EP2389703A1 - Method for determining an aging condition of a battery cell by means of impedance spectroscopy - Google Patents

Method for determining an aging condition of a battery cell by means of impedance spectroscopy

Info

Publication number
EP2389703A1
EP2389703A1 EP10700129A EP10700129A EP2389703A1 EP 2389703 A1 EP2389703 A1 EP 2389703A1 EP 10700129 A EP10700129 A EP 10700129A EP 10700129 A EP10700129 A EP 10700129A EP 2389703 A1 EP2389703 A1 EP 2389703A1
Authority
EP
European Patent Office
Prior art keywords
battery cell
value
impedance
battery
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10700129A
Other languages
German (de)
French (fr)
Inventor
Joerg Ziegler
Martin Tenzer
Elke Krauss
Martin Holger Koenigsmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2389703A1 publication Critical patent/EP2389703A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/005Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing phase or frequency of 2 mutually independent oscillations in demodulators)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the object is achieved by providing a method for determining an aging state of a battery cell comprising the steps of a) providing a battery cell; b) recording an impedance spectrum of the battery cell; c) determination of an evaluation variable on the basis of the measured impedance spectrum; d) Determining an aging state of the battery cell based on a comparison of the evaluation variable with a reference value.
  • characteristic changes in the impedance spectrum of the battery cell are evident. These characteristic changes can be determined by comparison of an evaluation variable, which is determined on the basis of the measured impedance spectrum for the relevant battery cell, with a corresponding reference variable. If the comparison of an evaluation variable with a corresponding reference value results in a deviation or even no deviation from the reference value, an aging state can be assigned to the relevant battery cell. If, for example, the impedance of a battery cell in a low-frequency range is increased with respect to a reference value, then the aging state of the battery cell is worse than that of a battery cell whose corresponding impedance value does not exceed the reference value.
  • the deterioration of an aging state of a battery cell correlates with the extent of the deviation between the evaluation variable and the reference value. If the deviation is larger, the aging state of the battery cell is worse. If the deviation is smaller, the aging state of the battery cell is better.
  • a battery cell whose aging state is to be determined.
  • battery cells of all conventional accumulator technologies can be used. It can be battery cells of type Pb - lead acid battery, NiCd - nickel-cadmium battery, NiH2 - nickel-hydrogen accumulator, NiMH - nickel-metal hydride accumulator, Li-ion - lithium-ion battery, LiPo - lithium polymer battery , LiFe - Lithium Metal Battery, Li-Mn - Lithium Manganese Battery, LiFePO 4 - Lithium Iron Phosphate Battery, LiTi
  • an impedance spectrum of the battery cell is recorded.
  • the battery cell is excited via its contacts with a sinusoidal signal of variable frequency and determined by measuring current and voltage, the complex impedance of the battery cell as a function of frequency.
  • the measured impedance spectrum can be represented in various forms, for example as a Nyquist plot in which imaginary impedance values are plotted over real impedance values, or as a Bode diagram in which measured impedance values are reproduced as a function of the frequency.
  • the impedance spectrum can be recorded in the inventive method over a frequency range ⁇ 100 Hz, ⁇ 10 Hz, ⁇ 1 Hz or from 100 to 0.001 Hz, preferably over a frequency range of 10 to 0.001 Hz, more preferably over a range of 1 to 0.01 Hz or
  • An impedance spectrum may also consist of a single impedance value at a single selected frequency.
  • the recording of the impedance spectrum can be made at a low temperature.
  • a low temperature is always present when the
  • Temperature is below the optimum operating temperature of the battery cell to be measured.
  • the impedance spectrum of the battery cell is preferably recorded at a temperature which is ⁇ room temperature, ⁇ 15 ° C., ⁇ 10 ° C. or ⁇ 5 ° C.
  • an evaluation variable is determined on the basis of the measured impedance spectrum.
  • This evaluation variable can be determined by means of a graphical evaluation of the measured impedance spectrum, for example via a Nyquist plot and / or a Bode diagram.
  • the evaluation value can also be determined via a mathematical calculation from the data of the measured spectrum.
  • evaluation variable different values can be used, which can be determined from the measured impedance spectrum. Suitable evaluation variables are those values whose deviation from a reference value permits a statement about an aging state of the battery cell.
  • an impedance increase in the low frequency range, as well as the formation of a further RC element in the impedance spectrum correlate with a progressive aging state of the battery cell.
  • the extent of the deviation in these two variables correlates with the extent of the alteration of the aging state.
  • Values are used which are suitable for determining an impedance increase in the low frequency range or which are suitable for identifying a further RC element in the impedance spectrum.
  • the following evaluation variables are suitable for determining an impedance increase in the low-frequency range.
  • the evaluation value may be a real impedance value in ohms measured at a certain low frequency. Any frequency which is ⁇ 10 Hz, preferably ⁇ 1 Hz, may be used as the low frequency. Preferably, the low frequency can be selected from the range of 10 - 0.001 Hz, more preferably from the range 1 - 0.01 Hz, most preferably from the range 0.1 - 0.03 Hz. In this case, the reference value is a real Number with the unit ohms.
  • the evaluation quantity may indicate a ratio of a real impedance value in ohms measured at a first low frequency to a real impedance value in ohms measured at a second low frequency.
  • Any frequency which is ⁇ 10 Hz, preferably ⁇ 1 Hz, may be used as the low frequency.
  • the low frequency can be selected from the range of 10 - 0.001 Hz, more preferably from the range 1 - 0.01 Hz, most preferably from the range 0.1 - 0.03 Hz.
  • the ratio can be formed such that the first low frequency has a smaller frequency value than the second low frequency. It is also it is possible to form the ratio such that the first low frequency has a larger frequency value than the second low frequency.
  • the ratio can be expressed as:
  • Z N1 is a measured impedance value of the battery cell at a first low frequency N1 and Z N2 is a measured impedance value of the battery cell at a second low frequency N2, where N1 ⁇ N2, preferably N1 ⁇ N2.
  • the reference value is a real number without a unit.
  • the reference value is> 1, 10, more preferably> 1, 15.
  • the evaluation value can also be specified as a real low frequency value in Hz at which a certain threshold impedance value in ohms is reached or exceeded.
  • the low-frequency value is determined at which a defined threshold impedance value is reached or exceeded.
  • the low-frequency value is the lowest frequency value of an impedance spectrum at which the threshold impedance value is reached or just exceeded.
  • the threshold impedance value it is possible to select an impedance value which lies between an impedance minimum and an impedance maximum in the low-frequency range.
  • the threshold impedance value may be set for each battery cell type and is in a range not exceeding 90% of the maximum impedance in the low frequency range, more preferably not exceeding 80%.
  • the impedance maximum in the low frequency range can be determined for each battery cell type by taking an average value of impedance maxima in the low frequency range of a plurality of battery cells of the same type, and in the impedance measurement of the respective battery cell of the same type, not more than 10% of the average lifetime of the battery Battery cells of the same type has expired.
  • the threshold impedance value is selected from the range of 0.07 to 0.1 ohms, more preferably a threshold impedance value of 0.07 or 0.08 ohms.
  • the evaluation variable is a low-frequency value at which a threshold impedance value is reached or is just exceeded, then the reference value is a real one
  • the following evaluation variables are suitable for identifying a further RC element in the impedance spectrum.
  • the evaluation value can be the number of semicircular arcs of an impedance spectrum in the Nyquist plot.
  • the evaluation value can be the number of inflection points of an impedance spectrum in the Nyquist plot.
  • the evaluation variable can also be the number of RC elements of an impedance spectrum.
  • the evaluation value is the number of semicircular arcs or the number of inflection points of an impedance spectrum in the Nyquist plot or the number of RC elements of an impedance spectrum
  • the reference value is a real number without unit.
  • the evaluation variable is compared with a corresponding reference value. On the basis of the specific deviation of evaluation value and reference value can then be made a statement about the aging state of the battery cell.
  • the reference value represents the comparison quantity with which the evaluation value is compared. In this case, the reference value represents the corresponding quantity for the evaluation variable, the aging state of the battery cell used for determining the reference value being known. If, for example, the evaluation variable is a measured impedance value at a specific low frequency of a battery cell whose aging state is to be determined, the corresponding reference value is a specific impedance value at the same low frequency determined for one or more reference battery cells with known aging. was standing. If the evaluation variable is a number of RC elements in a measured impedance spectrum, then the corresponding reference value is the number of RC elements, determined for one or more reference battery cells with a known aging state.
  • the aging state of the analyzed battery cell is worse than the aging state of the battery cell (s) of the reference value. If the evaluation value falls below the reference value, the aging state of the analyzed battery cell is better than the aging state of the battery cell (s) of the reference value.
  • the actual value which is the reference value for determining a state of aging of a battery cell, also depends on the respective battery cell type and may differ from battery cell type to battery cell type. The person skilled in the art knows this fact and he has no difficulty in determining a corresponding reference value for a given battery cell type.
  • the reference value can be determined, for example, on the basis of an impedance spectroscopy measurement of the battery cell to be analyzed from step a), wherein this reference impedance spectroscopy measurement is carried out in time before recording an impedance spectrum according to step b) of the method according to the invention.
  • the reference impedance spectroscopy measurement is made at a time when less than 10% of the average life of battery cells of the same type has expired.
  • the reference impedance spectroscopy measurement is performed before a first use of the battery cell to be measured as an energy source.
  • the reference value may also be determined by averaging from corresponding values determined for a plurality of reference battery cells of the same type as the battery cell to be analyzed from step a). Which have a certain known aging state.
  • the corresponding values are determined on the basis of a reference impedance spectroscopy measurement of the individual reference battery cells of the same type and of the specific, known state of aging, and then an average of this is formed.
  • the respective reference impedance spectroscopy measurement of reference battery cells of the same type may preferably be performed at a time when less than 10% of the average lifetime of the reference battery cells has expired.
  • a reference value can be determined by forming an average of corresponding values determined for one or a plurality of reference battery cells of the same type as the battery cell of step a), the respective values in each case being based on a reference impedance spectroscopy measurement of the individual reference battery cell and wherein the reference battery cells of a reference value have a certain known aging state.
  • the invention also relates to the use of an impedance spectrum of a battery cell for determining an age condition of a rechargeable battery comprising this battery cell.
  • the invention also relates to a use of the method according to the invention for predicting a service life of a battery cell or a rechargeable battery.
  • the method according to the invention can be used for rapid cell evaluation of new-qualifying battery cells, as well as for the determination of the aging state of battery cells.
  • Test times and possibly test cycles can be saved as relevant information can be obtained at an early stage.
  • the method according to the invention can be used in hybrid (HEV) and electric (EV) vehicles for SOH determination (state of health) and as part of a battery management system.
  • HEV hybrid
  • EV electric
  • impedance spectroscopic methods By using impedance spectroscopic methods, the state of aging and the expected service life of individual battery cells and thus of a rechargeable battery can be determined more quickly and clearly more accurately than in the hitherto conventional methods. In particular, practically no meaningful prediction over the life of the cell is possible from the usual measurements of capacitance and DC resistance over time. In addition, the evaluation of the corresponding impedance spectra is simple and possible without great effort. In addition, impedance spectroscopy in a measurement can also provide further information that can provide information about the causes of aging. For example, the frequency range of the impedance change provides information about which part of the cell has undergone changes. The method is in principle applicable to all conventional accumulator technologies such as lead-acid, nickel-cadmium, nickel-metal hydride and sodium-sodium nickel chloride (zebra), particularly preferred in lithium-ion batteries.
  • zebra sodium-sodium nickel chloride
  • Fig. 2a impedance spectra of aged at +60 0 C lithium-ion battery cells 102 in the Bode diagram.
  • Fig. 2b impedance spectra of aged at +60 0 C lithium-ion battery-riezellen 103 in the Bode diagram. Description of exemplary embodiments
  • the determination of the state of aging as well as the lifetime prognosis is carried out by impedance spectroscopy.
  • impedance spectroscopy it has been shown that the aging of the cells is mainly due to two signs, here on one of our series of measurements with lithium
  • An increasing aging state in these cells is manifested by an increase in the impedance, especially in the low-frequency range (see FIG. 2).
  • the increase in impedance is essentially independent of the duration of aging, but rather depends on all relevant factors contributing to aging, such as i.a. SOC (state of charge) and temperature.
  • SOC state of charge
  • temperature i.a. SOC (state of charge) and temperature.
  • the impedance increase can be used to quantify the state of aging and used in particular for a life expectancy.
  • FIGS. 1 a and 1 b the impedance spectra of two cells are shown in the Nyquist plot. While cell 102 ( Figure 1a) has reached its end of life already after 161 days, cell 103 ( Figure 1b) did not enter until after 401 days. Nevertheless, in the case of both cells towards the end of their lifespan, the significant manifestation of a second RC element in the spectrum can be seen.
  • FIGS. 2 a and 2b the impedance spectra of the same two cells are reproduced as Bode representations (legend see FIG. 1 a or FIG. 1 b). It can be clearly seen that a significant increase in the impedance in the low-frequency range becomes visible towards the end of life of the cells. This increase is already indicated at an early point in time because the impedance curve at the left end of the frequency range begins to curve upwards.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Secondary Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

The invention relates to a method for determining an aging condition of a battery cell, comprising the steps of a) providing a battery cell; b) recording an impedance spectrum of the battery cell; c) determining an evaluation quantity based on the measured impedance spectrum; d) determining an aging condition of the battery cell based on a comparison of the evaluation quantity to a reference value.

Description

Beschreibung description
Titeltitle
Verfahren zur Bestimmung eines Alterunqszustandes einer Batteriezelle mittels ImpedanzspektroskopieMethod for determining an age condition of a battery cell by means of impedance spectroscopy
Stand der TechnikState of the art
Bei der Qualifizierung von Batteriezellen ist der Alterungszustand der Zellen zu bestimmen und gegebenenfalls eine Vorhersage über die voraussichtliche, wei- tere Lebensdauer zu treffen. Diese Angaben spielen vor allem bei der Bewertung neu zu qualifizierender Batteriezellen eine große Rolle. Insbesondere bei der SOH (state of health)-Bestimmung von Batterien, sowie beim Betrieb von Batteriemanagementsystemen beispielsweise in Fahrzeugen ist eine schnelle Beurteilung von Batteriezellen bezüglich Alterungszustand und/oder Lebens- dauer notwendig.When qualifying battery cells, it is important to determine the state of aging of the cells and, if necessary, make a prediction of their expected, longer life. This information plays a major role, especially in the evaluation of new qualifying battery cells. Especially in the SOH (state of health) determination of batteries, as well as in the operation of battery management systems, for example in vehicles rapid evaluation of battery cells in terms of aging condition and / or life is necessary.
Bislang existieren als Methoden hierzu die Messung des Gleichstromwiderstands beziehungsweise der Zellkapazität. Allerdings liefern diese herkömmlichen Methoden nur unzureichende Erkenntnisse über den Zustand der getes- teten Batteriezellen. Bislang ist die Einschätzung eines Alterungszustandes vonSo far, there are methods for measuring the DC resistance or the cell capacity. However, these conventional methods provide only insufficient knowledge about the condition of the tested battery cells. So far, the assessment of an aging condition of
Batteriezellen mit diesen herkömmlichen Methoden nur unzureichend möglich. Eine Prognose der Lebensdauer von Batteriezellen ist daher nicht zuverlässig möglich.Battery cells with these conventional methods insufficiently possible. A prognosis of the life of battery cells is therefore not reliably possible.
Aufgabe der vorliegenden Erfindung ist es, einen oder mehrere Nachteile desObject of the present invention is to overcome one or more disadvantages of
Standes der Technik zu vermindern oder zu überwinden. Insbesondere ist es Aufgabe der Erfindung, ein Verfahren bereitzustellen, bei dem der Alterungszustand und gegebenenfalls die voraussichtliche Lebensdauer einer Zelle schnell und zuverlässig bestimmt werden können. Offenbarung der ErfindungPrior art to reduce or overcome. In particular, it is an object of the invention to provide a method in which the state of aging and, where appropriate, the expected service life of a cell can be determined quickly and reliably. Disclosure of the invention
Die Aufgabe wird gelöst durch Bereitstellung eines Verfahrens zur Bestimmung eines Alterungszustandes einer Batteriezelle umfassend die Schritte a) Bereitstellen einer Batteriezelle; b) Aufnahme eines Impedanzspektrums der Batteriezelle; c) Ermittlung einer Auswertgröße anhand des gemessenen Impedanzspektrums; d) Bestimmung eines Alterungszustandes der Batteriezelle anhand eines Vergleichs der Auswertgröße mit einem Referenzwert.The object is achieved by providing a method for determining an aging state of a battery cell comprising the steps of a) providing a battery cell; b) recording an impedance spectrum of the battery cell; c) determination of an evaluation variable on the basis of the measured impedance spectrum; d) Determining an aging state of the battery cell based on a comparison of the evaluation variable with a reference value.
In Abhängigkeit vom Alterungszustand einer Batteriezelle zeigen sich charakteristische Veränderungen im Impedanzspektrum der Batteriezelle. Diese charakteristischen Veränderungen sind über einen Vergleich einer Auswertgröße, die an- hand des gemessenen Impedanzspektrums für die betreffende Batteriezelle ermittelt wird, mit einer entsprechenden Referenzgröße ermittelbar. Ergibt der Vergleich einer Auswertgröße mit einem entsprechenden Referenzwert eine Abweichung oder eben keine Abweichung vom Referenzwert, so kann der betreffenden Batteriezelle ein Alterungszustand zugeordnet werden. Ist beispielsweise die Im- pedanz einer Batteriezelle in einem niederfrequenten Bereich erhöht gegenüber einem Referenzwert, so ist der Alterungszustand der Batteriezelle schlechter als der einer Batteriezelle, deren entsprechender Impedanzwert den Referenzwert nicht übersteigt. Dabei korreliert die Verschlechterung eines Alterungszustandes einer Batteriezelle mit dem Ausmaß der Abweichung zwischen Auswertgröße und Referenzwert. Ist die Abweichung größer, ist der Alterungszustand der Batteriezelle schlechter. Ist die Abweichung kleiner, ist der Alterungszustand der Batteriezelle besser.Depending on the aging state of a battery cell, characteristic changes in the impedance spectrum of the battery cell are evident. These characteristic changes can be determined by comparison of an evaluation variable, which is determined on the basis of the measured impedance spectrum for the relevant battery cell, with a corresponding reference variable. If the comparison of an evaluation variable with a corresponding reference value results in a deviation or even no deviation from the reference value, an aging state can be assigned to the relevant battery cell. If, for example, the impedance of a battery cell in a low-frequency range is increased with respect to a reference value, then the aging state of the battery cell is worse than that of a battery cell whose corresponding impedance value does not exceed the reference value. In this case, the deterioration of an aging state of a battery cell correlates with the extent of the deviation between the evaluation variable and the reference value. If the deviation is larger, the aging state of the battery cell is worse. If the deviation is smaller, the aging state of the battery cell is better.
Gemäß dem erfindungsgemäßen Verfahren wird eine Batteriezelle bereitgestellt, deren Alterungszustand bestimmt werden soll. Dabei können Batteriezellen aller gebräuchlichen Akkumulatortechnologien verwendet werden. Es können Batteriezellen vom Typ Pb - Bleiakku, NiCd - Nickel-Cadmium-Akku, NiH2 - Nickel- Wasserstoff-Akkumulator, NiMH - Nickel-Metallhydrid-Akkumulator, Li-Ion - Lithium-Ionen-Akku, LiPo - Lithium-Polymer-Akku, LiFe - Lithium-Metall-Akku, Li- Mn - Lithium-Mangan-Akku, LiFePO4 - Lithium-Eisen-Phosphat-Akkumulator, LiTiAccording to the method of the invention, a battery cell is provided whose aging state is to be determined. In this case, battery cells of all conventional accumulator technologies can be used. It can be battery cells of type Pb - lead acid battery, NiCd - nickel-cadmium battery, NiH2 - nickel-hydrogen accumulator, NiMH - nickel-metal hydride accumulator, Li-ion - lithium-ion battery, LiPo - lithium polymer battery , LiFe - Lithium Metal Battery, Li-Mn - Lithium Manganese Battery, LiFePO 4 - Lithium Iron Phosphate Battery, LiTi
- Lithium-Titanat-Akku, RAM - Rechargeable Alkaline Manganese, Ni-Fe - Nickel- Eisen-Akku, Na/NiCI - Natrium-Nickelchlorid-Hochtemperaturbatterie-Batterie SCiB - Super Charge Ion Battery, Silber-Zink-Akku, Silikon-Akku, Vanadium-Re- dox-Akkumulator und/oder Zink-Brom-Akku verwendet werden. Insbesondere können Batteriezellen vom Typ der Blei/Säure-, Nickel-Cadmium-, Nickel-Metall- hydrid- und/oder Natrium/Natriumnickelchlorid-Zelle eingesetzt werden. Besonders bevorzugt werden Batteriezellen vom Typ der Lithium-Ionen-Zelle verwendet.- Lithium Titanate Battery, RAM - Rechargeable Alkaline Manganese, Ni-Fe - Nickel Iron Battery, Na / NiCI - Sodium Nickel Chloride High Temperature Battery SCiB - Super Charge Ion Battery, Silver Zinc Battery, Silicone Battery, Vanadium Rexdox Battery and / or Zinc Bromine Battery can be used. In particular, battery cells of the lead / acid, nickel-cadmium, nickel-metal hydride and / or sodium / sodium nickel chloride cell type can be used. Particular preference is given to using battery cells of the lithium-ion cell type.
Im erfindungsgemäßen Verfahren wird ein Impedanzspektrum der Batteriezelle aufgenommen. Dabei wird die Batteriezelle über ihre Kontakte mit einem sinusförmigen Signal variabler Frequenz angeregt und durch Messung von Strom und Spannung die komplexe Impedanz der Batteriezelle in Abhängigkeit der Frequenz ermittelt. Das gemessene Impedanzspektrum kann in verschiedenen Formen dargestellt werden, beispielsweise als Nyquist-Plot, bei dem imaginäre Im- pedanzwerte über realen Impedanzwerten aufgetragen sind, oder als Bode-Dia- gramm, bei dem gemessene Impedanzwerte in Abhängigkeit der Frequenz wiedergegeben werden. Das Impedanzspektrum kann im erfindungsgemäßen Verfahren über einen Frequenzbereich < 100 Hz, < 10 Hz, < 1 Hz oder von 100 bis 0,001 Hz aufgenommen werden, bevorzugt über einen Frequenzbereich von 10 bis 0,001 Hz, besonders bevorzugt über einen Bereich von 1 bis 0,01 Hz oderIn the method according to the invention, an impedance spectrum of the battery cell is recorded. In this case, the battery cell is excited via its contacts with a sinusoidal signal of variable frequency and determined by measuring current and voltage, the complex impedance of the battery cell as a function of frequency. The measured impedance spectrum can be represented in various forms, for example as a Nyquist plot in which imaginary impedance values are plotted over real impedance values, or as a Bode diagram in which measured impedance values are reproduced as a function of the frequency. The impedance spectrum can be recorded in the inventive method over a frequency range <100 Hz, <10 Hz, <1 Hz or from 100 to 0.001 Hz, preferably over a frequency range of 10 to 0.001 Hz, more preferably over a range of 1 to 0.01 Hz or
0,1 bis 0,03 Hz. Ein Impedanzspektrum kann auch in einem einzigen Impedanzwert bei einer einzigen ausgewählten Frequenz bestehen.0.1 to 0.03 Hz. An impedance spectrum may also consist of a single impedance value at a single selected frequency.
Die Aufnahme des Impedanzspektrums kann bei einer niedrigen Temperatur vorgenommen werden. Eine niedrige Temperatur liegt immer dann vor, wenn dieThe recording of the impedance spectrum can be made at a low temperature. A low temperature is always present when the
Temperatur unterhalb der optimalen Betriebstemperatur der zu messenden Batteriezelle liegt. Bevorzugt wird das Impedanzspektrum der Batteriezelle bei einer Temperatur aufgenommen, die < der Raumtemperatur ist, < 15 0C, < 10 0C oder < 5 0C ist.Temperature is below the optimum operating temperature of the battery cell to be measured. The impedance spectrum of the battery cell is preferably recorded at a temperature which is <room temperature, <15 ° C., <10 ° C. or <5 ° C.
Im erfindungsgemäßen Verfahren wird anhand des gemessenen Impedanzspektrums eine Auswertgröße ermittelt. Diese Auswertgröße kann mittels einer graphischen Auswertung des gemessenen Impedanzspektrums, beispielsweise über einen Nyquist-Plot und/oder über ein Bode-Diagramm, bestimmt werden. Die Auswertgröße kann auch über eine mathematische Berechnung aus den Daten des gemessenen Spektrums bestimmt werden. - A -In the method according to the invention, an evaluation variable is determined on the basis of the measured impedance spectrum. This evaluation variable can be determined by means of a graphical evaluation of the measured impedance spectrum, for example via a Nyquist plot and / or a Bode diagram. The evaluation value can also be determined via a mathematical calculation from the data of the measured spectrum. - A -
AIs Auswertgröße können verschiedene Werte herangezogen werden, die aus dem gemessenen Impedanzspektrum ermittelt werden können. Als Auswertgröße kommen solche Werte in Betracht, deren Abweichung von einem Refe- renzwert eine Aussage über einen Alterungszustand der Batteriezelle zulassen.As the evaluation variable, different values can be used, which can be determined from the measured impedance spectrum. Suitable evaluation variables are those values whose deviation from a reference value permits a statement about an aging state of the battery cell.
Insbesondere eine Impedanzerhöhung im Niederfrequenzbereich, sowie die Ausbildung eines weiteren RC-Gliedes im Impedanzspektrum korrelieren mit einem fortschreitenden Alterungszustand der Batteriezelle. Dabei korreliert das Ausmaß der Abweichung in diesen beiden Größen mit dem Ausmaß der Alte- rungszustandsveränderung. Als Auswertgröße können also insbesondere solcheIn particular, an impedance increase in the low frequency range, as well as the formation of a further RC element in the impedance spectrum correlate with a progressive aging state of the battery cell. The extent of the deviation in these two variables correlates with the extent of the alteration of the aging state. As an evaluation can thus in particular such
Werte herangezogen werden, die geeignet sind zur Bestimmung einer Impedanzerhöhung im Niederfrequenzbereich oder die geeignet sind zur Identifizierung eines weiteren RC-Gliedes im Impedanzspektrum.Values are used which are suitable for determining an impedance increase in the low frequency range or which are suitable for identifying a further RC element in the impedance spectrum.
Die folgenden Auswertgrößen sind geeignet zur Bestimmung einer Impedanzerhöhung im Niederfrequenzbereich.The following evaluation variables are suitable for determining an impedance increase in the low-frequency range.
Die Auswertgröße kann ein reeller Impedanzwert in Ohm sein, der bei einer bestimmten Niederfrequenz gemessen wurde. Als Niederfrequenz kann dabei jede Frequenz zum Einsatz kommen, die < 10 Hz, bevorzugt < 1 Hz ist. Bevorzugt kann die Niederfrequenz ausgewählt werden aus dem Bereich von 10 - 0,001 Hz, besonders bevorzugt aus dem Bereich 1 - 0,01 Hz, ganz besonders bevorzugt aus dem Bereich 0,1 - 0,03 Hz. In diesem Fall ist der Referenzwert eine reelle Zahl mit der Einheit Ohm.The evaluation value may be a real impedance value in ohms measured at a certain low frequency. Any frequency which is <10 Hz, preferably <1 Hz, may be used as the low frequency. Preferably, the low frequency can be selected from the range of 10 - 0.001 Hz, more preferably from the range 1 - 0.01 Hz, most preferably from the range 0.1 - 0.03 Hz. In this case, the reference value is a real Number with the unit ohms.
Die Auswertgröße kann ein Verhältnis angeben, eines reellen Impedanzwertes in Ohm, der bei einer ersten Niederfrequenz gemessen wurde, zu einem reellen Impedanzwert in Ohm, der bei einer zweiten Niederfrequenz gemessen wurde. Als Niederfrequenz kann dabei jede Frequenz zum Einsatz kommen, die < 10 Hz, bevorzugt < 1 Hz ist. Bevorzugt kann die Niederfrequenz ausgewählt werden aus dem Bereich von 10 - 0,001 Hz, besonders bevorzugt aus dem Bereich 1 - 0,01 Hz, ganz besonders bevorzugt aus dem Bereich 0,1 - 0,03 Hz.The evaluation quantity may indicate a ratio of a real impedance value in ohms measured at a first low frequency to a real impedance value in ohms measured at a second low frequency. Any frequency which is <10 Hz, preferably <1 Hz, may be used as the low frequency. Preferably, the low frequency can be selected from the range of 10 - 0.001 Hz, more preferably from the range 1 - 0.01 Hz, most preferably from the range 0.1 - 0.03 Hz.
Dabei kann das Verhältnis derart gebildet werden, dass die erste Niederfrequenz einen kleineren Frequenzwert aufweist als die zweite Niederfrequenz. Es ist auch möglich das Verhältnis derart zu bilden, dass die erste Niederfrequenz einen größeren Frequenzwert aufweist als die zweite Niederfrequenz.In this case, the ratio can be formed such that the first low frequency has a smaller frequency value than the second low frequency. It is also it is possible to form the ratio such that the first low frequency has a larger frequency value than the second low frequency.
Das Verhältnis kann ausgedrückt werden als: The ratio can be expressed as:
wobei A die Auswertgröße ist, ZN1 ein gemessener Impedanzwert der Batteriezelle bei einer ersten Niederfrequenz N1 und ZN2 ein gemessener Impedanzwert der Batteriezelle bei einer zweiten Niederfrequenz N2 ist, dabei ist N1 ≠ N2, bevorzugt ist N1 < N2.where A is the evaluation quantity, Z N1 is a measured impedance value of the battery cell at a first low frequency N1 and Z N2 is a measured impedance value of the battery cell at a second low frequency N2, where N1 ≠ N2, preferably N1 <N2.
Wird die Auswertgröße als Verhältnis absoluter Impedanzwerte zueinander angegeben, so ist der Referenzwert eine reelle Zahl ohne Einheit. Bevorzugt ist der Referenzwert > 1 ,10, besonders bevorzugt > 1 ,15.If the evaluation value is specified as the ratio of absolute impedance values to one another, the reference value is a real number without a unit. Preferably, the reference value is> 1, 10, more preferably> 1, 15.
Die Auswertgröße kann auch als reeller Niederfrequenzwert in Hz angegeben werden, bei dem ein bestimmter Schwellenimpedanzwert in Ohm erreicht oder überschritten wird. Dabei wird im aufgenommenen Impedanzspektrum der Batte- riezelle der Niederfrequenzwert bestimmt, bei dem ein festgelegter Schwellenimpedanzwert erreicht oder überschritten wird. Als Niederfrequenzwert wird dabei der niedrigste Frequenzwert eines Impedanzspektrums bezeichnet, bei dem der Schwellenimpedanzwert erreicht oder gerade überschritten wird. Als Schwellenimpedanzwert kann ein Impedanzwert ausgewählt werden, der zwischen ei- nem Impedanzminimum und einem Impedanzmaximum im niederfrequenten Bereich liegt.The evaluation value can also be specified as a real low frequency value in Hz at which a certain threshold impedance value in ohms is reached or exceeded. In this case, in the recorded impedance spectrum of the battery cell, the low-frequency value is determined at which a defined threshold impedance value is reached or exceeded. The low-frequency value is the lowest frequency value of an impedance spectrum at which the threshold impedance value is reached or just exceeded. As the threshold impedance value, it is possible to select an impedance value which lies between an impedance minimum and an impedance maximum in the low-frequency range.
Bevorzugt kann der Schwellenimpedanzwert für jeden Batteriezellentyp festgelegt werden und liegt in einem Bereich, der 90 % des Impedanzmaximums im Niederfrequenzbereich nicht überschreitet, besonders bevorzugt 80 % nicht überschreitet. Das Impedanzmaximum im Niederfrequenzbereich kann für jeden Batteriezelltyp dadurch bestimmt werden, dass ein Mittelwert gebildet wird von Im- pedanzmaxima im Niederfrequenzbereich einer Mehrzahl von Batteriezellen vom gleichen Typ, wobei bei der Impedanzmessung der jeweiligen Batteriezelle vom gleichen Typ nicht mehr als 10 % der durchschnittlichen Lebensdauer der Batteriezellen vom gleichen Typ abgelaufen ist. In einer besonderen Ausführungsform ist der Schwellenimpedanzwert ausgewählt aus dem Bereich 0,07 bis 0,1 Ohm, besonders bevorzugt ist ein Schwellenimpedanzwert von 0,07 bzw. 0,08 Ohm.Preferably, the threshold impedance value may be set for each battery cell type and is in a range not exceeding 90% of the maximum impedance in the low frequency range, more preferably not exceeding 80%. The impedance maximum in the low frequency range can be determined for each battery cell type by taking an average value of impedance maxima in the low frequency range of a plurality of battery cells of the same type, and in the impedance measurement of the respective battery cell of the same type, not more than 10% of the average lifetime of the battery Battery cells of the same type has expired. In a particular embodiment For example, the threshold impedance value is selected from the range of 0.07 to 0.1 ohms, more preferably a threshold impedance value of 0.07 or 0.08 ohms.
Ist die Auswertgröße ein Niederfrequenzwert, bei dem ein Schwellenimpedanz- wert erreicht oder gerade überschritten wird, so ist der Referenzwert eine reelleIf the evaluation variable is a low-frequency value at which a threshold impedance value is reached or is just exceeded, then the reference value is a real one
Zahl mit der Einheit Hz.Number with the unit Hz.
Die folgenden Auswertgrößen sind geeignet zur Identifizierung eines weiteren RC-Gliedes im Impedanzspektrum.The following evaluation variables are suitable for identifying a further RC element in the impedance spectrum.
Die Auswertgröße kann die Anzahl an Halbkreisbögen eines Impedanzspektrums im Nyquist-Plot sein.The evaluation value can be the number of semicircular arcs of an impedance spectrum in the Nyquist plot.
Die Auswertgröße kann die Anzahl an Wendepunkten eines Impedanzspektrums im Nyquist-Plot sein.The evaluation value can be the number of inflection points of an impedance spectrum in the Nyquist plot.
Die Auswertgröße kann auch die Anzahl an RC-Gliedern eines Impedanzspektrums sein.The evaluation variable can also be the number of RC elements of an impedance spectrum.
Ist die Auswertgröße die Anzahl an Halbkreisbögen oder die Anzahl an Wendepunkten eines Impedanzspektrums im Nyquist-Plot oder die Anzahl an RC-Gliedern eines Impedanzspektrums, so ist der Referenzwert eine reelle Zahl ohne Einheit.If the evaluation value is the number of semicircular arcs or the number of inflection points of an impedance spectrum in the Nyquist plot or the number of RC elements of an impedance spectrum, then the reference value is a real number without unit.
Zur Bestimmung eines Alterungszustandes der Batteriezelle wird die Auswertgröße mit einem entsprechenden Referenzwert verglichen. Anhand der bestimmten Abweichung von Auswertgröße und Referenzwert kann dann eine Aussage über den Alterungszustand der Batteriezelle getroffen werden. Der Referenzwert stellt die Vergleichsgröße dar, mit der die Auswertgröße verglichen wird. Dabei stellt der Referenzwert die entsprechende Größe zur Auswertgröße dar, wobei der Alterungszustand der Batteriezelle, die für die Ermittlung des Referenzwerts herangezogen wird, bekannt ist. Ist beispielsweise die Auswertgröße ein gemessener Impedanzwert bei einer bestimmten Niederfrequenz einer Batteriezelle, deren Alterungszustand zu bestimmen ist, so ist der entsprechende Re- ferenzwert ein bestimmter Impedanzwert bei derselben Niederfrequenz, bestimmt für eine oder mehrere Referenzbatteriezellen mit bekanntem Alterungszu- stand. Ist die Auswertgröße eine Anzahl an RC-Gliedern in einem gemessenen Impedanzspektrum, so ist der entsprechende Referenzwert die Anzahl an RC- Gliedern, bestimmt für eine oder mehrere Referenzbatteriezellen mit bekanntem Alterungszustand.To determine an aging state of the battery cell, the evaluation variable is compared with a corresponding reference value. On the basis of the specific deviation of evaluation value and reference value can then be made a statement about the aging state of the battery cell. The reference value represents the comparison quantity with which the evaluation value is compared. In this case, the reference value represents the corresponding quantity for the evaluation variable, the aging state of the battery cell used for determining the reference value being known. If, for example, the evaluation variable is a measured impedance value at a specific low frequency of a battery cell whose aging state is to be determined, the corresponding reference value is a specific impedance value at the same low frequency determined for one or more reference battery cells with known aging. was standing. If the evaluation variable is a number of RC elements in a measured impedance spectrum, then the corresponding reference value is the number of RC elements, determined for one or more reference battery cells with a known aging state.
Übersteigt die Auswertgröße den Referenzwert, so ist der Alterungszustand der analysierten Batteriezelle schlechter als der Alterungszustand der Batteriezelle(n) des Referenzwertes. Unterschreitet die Auswertgröße den Referenzwert, so ist der Alterungszustand der analysierten Batteriezelle besser als der Alterungszu- stand der Batteriezelle(n) des Referenzwertes. Der tatsächliche Wert, der als Referenzwert einer Bestimmung eines Alterungszustandes einer Batteriezelle zugrunde gelegt wird, hängt auch vom jeweiligen Batteriezellentyp ab und kann sich von Batteriezellentyp zu Batteriezellentyp unterscheiden. Dem Fachmann ist dieser Umstand bekannt und er hat keine Schwierigkeiten, für einen gegebenen Batteriezellentyp einen entsprechenden Referenzwert zu ermitteln.If the evaluation value exceeds the reference value, the aging state of the analyzed battery cell is worse than the aging state of the battery cell (s) of the reference value. If the evaluation value falls below the reference value, the aging state of the analyzed battery cell is better than the aging state of the battery cell (s) of the reference value. The actual value, which is the reference value for determining a state of aging of a battery cell, also depends on the respective battery cell type and may differ from battery cell type to battery cell type. The person skilled in the art knows this fact and he has no difficulty in determining a corresponding reference value for a given battery cell type.
Beispielhaft sind zwei Bestimmungsmethoden für einen Referenzwert genannt.By way of example, two determination methods for a reference value are mentioned.
Der Referenzwert kann beispielsweise bestimmt werden anhand einer Impe- danzspektroskopiemessung der zu analysierenden Batteriezelle aus Schritt a), wobei diese Referenzimpedanzspektroskopiemessung zeitlich vor der Aufnahme eines Impedanzspektrums gemäß Schritt b) des erfindungsgemäßen Verfahrens durchgeführt wird. Bevorzugt wird die Referenzimpedanzspektroskopiemessung zu einem Zeitpunkt vorgenommen, zu dem weniger als 10 % der durchschnittli- chen Lebensdauer von Batteriezellen des gleichen Typs abgelaufen sind. Besonders bevorzugt wird die Referenzimpedanzspektroskopiemessung vorgenommen vor einem ersten Einsatz der zu messenden Batteriezelle als Energiequelle.The reference value can be determined, for example, on the basis of an impedance spectroscopy measurement of the battery cell to be analyzed from step a), wherein this reference impedance spectroscopy measurement is carried out in time before recording an impedance spectrum according to step b) of the method according to the invention. Preferably, the reference impedance spectroscopy measurement is made at a time when less than 10% of the average life of battery cells of the same type has expired. Particularly preferably, the reference impedance spectroscopy measurement is performed before a first use of the battery cell to be measured as an energy source.
Der Referenzwert kann auch bestimmt werden durch Bildung eines Mittelwerts aus entsprechenden Werten, die für eine Mehrzahl von Referenzbatteriezellen vom gleichen Typ wie die zu analysierende Batteriezelle aus Schritt a) bestimmt werden. Welche einen bestimmten bekannten Alterungszustand aufweisen. Dabei werden die entsprechenden Werte jeweils anhand einer Referenzimpedanz- Spektroskopiemessung der einzelnen Referenzbatteriezellen vom gleichen Typ und des bestimmten, bekannten Alterungszustands ermittelt und anschließend ein Mittelwert daraus gebildet. Dabei kann die jeweilige Referenzimpedanzspektroskopiemessung von Referenzbatteriezellen vom gleichen Typ bevorzugt zu einem Zeitpunkt durchgeführt werden, zu dem weniger als 10 % der durchschnittlichen Lebensdauer der Referenzbatteriezellen abgelaufen sind. Im erfindungs- gemäßen Verfahren kann ein Referenzwert bestimmt werden durch Bildung eines Mittelwerts aus entsprechenden Werten, die für eine oder eine Mehrzahl von Referenzbatteriezellen vom gleichen Typ wie die Batteriezelle aus Schritt a) bestimmt werden, wobei die entsprechenden Werte jeweils anhand einer Referenzimpedanzspektroskopiemessung der einzelnen Referenzbatteriezelle ermit- telt werden und wobei die Referenzbatteriezellen eines Referenzwerts einen bestimmten, bekannten Alterungszustand aufweisen.The reference value may also be determined by averaging from corresponding values determined for a plurality of reference battery cells of the same type as the battery cell to be analyzed from step a). Which have a certain known aging state. In each case, the corresponding values are determined on the basis of a reference impedance spectroscopy measurement of the individual reference battery cells of the same type and of the specific, known state of aging, and then an average of this is formed. In this case, the respective reference impedance spectroscopy measurement of reference battery cells of the same type may preferably be performed at a time when less than 10% of the average lifetime of the reference battery cells has expired. In the method according to the invention, a reference value can be determined by forming an average of corresponding values determined for one or a plurality of reference battery cells of the same type as the battery cell of step a), the respective values in each case being based on a reference impedance spectroscopy measurement of the individual reference battery cell and wherein the reference battery cells of a reference value have a certain known aging state.
Durch die Erstellung einer Reihe von Referenzwerten für Referenzbatteriezellen unterschiedlichen bekannten Alterungszustandes lässt sich nicht nur der Alte- rungszustand einer zu analysierenden Batteriezelle gleichen Typs bestimmen. Es lassen sich auch präzise Prognosen über die noch verbleibende Lebensdauer der zu analysierenden Batteriezelle treffen. Die Auflösung der Prognose hängt dabei im Wesentlichen von der Dichte der Referenzwerte bekannten Alterungszustandes ab. Sind beispielsweise die Referenzwerte für Referenzbatteriezellen gleichen Typs mit einem 50-Tage Abstand im Alterungszustand, beginnend von der neuen Referenzbatteriezelle bis hin zur komplett verbrauchten Referenzbatteriezelle, bekannt, so kann mit einer Genauigkeit von ± 50 Tagen eine Prognose über die verbleibende Restlebensdauer einer zu bestimmenden Batteriezelle gleichen Typs erstellt werden.By creating a series of reference values for reference battery cells of different known aging states, it is not only possible to determine the aging state of a battery cell of the same type to be analyzed. It is also possible to make precise predictions about the remaining life of the battery cell to be analyzed. The resolution of the prognosis depends essentially on the density of the reference values of the known state of aging. If, for example, the reference values for reference battery cells of the same type with a 50-day gap in the aging state, starting from the new reference battery cell to the completely used reference battery cell, are known, then with an accuracy of ± 50 days, a prognosis can be made about the remaining life of a battery cell to be determined of the same type.
Die Erfindung bezieht sich auch auf die Verwendung eines Impedanzspektrums einer Batteriezelle zur Bestimmung eines Alterszustandes eines Akkumulators, der diese Batteriezelle umfasst.The invention also relates to the use of an impedance spectrum of a battery cell for determining an age condition of a rechargeable battery comprising this battery cell.
Daneben bezieht sich die Erfindung auch auf eine Verwendung des erfindungsgemäßen Verfahrens zur Prognose einer Lebensdauer einer Batteriezelle oder eines Akkumulators.In addition, the invention also relates to a use of the method according to the invention for predicting a service life of a battery cell or a rechargeable battery.
Das erfindungsgemäße Verfahren lässt sich zur schnellen Zellbewertung neu zu qualifizierender Batteriezellen einsetzen, ebenso wie zur Bestimmung des Alterungszustandes von Batteriezellen. Durch das erfindungsgemäße Verfahren lassen sich Testzeiten und gegebenenfalls Testzyklen einsparen, da relevante Informationen bereits zu einem frühen Zeitpunkt erhalten werden können. Das erfindungsgemäße Verfahren kann in Hybrid (HEV)- und Elektro (EV)-Fahrzeugen zur SOH-Bestimmung (state of health) und als Teil eines Batteriemanagement- Systems eingesetzt werden.The method according to the invention can be used for rapid cell evaluation of new-qualifying battery cells, as well as for the determination of the aging state of battery cells. By the method according to the invention Test times and possibly test cycles can be saved as relevant information can be obtained at an early stage. The method according to the invention can be used in hybrid (HEV) and electric (EV) vehicles for SOH determination (state of health) and as part of a battery management system.
Durch Anwendung impedanzspektroskopischer Methoden können der Alterungszustand und die voraussichtliche Lebensdauer einzelner Batteriezellen und damit eines Akkumulators schneller und deutlich genauer bestimmt werden, als bei den bislang gebräuchlichen Methoden. Insbesondere ist aus den üblichen Messungen der Kapazität und des Gleichstromwiderstands über der Zeit praktisch keine sinnvolle Vorhersage über die Lebensdauer der Zelle möglich. Zudem ist die Auswertung der entsprechenden Impedanzspektren einfach und ohne großen Aufwand möglich. Darüber hinaus kann die Impedanzspektroskopie in einer Messung auch weitere Informationen liefern, die über die Ursachen der Alterung Auskunft geben können. So lässt beispielsweise der Frequenzbereich der Impedanzänderung Aufschlüsse darüber zu, in welchem Teil der Zelle Veränderungen aufgetreten sind. Die Methode ist prinzipiell bei allen gebräuchlichen Akkumulatortechnologien wie Blei-Säure, Nickel-Cadmium, Nickel-Metallhydrid und Natrium-Natri- umnickelchlorid (Zebra) anwendbar, besonders bevorzugt bei Lithium-Ionen Akkumulatoren.By using impedance spectroscopic methods, the state of aging and the expected service life of individual battery cells and thus of a rechargeable battery can be determined more quickly and clearly more accurately than in the hitherto conventional methods. In particular, practically no meaningful prediction over the life of the cell is possible from the usual measurements of capacitance and DC resistance over time. In addition, the evaluation of the corresponding impedance spectra is simple and possible without great effort. In addition, impedance spectroscopy in a measurement can also provide further information that can provide information about the causes of aging. For example, the frequency range of the impedance change provides information about which part of the cell has undergone changes. The method is in principle applicable to all conventional accumulator technologies such as lead-acid, nickel-cadmium, nickel-metal hydride and sodium-sodium nickel chloride (zebra), particularly preferred in lithium-ion batteries.
Figurencharacters
Fig.1 a Impedanzspektren der bei +600C gealterten Lithium-Ionen Batteriezelle 102 im Nyquist-Plot.1 a impedance spectra of the aged at + 60 0 C lithium-ion battery cell 102 in the Nyquist plot.
Fig.1 b Impedanzspektren der bei +600C gealterten Lithium-Ionen Batteriezelle 103 im Nyquist-Plot.1 b Impedanzspektren of +60 0 C aged lithium-ion battery cell 103 in the Nyquist plot.
Fig. 2a Impedanzspektren der bei +600C gealterten Lithium-Ionen Batteriezellen 102 im Bode-Diagramm.Fig. 2a impedance spectra of aged at +60 0 C lithium-ion battery cells 102 in the Bode diagram.
Fig. 2b Impedanzspektren der bei +600C gealterten Lithium-Ionen Batte- riezellen 103 im Bode-Diagramm. Beschreibung von AusführungsbeispielenFig. 2b impedance spectra of aged at +60 0 C lithium-ion battery-riezellen 103 in the Bode diagram. Description of exemplary embodiments
Erfindungsgemäß wird die Bestimmung des Alterungszustandes sowie die Lebensdauerprognose durch Impedanzspektroskopie durchgeführt. Es konnte vorliegend gezeigt werden, dass sich die Alterung der Zellen vornehmlich durch zwei Anzeichen bemerkbar macht, hier an einer unserer Messreihen mit Lithium-According to the invention, the determination of the state of aging as well as the lifetime prognosis is carried out by impedance spectroscopy. In the present case, it has been shown that the aging of the cells is mainly due to two signs, here on one of our series of measurements with lithium
Ionen-Akkumulatoren exemplarisch verdeutlicht:Ion accumulators exemplarily clarified:
1 ) Impedanzerhöhung im Niederfrequenzbereich1) Impedance increase in the low frequency range
Ein zunehmender Alterungszustand bei diesen Zellen zeigt sich durch Erhöhung der Impedanz, vor allem im niederfrequenten Bereich (siehe Fig. 2). Die Impe- danzerhöhung ist im Wesentlichen unabhängig von der Alterungsdauer, sondern vielmehr von allen relevanten Faktoren abhängig, die zur Alterung beitragen, wie u.a. SOC (state of Charge) und Temperatur. Somit kann die Impedanzerhöhung zur Quantifizierung des Alterungszustandes herangezogen und insbesondere für eine Lebensdauerprognose verwendet werden.An increasing aging state in these cells is manifested by an increase in the impedance, especially in the low-frequency range (see FIG. 2). The increase in impedance is essentially independent of the duration of aging, but rather depends on all relevant factors contributing to aging, such as i.a. SOC (state of charge) and temperature. Thus, the impedance increase can be used to quantify the state of aging and used in particular for a life expectancy.
2) Ausbildung eines zweiten RC-Gliedes im Impedanzspektrum2) Formation of a second RC element in the impedance spectrum
Neben der Impedanzerhöhung im niederfrequenten Bereich wird im Laufe der Zellalterung bei diesen Zellen auch die sukzessive Ausbildung eines zweiten RC-Gliedes im Spektrum beobachtet (siehe Fig. 1 ). Der Übergang von nur einem hin zu zwei RC-Gliedern im Spektrum, die durch Halbkreisbögen im Nyquist-Plot darge- stellt werden, erfolgt fließend. Es wird gezeigt, dass der Grad der Ausbildung des zweiten Halbkreisbogens mit der Zeltalterung korreliert. Darüber hinaus geht ein Grad der Ausbildung des zweiten Halbkreisbogens mit dem unmittelbar bevorstehenden Ende der Lebensdauer einher. Somit kann bereits zu Beginn der Ausbildung des zweiten Bogens auf das Ende der Lebensdauer geschlossen werden, was eine zuverlässige Prognose der Lebensdauer zu einem frühen Zeitpunkt möglich macht.In addition to the impedance increase in the low-frequency range, the successive formation of a second RC element in the spectrum is also observed in the course of cell aging in these cells (see FIG. 1). The transition from only one to two RC elements in the spectrum, which are represented by semicircular arcs in the Nyquist plot, takes place fluently. It is shown that the degree of formation of the second semicircle correlates with the aging of the tent. In addition, a degree of formation of the second semicircular arc is associated with the imminent end of the life. Thus, already at the beginning of the formation of the second sheet can be closed to the end of the life, which makes a reliable prognosis of the life at an early stage possible.
Die hier beschriebenen Effekte bei Impedanzmessungen sind bei niedrigeren Temperaturen noch deutlicher zu erkennen. Zudem ist auch der Beginn der nie- derfrequenten Impedanzerhöhung früher zu erkennen, wenn die Messungen auf noch kleinere Frequenzen ausgedehnt werden. In Fig. 1 a und Fig. 1 b sind die Impedanzspektren zweier Zellen jeweils im Ny- quist-Plot dargestellt. Während Zelle 102 (Fig. 1 a) bereits nach 161 Tagen das Ende ihrer Lebensdauer erreicht hat, trat dies bei Zelle 103 (Fig. 1 b) erst nach 401 Tagen ein. Dennoch sieht man bei beiden Zellen gegen Ende ihrer Lebens- dauer die signifikante Ausprägung eines zweiten RC-Gliedes im Spektrum.The effects described here for impedance measurements can be seen even more clearly at lower temperatures. In addition, the beginning of the low-frequency impedance increase can be recognized earlier if the measurements are extended to even lower frequencies. In FIGS. 1 a and 1 b, the impedance spectra of two cells are shown in the Nyquist plot. While cell 102 (Figure 1a) has reached its end of life already after 161 days, cell 103 (Figure 1b) did not enter until after 401 days. Nevertheless, in the case of both cells towards the end of their lifespan, the significant manifestation of a second RC element in the spectrum can be seen.
In Fig. 2a und Fig. 2b sind die Impedanzspektren der gleichen beiden Zellen als Bode-Darstellungen wiedergegeben (Legende siehe Fig. 1 a bzw. Fig. 1 b). Es ist deutlich zu erkennen, dass zum Lebensdauerende der Zellen hin eine signifikante Erhöhung der Impedanz im niederfrequenten Bereich sichtbar wird. Diese Erhö- hung deutet sich bereits zu frühen Zeitpunkten dadurch an, dass die Impedanzkurve am linken Ende des Frequenzbereichs beginnt, sich nach oben hin zu krümmen. In FIGS. 2 a and 2b, the impedance spectra of the same two cells are reproduced as Bode representations (legend see FIG. 1 a or FIG. 1 b). It can be clearly seen that a significant increase in the impedance in the low-frequency range becomes visible towards the end of life of the cells. This increase is already indicated at an early point in time because the impedance curve at the left end of the frequency range begins to curve upwards.

Claims

Ansprüche claims
1 . Verfahren zur Bestimmung eines Alterungszustandes einer Batteriezelle um- fassend die Schritte a) Bereitstellen einer Batteriezelle; b) Aufnahme eines Impedanzspektrums der Batteriezelle; c) Ermittlung einer Auswertgröße anhand des gemessenen Impedanzspektrums; d) Bestimmung eines Alterungszustandes der Batteriezelle anhand eines1 . Method for determining an aging state of a battery cell comprising the steps of a) providing a battery cell; b) recording an impedance spectrum of the battery cell; c) determination of an evaluation variable on the basis of the measured impedance spectrum; d) Determination of an aging condition of the battery cell by means of a
Vergleichs der Auswertgröße mit einem Referenzwert.Comparison of the evaluation value with a reference value.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Auswertgröße ein gemessener Impedanzwert in Ohm bei einer bestimmten Nieder- frequenz ist und der Referenzwert eine reelle Zahl mit der Einheit Ohm ist.2. The method according to claim 1, characterized in that the evaluation value is a measured impedance value in ohms at a certain low frequency and the reference value is a real number with the unit ohms.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Auswertgröße das Verhältnis angibt eines gemessenen Impedanzwertes bei einer ersten Niederfrequenz zu einem gemessenen Impedanzwert bei einer zwei- ten Niederfrequenz und der Referenzwert ein bestimmte reelle Zahl ist.3. The method according to claim 1, characterized in that the evaluation variable is the ratio of a measured impedance value at a first low frequency to a measured impedance value at a second low frequency and the reference value is a specific real number.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Wert der ersten Niederfrequenz kleiner ist als der Wert der zweiten Niederfrequenz.4. The method according to claim 3, characterized in that the value of the first low frequency is smaller than the value of the second low frequency.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Auswertgröße eine Niederfrequenz in Hz ist, bei der ein bestimmter Schwellenimpe- danzwert in Ohm erreicht oder überschritten wird und der Referenzwert eine reelle Zahl mit der Einheit Hz ist.5. The method according to claim 1, characterized in that the evaluation variable is a low frequency in Hz at which a certain threshold impedance value in ohms is reached or exceeded and the reference value is a real number with the unit Hz.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Auswertgröße eine Anzahl von RC-Gliedern im gemessenen Impedanzspektrum der Batteriezelle ist und der Referenzwert eine reelle Zahl ohne Einheit ist.6. The method according to claim 1, characterized in that the evaluation value is a number of RC elements in the measured impedance spectrum of the battery cell and the reference value is a real number without unit.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der Referenzwert bestimmt wird anhand einer Referenzimpedanzspektroskopiemessung der Batteriezelle aus Schritt a), wobei diese Referenzimpedanzspektroskopiemessung zeitlich vor der Aufnahme eines Impedanzspektrums gemäß Schritt b) durchgeführt wird.7. The method according to any one of the preceding claims, characterized in that the reference value is determined based on a Referenzimpedanzspektroskopiemessung the battery cell from step a), wherein this reference impedance spectroscopy measurement is performed prior to the acquisition of an impedance spectrum according to step b).
8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Referenzwert bestimmt wird durch Bildung eines Mittelwerts aus entsprechenden Werten, die für eine oder eine Mehrzahl von Referenzbatteriezellen vom gleichen Typ wie die Batteriezelle aus Schritt a) bestimmt werden, wobei die entsprechenden Werte jeweils anhand einer Referenzimpedanzspektroskopiemessung der einzelnen Referenzbatteriezelle ermittelt werden und wobei die Referenzbatteriezellen eines Referenzwerts einen bestimmten, bekannten Alterungszustand aufweisen.8. The method according to claim 1, wherein the reference value is determined by averaging from corresponding values determined for one or a plurality of reference battery cells of the same type as the battery cell of step a), wherein the corresponding values are respectively determined on the basis of a reference impedance spectroscopy measurement of the individual reference battery cell and wherein the reference battery cells of a reference value have a specific, known aging state.
9. Verwendung eines Impedanzspektrums einer Batteriezelle zur Bestimmung eines Alterszustandes eines Akkumulators, der diese Batteriezelle umfasst.9. Use of an impedance spectrum of a battery cell for determining an age condition of a rechargeable battery comprising this battery cell.
10. Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 8 zur Prognose einer Lebensdauer einer Batteriezelle oder eines Akkumulators. 10. Use of a method according to one of claims 1 to 8 for predicting a lifetime of a battery cell or a rechargeable battery.
EP10700129A 2009-01-21 2010-01-14 Method for determining an aging condition of a battery cell by means of impedance spectroscopy Withdrawn EP2389703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009000337A DE102009000337A1 (en) 2009-01-21 2009-01-21 Method for determining an aging state of a battery cell by means of impedance spectroscopy
PCT/EP2010/050381 WO2010084072A1 (en) 2009-01-21 2010-01-14 Method for determining an aging condition of a battery cell by means of impedance spectroscopy

Publications (1)

Publication Number Publication Date
EP2389703A1 true EP2389703A1 (en) 2011-11-30

Family

ID=41718282

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10700129A Withdrawn EP2389703A1 (en) 2009-01-21 2010-01-14 Method for determining an aging condition of a battery cell by means of impedance spectroscopy

Country Status (6)

Country Link
US (1) US20120019253A1 (en)
EP (1) EP2389703A1 (en)
KR (1) KR20110124204A (en)
CN (1) CN102292864A (en)
DE (1) DE102009000337A1 (en)
WO (1) WO2010084072A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133813A1 (en) 2016-02-04 2017-08-10 Siemens Aktiengesellschaft Method for determining the ageing of an electrochemical storage means
DE102016215991A1 (en) 2016-08-25 2018-03-01 Siemens Aktiengesellschaft Method for determining the age of an electrochemical energy store

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9851414B2 (en) 2004-12-21 2017-12-26 Battelle Energy Alliance, Llc Energy storage cell impedance measuring apparatus, methods and related systems
US10379168B2 (en) 2007-07-05 2019-08-13 Battelle Energy Alliance, Llc Apparatuses and methods for testing electrochemical cells by measuring frequency response
AT510877B1 (en) * 2010-12-30 2013-06-15 Oesterreichisches Forschungs Und Pruefzentrum Arsenal Ges M B H METHOD FOR DETERMINING THE MAXIMUM LOAD CAPACITY AVAILABLE IN THE MOMENT
JPWO2012095913A1 (en) * 2011-01-14 2014-06-09 パナソニック株式会社 Lithium ion secondary battery deterioration evaluation method and battery pack
US9322884B2 (en) 2012-01-06 2016-04-26 Industrial Technology Research Institute Impedance analyzing device
US20130179103A1 (en) * 2012-01-06 2013-07-11 Industrial Technology Research Institute Battery analysis device and method thereof
EP2811312B1 (en) * 2012-01-31 2019-04-24 Primearth EV Energy Co., Ltd. Battery state detection device
EP2811310B1 (en) 2012-01-31 2019-05-15 Primearth EV Energy Co., Ltd. State of charge detection device
DE102012207806A1 (en) 2012-05-10 2013-11-14 Robert Bosch Gmbh Method for operating a battery system, battery system and motor vehicle
DE102012207860A1 (en) * 2012-05-11 2013-11-14 Siemens Aktiengesellschaft Method for determining a total capacity loss of a secondary cell
DE102012014014B4 (en) 2012-07-17 2018-09-20 Technische Universität Braunschweig Method and device for condition determination of batteries
FR2994745B1 (en) * 2012-08-21 2016-07-01 Centre Nat D' Etudes Spatiales (Cnes) METHOD FOR ESTIMATING THE AGING OF A BATTERY
DE102013214821A1 (en) 2013-07-30 2015-02-05 Robert Bosch Gmbh Electrochemical storage module and method for examining an electrochemical storage cell in a module
CN103399280B (en) * 2013-08-01 2015-08-05 哈尔滨工业大学 Based on the cycle life of lithium ion battery Forecasting Methodology of NSDP-AR model
KR101511655B1 (en) 2013-08-30 2015-04-13 숭실대학교산학협력단 Charger with Embedded Battery Diagnosis And Control Method thereof
CN103801521B (en) * 2014-01-28 2016-08-17 国家电网公司 A kind of method for separating of secondary cell
CN104833920B (en) * 2014-07-25 2017-10-10 北汽福田汽车股份有限公司 The failure analysis methods and system of battery modules
US10386422B2 (en) 2014-07-25 2019-08-20 Lithium Balance A/S Electrochemical impedance spectroscopy in battery management systems
DE102014217135A1 (en) 2014-08-28 2016-03-03 Volkswagen Aktiengesellschaft Method and device for determining a state-of-health and a state-of-charge value of a battery
CN104615894B (en) * 2015-02-13 2018-09-28 上海中医药大学 A kind of Chinese Medicine Diagnoses System based on k neighbour's label certain weights features
DE102015203878A1 (en) 2015-03-04 2016-09-22 Volkswagen Aktiengesellschaft Method and device for diagnosing a battery system
WO2016145374A1 (en) * 2015-03-11 2016-09-15 University Of Washington Electrochemical cell diagnostic systems and methods using second order and higher harmonic components
US9958509B2 (en) 2015-05-29 2018-05-01 Foundation Of Soongsil University-Industry Cooperation Charger having battery diagnosis function and method of driving the same
CN104914312B (en) * 2015-06-18 2018-01-30 哈尔滨工业大学 A kind of method for calculating the distribution of ac impedance spectroscopy relaxation time
WO2017005904A1 (en) * 2015-07-09 2017-01-12 Lithium Balance A/S System for providing an excitation signal to an electrochemical system and method therefor
DE102016201026B4 (en) 2016-01-25 2019-03-21 Volkswagen Aktiengesellschaft Method and device for determining a residual capacity of a lead-acid battery
US10345384B2 (en) 2016-03-03 2019-07-09 Battelle Energy Alliance, Llc Device, system, and method for measuring internal impedance of a test battery using frequency response
US10656233B2 (en) 2016-04-25 2020-05-19 Dynexus Technology, Inc. Method of calibrating impedance measurements of a battery
DE102016208422A1 (en) 2016-05-17 2017-11-23 Robert Bosch Gmbh Apparatus and method for determining a capacity of an electrical energy storage
AT518762B1 (en) * 2016-05-27 2021-06-15 Leonh Lang Testing device
FR3051915B1 (en) * 2016-05-31 2020-06-12 Thales METHOD FOR DETERMINING AN ELECTRICAL DERIVATIVE COEFFICIENT OF AN ELECTRONIC CIRCUIT, COMPUTER PROGRAM PRODUCT AND ELECTRONIC DEVICE THEREOF
JP6672112B2 (en) * 2016-09-06 2020-03-25 プライムアースEvエナジー株式会社 Battery capacity measuring device and battery capacity measuring method
JP6508729B2 (en) * 2016-12-02 2019-05-08 トヨタ自動車株式会社 Battery state estimation device
CN106842066B (en) * 2017-04-21 2019-03-08 惠州亿纬锂能股份有限公司 A kind of detection method and device of discharge capacity of the cell
CN108957323B (en) * 2017-05-18 2021-02-02 中信国安盟固利动力科技有限公司 Method and device for judging health state of battery
CN111095008B (en) * 2017-07-13 2022-04-29 多伦多大学管理委员会 Electrical architecture for electrochemical impedance spectroscopy
CN107607880B (en) * 2017-09-19 2020-04-24 哈尔滨工业大学 Lithium ion battery internal health feature extraction method based on impedance spectrum
JP6826016B2 (en) * 2017-09-28 2021-02-03 プライムアースEvエナジー株式会社 Secondary battery ion concentration estimation method and ion concentration estimation device
DE102018108738A1 (en) * 2018-04-12 2019-10-17 Volkswagen Aktiengesellschaft Method for determining a state of aging of a battery, computer program, storage means, control unit and vehicle
JP7020273B2 (en) * 2018-04-26 2022-02-16 トヨタ自動車株式会社 Battery information processing system, assembled battery, battery module capacity calculation method, and assembled battery manufacturing method
WO2019215786A1 (en) * 2018-05-07 2019-11-14 三菱電機株式会社 Cell degradation detection device and cell temperature estimation device
CN113196072A (en) * 2018-09-26 2021-07-30 亚琛工业大学 Method and apparatus for battery diagnostics
DE102018216517A1 (en) * 2018-09-26 2020-03-26 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Method and device for diagnosing battery cells
DE102019000754B4 (en) 2019-02-01 2021-02-04 Diehl Aerospace Gmbh Determination of the current capacity of an accumulator
US11054481B2 (en) 2019-03-19 2021-07-06 Battelle Energy Alliance, Llc Multispectral impedance determination under dynamic load conditions
WO2020223651A1 (en) 2019-05-02 2020-11-05 Dynexus Technology, Inc. Multispectral impedance determination under dynamic load conditions
WO2020236013A1 (en) * 2019-05-20 2020-11-26 Waikatolink Limited Battery performance assessment method and apparatus
JP2021076421A (en) * 2019-11-06 2021-05-20 三菱重工業株式会社 Battery diagnosis device, forklift, charger, method for diagnosing battery, and program
US11422102B2 (en) 2020-01-10 2022-08-23 Dynexus Technology, Inc. Multispectral impedance measurements across strings of interconnected cells
US11519969B2 (en) 2020-01-29 2022-12-06 Dynexus Technology, Inc. Cross spectral impedance assessment for cell qualification
DE102020104584B3 (en) * 2020-02-21 2021-05-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Structure monitoring by means of impedance spectroscopy on a structure-integrated energy storage system
EP3875975B1 (en) * 2020-03-03 2022-09-14 Safion GmbH Method and device for load transfer for electrochemical impedance spectroscopy
DE102020115887A1 (en) 2020-06-16 2021-12-16 Volkswagen Aktiengesellschaft Method for determining a condition of a cell of a battery
DE102020117706B4 (en) 2020-07-06 2023-04-20 Man Truck & Bus Se Technique for determining mechanical stresses in a traction energy store
KR20220062225A (en) * 2020-11-06 2022-05-16 현대자동차주식회사 System and method for managing battery of vehicle
KR20220068806A (en) * 2020-11-19 2022-05-26 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing battery
CN112327171B (en) * 2020-11-30 2021-11-09 同济大学 Lithium ion battery life estimation method based on relaxation time distribution
CN112698230A (en) * 2020-12-02 2021-04-23 国网上海市电力公司 Method for rapidly measuring dynamic impedance of health state of lithium ion battery
DE102021002742A1 (en) 2020-12-17 2022-06-23 Hans-Peter Beck Procedure for forecasting the internal resistance and capacity of electrochemical systems, such as batteries, to optimize their use
KR102657496B1 (en) * 2020-12-28 2024-04-12 주식회사 엘지에너지솔루션 Apparatus and method for managing battery
WO2022239963A1 (en) * 2021-05-12 2022-11-17 주식회사 엘지에너지솔루션 Method for predicting lifetime characteristics of lithium secondary battery
DE102021003117B4 (en) 2021-06-20 2023-03-16 Ulrich Twelmeier Method and device for preventing or reducing the risk of a short circuit in a lithium-ion battery caused by dendrites
DE102021006585B4 (en) 2021-06-20 2023-04-06 Ulrich Twelmeier Method for preventing or reducing the risk of a short circuit in a lithium-ion battery caused by dendrites
CN113917352B (en) * 2021-10-14 2022-07-26 浙江大学 Online aging diagnosis method for catalyst layer of fuel cell based on impedance aging characteristic
KR20230086193A (en) * 2021-12-08 2023-06-15 주식회사 엘지에너지솔루션 Method and apparatus for diagnosing battery cell
DE102022105462B3 (en) * 2022-03-08 2023-06-22 Voith Patent Gmbh Method for monitoring a battery power plant
FR3141770A1 (en) 2022-11-04 2024-05-10 Chipiron Apparatus and method for imaging metallic or partially metallic bodies by magnetic resonance, application of this method to the imaging of electrochemical cells
DE102022131624A1 (en) 2022-11-29 2024-05-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for determining states of galvanic cells subject to degradation using electrochemical impedance spectroscopy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303460A (en) * 1992-12-24 1997-02-19 Elcorp Pty Ltd Generating signals representative of resistive and reactive components of an impedance
US6805788B1 (en) * 1998-07-10 2004-10-19 Lynntech, Inc. Electrochemical impedance evaluation and inspection sensor
US6989680B2 (en) * 2004-02-24 2006-01-24 Eaton Corporation Detection of coolant contamination in lubricating fluids
DE102004024973A1 (en) * 2004-04-23 2005-12-01 Daimlerchrysler Ag Process for the timed withdrawal of electric current from an electrical energy source as for electric traction and vehicle on board supply operates at frequencies to minimize loss
EP1820040A4 (en) * 2004-11-29 2009-03-11 Hydrogenics Corp Systems and methods for detecting and indicating fault conditions in electrochemical cells
US7710119B2 (en) * 2004-12-09 2010-05-04 Midtronics, Inc. Battery tester that calculates its own reference values
US7982432B2 (en) * 2006-12-22 2011-07-19 Gm Global Technology Operations, Llc Method and system for monitoring an electrical energy storage device
US8738124B2 (en) * 2007-12-11 2014-05-27 Epi-Sci, Llc Electrical bioimpedance analysis as a biomarker of breast density and/or breast cancer risk

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010084072A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133813A1 (en) 2016-02-04 2017-08-10 Siemens Aktiengesellschaft Method for determining the ageing of an electrochemical storage means
DE102016223326A1 (en) 2016-02-04 2017-08-10 Siemens Aktiengesellschaft Method for determining the aging of an electrochemical store
DE102016215991A1 (en) 2016-08-25 2018-03-01 Siemens Aktiengesellschaft Method for determining the age of an electrochemical energy store
WO2018036873A1 (en) 2016-08-25 2018-03-01 Siemens Aktiengesellschaft Method for determining the age of an electrochemical energy storage unit

Also Published As

Publication number Publication date
KR20110124204A (en) 2011-11-16
CN102292864A (en) 2011-12-21
US20120019253A1 (en) 2012-01-26
WO2010084072A1 (en) 2010-07-29
DE102009000337A1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2010084072A1 (en) Method for determining an aging condition of a battery cell by means of impedance spectroscopy
DE112018007494B4 (en) STORAGE BATTERY DIAGNOSTIC DEVICE, STORAGE BATTERY DIAGNOSTIC PROCEDURE AND STORAGE BATTERY CONTROL SYSTEM
EP1429152A1 (en) Method for predicting the internal resistance of a battery and a monitoring device for batteries
DE112013005746T5 (en) Post-deterioration performance estimator and post-deterioration performance estimation method for an energy storage device and energy storage system
DE102017006334B3 (en) Method and device for detecting and avoiding degradative processes during charging of rechargeable battery cells and their use
DE102014001260A1 (en) Battery and method for determining the state of aging of a battery
DE102010062187A1 (en) Method for determining the open circuit voltage of a battery, battery with a module for determining the open circuit voltage and a motor vehicle with a corresponding battery
DE112018001790T5 (en) DEVICE FOR MANAGING AN ENERGY STORAGE DEVICE AND METHOD FOR MANAGING AN ENERGY STORAGE DEVICE
WO2021143983A1 (en) Characterisation of rechargeable batteries using machine-learned algorithms
DE102019007510A1 (en) Method for determining a state of health of an electrical energy store by means of a stored capacity model depending on an anode overhang effect, and electronic computing device
EP3730958A1 (en) Method for evaluating the state of health of a high-voltage battery and battery tester
WO2011057846A1 (en) Battery management unit for estimating battery impedance
DE102013206188A1 (en) Determining a state of an accumulator
DE102010051008A1 (en) Control device for electric drive for hybrid vehicle, determines relevant characteristic or relevant change of characteristic of battery of electric drive, in order to control components of electric drive
DE102020206272A1 (en) BATTERY MANAGEMENT SYSTEM WITH MIXED ELECTRODE
DE102010051009A1 (en) Method for determining charge condition of automotive battery in e.g. electric vehicle, involves comparing determined charge stroke with corresponding charge stroke of pre-stored open circuit voltage-characteristic line
EP4123319B1 (en) Method, device and a computer program for assessing the service life of batteries
DE102018108184A1 (en) Method and device for determining the state of a rechargeable battery and computer program
EP3391067B1 (en) Method for determining the ageing of an electrochemical storage means
DE102018219124B4 (en) Method for determining a state of wear of an electrical energy store in a motor vehicle and control device for performing the method and motor vehicle
DE102019125236A1 (en) Battery cell with a diagnostic unit, method for diagnosing the condition of a battery cell, battery and motor vehicle with a battery
DE102020202307A1 (en) Electrical energy storage system with several electrochemical energy storage units of different electrochemical types connected in series
DE102013215316A1 (en) Method for detecting the state of an energy storage
DE102022109561A1 (en) ELECTROCHEMICAL METHODS FOR IDENTIFICATION OF CELL QUALITY
DE102022200008A1 (en) Method and system for efficiently monitoring battery cells of a device battery in a device-external central unit using a digital twin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120320