EP2380236B1 - Flat screen with integrated antenna - Google Patents

Flat screen with integrated antenna Download PDF

Info

Publication number
EP2380236B1
EP2380236B1 EP09801236.2A EP09801236A EP2380236B1 EP 2380236 B1 EP2380236 B1 EP 2380236B1 EP 09801236 A EP09801236 A EP 09801236A EP 2380236 B1 EP2380236 B1 EP 2380236B1
Authority
EP
European Patent Office
Prior art keywords
flat screen
slot
antenna
conductive strip
screen according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09801236.2A
Other languages
German (de)
French (fr)
Other versions
EP2380236A1 (en
Inventor
Christophe Prat
Lionel Rudant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2380236A1 publication Critical patent/EP2380236A1/en
Application granted granted Critical
Publication of EP2380236B1 publication Critical patent/EP2380236B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the invention relates to a flat screen, of the active matrix type, comprising an integrated antenna.
  • the invention also relates to a portable electronic device, such as a mobile phone, comprising such a screen.
  • the screen - liquid crystal (LCD) or organic light-emitting diodes (OLED) - tends to occupy the largest possible area, usually at the expense of the keyboard that is sometimes purely and simply deleted to be replaced by a touch screen. It has therefore been envisaged to integrate transmitting and / or receiving antennas to flat screens.
  • the document US2004189625 discloses an antenna made of a conductive material integrated in a pixel screen.
  • the documents US 6,973,709 and US 6,825,811 describe antennas formed by a pattern made of transparent conductive material (ITO: indium oxide and tin) deposited on the screen. We speak of antennas printed on the screen (POD: printed-on-display).
  • ITO transparent conductive material
  • the document US 7,336,270 describes an RFID antenna made on the substrate of a liquid crystal screen, next to the screen itself, and connected to an electronic chip mounted on the same substrate.
  • This antenna is made at the same time as a conductive element of the screen, without the need for an additional technological step.
  • the antenna considered is an RFID antenna operating in the near field.
  • the invention aims to solve the aforementioned drawbacks of the prior art by providing a screen provided with an integrated antenna whose manufacture does not require - or very few - additional technological steps, and allows more optimal use of the 'available space.
  • antenna is meant a radiating antenna, operating in the far field, transmitting and / or receiving.
  • this object can be achieved by a flat screen comprising an active matrix of pixels, an electrode common to said pixels and a conductive strip connected to said common electrode and at least partially surrounding said active matrix, characterized in that at least one slot forming an antenna is formed in said conductive strip.
  • the conductive strip may form a ring surrounding at least a portion of said active matrix (this is the case most common in the prior art), but it may also have an open shape, for example L or U.
  • the generally annular conductive strip surrounding the active matrix and its common electrode is normally provided in the active matrix flat screens in order to standardize the potential of said common electrode (generally the cathode). Therefore, the implementation of the invention does not increase the dimensions of the device.
  • the slot antenna can be produced simultaneously with the production by deposition of the conductive strip, thanks to a suitable photolithographic mask. The extra cost generated is therefore virtually zero.
  • Another object of the invention is a portable apparatus comprising: such a flat screen; an electronic card comprising a ground plane parallel to said flat screen and electrically connected with the conductive strip of the latter; means for generating and / or detecting radio frequency electrical signals; and an excitation port of the slot antenna integrated in the flat screen, connected to said means for generating and / or detecting radio frequency electrical signals.
  • the slot antenna may be sized to have a resonance and be at least approximately impedance matched to the excitation port at a frequency of electrical signals generated or detected by said means.
  • a flat screen E active matrix OLED type generally comprises a transparent substrate S, typically made of glass, on which is deposited a matrix M of electrodes (anodes) A transparent, individually connected to lines of d power supply (not shown) via thin-film transistors T.
  • a layer of electroluminescent semiconductor polymer forming the OLEDs is deposited on the anodes A.
  • Anode A and the corresponding OLED form a pixel, or more precisely a subpixel (a complete pixel consisting of three pixels of different colors: blue, green and red).
  • a metal layer C disposed above this polymer layer, forms a cathode common to all the pixels.
  • the common cathode C has a very small thickness, of the order of 1 micron, facing lateral dimensions (width, length) of a few centimeters.
  • lateral dimensions width, length
  • Such a ring - indicated by the reference R on the figures 2 and 3a - 3rd may typically have a thickness of between 50 nm and 2 ⁇ m, and preferably between 100 nm and 1 ⁇ m and a width of between 50 ⁇ m and 10 mm and preferably between 100 ⁇ m and 2 mm.
  • the conductivity of the ring R is sufficient to maintain it at a substantially homogeneous potential, and thus to homogenize the potential of the common cathode C.
  • This ring can be made of aluminum or silver or copper or even molybdenum for example.
  • the ring R could be replaced by a conductive strip of "open" shape, for example U or L, extending over only a portion of the periphery of the cathode.
  • the ring R does not protrude from the surface of the screen E to minimize the dimensions of the latter.
  • the idea underlying the invention is to use a slot or groove made in the ring R as an antenna.
  • the principle of the slot antenna, per se, is known from the prior art: see in particular the Chapter 7, lines 441 - 481 of R. Garg, P. Bhartia, I. Bahl & A. Ittipiboon, "Microstrip Antenna Design Handbook", 2001 Artech House .
  • the figure 2 shows an active matrix screen E having a conducting ring R in which is practiced a slot F opening on an edge of the ring.
  • a port P allows the excitation of the slot by a radio frequency signal or, conversely, the extraction of an electrical signal induced in the slot by an external radiofrequency electromagnetic field;
  • Paragraph 7.3 of the above-mentioned work describes excitation ports of a slot antenna based on the principle of the coplanar waveguide.
  • the wireless communication protocols for nomadic devices include the use of frequencies greater than 500 MHz, and can reach 5 - 6 GHz (for example, the GSM standard operates at 900 MHz, the GPS standard at 1, 5GHz, the UMTS standard at 2 GHz and the WiFi standard at 2.4 and 5 GHz).
  • a ground plane PM extends parallel to the screen E at a distance of a few millimeters from the latter: such a ground plane is generally provided in the electronic boards of the apparatus equipped with the screen according to the invention.
  • a CM connection connects the ring R to this ground plane.
  • the opening slot ("notch" antenna, or “notch”) of figures 2 and 3a is only one possible embodiment of the invention.
  • the slot may be non-opening and rectilinear ( figure 3b ), non-opening and L-shaped ( figure 3c ), L-shaped and opening at one end (not shown) or ring-shaped ( figure 3d ).
  • the slot coming out of the figure 3a is the preferred embodiment of the invention, because of its small size: indeed, its length is only ⁇ / 4, instead of ⁇ / 2 for the case of a non-opening slot, ⁇ being the wavelength associated with the resonance frequency of the slot.
  • the ring slot of the figure 3d is a relatively restrictive embodiment, because the dimensions of the ring determine the resonant frequency of the antenna. In addition, it is necessary to provide a conductive "bridge" for interconnecting the two parts of the ring R, separated by the slot.
  • the graph of the figure 4a shows the impedance Z (curve ReZ: real part, curve ImZ: imaginary part) of the slot as a function of the frequency f, expressed in GHz.
  • Z curve ReZ: real part
  • curve ImZ imaginary part
  • the first resonance peak makes it possible to perform an impedance quasi-adaptation (at 50 ⁇ ) between the slot and the port P at a frequency f m ⁇ 2.3 GHz.
  • the graph of the parameter S 11 module (voltage reflection coefficient at the input), reproduced on the figure 2b confirms this result: a minimum value of
  • f m does not depend solely on the geometry of the slot F, but also on its environment, and in particular the dielectric properties of the substrate S and the distance at which the ground plane PM is located.
  • the resistivity of the ring R and especially the dielectric losses in the glass substrate limit the radiation efficiency R eff of the antenna, as shown in FIG. figure 4c . Since the structure has not been optimized, this efficiency is minimal at the frequency f m ; even under these conditions, however, it is compatible with the specifications of most wireless communications applications.
  • the invention has been described with reference to a particular type of OLED screen, but this in no way constitutes a limitation. Indeed, the invention can also be applied to liquid crystal displays (LCD), as well as OLED or LCD screens of different structure, using an opaque substrate and a common electrode C (which may be a cathode, as in the example, or a transparent anode).
  • LCD liquid crystal displays
  • common electrode C which may be a cathode, as in the example, or a transparent anode.

Description

L'invention porte sur un écran plat, du type à matrice active, comportant une antenne intégrée. L'invention porte également sur un appareil électronique portable, tel qu'un téléphone portable, comportant un tel écran.The invention relates to a flat screen, of the active matrix type, comprising an integrated antenna. The invention also relates to a portable electronic device, such as a mobile phone, comprising such a screen.

Le marché des appareils portables, ou « nomades », communicants, tels que les téléphones portables, les ordinateurs palmaires, etc. est en expansion continue. Ces appareils nécessitent des antennes pour pouvoir se connecter à des réseaux de communications (GSM, UMTS, etc.), utiliser des liaisons sans-fils à courte portée (Wifi, Bluetooth, etc.) ou des systèmes de navigation et positionnement par satellite (GPS, Galileo, etc.). Parfois un seul appareil doit comporter plusieurs antennes, fonctionnant à des fréquences différentes.The market for portable devices, or "nomads", communicating, such as mobile phones, palm computers, etc. is in continuous expansion. These devices require antennas to be able to connect to communication networks (GSM, UMTS, etc.), use short-range wireless links (Wifi, Bluetooth, etc.) or satellite navigation and positioning systems ( GPS, Galileo, etc.). Sometimes a single device must have multiple antennas, operating at different frequencies.

L'utilisation d'antennes de type traditionnel, réalisées en tant qu'éléments discrets et assemblées aux autres composants, s'avère peu satisfaisante du point de vue de la compacité de l'appareil et du coût de fabrication. Par conséquent, différentes solutions ont été développées pour intégrer des antennes dans d'autres composants.The use of antennas of traditional type, made as discrete elements and assembled with the other components, proves unsatisfactory from the point of view of the compactness of the apparatus and the cost of manufacture. As a result, different solutions have been developed for integrating antennas into other components.

Dans les appareils modernes, l'écran - à cristaux liquides (LCD) ou à diodes électroluminescentes organiques (OLED : organic light-emitting diodes) - tend à occuper la plus grande surface possible, généralement au détriment du clavier qui est parfois purement et simplement supprimé pour être remplacé par un écran tactile. Il a donc été envisagé d'intégrer des antennes émettrices et/ou réceptrices à des écrans plats.In modern devices, the screen - liquid crystal (LCD) or organic light-emitting diodes (OLED) - tends to occupy the largest possible area, usually at the expense of the keyboard that is sometimes purely and simply deleted to be replaced by a touch screen. It has therefore been envisaged to integrate transmitting and / or receiving antennas to flat screens.

Le document US2004189625 divulgue une antenne réalisée par un matériau conducteur intégrée dans un écran à pixels. Les documents US 6,973,709 et US 6,825,811 décrivent des antennes formées par un motif réalisé en matériau conducteur transparent (ITO : oxyde d'indium et étain) déposé sur l'écran. On parle d'antennes imprimées sur l'écran (POD : printed-on-display).The document US2004189625 discloses an antenna made of a conductive material integrated in a pixel screen. The documents US 6,973,709 and US 6,825,811 describe antennas formed by a pattern made of transparent conductive material (ITO: indium oxide and tin) deposited on the screen. We speak of antennas printed on the screen (POD: printed-on-display).

Le document US 7,242,353 décrit une antenne intégrée non directement à un écran, mais à un support mécanique enserrant ce dernier.The document US 7,242,353 describes an antenna integrated not directly to a screen, but to a mechanical support enclosing the latter.

Ces solutions ne sont pas entièrement satisfaisantes d'un point de vue économique, car une ou plusieurs étapes technologiques supplémentaires doivent être prévues pour la fabrication de l'antenne.These solutions are not entirely satisfactory from an economic point of view, because one or more additional technological steps must be provided for the manufacture of the antenna.

Le document US 7,336,270 décrit une antenne RFID réalisée sur le substrat d'un écran à cristaux liquides, à côté de l'écran proprement dit, et connectée à une puce électronique montée sur le même substrat. Cette antenne est réalisée en même temps qu'un élément conducteur de l'écran, sans besoin d'une étape technologique supplémentaire. Cependant, il faut prévoir sur le substrat la place pour la puce et l'antenne à côté de l'écran, ce qui va à l'encontre des exigences de miniaturisation des appareils et a également une influence négative sur leur coût. Mais surtout, l'antenne considérée n'est qu'une antenne RFID fonctionnant en champs proche.The document US 7,336,270 describes an RFID antenna made on the substrate of a liquid crystal screen, next to the screen itself, and connected to an electronic chip mounted on the same substrate. This antenna is made at the same time as a conductive element of the screen, without the need for an additional technological step. However, it is necessary to provide on the substrate the place for the chip and the antenna next to the screen, which goes against the requirements of miniaturization devices and also has a negative influence on their cost. But above all, the antenna considered is an RFID antenna operating in the near field.

L'invention vise à résoudre les inconvénients précités de l'art antérieur en procurant un écran pourvu d'une antenne intégrée dont la fabrication ne nécessite pas - ou très peu - d'étapes technologiques additionnelles, et permet de plus une utilisation optimale de l'espace disponible. Par « antenne » on entend une antenne rayonnante, opérant en champ lointain, en émission et/ou en réception.The invention aims to solve the aforementioned drawbacks of the prior art by providing a screen provided with an integrated antenna whose manufacture does not require - or very few - additional technological steps, and allows more optimal use of the 'available space. By "antenna" is meant a radiating antenna, operating in the far field, transmitting and / or receiving.

Conformément à l'invention, ce but peut être atteint par un écran plat comportant une matrice active de pixels, une électrode commune auxdites pixels et une bande conductrice connectée à ladite électrode commune et entourant au moins partiellement ladite matrice active, caractérisé en ce qu'au moins une fente formant une antenne est pratiquée dans ladite bande conductrice. La bande conductrice peut former un anneau entourant au moins une partie de ladite matrice active (c'est là le cas le plus courant dans l'art antérieur), mais elle peut également présenter une forme ouverte, par exemple en L ou en U.According to the invention, this object can be achieved by a flat screen comprising an active matrix of pixels, an electrode common to said pixels and a conductive strip connected to said common electrode and at least partially surrounding said active matrix, characterized in that at least one slot forming an antenna is formed in said conductive strip. The conductive strip may form a ring surrounding at least a portion of said active matrix (this is the case most common in the prior art), but it may also have an open shape, for example L or U.

La bande conductrice, généralement annulaire, entourant la matrice active et son électrode commune est normalement prévue dans les écrans plats à matrice active afin d'uniformiser le potentiel de ladite électrode commune (généralement, la cathode). Par conséquent, la mise en oeuvre de l'invention n'augmente pas les dimensions du dispositif. En outre, l'antenne à fente peut être réalisée simultanément à la fabrication par dépôt de la bande conductrice, grâce à un masque photolithographique opportun. Le surcoût engendré est donc pratiquement nul.The generally annular conductive strip surrounding the active matrix and its common electrode is normally provided in the active matrix flat screens in order to standardize the potential of said common electrode (generally the cathode). Therefore, the implementation of the invention does not increase the dimensions of the device. In addition, the slot antenna can be produced simultaneously with the production by deposition of the conductive strip, thanks to a suitable photolithographic mask. The extra cost generated is therefore virtually zero.

Selon des modes de réalisation particuliers de l'invention :

  • L'antenne peut être formée par une fente débouchant sur un bord de ladite bande, par une fente non débouchant ou par une fente annulaire entourant la matrice active de pixels.
  • Ladite bande conductrice peut être réalisée par dépôt sur un substrat de l'écran et présenter une épaisseur comprise entre 50 nm et 2 µm (de préférence entre 100 nm et 1 µm) et/ou une largeur comprise entre 50 µm et 10 mm (de préférence entre 100 µm et 2 mm). Cette largeur peut être constante ou variable le long de la bande. On choisira avantageusement de réaliser la fente dans la partie la plus large de la bande
  • Ladite fente peut être dimensionnée de manière à présenter au moins une résonance à une fréquence comprise entre 100 MHz et 10 GHz.
According to particular embodiments of the invention:
  • The antenna may be formed by a slot opening on an edge of said strip, a non-opening slot or an annular slot surrounding the active matrix of pixels.
  • Said conductive strip may be produced by deposition on a substrate of the screen and have a thickness of between 50 nm and 2 μm (preferably between 100 nm and 1 μm) and / or a width of between 50 μm and 10 mm ( preferably between 100 μm and 2 mm). This width can be constant or variable along the strip. We will advantageously choose to make the slot in the widest part of the strip
  • The slot may be sized to have at least one resonance at a frequency between 100 MHz and 10 GHz.

Un autre objet de l'invention est un appareil portable comportant : un tel écran plat ; une carte électronique comportant un plan de masse parallèle audit écran plat et connecté électriquement avec la bande conductrice de ce dernier ; des moyens de génération et/ou de détection de signaux électriques à radiofréquence ; et un port d'excitation de l'antenne à fente intégrée dans l'écran plat, connecté auxdits moyens de génération et/ou de détection de signaux électriques à radiofréquence.Another object of the invention is a portable apparatus comprising: such a flat screen; an electronic card comprising a ground plane parallel to said flat screen and electrically connected with the conductive strip of the latter; means for generating and / or detecting radio frequency electrical signals; and an excitation port of the slot antenna integrated in the flat screen, connected to said means for generating and / or detecting radio frequency electrical signals.

Avantageusement, l'antenne à fente peut être dimensionnée de manière à présenter une résonance et être au moins approximativement adaptée en impédance au port d'excitation à une fréquence des signaux électriques générés ou détectés par lesdits moyens.Advantageously, the slot antenna may be sized to have a resonance and be at least approximately impedance matched to the excitation port at a frequency of electrical signals generated or detected by said means.

D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement :

  • la figure 1, une vue éclatée d'un écran plat à diodes électroluminescentes organiques connu de l'art antérieur ;
  • la figure 2, d'une manière schématique, une vue en élévation d'un écran plat selon l'invention, dans lequel une antenne à fente est intégrée ;
  • les figures 3a, 3b, 3c, 3d et 3e, différentes géométries d'une antenne à fente pouvant être intégrée à un écran du type de la figure 1 ;
  • les figures 4a, 4b et 4c, des graphiques permettant d'apprécier les performances d'une antenne intégrée à un écran plat selon l'invention.
Other characteristics, details and advantages of the invention will emerge on reading the description given with reference to the accompanying drawings given by way of example and which represent, respectively:
  • the figure 1 an exploded view of a flat screen organic light-emitting diode known from the prior art;
  • the figure 2 schematically an elevational view of a flat screen according to the invention, in which a slot antenna is integrated;
  • the FIGS. 3a, 3b, 3c, 3d and 3e , different geometries of a slotted antenna that can be integrated into a screen of the type of the figure 1 ;
  • the Figures 4a, 4b and 4c , graphics making it possible to appreciate the performances of an antenna integrated in a flat screen according to the invention.

La figure 1 montre qu'un écran plat E à matrice active de type OLED comporte en général un substrat transparent S, typiquement réalisé en verre, sur lequel est déposée une matrice M d'électrodes (anodes) A transparentes, connectées de manière individuelle à des lignes d'alimentation électrique (non représentées) par l'intermédiaire de transistors à film mince T. Une couche de polymère semiconducteur électroluminescent formant les OLED est déposée sur les anodes A. Une anode A et l'OLED correspondant forment un pixel, ou plus précisément un sous-pixel (un pixel complet étant constitué par trois pixels de couleurs différentes : bleu, vert et rouge). Une couche métallique C, disposée au-dessus de cette couche de polymère, forme une cathode commune à tous les pixels.The figure 1 shows that a flat screen E active matrix OLED type generally comprises a transparent substrate S, typically made of glass, on which is deposited a matrix M of electrodes (anodes) A transparent, individually connected to lines of d power supply (not shown) via thin-film transistors T. A layer of electroluminescent semiconductor polymer forming the OLEDs is deposited on the anodes A. Anode A and the corresponding OLED form a pixel, or more precisely a subpixel (a complete pixel consisting of three pixels of different colors: blue, green and red). A metal layer C, disposed above this polymer layer, forms a cathode common to all the pixels.

La cathode commune C présente une épaisseur très faible, de l'ordre de 1 µm, face à des dimensions latérales (largeur, longueur) de quelques centimètres. Pour éviter que la résistance relativement importante qui en résulte induise des chutes de tension non négligeables d'un point à l'autre de la cathode, et donc un potentiel électrique inhomogène qui pourrait interférer avec le bon fonctionnement de la matrice de transistors, il est connu de prévoir une bande conductrice en forme d'anneau plus épaisse à la périphérie de la cathode et en contact électrique avec ce dernier. Un tel anneau - indiqué par la référence R sur les figures 2 et 3a - 3e, peut présenter typiquement une épaisseur comprise entre 50 nm et 2 µm, et de préférence entre 100 nm et 1 µm et une largeur comprise entre 50 µm et 10 mm et de préférence entre 100 µm et 2 mm. La conductivité de l'anneau R est suffisante pour le maintenir à un potentiel sensiblement homogène, et pour homogénéiser ainsi le potentiel de la cathode commune C. Cet anneau peut être réalisé en aluminium ou en argent ou en cuivre ou encore en molybdène par exemple. Comme évoqué plus haut, l'anneau R pourrait être remplacé par une bande conductrice de forme « ouverte », par exemple en U ou en L, s'étendant sur une partie seulement de la périphérie de la cathode.The common cathode C has a very small thickness, of the order of 1 micron, facing lateral dimensions (width, length) of a few centimeters. In order to prevent the relatively large resistance that results from inducing significant voltage drops from one point to the other of the cathode, and therefore an inhomogeneous electrical potential which could interfere with the proper operation of the matrix of transistors, it is It is known to provide a thicker ring-shaped conductive strip at the periphery of the cathode and in electrical contact therewith. Such a ring - indicated by the reference R on the figures 2 and 3a - 3rd may typically have a thickness of between 50 nm and 2 μm, and preferably between 100 nm and 1 μm and a width of between 50 μm and 10 mm and preferably between 100 μm and 2 mm. The conductivity of the ring R is sufficient to maintain it at a substantially homogeneous potential, and thus to homogenize the potential of the common cathode C. This ring can be made of aluminum or silver or copper or even molybdenum for example. As mentioned above, the ring R could be replaced by a conductive strip of "open" shape, for example U or L, extending over only a portion of the periphery of the cathode.

De préférence, comme dans le cas de la figure, l'anneau R ne déborde pas de la surface de l'écran E pour minimiser les dimensions de ce dernier.Preferably, as in the case of the figure, the ring R does not protrude from the surface of the screen E to minimize the dimensions of the latter.

L'idée à la base de l'invention consiste à utiliser une fente ou rainure pratiquée dans l'anneau R en tant qu'antenne. Le principe de l'antenne à fente, en soi, est connu de l'art antérieur : voir en particulier le chapitre 7, lignes 441 - 481 de l'ouvrage de R. Garg, P. Bhartia, I. Bahl & A. Ittipiboon, « Microstrip Antenna Design Handbook », 2001 Artech House .The idea underlying the invention is to use a slot or groove made in the ring R as an antenna. The principle of the slot antenna, per se, is known from the prior art: see in particular the Chapter 7, lines 441 - 481 of R. Garg, P. Bhartia, I. Bahl & A. Ittipiboon, "Microstrip Antenna Design Handbook", 2001 Artech House .

La figure 2 montre un écran à matrice active E comportant un anneau conducteur R dans lequel est pratiquée une fente F débouchant sur un bord de l'anneau. Un port P permet l'excitation de la fente par un signal à radiofréquence ou, inversement, l'extraction d'un signal électrique induit dans la fente par un champ électromagnétique externe à radiofréquence ; le paragraphe 7.3 de l'ouvrage précité décrit des ports d'excitation d'une antenne à fente basés sur le principe du guide d'onde coplanaire.The figure 2 shows an active matrix screen E having a conducting ring R in which is practiced a slot F opening on an edge of the ring. A port P allows the excitation of the slot by a radio frequency signal or, conversely, the extraction of an electrical signal induced in the slot by an external radiofrequency electromagnetic field; Paragraph 7.3 of the above-mentioned work describes excitation ports of a slot antenna based on the principle of the coplanar waveguide.

Le signal électromagnétique injecté dans la fente F par le port P, ou capté par ladite fente, n'influence pas le fonctionnement des transistors de l'écran E car sa fréquence est bien au-delà de la fréquence de coupure de ces dispositifs. En effet, typiquement les protocoles de communication sans fils pour appareils nomades comportent l'utilisation de fréquences supérieures à 500 MHz, et pouvant atteindre les 5 - 6 GHz (par exemple, le standard GSM fonctionne à 900 MHz, le standard GPS à 1,5GHz, le standard UMTS à 2 GHz et le standard Wifi à 2,4 et 5 GHz).The electromagnetic signal injected into the slot F by the port P, or picked up by said slot, does not influence the operation of the transistors of the screen E because its frequency is well beyond the cutoff frequency of these devices. Typically, the wireless communication protocols for nomadic devices include the use of frequencies greater than 500 MHz, and can reach 5 - 6 GHz (for example, the GSM standard operates at 900 MHz, the GPS standard at 1, 5GHz, the UMTS standard at 2 GHz and the WiFi standard at 2.4 and 5 GHz).

Un plan de masse PM s'étend parallèlement à l'écran E à une distance de quelques millimètres de ce dernier : un tel plan de masse est généralement prévu dans les cartes électroniques de l'appareillage équipé de l'écran selon l'invention. Une connexion CM relie l'anneau R à ce plan de masse.A ground plane PM extends parallel to the screen E at a distance of a few millimeters from the latter: such a ground plane is generally provided in the electronic boards of the apparatus equipped with the screen according to the invention. A CM connection connects the ring R to this ground plane.

La fente débouchant (antenne de type « notch », ou « encoche ») des figures 2 et 3a ne constitue qu'un mode de réalisation possible de l'invention. En variante, la fente peut être non-débouchant et rectiligne (figure 3b), non-débouchant et en forme de L (figure 3c), en forme de L et débouchant à une extrémité (non représentée), voire en forme d'anneau (figure 3d). Il est également possible de réaliser plusieurs antennes à fente distinctes (F1, F2) pour opérer à des fréquences multiples, ou pour réaliser des systèmes à diversité d'antennes (figure 3e).The opening slot ("notch" antenna, or "notch") of figures 2 and 3a is only one possible embodiment of the invention. As a variant, the slot may be non-opening and rectilinear ( figure 3b ), non-opening and L-shaped ( figure 3c ), L-shaped and opening at one end (not shown) or ring-shaped ( figure 3d ). It is also possible to realize several separate slot antennas (F 1 , F 2 ) to operate at multiple frequencies, or to realize antenna diversity systems ( figure 3e ).

En général, la fente débouchant de la figure 3a constitue le mode de réalisation préféré de l'invention, en raison de ses petites dimensions : en effet, sa longueur n'est que de λ/4, au lieu de λ/2 pour le cas d'une fente non débouchant, λ étant la longueur d'onde associée à la fréquence de résonance de la fente.In general, the slot coming out of the figure 3a is the preferred embodiment of the invention, because of its small size: indeed, its length is only λ / 4, instead of λ / 2 for the case of a non-opening slot, λ being the wavelength associated with the resonance frequency of the slot.

La fente en anneau de la figure 3d constitue un mode de réalisation relativement contraignant, car les dimensions de l'anneau déterminent la fréquence de résonance de l'antenne. En outre, il faut prévoir un « pont » conducteur pour relier entre elles les deux parties de l'anneau R, séparées par la fente.The ring slot of the figure 3d is a relatively restrictive embodiment, because the dimensions of the ring determine the resonant frequency of the antenna. In addition, it is necessary to provide a conductive "bridge" for interconnecting the two parts of the ring R, separated by the slot.

Les figures 4a - 4c montent les résultats d'une simulation basée sur le dispositif de la figure 2. Les caractéristiques de la structure simulée sont les suivantes :

  • substrat en verre pyrex de 1 mm d'épaisseur, avec |εr|=4,82 et tanδ=0,0054 et de dimensions 30 x 50 mm ;
  • anneau conducteur en aluminium de largeur 2 mm, d'épaisseur 1 µm, de forme rectangulaire et de dimensions 22 x 42 mm ;
  • plan de masse supposé infini, à 5 mm de la cathode C ;
  • cathode C en aluminium, 1 µm d'épaisseur ;
  • fente débouchant sur un côté long de l'anneau, de forme rectangulaire, largeur 0,5 mm ; longueur 3cm
  • port P à 50 Ω.
The Figures 4a - 4c mount the results of a simulation based on the device of the figure 2 . The characteristics of the simulated structure are as follows:
  • pyrex glass substrate 1 mm thick, with | ε r | = 4.82 and tanδ = 0.0054 and dimensions 30 x 50 mm;
  • aluminum conductor ring of width 2 mm, thickness 1 μm, rectangular in shape and dimensions 22 x 42 mm;
  • ground plane assumed infinite, 5 mm from cathode C;
  • aluminum cathode C, 1 μm thick;
  • slot opening on a long side of the ring, rectangular in shape, width 0.5 mm; length 3cm
  • port P at 50 Ω.

Le graphique de la figure 4a montre l'impédance Z (courbe ReZ : partie réelle ; courbe ImZ : partie imaginaire) de la fente en fonction de la fréquence f, exprimée en GHz. On observe deux résonances, une aux alentours de 2,3 GHz et une autre à 2,75 GHz environ. Le premier pic de résonance permet de réaliser une quasi-adaptation d'impédance (à 50 Ω) entre la fente et le port P à une fréquence fm≅2,3 GHz. Le graphique du module du paramètre S11 (coefficient de réflexion en tension à l'entrée), reproduit sur la figure 2b, confirme ce résultat : on observe une valeur minimale de |S11| de -25 dB et une bande B10 à -10 dB d'une largeur d'environ 25 MHz centrée autour de fm.The graph of the figure 4a shows the impedance Z (curve ReZ: real part, curve ImZ: imaginary part) of the slot as a function of the frequency f, expressed in GHz. There are two resonances, one around 2.3 GHz and another around 2.75 GHz. The first resonance peak makes it possible to perform an impedance quasi-adaptation (at 50 Ω) between the slot and the port P at a frequency f m ≅2.3 GHz. The graph of the parameter S 11 module (voltage reflection coefficient at the input), reproduced on the figure 2b confirms this result: a minimum value of | S 11 | -25 dB and a 10 dB band at -10 dB with a width of about 25 MHz centered around f m .

La valeur de fm ne dépend pas uniquement de la géométrie de la fente F, mais également de son environnement, et en particulier des propriétés diélectriques du substrat S et de la distance à laquelle est situé le plan de masse PM.The value of f m does not depend solely on the geometry of the slot F, but also on its environment, and in particular the dielectric properties of the substrate S and the distance at which the ground plane PM is located.

La résistivité de l'anneau R et surtout les pertes diélectriques dans le substrat en verre limitent l'efficacité de rayonnement Reff de l'antenne, comme représenté sur la figure 4c. La structure n'ayant pas été optimisée, cette efficacité est minimale à la fréquence fm; même dans ces conditions, cependant, elle est compatible avec les spécifications de la plupart des applications de communications sans-fils.The resistivity of the ring R and especially the dielectric losses in the glass substrate limit the radiation efficiency R eff of the antenna, as shown in FIG. figure 4c . Since the structure has not been optimized, this efficiency is minimal at the frequency f m ; even under these conditions, however, it is compatible with the specifications of most wireless communications applications.

L'invention a été décrite en référence à un type particulier d'écran OLED, mais cela ne constitue nullement une limitation. En effet, l'invention peut s'appliquer également à des écrans à cristaux liquides (LCD), ainsi qu'à des écrans OLED ou LCD de structure différente, utilisant un substrat opaque et une électrode commune C (qui peut être une cathode, comme dans l'exemple, ou une anode) transparente.The invention has been described with reference to a particular type of OLED screen, but this in no way constitutes a limitation. Indeed, the invention can also be applied to liquid crystal displays (LCD), as well as OLED or LCD screens of different structure, using an opaque substrate and a common electrode C (which may be a cathode, as in the example, or a transparent anode).

Claims (11)

  1. Flat screen (E) comprising an active pixel matrix (M), an electrode (C) common to said pixels and a conductive strip (R) electrically connected to said common electrode and surrounding at least partially said active matrix, characterised in that at least one slot (F) forming an antenna is used in said conductive strip.
  2. Flat screen according to claim 1, wherein said conductive strip forms a ring surrounding at least one part of said active matrix.
  3. Flat screen according to one of claims 1 or 2, wherein said antenna is formed by a slot leading to an edge of said conductive strip.
  4. Flat screen according to one of claims 1 or 2, wherein said antenna is formed by a non-leading slot.
  5. Flat screen according to claim 2, wherein said antenna is formed by an annular slot surrounding the pixel active matrix.
  6. Flat screen according to any one of the preceding claims, wherein said conductive strip is made by depositing on a substrate (S) of the screen.
  7. Flat screen according to claim 6, wherein said conductive strip presents a thickness comprised between 50 nm and 2 µm, and preferably between 100 nm and 1 µm.
  8. Flat screen according to any one of the preceding claims, wherein said conductive strip presents a width comprised between 50 µm and 10 mm, and preferably between 100 µm and 2 mm.
  9. Flat screen according to one of the preceding claims, wherein said slot is sized so as to present at least one resonance at a frequency comprised between 100 MHz and 10 GHz.
  10. Portable device comprising:
    - a flat screen (E) according to any one of the preceding claims;
    - an electronic board comprising a mass plane (PM) parallel to said flat screen and electrically connected to the conductive strip of the latter;
    - means for generating and/or detecting electrical radiofrequency signals; and
    - an excitation port (P) of the antenna with integrated-slot in the flat screen, connected to said means for generating and/or detecting electrical radiofrequency signals.
  11. Portable device according to claim 10, wherein the slot antenna is sized so as to present a resonance and be at least approximately adapted in impedance to the excitation port at a frequency (fm) of the electrical signals generated or detected by said means.
EP09801236.2A 2009-01-07 2009-12-18 Flat screen with integrated antenna Active EP2380236B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0900036A FR2940872B1 (en) 2009-01-07 2009-01-07 FLAT SCREEN WITH INTEGRATED ANTENNA
PCT/FR2009/001461 WO2010079268A1 (en) 2009-01-07 2009-12-18 Flat screen with integrated antenna

Publications (2)

Publication Number Publication Date
EP2380236A1 EP2380236A1 (en) 2011-10-26
EP2380236B1 true EP2380236B1 (en) 2018-10-24

Family

ID=40852203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09801236.2A Active EP2380236B1 (en) 2009-01-07 2009-12-18 Flat screen with integrated antenna

Country Status (6)

Country Link
US (1) US8922434B2 (en)
EP (1) EP2380236B1 (en)
JP (1) JP5539392B2 (en)
KR (1) KR101630241B1 (en)
FR (1) FR2940872B1 (en)
WO (1) WO2010079268A1 (en)

Families Citing this family (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940872B1 (en) 2009-01-07 2012-05-18 Commissariat Energie Atomique FLAT SCREEN WITH INTEGRATED ANTENNA
JP5515540B2 (en) * 2009-09-10 2014-06-11 富士通株式会社 Display device
US8489162B1 (en) * 2010-08-17 2013-07-16 Amazon Technologies, Inc. Slot antenna within existing device component
US9767528B2 (en) * 2012-03-21 2017-09-19 Slim Hmi Technology Visual interface apparatus and data transmission system
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
USD773506S1 (en) 2014-12-30 2016-12-06 Energous Corporation Display screen with graphical user interface
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
USD832782S1 (en) 2015-12-30 2018-11-06 Energous Corporation Wireless charging device
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US9876379B1 (en) * 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
AU2014323434B2 (en) * 2013-09-23 2017-07-13 Apple Inc. Electronic component embedded in ceramic material
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
USD786836S1 (en) * 2014-04-10 2017-05-16 Energous Corporation Television with antenna
USD784964S1 (en) * 2014-04-10 2017-04-25 Energous Corporation Television with antenna
USD784302S1 (en) * 2014-04-10 2017-04-18 Energous Corporation Monitor with antenna
USD805066S1 (en) * 2014-04-10 2017-12-12 Energous Corporation Laptop computer with antenna
USD784301S1 (en) * 2014-04-10 2017-04-18 Energous Corporation Monitor with antenna
USD784300S1 (en) * 2014-04-10 2017-04-18 Energous Corporation Laptop computer with antenna
US9647331B2 (en) * 2014-04-15 2017-05-09 The Boeing Company Configurable antenna assembly
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
DE102014226947A1 (en) * 2014-12-23 2016-06-23 Siemens Healthcare Gmbh Switching logic for the distribution of received signals from an MR system to receivers
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
KR20160129336A (en) * 2015-04-30 2016-11-09 엘지전자 주식회사 Mobile terminal
USD941815S1 (en) * 2015-09-03 2022-01-25 Sony Corporation Display
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10401548B2 (en) * 2015-09-24 2019-09-03 Intel Corporation Integrated antenna with display uniformity
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10164478B2 (en) 2015-12-29 2018-12-25 Energous Corporation Modular antenna boards in wireless power transmission systems
USD832783S1 (en) 2015-12-30 2018-11-06 Energous Corporation Wireless charging device
DE102016105454A1 (en) * 2016-03-23 2017-09-28 Osram Oled Gmbh Organic light-emitting device, method of manufacturing an organic light-emitting device, and method of operating an organic light-emitting device
KR102334098B1 (en) * 2016-04-20 2021-12-03 삼성전자주식회사 Electronic device including display
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
KR102226403B1 (en) 2016-12-12 2021-03-12 에너저스 코포레이션 Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US10775490B2 (en) * 2017-10-12 2020-09-15 Infineon Technologies Ag Radio frequency systems integrated with displays and methods of formation thereof
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
KR20210117283A (en) 2019-01-28 2021-09-28 에너저스 코포레이션 Systems and methods for a small antenna for wireless power transmission
EP3921945A1 (en) 2019-02-06 2021-12-15 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11804660B2 (en) 2019-02-25 2023-10-31 Huawei Technologies Co., Ltd. Antenna for integration with a display
CN115104234A (en) 2019-09-20 2022-09-23 艾诺格思公司 System and method for protecting a wireless power receiver using multiple rectifiers and establishing in-band communication using multiple rectifiers
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
EP4073905A4 (en) 2019-12-13 2024-01-03 Energous Corp Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
KR20210086142A (en) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 Touch display device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11929548B2 (en) * 2021-07-28 2024-03-12 Snap Inc. Eyewear with slot-ring antenna
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316403A (en) * 1989-06-14 1991-01-24 Kimoto & Co Ltd Sheet antenna for radio wave reception
JPH06332011A (en) * 1993-05-18 1994-12-02 Sony Corp Semiconductor integrated substrate and semiconductor device
US6853336B2 (en) * 2000-06-21 2005-02-08 International Business Machines Corporation Display device, computer terminal, and antenna
US6339400B1 (en) * 2000-06-21 2002-01-15 International Business Machines Corporation Integrated antenna for laptop applications
JP2002151939A (en) * 2000-10-03 2002-05-24 Internatl Business Mach Corp <Ibm> Antenna system, information processing unit and mobile phone
US6927668B1 (en) * 2000-11-21 2005-08-09 Richard Odle Print access security system
US6973709B2 (en) 2001-04-19 2005-12-13 Chunghwa Picture Tubes Method of manufacturing printed-on-display antenna for wireless device
JP2003060422A (en) 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd Display-antenna integrated structure and communication device
JP3794411B2 (en) * 2003-03-14 2006-07-05 セイコーエプソン株式会社 Display device and electronic device
US20040257283A1 (en) * 2003-06-19 2004-12-23 International Business Machines Corporation Antennas integrated with metallic display covers of computing devices
TWI243512B (en) 2003-11-18 2005-11-11 Hon Hai Prec Ind Co Ltd Planar inverted-f antenna and method of manufacturing of the same
JP2005345704A (en) * 2004-06-02 2005-12-15 Seiko Epson Corp Electronic equipment
JP4445343B2 (en) * 2004-08-10 2010-04-07 株式会社日立製作所 IC tag mounted liquid crystal display and method of manufacturing the same
JP4586524B2 (en) * 2004-12-15 2010-11-24 ソニー株式会社 Display device and antenna device
JP4231867B2 (en) * 2005-11-18 2009-03-04 株式会社東芝 Wireless device and electronic device
US20070194994A1 (en) * 2006-02-22 2007-08-23 Waltho Alan E Extendible mobile slot antenna apparatus, systems, and methods
JP2008090724A (en) * 2006-10-04 2008-04-17 Fuji Xerox Co Ltd Image display medium
WO2009041119A1 (en) * 2007-09-27 2009-04-02 Sharp Kabushiki Kaisha Antenna device, display device substrate, liquid crystal display unit, display system, method for manufacturing antenna device and method for manufacturing display device substrate
FR2940872B1 (en) 2009-01-07 2012-05-18 Commissariat Energie Atomique FLAT SCREEN WITH INTEGRATED ANTENNA
JP5423165B2 (en) * 2009-06-10 2014-02-19 株式会社ニコン Imaging device
JP5649910B2 (en) * 2010-10-22 2015-01-07 京セラ株式会社 Mobile communication terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR101630241B1 (en) 2016-06-14
FR2940872A1 (en) 2010-07-09
WO2010079268A1 (en) 2010-07-15
FR2940872B1 (en) 2012-05-18
JP5539392B2 (en) 2014-07-02
EP2380236A1 (en) 2011-10-26
JP2012514926A (en) 2012-06-28
US20120019419A1 (en) 2012-01-26
US8922434B2 (en) 2014-12-30
KR20110103452A (en) 2011-09-20

Similar Documents

Publication Publication Date Title
EP2380236B1 (en) Flat screen with integrated antenna
EP3669422B1 (en) Patch antenna having two different radiation modes with two separate working frequencies, device using such an antenna
CN111033893B (en) Film antenna and display device including the same
WO2007006982A1 (en) Antenna system with second-order diversity and card for wireless communication apparatus which is equipped with one such device
WO2005036697A1 (en) Low volume internal antenna
FR2942676A1 (en) COMPACT ANTENNA SYSTEM WITH DIVERSITY OF ORDER 2.
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
EP3146593B1 (en) Antenna system for reducing the electromagnetic coupling between antennas
EP2086053A1 (en) Printed antenna with a two-beam diagram
CN111033892A (en) Film antenna and display device including the same
WO2003061062A1 (en) Device for receiving and/or emitting electromagnetic waves with radiation diversity
FR2976146A1 (en) Test card for testing printed circuit board utilized in e.g. wireless system, has supply line connected to conductive area of substrate for creating electromagnetic coupling type line/slot at antenna of printed circuit board
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
EP2879234B1 (en) Electronic apparatus with radio antenna folded in a housing
EP3610577B1 (en) Antenna configured to conform to a transparent surface, corresponding display device and corresponding electronic payment device
EP1421643A1 (en) Circularly polarized dielectric resonator antenna
KR20210057613A (en) Transparent antenna and its manufacturing method
EP1532579B1 (en) Electronic label antenna
EP3942649B1 (en) Compact directional antenna, device comprising such an antenna
EP3605730B1 (en) Antenna device with two different and secant planar substrates
Shinde et al. Circularly polarized transparent equilateral triangular shaped antenna with defected ground
EP3716294B1 (en) Electric cable provided with at least one wireless sensor
WO2011036418A1 (en) Miniature antenna
WO2024051947A1 (en) Radio frequency device
WO2002037606A1 (en) Multiband antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180518

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009055270

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1057785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181024

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1057785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009055270

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190725

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091218

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181024

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231218

Year of fee payment: 15

Ref country code: DE

Payment date: 20231219

Year of fee payment: 15