grunde gelegt wird.It has been found that the decreasing radiation intensity of the radiation source over its operating time is due primarily to an aging process of the radiation source. Since the working intensity I 0 of the radiation source in such devices is generally smaller than the maximum intensity l max of the radiation source, the reduction in radiation intensity attributable to the operating time can be compensated simply by tracking the radiation intensity of the radiation source. By the detector system, the radiation intensity is thus measured after absorption by unused Dia lysierflüssig speed at the beginning of each treatment. As soon as deviations of this radiation intensity from the radiation intensity of the predefined setpoint occur, we compensate for this deviation. This measure means that the absorption measurements of the device according to the invention can be normalized over its entire operating time, since the same radiation intensity after absorption by unused dialysis fluid is always used as the basis.
Weiterhin hat sich auch gezeigt, dass während einer Nierenersatzbehandlung eine Konstanz eines Referenzsignal der Strahlungsintensität, welches durch Detektion der Strahlungsintensität ohne Absorption generiert wird, ebenfalls nicht gewährleistet werden kann. Wie sich herausgestellt hat, liegt die Ursache hierfür in Temperaturschwankungen sowohl an der Strahlungsquelle als auch am Detektorsystem. Es hat sich deshalb als vorteilhaft erwiesen, dass als Mittel zur Kompensation eine Temperaturregelung vorgesehen ist, durch welche die Temperatur der Strahlungsquelle auf einen vordefinierten Arbeitstemperaturbereich ΔT, und/oder die Temperatur des Detektorsystems auf einen vordefinierte Arbeitstemperaturbereich ΔT2 regelbar ist. Durch diese Maßnahme hat sich eine deutliche Stabilisierung sowohl der Signalintensität der Strahlungsquelle als auch der Empfindlichkeit des Detektorssystems gezeigt, wobei durch Kombination der beiden alternativen Maßnahme die Stabilität und damit die Aussagekraft der letztendlich erhalten Ergebnisse der Kt/V-Werte und der Reduktionsrate RR nochmals signifikant gesteigert werden kann.Furthermore, it has also been shown that during a kidney replacement treatment, a constancy of a reference signal of the radiation intensity, which is generated by detection of the radiation intensity without absorption, also can not be guaranteed. As it turns out, the reason for this lies in temperature fluctuations both at the radiation source and at the detector system. It has therefore proven to be advantageous that a temperature control is provided as a means for compensation, by which the temperature of the radiation source to a predefined working temperature range .DELTA.T, and / or the temperature of the detector system to a predefined working temperature range .DELTA.T 2 is adjustable. By this measure has become a significant stabilization of both the signal intensity of the radiation source and the sensitivity of the detector system is shown, whereby the stability and thus the validity of the ultimately obtained results of the Kt / V values and the reduction rate RR can be significantly increased again by combining the two alternative measures.
Allein die Kompensation der Änderung der Intensität der elektromagnetischen Strahlung der Strahlungsquelle oder der Empfindlichkeit des Detektorsystems führt bereits zu deutlich verbesserten Aussagen über den Kt/V-Wert bzw. die Reduktionsrate RR für ein bestimmtes Abfallprodukt. Eine nochmals signifikante Verbesserung der dieser Aussagen lässt sich erreichen, wenn beide Maßnahmen - zum einen eine Kompensation der Änderung der Intensität der elektromagnetischen Strahlung der Strahlungsquelle und zum anderen eine Kompensation der Änderung Empfindlichkeit des Detektorsystems - in der erfindungsgemäßen Vorrichtung integriert sind.Alone the compensation of the change in the intensity of the electromagnetic radiation of the radiation source or the sensitivity of the detector system already leads to significantly improved statements about the Kt / V value or the reduction rate RR for a particular waste product. A further significant improvement of these statements can be achieved if both measures - on the one hand a compensation of the change in the intensity of the electromagnetic radiation of the radiation source and on the other a compensation of the change sensitivity of the detector system - are integrated in the device according to the invention.
Als vorteilhaft hat es sich weiter erwiesen, dass als Mittel zur Kompensation des Alterungsprozesses der Strahlungsquelle eine elektronische Regelung vorgesehen ist, mit deren Hilfe die Intensität I der elektromagnetischen Strahlung der Strahlungsquelle derart regelbar ist, dass am Detektorsystem vordefinierte Intensitäten I44, nach Absorption durch unverbrauchte Dialysierflüssigkeit, und/oder I45, ohne Absorption durch unverbrauchte Dia lysierf 1 üssϊg keit, detektierbar sind.It has proven to be advantageous that is provided as a means for compensating the aging process of the radiation source, an electronic control, with the aid of which the intensity I of the electromagnetic radiation of the radiation source is regulated such that the detector system predefined intensities I 44 , after absorption by unused Dialysis fluid, and / or I 45 , without absorption by unused Dys lysierf 1 üssϊg speed, are detectable.
Dabei hat es sich als vorteilhaft erwiesen, dass die elektronische Regelung als Regelkreis ausgebildet ist, da solche Regelkreise bereits technisch ausgereift und einfach handhabbar sind.It has proved to be advantageous that the electronic control is designed as a control circuit, since such control loops are already technically mature and easy to handle.
Da die Absorption von harnpflichtige Substanzen im UV-Bereich und im Wesentlichen bei 28Onm sehr gut ist, bietet es sich an, dass die Strahlungsquelle als eine Leuchtdiode ausgebildet ist, welche in ihrem Arbeitstemperaturbereich ΔT, elektromagnetische Strahlung im Wesentlichen der Wellenlänge 280nm emittiert. Vorteilhaft ist weiterhin, wenn das Detektorsystem aus wenigstens einem Fotodetektor vorzugsweise aus zwei Fotodetektoren besteht. Bei Verwendung nur eines Fotodetektors muss allerdings davon ausgegangen werden, dass die Signalintensität der von der Strahlungsquelle emittierten Strahlung zeitlich nicht konstant ist, um die Absorption der Dialysierflüssigkeit immer auf derselben Basis zu bestimmen. Deutlich besser ist es deshalb zwei Detektoren zu verwenden, wobei einer die Intensität der Strahlungsquelle und einer die Intensität der Strahlung nach Durchgang durch die die verbrauchte Dialysierflüssigkeit misst.Since the absorption of urinary substances in the UV range and essentially at 28Onm is very good, it makes sense that the radiation source is designed as a light-emitting diode which emits electromagnetic radiation of substantially 280 nm in its operating temperature range .DELTA.T. It is furthermore advantageous if the detector system consists of at least one photodetector, preferably two photodetectors. When using only one photodetector, however, it must be assumed that the signal intensity of the radiation emitted by the radiation source is not constant over time in order to always determine the absorption of the dialysis fluid on the same basis. It is therefore much better to use two detectors, one of which measures the intensity of the radiation source and one the intensity of the radiation after passing through the used dialysis fluid.
Ein besonders effektive Ausgestaltung der Erfindung besteht daher darin, dass im Strahlengang der elektromagnetischen Strahlung zwischen der Strahlungsquelle und dem Abfluss für verbrauchte Dialysierflüssigkeit ein teildurchlässiger Spiegel oder eine optische Einrichtung zur Strahlaufteilung oder -umlenkung angeordnet ist, so dass ein Teil der elektromagnetischen Strahlung durch die verbrauchte Dialysierflüssigkeit auf den ersten Fotodetektor und der restliche Teil direkt auf den zweiten Detektor geleitet wird.A particularly effective embodiment of the invention is therefore that a partially transmissive mirror or an optical device for beam splitting or deflection is arranged in the beam path of the electromagnetic radiation between the radiation source and the outflow for spent dialysis fluid, so that a portion of the electromagnetic radiation through the consumed Dialysis fluid on the first photodetector and the remaining part is passed directly to the second detector.
Nach einer weiteren Ausgestaltung der Erfindung ist die Regelgröße des Regelkreises die Intensität der elektromagnetischen Strahlung am ersten Detektor und die Stellgröße der elektrische Strom der Strahlungsquelle, wobei die dann ermittelte Intensität am zweiten Detektor als Referenzwert für die jeweilige Nierenersatzbehandlung abspeicherbar ist. Durch diese Maßnahme ist eine besonders gute Regelung der Strahlungsintensität der elektromagnetischen Strahlungsquelle während der gesamten Betriebszeit der Strahlungsquelle gewährleistet.According to a further embodiment of the invention, the control variable of the control loop is the intensity of the electromagnetic radiation at the first detector and the manipulated variable the electric current of the radiation source, wherein the then determined intensity at the second detector can be stored as a reference value for the respective renal replacement treatment. By this measure, a particularly good control of the radiation intensity of the electromagnetic radiation source is ensured during the entire operating time of the radiation source.
In diesem Zusammenhang hat es sich als besonders vorteilhaft erwiesen, dass die am zweiten Detektor ermittelte Referenzgröße der Intensität während der jeweiligen Nierenersatzbehandlung die Regelgröße eines zweiten Regelkreises ist und dass der elektrische Strom der Strahlungsquelle die Stellgröße dieses zweiten Regelkreises ist. Dadurch kann während einer Nierenersatzbehandlung eine Änderung dieser Referenzgröße im Wesentlichen ohne Zeitverzögerung kompensiert werden. Um die Temperaturregelung möglichst einfach und effektiv zu gestalten, hat es sich als vorteilhaft erwiesen, dass die Temperaturregelung einen Kühlkörpers für die Leuchtdiode und/oder das Detektorsystem bzw. die Detektoren aufweist.In this context, it has proven to be particularly advantageous that the reference intensity determined at the second detector during the respective kidney replacement treatment is the control variable of a second control loop and that the electric current of the radiation source is the manipulated variable of this second control loop. As a result, during a kidney replacement treatment, a change in this reference variable can be compensated essentially without a time delay. To make the temperature control as simple and effective as possible, it has proved to be advantageous that the temperature control has a heat sink for the light emitting diode and / or the detector system or the detectors.
Alternativ oder zusätzlich ist es natürlich auch möglich, dass die Temperaturregelung eine Wasserkühlung für die Leuchtdiode und/oder die Detektoren aufweist.Alternatively or additionally, it is of course also possible for the temperature control to have water cooling for the light-emitting diode and / or the detectors.
Weiterhin alternativ oder zusätzlich kann die Temperaturregelung einen oder mehrere Lüfter für die Leuchtdiode und/oder die Detektoren aufweisen.As an alternative or in addition, the temperature control can have one or more fans for the light-emitting diode and / or the detectors.
Als besonders vorteilhaft hat es sich erwiesen, wenn die Temperaturregelung alternativ oder zusätzlich einen oder mehrere elektrothermische Wandler, beispielsweise Peltier-Elemente zur Temperaturregelung der Leuchtdiode und/oder der Detektoren aufweist.It has proved to be particularly advantageous if the temperature control alternatively or additionally has one or more electrothermal transducers, for example Peltier elements for controlling the temperature of the light-emitting diode and / or the detectors.
Die verfahrensgemäße Aufgabe wird gelöst durch ein Verfahren mit allen Merkmalen des Anspruchs 15.The object of the invention is achieved by a method having all the features of claim 15.
Weitere Ziele, Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung der Ausführungsbeispiele anhand der Zeichnungen. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger sinnvoller Kombination den Gegenstand der vorliegenden Erfindung, auch unabhängig von ihrer Zusammenfassung in den Ansprüchen und deren Rückbeziehung.Other objects, advantages, features and applications of the present invention will become apparent from the following description of the embodiments with reference to the drawings. All described and / or illustrated features alone or in any meaningful combination form the subject matter of the present invention, also independent of their summary in the claims and their dependency.
Es zeigen:Show it:
Figur 1 : eine schematische Darstellung eines Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung, Figur 2: eine schemattsche Darstellung eines Ausführungsbeispiels einer1 shows a schematic representation of an exemplary embodiment of a device according to the invention, FIG. 2 shows a schematic representation of an embodiment of a device
Messeinrichtung bzw. des Detektorsystems einer erfindungsgemäßenMeasuring device or the detector system of an inventive
Vorrichtung, In Figur 1 ist ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung in an einen Patienten 1 angeschlossenen Zustand dargestellt. Dabei ist der Patient 1 mittels einer Blutzuführleitung 14 mit einen Dialysator 10 verbunden. Von dem Dialysator führt eine Blutabführleitung 15 das gereinigte Blut wieder dem Blutkreislauf des Patienten zu.Contraption, FIG. 1 shows an exemplary embodiment of a device according to the invention in a state connected to a patient 1. In this case, the patient 1 is connected by means of a blood supply line 14 with a dialyzer 10. From the dialyzer, a blood discharge line 15 returns the purified blood to the patient's bloodstream.
Der Dialysator 10 ist mittels einer semipermeablen Membran 11 in zwei Kammern 12, 13 geteilt, wobei durch die erste Kammer 13 das zu reinigende Blut des Patienten 1 und durch die zweite Kammer 12 Dialysierflüssigkeit, welche in der Lage ist die im Blut des Patienten 1 enthaltenen Abfallprodukte und toxische Substanzen aufzunehmen, geführt wird. Der Transport der Abfallprodukte und toxischen Substanzen vom Blut des Patienten 1 in die Dialysierflüssigkeit erfolgt mittels Diffusion und Konvektion über die semipermeable Membran 1 1. Die Dialysierflüssigkeit wird mittels eines Zulaufs 20 der zweiten Kammer 12 des Dialysators 10 zugeführt. Dabei ist im Zulauf 20 eine Pumpe für die Förderung der Dialysierflüssigkeit ebenso vorgesehen wie ein Ventil 60, durch welches die Dialysierflüssigkeit anstatt in den Dialysator 10 über einen Bypass an diesem vorbei in einen Abfluss 30 für die Dialysierflüssigkeit geleitet werden kann. Im Abfluss 30 ist ebenfalls ein Ventil 61 angeordnet, welches mittels dem Bypass 62 mit dem Ventil 60 im Zulauf 20 verbunden ist.The dialyzer 10 is divided by means of a semi-permeable membrane 11 into two chambers 12, 13, wherein the blood to be purified by the first chamber 13 of the patient 1 and through the second chamber 12 dialysis fluid, which is capable of contained in the blood of the patient 1 Waste products and toxic substances. The transport of waste products and toxic substances from the blood of the patient 1 into the dialysis fluid takes place by means of diffusion and convection via the semipermeable membrane 1 1. The dialysis fluid is supplied by means of an inlet 20 of the second chamber 12 of the dialyzer 10. In this case, a pump for delivering the dialysis fluid is provided in the inlet 20 as well as a valve 60, through which the dialysis fluid instead of the dialyzer 10 via a bypass past this can be passed into a drain 30 for the dialysis fluid. In the drain 30, a valve 61 is also arranged, which is connected by means of the bypass 62 with the valve 60 in the inlet 20.
Nachdem im Dialysator 10 Abfallprodukte und toxische Substanzen vom Blut des Patienten 1 in die Dialysierflüssigkeit transportiert wurden, wird diese nunmehr verbrauchte Dialysierflüssigkeit über den Ablauf 30 entsorgt. Im Ablauf 30 ist eine Messeinrichtung 40 angeordnet, mit welcher mittels einer Strahlungsquelle 41 für elektromagnetische Strahlung, insbesondere mit einer im UV-Bereich arbeitenden Leuchtdiode 43, und einem Detektorsystem 42, welches im vorliegenden Ausführungsbeispiel gemäß Figur 2 aus einem halbdurchlässigen Spiegel 46 und zwei Fotodetektoren 44, 45 besteht, die Absorption der verbrauchten Dialysierflüssigkeit bestimmt werden kann. Die Funktionsweise der Messeinrichtung 40 und des Detektorsystems 42 ist folgende: Nach dem Prinzip der Zweistrahlspektroskopie wie sie in Figur 2 dargestellt ist emittiert die Leuchtdiode 43 als Strahlung 53 UV-Licht einer Wellenlänge von ca. 280nm, welches von dem halbdurchlässigen Spiegel 46 aufgeteilt wird. Ein Teil 54 der Strahlung 53 passiert den halbdurchlässigen Spiegel 46 und der restliche Teil 56 der Strahlung 53 wird von dem halbdurchlässigen Spiegel 46 auf den Detektor 45 reflektiert. Durch die in der verbrauchten Dialysierflüssigkeit 55 enthaltenen harnpflichtigen Substanzen wird ein gewisser Anteil der elektromagnetischen Strahlung des Teils 54 absorbiert. Der nicht von harnpflichtigen Subtanzen absorbierte Anteil des Teils 54 wird durch den Detektor 44 aufgezeichnet. Der am Detektor 45 aufgezeichnet Teil 56 der elektromagnetischen Strahlung ist somit unabhängig von harnpflichtigen Subtanzen in der Dialysierflüssigkeit 55 und über den halbdurchlässigen Spiegel direkt proportional zur Intensität I der Strahlungsquelle.After 10 waste products and toxic substances were transported from the blood of the patient 1 into the dialysis fluid in the dialyzer, this now used dialysis fluid is disposed of via the drain 30. In the sequence 30, a measuring device 40 is arranged, with which by means of a radiation source 41 for electromagnetic radiation, in particular with a working in the UV light emitting diode 43, and a detector system 42, which in the present embodiment according to Figure 2 from a half mirror 46 and two photodetectors 44, 45, the absorption of the used dialysis fluid can be determined. The mode of operation of the measuring device 40 and of the detector system 42 is as follows: According to the principle of two-beam spectroscopy as shown in FIG. 2, the light-emitting diode 43 emits as radiation 53 UV light of a wavelength of approximately 280 nm, which is divided by the semitransparent mirror 46. A portion 54 of the radiation 53 passes through the semitransparent mirror 46 and the remaining portion 56 of the radiation 53 is reflected by the semitransparent mirror 46 onto the detector 45. By the urinary substances contained in the used dialyzing fluid 55, a certain proportion of the electromagnetic radiation of the part 54 is absorbed. The non-urinary substance absorbed portion of the portion 54 is recorded by the detector 44. The portion 56 of the electromagnetic radiation recorded on the detector 45 is thus directly independent of urinary substances in the dialysis fluid 55 and, via the semitransparent mirror, directly proportional to the intensity I of the radiation source.
Da in der Dialysierflüssigkeit 55 im Abfluss 30 harnpflichtige Substanzen, die dem Blut im Dialysator entzogen wurden, enthalten sind und diese harnpflichtige Substanzen elektromagnetische Strahlung der Wellenlänge 280nm absorbieren kann mit Hilfe der am Detektor 44 bestimmten Intensität die Absorption von harnpflichtigen Substanzen im Abfluss 30 bestimmt werden. So ist der Verlauf der Absorption durch harnpflichtige Subtanzen während der Behandlung messbar, der als Grundlage zur Berechnung des Kt/V dient.Since in the dialysis fluid 55 in the outflow 30 urinary substances contained in the dialyser are contained and these urinary substances absorb electromagnetic radiation of wavelength 280 nm, the absorption of urinary substances in the outflow 30 can be determined with the aid of the intensity determined at the detector 44 , Thus, the course of absorption by urinary substances during the treatment is measurable, which serves as a basis for the calculation of Kt / V.
Mit steigender Konzentration von harnpflichtigen Subtanzen in der Dialysierflüssigkeit 55 wird das Signal am Detektor 44 verringert, da sich die Absorption erhöht. Aus dem Verlauf der Absorption wird dann eine e-Funktion ermittelt, aus welcher der Kt/V-Wert berechnet wird.As the concentration of urinary substances in the dialyzing fluid 55 increases, the signal at the detector 44 is reduced as absorption increases. From the course of the absorption, an e-function is then determined, from which the Kt / V value is calculated.
Um eine exakte Aussage über die Absorption während der Behandlungszeit zu bekommen, müssen allerdings Schwankungen der Intensität I0 der Leuchtdiode 43 vermieden werden. Gewöhnlich erfolgt eine Kompensation von Schwankungen einer Lichtquelle bei einer Zweistrahlspektroskopie, wie Sie hier vorliegt, durch folgende Formel (bezogen auf die Absorption A)1 wobei die Intensitäten I44 und I45 an den Detektoren 44 und 45 in entsprechenden Signale umgewandelt werden:In order to obtain an exact statement about the absorption during the treatment time, however, fluctuations in the intensity I 0 of the light-emitting diode 43 must be avoided. Usually, a compensation of fluctuations of a light source in a two-beam spectroscopy, as present here, by the following formula (based on the Absorption A) 1 where the intensities I 44 and I 45 at the detectors 44 and 45 are converted into corresponding signals:
mit U44 = Signal am Detektor 44 mit unverbrauchter Dialysierflüssigkeit U45 = Signal am Detektor 45 zu Beginnwith U 44 = signal at the detector 44 with unused dialysis U 45 = signal at the detector 45 at the beginning
U44 1 = Signal am Detektor 44 zum Zeitpunkt t während der Therapie U45 1 = Signal am Detektor 45 zum Zeitpunkt t während der TherapieU 44 1 = signal at the detector 44 at time t during therapy U 45 1 = signal at the detector 45 at time t during therapy
Mit der Vorrichtung gemäß den Figuren 1 und 2 wird die Intensität I0 während der Therapie konstant gehalten, so dass U45=U45 , ~ lo,wobei I0 im Arbeitsbereich der Leuchtdiode frei wählbar ist. Damit reduziert sich die Gleichung für die Absorption A auf:With the device according to FIGS. 1 and 2, the intensity I 0 is kept constant during the therapy, so that U 45 = U 45 , ~ l o , wherein I 0 can be freely selected in the working range of the light-emitting diode. This reduces the equation for the absorption A to:
Die Absorption ergibt einen Kurvenverlauf, der durch eine e-Funktion beschrieben werden kann, aus der mit A(t) = a*exp(b*t) der Kt/V = b*t berechnet werden kann.The absorption gives a curve which can be described by an e-function, from which the Kt / V = b * t can be calculated with A (t) = a * exp (b * t).
Um die bei den bekannten Vorrichtungen auftretenden Messfehler, insbesondere durch Alterung und Temperaturinstabilität zu kompensieren gibt es zwei Ansätze:In order to compensate for the measurement errors occurring in the known devices, in particular by aging and temperature instability, there are two approaches:
• Signalstabilität durch elektronische Regelung der emittierten elektromagnetischen Strahlung auf vordefinierte Level• Signal stability through electronic control of the emitted electromagnetic radiation to predefined levels
• Temperaturstabilität durch Temperaturregelung• Temperature stability through temperature control
Die Problematik der Alterung kann insbesondere bei der Strahlungsquelle 41 bzw. der Leuchtdiode 43, dem Ablauf 30 sowie den Detektorsystem 42 bzw. den beiden Detektoren 44 und 45 auftreten und eine Veränderung der Eigenschaften bewirken. Mit Hilfe der elektronischen Regelung ist es möglich, Veränderungen durch Alterung und Temperaturschwankungen sehr präzise zu kompensieren. Die elektromagnetische Strahlung der Leuchtdiode 43 verliert durch Alterung bei einem konstanten Strom während der ßetriebszeit an Intensität und reagiert ebenfalls bei Erhöhung der Temperatur mit einer sinkenden elektromagnetischen Strahlung. Ebenso erfolgt eine Alterung an den Detektoren 44£t45. Der halbdurchlässige Spiegel beeinflusst durch Alterung neben der Durchlässigkeit auch das Verhältnis des Strahlengangs zwischen und I0 und I44 und I46. Ebenso kann es beim Abfluss 30 zu einer konstanten Trübung kommen.The problem of aging can occur in particular in the case of the radiation source 41 or the light-emitting diode 43, the outlet 30 and the detector system 42 or the two detectors 44 and 45 and bring about a change in the properties. With the help of electronic control, it is possible to compensate for changes due to aging and temperature fluctuations very precisely. The electromagnetic radiation of the light-emitting diode 43 loses its intensity due to aging at a constant current during the operating time and also reacts with increasing electromagnetic radiation as the temperature increases. Likewise, there is an aging at the detectors 44 £ t45. The semipermeable mirror affects by aging in addition to the permeability and the ratio of the beam path between and I 0 and I 44 and I 46 . Likewise, at runoff 30, a constant turbidity may occur.
Durch einen vordefinierten Sollwert I44 So„ der Intensität der elektromagnetische Strahlung am Detektor 44, bei dem die elektromagnetische Strahlung reine Dialγsierflüssigkeit ohne harnpflichtige Stoffe im Abfluss 30 durchquert hat, wird der Messbereich beziehungsweise die Auflösung des Detektorsystems 42 bzw. des Detektors 44 optimal genutzt. Dadurch werden Veränderungen im System durch Alterung erkannt und kompensiert, wobei dadurch auch eine Überprüfung der Leistungsfähigkeit des Messsvstems erfolgt. Damit wird gewährleistet, das die Signalqualität, der Messbereich, die Messauflösung und die Reproduzierbarkeit während der gesamten Lebensdauer konstant ist.By a predefined setpoint I 44 So "the intensity of the electromagnetic radiation at the detector 44, in which the electromagnetic radiation has crossed pure Dialγsierflüssigkeit without urinary substances in the outflow 30, the measuring range or the resolution of the detector system 42 and the detector 44 is optimally used. As a result, changes in the system are detected and compensated for by aging, whereby a review of the performance of the Messsvstems done. This ensures that the signal quality, the measuring range, the measurement resolution and the reproducibility are constant throughout the lifetime.
Die Gleichung für die Absorption ergibt sich daher mit dem Sollwert I44 ^n zu:The equation for the absorption results therefore with the setpoint I 44 ^ n to:
Die elektrische Regelung erfolgt in zwei Schritten:The electrical regulation takes place in two steps:
Zu Beginn der Nierenersatzbehandlung vor Anschluss des Patienten bzw. im Bypass befindet sich reine Dialysierflüssigkeit ohne harnpflichtige Subtanzen im Abfluss 30. In diesem Betriebszustand erfolgt zunächst eine Regelung des elektrischen Stroms der Strahlungsquelle 41 als Stellgröße, so dass am Detektor 44 der vordefinierten Sollwert I44 ^ der Strahlungsintensität als Eingangssignal detektiert. Bei Erreichen des vordefinierten Sollwerts I44 Son am Detektor 44 wird der Intensitätswert I45 von Detektor 45 gespeichert und dient in einer zweiten Regelung während der folgenden Nierenersatzbehandlung als Sollwert l,s So„. Es erfolgt also nun eine Regelung des elektrischen Stroms der Strahlungsquelle 41 bzw. der Leuchtdiode als Stellgröße auf den Intensitätswert I 4S SoU am Detektor 45.At the beginning of renal replacement therapy before connection of the patient or in the bypass is pure dialysis without urinary substances in the outflow 30. In this operating condition, a control of the electrical current of the radiation source 41 as a control variable, so that the detector 44, the predefined setpoint I 44 ^ the radiation intensity detected as an input signal. Upon reaching the predefined set value So I 44 n at the detector 44, the intensity value I 45 of detector 45 is stored and used in a second control during the following kidney replacement therapy as Setpoint l, s ". Thus, a regulation of the electric current of the radiation source 41 or of the light-emitting diode as the manipulated variable takes place on the intensity value I 4S SoU at the detector 45.
Die Regelung erfolgt mit einem adaptiven Regler, der zunächst automatisiert die von der Leuchtdiode 43, den Detektor 44, dem teildurchlässigen Spiegel 46 sowie dem Abfluss 30 abhängige Übertragungsfunktion F44(43,44,46,30))=U44und die von der Leuchtdiode 43, den Detektor 45 und dem teildurchlässigen Spiegel 46 abhängige Übertragungsfunktion F4S(43>46,45))=U4S des Systems erfasst Die Regelung kann ebenfalls mit jeder anderen Art von Regelung erfolgen, was jedoch einen langsameren Einschwingvorgang zur Folge hätte.The control is carried out with an adaptive controller, which first automated by the light emitting diode 43, the detector 44, the partially transmitting mirror 46 and the outflow 30 dependent transfer function F 44 (43,44,46,30) = U 44 and the of LED 43, the detector 45 and the partially reflecting mirror 46 dependent transfer function F 4S (43 > 46.45)) = U 4S of the system detected The control can also be done with any other type of control, but this would result in a slower transient.
Der erste Regelvorgang zu Beginn der Therapie erfolgt vor dem Anschluss des Patienten 1 bzw. im Bypass 62, bei dem durch entsprechende Einstellung der Ventile 60 und 61 die reine Dialysierflüssigkeit an dem Dialysator 10 vorbeigeführt wird, mit reiner Dialysierflüssigkeit ohne hampflichtige Subtanzen. Mit Hilfe der adaptiven Regelung und der Übertragungsfunktion F44 erfolgt der Regelvorgang auf den vordefinierten Sollwert der Strahlungsintensität I44 S0U ~ U44 50,, am Detektor 44. Damit erfolgt die Kompensation der Alterung durch Änderung der elektrischen Stromstärke der Leuchtdiode 43. Wenn nötig können ebenfalls die Verstärkungsfaktoren der elektronischen Detektorschaltungen an den Detektoren 44 und 45 angepasst werden, sofern die Signalqualität dies zulässt. Der dann anliegende Messwert an Detektor 45 wird als Sollwert U45 für den zweiten Regelvorgang gespeichert und dient während der Therapie als Sollwert, um Temperaturschwankungen zu kompensieren. Dabei ist die Absorption A=O1 da U44 = U441.The first control process at the beginning of the therapy takes place before the connection of the patient 1 or in the bypass 62, in which by appropriate adjustment of the valves 60 and 61, the pure dialysis fluid is passed to the dialyzer 10, with pure dialysis without hampflichtige substances. With the help of the adaptive control and the transfer function F 44 , the control process is carried out on the predefined setpoint of the radiation intensity I 44 S0U ~ U 44 50 ,, the detector 44. Thus, the compensation of aging by changing the electrical current of the light emitting diode 43. If necessary also the amplification factors of the electronic detector circuits at the detectors 44 and 45 are adjusted, if the signal quality allows this. The measured value then applied to the detector 45 is stored as the desired value U 45 for the second control process and serves as a setpoint during the therapy in order to compensate for temperature fluctuations. The absorption is A = O 1 since U 44 = U 441 .
Nach dem Anschluss des Patienten 1 erfolgt die Messwertaufnahme von U4, am Detektor 44. Durch harnpflichtige Substanzen ändert sich der Messwert am Detektor 44 und die Absorption ergibt sich aus:After the connection of the patient 1, the measured value recording of U 4 , takes place at the detector 44. By urea-subject substances, the measured value changes at the detector 44 and the absorption results from:
Neben der Kompensation von Temperaturschwankungen ermöglicht diese Vorgehensweise auch einen konstanten Messbereichs und ebenfalls eine gleich bleibende Signalqualität. Während einer Therapie, also während einer einzigen Nierenersatzbehandlung, ist eine Alterung der Detektoren 44 und 45 zu vernachlässigen. Das Systems wird während der Nierenersatzbehandlung dann auf den Sollwert U45 am Detektor 45 geregelt, der unabhängig vom Dialysierfliissigkeitsfluss eine stabile und konstante emittierte elektromagnetische Strahlung ermöglicht. Damit kann der Temperaturdrift der Leuchtdiode 43 bzw. der Intensität I0 kompensiert werden. Der Stellwert der Regelung ist der elektrische Strom der Leuchtdiode 43, der proportional zur Intensität I0 der durch die Leuchtdiode 43 emittierten Strahlung ist. Eine reine Regelung auf den Detektor 44 durch einen Vorgabewert zu Beginn ist jedoch nicht sinnvoll, da Einflüsse während der Therapie nicht kompensiert werden können.In addition to the compensation of temperature fluctuations, this procedure also allows a constant measuring range and also a constant signal quality. During therapy, ie during a single renal replacement therapy, aging of the detectors 44 and 45 is negligible. The system is then controlled during the kidney replacement treatment to the setpoint U 45 at the detector 45, which allows a stable and constant emitted electromagnetic radiation, regardless of the dialysis fluid flow. Thus, the temperature drift of the light emitting diode 43 and the intensity I 0 can be compensated. The control value of the control is the electric current of the light emitting diode 43, which is proportional to the intensity I 0 of the radiation emitted by the light emitting diode 43. A pure control of the detector 44 by a default value at the beginning, however, does not make sense, since influences during therapy can not be compensated.
Die Vorgabe des vordefinierten Sollwert im ersten Regelungsprozess dient zur Definition des Messbereichs der Elektronik und definiert gleichzeitig die Messauflösung der Absorption des Messsignals.The specification of the predefined setpoint value in the first control process serves to define the measuring range of the electronics and at the same time defines the measuring resolution of the absorption of the measuring signal.
In den Figuren nicht dargestellte Verstärkerschaltungen innerhalb der elektronischen Regelung 52 wandeln das Signal der Detektoren 44 und 45 in eine Messspannung um, für die Analog-Digital-Wandler mit einer Mikroprozessor-Messwertaufnahme zur Verfügung stehen. Diese Anpassung der Verstärkerschaltungen, welche nur vor jeder einzelnen Nierenersatzbehandlung erfolgen kann, könnte automatisch vor der Nierenersatzbehandlung parallel zu Regelung des Stroms der Leuchtdiode 43 erfolgen. Während der Behandlung ist allerdings nur eine Regelung des Stroms möglich.Amplifier circuits within the electronic controller 52, not shown in the figures, convert the signal from the detectors 44 and 45 into a measurement voltage for which analog-to-digital converters with a microprocessor measurement pickup are available. This adaptation of the amplifier circuits, which can be done only before each kidney replacement treatment, could be done automatically before the kidney replacement treatment in parallel with regulation of the current of the light emitting diode 43. During the treatment, however, only a regulation of the current is possible.
Mit Hilfe der Temperaturregelung wird für die Leuchtdiode 43 und die Detektoren 44 und 45 eine optimale Betriebstemperatur erreicht. Bei hohen Temperaturen muss der Strom als Stellgröße der Leuchtdiode 43 erhöht werden, um die emittierte elektromagnetische Strahlung bei steigenden Temperaturen bei einer konstanten Intensität zu halten. Umgekehrt muss bei sinkenden Temperaturen der Strom als Stellgröße der Leuchtdiode 43 gesenkt werden. Eine Erhöhung des Stroms ist jedoch nur im Betriebsbereich der Leuchtdiode 43 möglich und beschleunigt den Alterungsprozess. In einem Dialysegerät treten erfahrungsgemäß ernorme Temperaturschwankungen auf. Deshalb ist es sinnvoll Temperaturschwankungen durch eine Temperaturregelung 51 zu kompensieren, so dass die Vorrichtung in dem optimalen Temperaturbereich betrieben werden kann. Durch solche Maßnahmen wird auch der Alterungsprozess verlangsamt.With the aid of the temperature control, an optimum operating temperature is achieved for the light-emitting diode 43 and the detectors 44 and 45. At high temperatures, the current must be increased as a control variable of the light emitting diode 43 in order to keep the emitted electromagnetic radiation at constant temperatures at increasing temperatures. Conversely, with decreasing temperatures, the current must be reduced as the manipulated variable of the light-emitting diode 43. An increase of the current is possible only in the operating range of the light emitting diode 43 and accelerates the aging process. In a dialysis machine Experience shows that enormous temperature fluctuations occur. Therefore, it makes sense to compensate for temperature fluctuations by a temperature control 51, so that the device can be operated in the optimum temperature range. Such measures also slow down the aging process.
Ziel der Temperaturregelung ist, die Leuchtdiode 43 und die Detektoren 44 £t 45 im optimalen Temperaturbereich zu betreiben bzw. schnell den optimalen Temperaturbereich für diese Komponenten zu erreichen, damit während der Therapie eine Änderung der Temperatur auf ein Minimum reduziert werden kann. Nach der Desinfektion kann es durch Erhitzung des Systems zu erhöhten Temperaturen an der Messeinrichtung 40 bzw. der Leuchtdiode 43 und/oder dem Detektorsγstem 42 bzw. den Detektoren 44 und 45 kommen. Ferner hat beim Einschalten der Vorrichtung aus dem kalten Zustand die Eigenerwärmung des Systems eine Abkühlung zur Folge, wodurch zu Beginn eine sehr geringe Temperatur vorhanden ist. Daher ist es notwendig die Temperatur so schnell wie möglich in den Betriebsbereich der Komponenten zu bringen, während die Vorrichtung zur Nierenersatzbehandlung vorbereitet wird, um zu Beginn der Therapie bzw. während der Identifikation des System durch die oben beschriebene elektronische Regelung 52 bereits im Sollbereich der Temperatur zu sein. Damit ist es möglich auch sehr geringe Abweichungen der Detektoren 44 und 45 bezüglich eines Signaldrifts durch Temperaturänderungen auf ein Minimum zu reduzieren.The aim of the temperature control is to operate the light-emitting diode 43 and the detectors 45 in the optimum temperature range or to quickly reach the optimum temperature range for these components, so that a temperature change can be reduced to a minimum during the therapy. After disinfection, heating of the system can lead to elevated temperatures at the measuring device 40 or the light-emitting diode 43 and / or the detector array 42 or the detectors 44 and 45. Furthermore, when the device is switched on from the cold state, the self-heating of the system results in cooling, whereby a very low temperature is initially present. Therefore, it is necessary to bring the temperature into the operating range of the components as fast as possible while the kidney replacement treatment apparatus is prepared to be already in the target temperature range at the beginning of the therapy or during the identification of the system by the above-described electronic control 52 to be. This makes it possible to reduce even very small deviations of the detectors 44 and 45 with respect to a signal drift due to temperature changes to a minimum.
Die Temperaturstabilisierung erfolgt mit einem Kühlkörper mit Wasserkühlung, der die Flusstemperatur der Dialysierflüssigkeit direkt mit dem Kühlkörper 43 der LED und/oder die Detektoren 44&45 koppelt Die Wärmekapazität der Dialysierflüssigkeit ist deutlich höher als die des Kühlkörpers der Leuchtdiode 43 und definiert daher die Temperatur, was ohne zusätzlichen technischen Aufwand möglich ist. Damit ist es möglich die Temperatur näherungsweise konstant im Betriebsbereich der Komponenten zu halten und das System schnell in den optimalen Temperaturbereich zu bringen.The temperature stabilization is carried out with a cooling body with water cooling, which couples the flow temperature of the dialysis fluid directly to the heat sink 43 of the LED and / or the detectors 44 & 45 The heat capacity of the dialysis fluid is significantly higher than that of the heat sink of the light emitting diode 43 and therefore defines the temperature, which without additional technical effort is possible. This makes it possible to keep the temperature approximately constant in the operating range of the components and to bring the system quickly in the optimum temperature range.
Ohne enormen zusätzlichen Aufwand ist es jedoch nicht möglich die Temperatur so stabil zu halten, dass sie keinen weiteren Einfluss auf die Intensität der durch die Leuchtdiode 43 emittierte Strahlung hat. Daher muss parallel noch eine Stabilisierung der Leuchtintensität I0 mit der oben genannten elektronischen Regelung 52 erfolgen.However, without enormous additional effort, it is not possible to keep the temperature so stable that it has no further influence on the intensity of the light emitted by the light-emitting diode 43 has emitted radiation. Therefore, a stabilization of the luminous intensity I 0 must be carried out in parallel with the above-mentioned electronic control 52.
Eine Kühlung kann ebenfalls mit anderen aktiven und passiven Kühlmethoden durchgeführt werden. Als passive Kühlung kann die Leuchtdiode 43 bzw. die Detektoren 44 und 45 über das Gehäuse oder eine Wasserkühlung temperaturstabilisiert werden. Als aktive Kühlung ist der Einsatz eines Lüfters möglich, der die Temperatur abhängig von der Umgebungstemperatur regeln kann. Ebenso ist eine direkte Regelung mit einem Peltier- Element oder ähnlichen elektrothermischen Wandlern zur Temperaturstabilisierung möglich. Cooling can also be done with other active and passive cooling methods. As passive cooling, the light-emitting diode 43 or detectors 44 and 45 can be temperature-stabilized via the housing or water cooling. As active cooling, the use of a fan is possible, which can regulate the temperature depending on the ambient temperature. Similarly, a direct control with a Peltier element or similar electrothermal transducers for temperature stabilization is possible.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 - - Patient 46 — halbdurchlässiger Spiegel1 - - patient 46 - semitransparent mirror
10 - - Dialysator 50 - Mittel10 - - Dialyzer 50 - Medium
1 1 - - Membran 51 — Temperaturregelung1 1 - - Membrane 51 - Temperature control
12 - - Kammer 52 — elektronische Regelung12 - - Chamber 52 - electronic control
13 - - Kammer 53 — Strahlengang13 - - chamber 53 - beam path
14 - - Blutzuführleitung 54 — Teil der Strahlung14 - - Blood supply line 54 - part of the radiation
15 - - Blutabführleitung 55 — verbrauchte Dialysierflüssigkeit15 - - blood discharge line 55 - spent dialysis fluid
20 - - Zulauf 56 — Teil der Strahlung20 - - Inlet 56 - part of the radiation
30 - - Ablauf 57 — Signalleitung30 - - Sequence 57 - Signal line
40 - - Messeinrichtung 58 — Signalleitung40 - - Measuring device 58 - Signal line
41 - - Strahlungsquelle 59 — Signalleitung41 - - Radiation source 59 - Signal line
42 - - Detektorsystem 60 ~ Ventil42 - - Detector system 60 ~ Valve
43 - - Leuchtdiode 61 - Ventil43 - - LED 61 - Valve
44 - - Detektor 62 — Bypass44 - - Detector 62 - Bypass
45 - - Detektor 63 -- Pumpe 45 - - Detector 63 - Pump

Claims

Patentansprüche claims
1. Vorrichtung zur extrakorporalen Blutbehandlung mit1. Device for extracorporeal blood treatment with
- einem Dialysator (10), der durch eine semipermeable Membran (1 1) in eine erste und zweite Kammer geteilt ist, wobei die erste Kammer (12) in einem Dialysierflüssigkeitsweg angeordnet ist und die zweite Kammer (13) mittels einer Blutzuführleitung (14) und einer Blutabführleitung (15) mit dem Blutkreislauf eines Patienten (1) verbindbar ist,- a dialyzer (10), which is divided by a semipermeable membrane (1 1) into a first and second chamber, wherein the first chamber (12) is arranged in a dialysis fluid and the second chamber (13) by means of a blood supply line (14) and a Blutabführleitung (15) with the bloodstream of a patient (1) is connectable,
- einem Zulauf (20) für frische Dialysierflüssigkeit,an inlet (20) for fresh dialysis fluid,
- einem Ablauf (30) für verbrauchte Dialysierflüssigkeit,a drain (30) for spent dialysis fluid,
- einer in dem Ablauf (30) angeordneten Messeinrichtung (40) zur Bestimmung der Absorption der durch den Ablauf (30) fließenden verbrauchten Dialysierflüssigkeit, wobei die Messeinrichtung (40) wenigstens eine Strahlungsquelle (41) für im Wesentlichen monochromatische elektromagnetische Strahlung sowie ein Detektorsystem (42) zur Detektion der Intensität der elektromagnetischen Strahlung aufweist- a measuring device (40) arranged in the outlet (30) for determining the absorption of the spent dialysis fluid flowing through the outlet (30), wherein the measuring device (40) comprises at least one radiation source (41) for substantially monochromatic electromagnetic radiation and a detector system ( 42) for detecting the intensity of the electromagnetic radiation
dadurch gekennzeichnet, dasscharacterized in that
Mittel (50) vorgesehen sind, um auftretende Änderungen der Intensität der elektromagnetischen Strahlung der Strahlungsquelle (41) und/oder der Empfindlichkeit des Detektorsystems (42) zu kompensieren.Means (50) are provided to compensate for changes occurring in the intensity of the electromagnetic radiation of the radiation source (41) and / or the sensitivity of the detector system (42).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass als Mittel (50) eine Temperaturregelung (51) vorgesehen ist, durch welche die Temperatur der Strahlungsquelle (41) auf eine vordefinierte ArÖ€itstemperaturen Tλund/odcr die Temperatur des Detektorsystems (42) auf vordefinierte Arbeitstemperaturen T2 regelbar ist. 2. Device according to claim 1, characterized in that as means (50) a temperature control (51) is provided, by which the temperature of the radiation source (41) to a predefined ArÖ] itemperaturen T λ and / or the temperature of the detector system (42 ) is adjustable to predefined operating temperatures T 2 .
. Vorrichtung einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Mittel (50) eine elektronische Regelung (52) vorgesehen ist, mit deren Hilfe die Intensität I der elektromagnetischen Strahlung der Strahlungsquelle (41) derart regelbar ist, dass am Detektorsystem (42) vordefinierte Intensitäten I44, nach Absorption durch unverbrauchte Dialysierflüssigkeit, und/oder I45, ohne Absorption durch unverbrauchte Dialysierflüssigkeit, detektierbar sind., Device according to one of the preceding claims, characterized in that as means (50) an electronic control (52) is provided, with the aid of which the intensity I of the electromagnetic radiation of the radiation source (41) is controllable such that at the detector system (42) predefined intensities I 44 , after absorption by unused dialysis fluid, and / or I 45 , without absorption by unused dialysis fluid, are detectable.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die elektronische Regelung (52) als Regelkreis ausgebildet ist.4. Apparatus according to claim 3, characterized in that the electronic control (52) is designed as a control circuit.
5. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Strahlungsquelle (41) als eine Leuchtdiode (43) ausgebildet ist.5. Device according to one of the preceding claims, characterized in that the radiation source (41) as a light emitting diode (43) is formed.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Leuchtdiode (43) im Wesentlichen elektromagnetische Strahlung der Wellenlänge 280nm emittiert.6. The device according to claim 5, characterized in that the light-emitting diode (43) emits substantially electromagnetic radiation of wavelength 280 nm.
7. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Detektorsystem (42) aus wenigstens einem Fotodetektor vorzugsweise aus zwei Fotodetektoren (44, 45) besteht.7. Device according to one of the preceding claims, characterized in that the detector system (42) of at least one photodetector preferably consists of two photodetectors (44, 45).
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass im Strahlengang der elektromagnetischen Strahlung zwischen Strahlungsquelle (41) und Abfluss (30) für verbrauchte Dialysierflüssigkeit ein teildurchlässiger Spiegel (46) oder eine optische Einrichtung zur Strahlaufteilung oder -umlenkung angeordnet ist.8. The device according to claim 7, characterized in that in the beam path of the electromagnetic radiation between the radiation source (41) and outflow (30) for spent dialysis fluid a partially transmissive mirror (46) or an optical device for beam splitting or deflection is arranged.
9. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Regelgröße die Intensität I44 der elektromagnetischen Strahlung am ersten Detektor (44) ist und dass die Stellgröße der elektrische Strom der Strahlungsquelle (41, 43) ist und die Intensität I45 am Detektor (45) als Referenzwert I45 abspeicherbar ist. 9. Device according to one of claims 5 to 8, characterized in that the controlled variable is the intensity I 44 of the electromagnetic radiation at the first detector (44) and that the manipulated variable is the electric current of the radiation source (41, 43) and the intensity I 45 at the detector (45) as a reference value I 45 is stored.
0. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Referenzgröße I45 die Regelgröße eines zweiten Regelkreises ist und dass die Stellgröße der elektrische Strom der Strahlungsquelle (41 , 43) ist.0. Apparatus according to claim 9, characterized in that the reference variable I 45 is the controlled variable of a second control loop and that the manipulated variable of the electric current of the radiation source (41, 43).
1 1. Vorrichtung nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass die Temperaturregelung (51) einen Kühlkörpers für die Leuchtdiode (43) und/oder das Detektorsystem (42) bzw. die Detektoren (44, 45) aufweist.1 1. Device according to one of claims 2 to 10, characterized in that the temperature control (51) has a heat sink for the light emitting diode (43) and / or the detector system (42) or the detectors (44, 45).
12. Vorrichtung nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass die Temperaturregelung (51) eine Wasserkühlung für die Leuchtdiode (43) und/oder die Detektoren (44, 45) aufweist.12. Device according to one of claims 2 to 9, characterized in that the temperature control (51) has a water cooling for the light emitting diode (43) and / or the detectors (44, 45).
13. Vorrichtung nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass die Temperaturregelung (51) einen oder mehrere Lüfter für die Leuchtdiode (43) und/oder die Detektoren (44, 45) aufweist.13. Device according to one of claims 2 to 10, characterized in that the temperature control (51) one or more fans for the light emitting diode (43) and / or the detectors (44, 45).
14. Vorrichtung nach einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, dass die Temperaturregelung (51) einen oder mehrere elektrothermischen Wandler, beispielsweise Peltier-Elemente zur Temperaturregelung der Leuchtdiode (43) und/oder der Detektoren (44, 45) aufweist.14. Device according to one of claims 2 to 11, characterized in that the temperature control (51) one or more electrothermal transducers, such as Peltier elements for temperature control of the light emitting diode (43) and / or the detectors (44, 45).
15. Verfahren zur Kompensierung der Intensitätsänderung einer elektromagnetischen Strahlungsquelle (20) und/oder eines Detektorsystems (42) einer Vorrichtung zur extrakorporalen Blutbehandlung, wobei das Detektorsystem aufweist: a) wenigstens einen Detektor, b) einen teildurchlässigen Spiegel oder eine optische Einrichtung zur Strahlaufteilung oder -umlenkung, c) einen für elektromagnetischen Strahlung transparenten Abfluss (30), wobei von der elektromagnetischen Strahlungsquelle (20) emittierte Strahlung von dem teildurchlässigen Spiegel oder der optische Einrichtung zur Strahlaufteilung oder - umlenkung teilweise durch den transparenten Abfluss und teilweise um den Transparenten Abfluss herum geführt wird, wobei der elektrische Strom der Strahlungsquelle derart geregelt wird, dass die Intensität des Teils, der durch den transparenten mit unverbrauchter Dialysierflüssigkeit durchflossenen Abflusses geführt ist, auf eine vordefinierte Intensität I44 geregelt wird. 15. A method for compensating the change in intensity of an electromagnetic radiation source and / or a detector system of an apparatus for extracorporeal blood treatment, wherein the detector system comprises: a) at least one detector, b) a partially transmissive mirror or an optical device for beam splitting or deflection, c) a transparent to electromagnetic radiation outflow (30), wherein of the electromagnetic radiation source (20) emitted radiation from the partially transmitting mirror or the optical device for beam splitting or - deflection partially through the transparent drain and partly to the Transparent outflow is guided around, wherein the electric current of the radiation source is controlled so that the intensity of the part, which is guided through the transparent with unused dialyzing effluent drain, is regulated to a predefined intensity I 44 .
EP10704748A 2009-02-11 2010-02-05 Apparatus for the extracorporeal treatment of blood Withdrawn EP2396051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10704748A EP2396051A1 (en) 2009-02-11 2010-02-05 Apparatus for the extracorporeal treatment of blood

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09001890.4A EP2218472B2 (en) 2009-02-11 2009-02-11 Device for treating blood outside the body
PCT/EP2010/000737 WO2010091826A1 (en) 2009-02-11 2010-02-05 Apparatus for the extracorporeal treatment of blood
EP10704748A EP2396051A1 (en) 2009-02-11 2010-02-05 Apparatus for the extracorporeal treatment of blood

Publications (1)

Publication Number Publication Date
EP2396051A1 true EP2396051A1 (en) 2011-12-21

Family

ID=40885966

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09001890.4A Active EP2218472B2 (en) 2009-02-11 2009-02-11 Device for treating blood outside the body
EP10704748A Withdrawn EP2396051A1 (en) 2009-02-11 2010-02-05 Apparatus for the extracorporeal treatment of blood

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09001890.4A Active EP2218472B2 (en) 2009-02-11 2009-02-11 Device for treating blood outside the body

Country Status (10)

Country Link
US (1) US8834720B2 (en)
EP (2) EP2218472B2 (en)
CN (1) CN102325555B (en)
AT (1) ATE524205T1 (en)
BR (1) BRPI1008085B8 (en)
DE (1) DE202009017986U1 (en)
ES (1) ES2372563T5 (en)
PL (1) PL2218472T5 (en)
RU (2) RU2529692C2 (en)
WO (1) WO2010091826A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105487B2 (en) 2007-09-25 2012-01-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US9199022B2 (en) 2008-09-12 2015-12-01 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US8535522B2 (en) 2009-02-12 2013-09-17 Fresenius Medical Care Holdings, Inc. System and method for detection of disconnection in an extracorporeal blood circuit
US8240636B2 (en) 2009-01-12 2012-08-14 Fresenius Medical Care Holdings, Inc. Valve system
US9358331B2 (en) 2007-09-13 2016-06-07 Fresenius Medical Care Holdings, Inc. Portable dialysis machine with improved reservoir heating system
US9308307B2 (en) 2007-09-13 2016-04-12 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
WO2009073567A1 (en) 2007-11-29 2009-06-11 Xcorporeal. Inc. System and method for conducting hemodialysis and hemofiltration
EP3586946B1 (en) 2008-10-07 2023-03-29 Fresenius Medical Care Holdings, Inc. Priming system and method for dialysis systems
WO2010042667A2 (en) 2008-10-07 2010-04-15 Xcorporeal, Inc. Thermal flow meter
NZ614023A (en) 2008-10-30 2014-11-28 Fresenius Med Care Hldg Inc Modular, portable dialysis system
JP2011120821A (en) 2009-12-14 2011-06-23 Nikkiso Co Ltd Blood purifier
JP6027720B2 (en) 2009-12-14 2016-11-16 日機装株式会社 Blood purification equipment
DE102010047215A1 (en) * 2010-09-29 2012-03-29 Bbraun Avitum Ag Dialysate profiling controlled by UV control
AT510631B1 (en) 2010-10-20 2013-01-15 Scan Messtechnik Ges M B H SPECTROMETER
JP6049685B2 (en) 2011-03-23 2016-12-21 ネクステージ メディカル インコーポレイテッド Peritoneal dialysis disposable unit, controller, peritoneal dialysis system
US9861733B2 (en) 2012-03-23 2018-01-09 Nxstage Medical Inc. Peritoneal dialysis systems, devices, and methods
EP2510958B2 (en) 2011-04-11 2023-02-15 Fresenius Medical Care Deutschland GmbH Method and apparatus for monitoring a treatment of a patient, preferably for monitoring hemodialysis, hemodiafiltration and/or peritoneal dialysis
WO2013084444A1 (en) * 2011-12-05 2013-06-13 リオン株式会社 Biological particle counter, biological particle counting method, dialysate monitoring system, and water purification monitoring system
JP5965151B2 (en) * 2012-01-16 2016-08-03 リオン株式会社 Bioparticle counter for dialysis, bioparticle counting method for dialysis, and dialysate monitoring system
EP2674103A1 (en) 2012-06-15 2013-12-18 Fresenius Medical Care Deutschland GmbH Method and device for monitoring an extracorporeal blood treatment of a patient
US9846085B2 (en) 2012-07-25 2017-12-19 Nxstage Medical, Inc. Fluid property measurement devices, methods, and systems
WO2014018798A2 (en) 2012-07-25 2014-01-30 Nxstage Medical, Inc. Fluid property measurement devices, methods, and systems
US9201036B2 (en) 2012-12-21 2015-12-01 Fresenius Medical Care Holdings, Inc. Method and system of monitoring electrolyte levels and composition using capacitance or induction
US9157786B2 (en) 2012-12-24 2015-10-13 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
CN105228668B (en) * 2013-05-17 2018-06-26 弗雷森纽斯医疗护理德国有限责任公司 For optimizing the Apparatus and method for of the energy expenditure in medical treatment device
US9354640B2 (en) 2013-11-11 2016-05-31 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
PL2995329T3 (en) 2014-09-15 2017-07-31 Gambro Lundia Ab Apparatus for extracorporeal treatment of blood and method of control of a blood-warming device in an extracorporeal blood treatment apparatus
CN106289522A (en) * 2016-07-28 2017-01-04 田雨庭 A kind of monochromator of Mixed design
US11826545B2 (en) 2016-09-08 2023-11-28 Fresenius Medical Care Holdings, Inc. Optical blood detection system
DE102016119259A1 (en) * 2016-10-10 2018-04-12 B. Braun Avitum Ag Apparatus and method for recirculation measurement
DE102017003508A1 (en) * 2017-04-11 2018-10-11 Fresenius Medical Care Deutschland Gmbh Apparatus for extracorporeal blood treatment and method for operating an extracorporeal blood treatment apparatus
GB201720405D0 (en) * 2017-12-07 2018-01-24 Biosafe Sa A bioprocessing system
US11364328B2 (en) 2018-02-28 2022-06-21 Nxstage Medical, Inc. Fluid preparation and treatment devices methods and systems
DE102019203318A1 (en) * 2019-03-12 2020-09-17 Robert Bosch Gmbh Thermal regulation of a sensor device
DE102021113519A1 (en) * 2021-05-26 2022-12-01 B.Braun Avitum Ag Optical sensor for determining a dialysis dose

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE415397B (en) 1978-06-02 1980-09-29 Asea Ab FIBEROPTICAL METDON
SE424022B (en) 1980-10-21 1982-06-21 Asea Ab FIBER OPTICAL METDON FOR SPECTRAL ANALYSIS
DE4128458C2 (en) * 1991-08-28 1994-02-10 Siemens Ag Method and device for determining the concentration of a component, in particular glucose, a liquid optically active substance, in particular the body fluid of a patient, by polarimetry
DE4235768A1 (en) * 1992-10-24 1994-05-19 Cho Ok Kyung Modified semiconductor laser diode with integrated temperature control part
US5591344A (en) * 1995-02-13 1997-01-07 Aksys, Ltd. Hot water disinfection of dialysis machines, including the extracorporeal circuit thereof
US5825399A (en) 1996-02-28 1998-10-20 Eastman Kodak Company Data-dependent thermal compensation for an LED printhead
US6027256A (en) * 1997-02-07 2000-02-22 Coherent, Inc. Composite laser diode enclosure and method for making the same
KR100729585B1 (en) * 1997-10-31 2007-06-19 아로노위츠, 잭 엘 Reflectometer
SE525639C2 (en) 1998-06-04 2005-03-22 Thore Falkvall Determination of slag products in dialysis fluid by means of optical sensor
US6087182A (en) * 1998-08-27 2000-07-11 Abbott Laboratories Reagentless analysis of biological samples
DE10051943B4 (en) * 2000-10-19 2015-01-15 Fresenius Medical Care Deutschland Gmbh Method and device for pulse wave transit time determination and extracorporeal blood treatment device with such a device
US7002670B2 (en) * 2002-06-12 2006-02-21 Baxter International Inc. Optical sensor and method for measuring concentration of a chemical constituent using its intrinsic optical absorbance
US20040000012A1 (en) 2002-06-26 2004-01-01 Borregaard Chemcell Treatment of a mixture containing cellulose
US7326576B2 (en) * 2003-04-09 2008-02-05 Prescient Medical, Inc. Raman spectroscopic monitoring of hemodialysis
WO2005028001A1 (en) * 2003-09-23 2005-03-31 Gambro Lundia Ab An apparatus, a system and a method relating to hemodialysis, hemodiafiltration, hemofiltration or peritoneal dialysis
JP2006178349A (en) 2004-12-24 2006-07-06 Sanyo Electric Co Ltd Rear projection video display device
RU2306955C2 (en) * 2005-05-26 2007-09-27 Государственное учреждение Российский научный центр хирургии РАМН (РНЦХ РАМН) Method and device for biohemofiltration
DE102005063263A1 (en) 2005-12-30 2007-07-05 Opsolution Mobile Gmbh Measurement result generating method for use in e.g. transmissive spectroscopic application, involves processing compensation function representing dependency of distribution of lights by temperature of diode, within signal processing
US9717834B2 (en) * 2011-05-24 2017-08-01 Deka Products Limited Partnership Blood treatment systems and methods
DE102006029899B4 (en) * 2006-06-29 2009-06-04 Fresenius Medical Care Deutschland Gmbh Spectroscopic detector and method for the determination of blood and biological markers in liquids
WO2008144577A1 (en) 2007-05-18 2008-11-27 Optiscan Biomedical Corporation Fluid mixing systems and methods
EP2005982B1 (en) 2007-06-20 2010-08-18 B. Braun Avitum AG Apparatus for determining the reduction ratio or the Kt/V value of a kidney substitution treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010091826A1 *

Also Published As

Publication number Publication date
DE202009017986U1 (en) 2010-10-07
PL2218472T3 (en) 2012-04-30
US8834720B2 (en) 2014-09-16
RU2014133177A (en) 2016-02-27
RU2594440C2 (en) 2016-08-20
EP2218472B1 (en) 2011-09-14
ES2372563T3 (en) 2012-01-23
BRPI1008085B8 (en) 2021-06-22
EP2218472A1 (en) 2010-08-18
EP2218472B2 (en) 2022-03-16
PL2218472T5 (en) 2023-03-13
WO2010091826A1 (en) 2010-08-19
BRPI1008085A2 (en) 2016-03-15
US20110309019A1 (en) 2011-12-22
CN102325555B (en) 2015-10-21
BRPI1008085B1 (en) 2020-09-15
RU2529692C2 (en) 2014-09-27
ATE524205T1 (en) 2011-09-15
ES2372563T5 (en) 2022-06-14
CN102325555A (en) 2012-01-18
RU2011137416A (en) 2013-03-20

Similar Documents

Publication Publication Date Title
EP2218472B1 (en) Device for treating blood outside the body
EP2605810B1 (en) Apparatus for extracorporeal blood treatment
DE68926686T2 (en) Method for determining the concentration of a substance in blood or the dialysance of a dialyzer
EP2413991B1 (en) Device for determining and controlling the concentration of at least one solute in a fluid circuit
DE60206254T2 (en) MONITORING AND CONTROL OF HYDROGEN PEROXIDE VAPOR PROCESSING TECHNIQUES THROUGH THE USE OF MEDIUM INFRARED SPECTROSCOPY
DE69732442T2 (en) Continuous closed loop decontamination system and method
DE19747360B4 (en) Method for measuring performance parameters of mass and energy exchange modules
EP2799097B1 (en) Device for treating blood outside the body
EP3431118B1 (en) Device for providing isonatraemic dialysis
EP2985045B1 (en) Method for adjusting a blood flow in a dialysis device and dialysis device
EP2416699B1 (en) Device and method for measuring a blood constituent in blood for an extracorporeal blood treatment device
DE102013103221A1 (en) Method for detecting recirculation in an arteriovenous shunt during ongoing hemodialysis and dialysis
WO2011154514A1 (en) Apparatus for extracorporeal blood treatment, comprising a measuring device for determining the luminescence of the spent dialysate
WO2013079169A1 (en) Method and device for determining a blood component
DE2443435A1 (en) BLOOD LEVEL DETECTOR
EP3955988B1 (en) Recirculation measurement by means of diffusion equilibrium
EP2783716B1 (en) Method and device for detecting recirculation in a shunt
DE102013101523A1 (en) A photometric measuring apparatus and method for measuring an optical absorbance of a fluid having a variable concentration of at least one light-absorbing substance, and a blood processing apparatus having such a measuring apparatus
EP3141896B1 (en) Method and system for operating a device for treating an aqueous fluid
EP4132604B1 (en) Optical sensor for determining a dialysis dose
EP2746771B1 (en) Device for determining waste products such as indoxyl sulphates in dialysis
WO2021037744A1 (en) Device and method for extracorporeal blood treatment and method for the balance control of a dialysis liquid in an extracorporeal blood treatment
DE102009040104A1 (en) Device for extracorporeal blood treatment
EP1775805A1 (en) Frequency Stabilised Gaslaser
EP3400977B1 (en) Online linearization of an optical sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120316