EP2379254A1 - Verfahren zum modifizieren von metallschmelzen - Google Patents

Verfahren zum modifizieren von metallschmelzen

Info

Publication number
EP2379254A1
EP2379254A1 EP10710177A EP10710177A EP2379254A1 EP 2379254 A1 EP2379254 A1 EP 2379254A1 EP 10710177 A EP10710177 A EP 10710177A EP 10710177 A EP10710177 A EP 10710177A EP 2379254 A1 EP2379254 A1 EP 2379254A1
Authority
EP
European Patent Office
Prior art keywords
molten metal
particles
metal
metallic coating
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10710177A
Other languages
English (en)
French (fr)
Inventor
Stefan Sepeur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano X GmbH
Original Assignee
Nano X GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano X GmbH filed Critical Nano X GmbH
Publication of EP2379254A1 publication Critical patent/EP2379254A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof

Definitions

  • the invention relates to a method for modifying molten metals by additives.
  • the invention is therefore based on the object to provide a new method for modifying molten metal by additives, in which the discharge of the additives is avoided.
  • This object is achieved in that particles, fibers or hollow spheres are added to the molten metal and these are provided before addition to the molten metal with a metallic coating, wherein the melting point of the metallic coating is above the molten metal.
  • the invention is based on the finding that, in the presence of a metallic coating which also continues to exist in the molten metal, particles, fibers or hollow spheres whose chemical composition resembles or is compatible with the composition of the molten metal, the particles, fibers or hollow spheres Solidification of the molten metal are firmly and homogeneously involved in this, since they have outward - to the molten metal - yes corresponding metallic properties. The only prerequisite is that the particles or fibers are stable to high temperatures.
  • the molten metal consists of the elements aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, Hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, tellurium, lead, bismuth, polonium, as well as mixtures or alloys thereof.
  • the particles or fibers consist of salts, in particular oxides, phosphates, silicates, sulfites, nitrates, nitrites, sulfides, carbides, sulfates, carbonates or halides, aluminum (III) oxide, calcium (II) carbonate, barium (II) sulfate, copper (II) sulfate, iron (III) oxide, silicon dioxide, titanium (IV) carbide, tin dioxide, titanium dioxide, magnetite, aluminum (III) chloride, chromium (III) nitrate, iron (III) nitrate, hafnium (IV) carbide, hafnium (IV) nitrite, zirconium dioxide, titanium (IV) nitrite, vandium carbide, tungsten carbide, boron (III) carbide, silicon nitride, silicon carbide, vanadium oxide, magnesium oxide, from minerals, in particular gypsum, s
  • a preferred embodiment of the invention is that the particle size of the particles is in the micrometer, submicrometer or nanometer range.
  • the metallic coating be applied to the particles, fibers or hollow spheres by wet chemical processes, powder metallurgy processes, electrochemical processes (e.g., redox reactions, electroplating), vapor deposition or plasma processes.
  • the invention is further associated that the melting point of the metallic coating at least 20 0 C, preferably 100 to 800 0 C is above the melting point of the molten metal.
  • the glass transition temperature Tg of the metal coating is below the temperature of the molten metal, so that alloying between molten metal and surface phase can occur as a result of the partial softening of the surface, also as a gradient.
  • the skilled person can determine the respectively suitable material for the metallic coating. It should be noted that the metal coating on the particle is not or only with difficulty soluble in the molten metal.
  • the proportion of particles in the molten metal is 0.1 to 75 wt .-%, preferably between 1 and 50 wt .-%, particularly preferably 2 to 40 wt .-%.
  • one or more physical or chemical properties in particular the hardness, the modulus of elasticity, the electrical properties, the magnetic properties, the electrical conductivity, the thermal conductivity, the ductility, the coefficient of friction, the melting point, the scaling tendency or the corrosion tendency to be modified.
  • the hardness of articles of gold or gold alloys can be increased, steels of lower weight and greater hardness or elasticity can be produced, Metals are provided with a corrosion, scale or tarnish protection, a change in the electrical and magnetic properties to superparamagnetic properties, a modified processing capability or tribologically active particles are incorporated into a molten metal or the resulting metal.
  • the inventive method is suitable for the production of metal products, in particular of steel products.
  • These may be rods, tubes, engine and vehicle parts, sheets, components or assemblies for mechanical engineering, vehicle construction, construction, process engineering, aerospace, power plant technology, electrical engineering, medical technology, the sporting goods industry, the garden - and landscaping, tool making, agricultural machinery, the furniture industry, the household appliance industry, the household appliance industry, the toy and sporting goods industry, the camping industry, construction, heating and air conditioning, materials handling, for oil platforms, jewelry, roads, cranes, sanitary ware as well as the lighting technology.
  • 100 g of an aqueous aluminum oxide nanopowder suspension with 20% by weight of solid are mixed with 5 g of sodium thiosulfate and 20 g of Au 2 S and stirred for 24 h with heating to 80 0 C. Thereafter, the gold-coated nanoparticles are freed from the solvent in vacuo. If these gold-coated Aluminiumoxidnanopitate in a metallic silver melt in a concentration of 20% by weight, the particles are distributed homogeneously and form a homogeneous distribution of alumina particles in a gold-silver alloy even after solidification of the melt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Modifizieren von Metallschmelzen durch Zusätze. Um ein neues Verfahren für das Modifizieren von Metallschmelzen zu schaffen, bei dem die Austragung der Zusätze vermieden wird, wird im Rahmen der Erfindung vorgeschlagen, daß Partikel, Fasern oder Hohlkugeln zu der Metallschmelze zugegeben werden und diese vor der Zugabe zu der Metallschmelze mit einem metallischen Überzug versehen werden, wobei der Schmelzpunkt des metallischen Überzugs ?ber dem der Metallschmelze liegt. Im Rahmen der Erfindung wird ein Verfahren geschaffen, mit dem die Eigenschaften der Metallschmelze und somit auch des resultierenden Metalls verändert werden können.

Description

BESCHREIBUNG
Verfahren zum Modifizieren von Metallschmelzen
Die Erfindung betrifft ein Verfahren zum Modifizieren von Metallschmelzen durch Zusätze.
Aus dem Stand der Technik sind Verfahren zum Modifizieren von Metallen durch Zugabe von Partikeln, insbesondere Nanopartikeln, bekannt.
Im Allgemeinen werden Sintermetallpulver mit Nanopartikeln versetzt und gemeinsam versintert. Dieses Verfahren ist jedoch sehr aufwendig und kostenintensiv und nicht für große Bauteile geeignet.
Das Einarbeiten von Nanopartikel in Metallschmelzen ist problematisch, da die Partikel beim Erstarren der Metallschmelze wieder aus dieser ausgetragen werden und sich als Schlacke an der Oberfläche absetzen. Dies geschieht unabhängig von der Größe der zugegebenen Partikel.
Der Erfindung liegt daher die Aufgabe zugrunde, ein neues Verfahren für das Modifizieren von Metallschmelzen durch Zusätze zu schaffen, bei dem die Austragung der Zusätze vermieden wird.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß Partikel, Fasern oder Hohlkugeln zu der Metallschmelze zugegeben werden und diese vor der Zugabe zu der Metallschmelze mit einem metallischen Überzug versehen werden, wobei der Schmelzpunkt des metallischen Überzugs über dem der Metallschmelze liegt.
Der Erfindung liegt die Erkenntnis zugrunde, daß bei Vorliegen eines auch in der Metallschmelze weiterhin bestehenden metallischen Überzugs auf den Partikeln, Fasern oder Hohlkugeln, dessen chemische Zusammensetzung möglichst der Zusammensetzung der Metallschmelze ähnelt bzw. mit dieser kompatibel ist, die Partikel, Fasern oder Hohlkugeln beim Erstarren der Metallschmelze fest und homogen in diese eingebunden werden, da sie nach außen - zur Metallschmelze - hin ja entsprechende metallische Eigenschaften aufweisen. Voraussetzung hierfür ist lediglich, daß die Partikel oder Fasern hochtemperaturstabil sind. Erfindungsgemäß ist vorgesehen, daß die Metallschmelze aus den Elementen Aluminium, Titan, Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink, Zirkonium, Niob, Molybdän, Ruthenium, Rhodium, Palladium, Silber, Cadmium, Indium, Zinn, Hafnium, Tantal, Wolfram, Rhenium, Osmium, Iridium, Platin, Gold, Quecksilber, Tellur, Blei, Wismut, Polonium, sowie Mischungen oder Legierungen hiervon besteht.
Es liegt im Rahmen der Erfindung, daß die Partikel oder Fasern aus Salzen, insbesondere Oxiden, Phosphaten, Silikaten, Sulfiten, Nitraten, Nitriten, Sulfiden, Carbiden, Sulfaten, Carbonaten oder Halogeniden bestehen, wobei Aluminium(III)oxid, Calcium(II)carbonat, Barium(II)sulfat, Kupfer(II)sulfat, Eisen(III)oxid, Siliciumdioxid, Titan(IV)carbid, Zinndioxid, Titandioxid, Magnetit, Aluminium(III)chlorid, Chrom(III)nitrat, Eisen(III)nitrat, Hafnium(IV)carbid, Hafnium(IV)nitrit, Zirkoniumdioxid, Titan(IV)nitrit, Vandiumcarbid, Wolframcarbid, Bor(III)carbid, Siliciumnitrit, Siliciumcarbid, Vanadiumoxid, Magnesiumoxid bevorzugt werden, aus Mineralien, insbesondere Gips, Sand, Quarz, Natursteinpulver oder Glas oder aus Metallen, insbesondere Silber, Gold, Kupfer, Mangan, Eisen, Titan, Vanadium, Molybdän bzw. Metallegierungen bestehen, wobei Metallegierungen der vorgenannten Metalle bevorzugt werden.
Eine bevorzugte Ausführungsform der Erfindung besteht darin, daß die Partikelgröße der Partikel im Mikrometer- , Submikrometer- oder im Nanometerbereich liegt.
Es liegt im Rahmen der Erfindung, daß der metallische Überzug auf den Partikeln, Fasern oder Hohlkugeln durch naßchemische Verfahren, pulvermetallurgische Verfahren, elektrochemische Verfahren (z.B. Redoxreaktionen, galvanische Verfahren), Gasphasenabscheidung oder durch Plasmaverfahren aufgebracht wird.
Zur Erfindung ist weiterhin gehörig, daß der Schmelzpunkt des metallischen Überzugs mindestens 200C, vorzugsweise 100 bis 8000C über dem Schmelzpunkt der Metallschmelze liegt.
Hierdurch wird sichergestellt, daß der metallische Überzug auf dem Partikel oder der Faser erhalten bleibt, während sich der Partikel oder die Faser in der Metallschmelze befindet. Eine Umlegierung des metallischen Überzugs der Nanopartikel kann u.U. in der Schmelze erfolgen, ohne die Stabilität des Gesamtsystems zu beeinflussen.
Im Rahmen der Erfindung ist vorgesehen, daß der metallische Überzug aus Lithium, Beryllium, Natrium, Magnesium, Aluminium, Kalium, Calcium, Titan, Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink, Rubidium, Strontium, Zirkonium, Niob, Molybdän, Ruthenium, Rhodium, Palladium, Silber, Cadmium, Indium, Zinn, Caesium, Barium, Hafnium, Tantal, Wolfram, Rhenium, Osmium, Iridium, Platin, Gold, Quecksilber, Tellur, Blei, Bismut, Polonium, sowie Mischungen oder Legierungen hiervon besteht.
Im Falle amorpher oder teilamorpher Überzüge ist erfindungsgemäß vorgesehen, daß die Glasübergangstemperatur Tg des Metallüberzugs unterhalb der Temperatur der Metallschmelze liegt, so dass durch die partielle Erweichung der Oberfläche eine Legierungsbildung zwischen Metallschmelze und Oberflächenphase eintreten kann, auch als Gradient.
Unter Zugrundelegung der Schmelztemperatur der Metallschmelze und in Kenntnis der beiden vorgenannten Kriterien kann der Fachmann das jeweils geeignete Material für den metallischen Überzug bestimmen. Hierbei ist zu beachten, daß der Metallüberzug auf dem Partikel nicht oder nur schwer in der Metallschmelze löslich ist.
Im Rahmen der Erfindung ist vorgesehen, daß der Anteil an Partikeln in der Metallschmelze 0,1 bis 75 Gew.-%, bevorzugt zwischen 1 und 50 Gew.-%, besonders bevorzugt 2 bis 40 Gew.-% beträgt.
Es liegt im Rahmen der Erfindung, daß eine oder mehrere physikalische oder chemische Eigenschaften, insbesondere die Härte, das Elastizitätsmodul, die elektrischen Eigenschaften, die magnetischen Eigenschaften, die elektrische Leitfähigkeit, die thermische Leitfähigkeit, die Duktilität, der Reibbeiwert, der Schmelzpunkt, die Verzunderungstendenz oder die Korrosionstendenz modifziert werden.
Beispielsweise kann die Härte von Gegenständen aus Gold oder Goldlegierungen erhöht werden, Stähle mit geringerem Gewicht und größerer Härte oder Elastizität erzeugt werden, Metalle mit einem Korrosions-, Zunder- oder Anlaufschutz versehen werden, eine Änderung der elektrischen und magnetischen Eigenschaften bis hin zu superparamagnetischen Eigenschaften, eine veränderte Verarbeitungsfähigkeit oder aber tribologisch wirksame Partikel in eine Metallschmelze bzw. das daraus resultierende Metall eingearbeitet werden.
Das erfindungsgemäß Verfahren eignet sich zur Herstellung von Metallerzeugnissen, insbesondere von Stahlerzeugnissen.
Dies können Stangen, Röhren, Motor- und Fahrzeugteile, Bleche, Bauteile oder Baugruppen sein für den Maschinenbau, den Fahrzeugbau, das Bauwesen, die Verfahrenstechnik, die Luft- und Raumfahrt, die Kraftwerkstechnik, die Elektrotechnik, die Medizintechnik, die Sportartikelindustrie, den Garten- und Landschaftsbau, den Werkzeugbau, den Landmaschinenbau, die Möbelindustrie, die Hausgeräteindustrie, die Haushaltsgeräteindustrie, die Spielzeug- und Sportartikelindustrie, die Campingindustrie, das Bauwesen, die Heizungs- und Klimatechnik, die Fördertechnik, für Ölplattformen, Schmuck, Verkehrswege, Krane, Sanitärartikel sowie die Beleuchtungstechnik.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert.
Beispiel 1
100 g Al Pulver mit Partikelgrößen von 1-10 μm werden mit 100 g Butylglykol versetzt und kräftig verrührt. Hierzu gibt man 30g Chrom(III)nitrat als Feststoff. Man erhitzt auf 1300C und rührt die Suspension 24 h. Danach wird das Lösungsmittel im Vakuum abgezogen und die erhaltene Paste 20 min auf 6000C erhitzt. Dabei reagiert das Chromsalz mit dem Aluminium zu Chrom und Aluminiumoxid. Gibt man diese chrombeschichteten Aluminiumoxidpartikel in eine metallische Eisenschmelze in einer Konzentration von 10 Gew-%, so verteilen sich die Partikel homogen und bilden auch nach dem Erstarren der Schmelze eine homogene Verteilung von Aluminiumoxidpartikeln in Chrom-Eisen- Legierung. Beispiel 2
100 g Mg-Pulver mit Partikelgrößen von 1-10 μm werden mit 100 g Butylglykol versetzt und kräftig verrührt. Hierzu gibt man 30g Fe(II)nitrat als Feststoff. Man erhitzt auf 1300C unter Rühren. Es setzt eine spontane Reaktion ein, wobei die Mg Partikel sich zu Magnesiumoxid umwandeln, während sich an der Oberfläche Eisen bildet. Danach wird das Lösungsmittel im Vakuum abgezogen. Gibt man diese eisenbeschichteten Magnesiumoxidpartikel in einer Konzentration von 20 Gew-% in eine metallische Kupferschmelze (Schmelzpunkt 1084,40C), so verteilen sich die Partikel homogen und bilden auch nach dem erstarren der Schmelze eine homogene Verteilung von Magnesiumoxidpartikeln in einer Eisen-Kupferlegierung.
Beispiel 3
100 g einer wässrigen Aluminiumoxid Nanopulversuspension mit 20 Gew-% Feststoff werden mit 5 g Natriumthiosulfat und 20g Au2S versetzt und 24 h unter erhitzen auf 800C gerührt. Danach werden die goldbeschichteten Nanopartikel im Vakuum vom Lösungsmittel befreit. Gibt man diese goldbeschichteten Aluminiumoxidnanopartikel in eine metallische Silberschmelze in einer Konzentration von 20 Gew%, so verteilen sich die Partikel homogen und bilden auch nach dem Erstarren der Schmelze eine homogene Verteilung von Aluminiumoxidpartikeln in einer Gold-Silber-Legierung.

Claims

PATENTANSPRÜCHE
1. Verfahren zum Modifizieren von Metallschmelzen, dadurch gekennzeichnet, daß Partikel, Fasern oder Hohlkugeln zu der Metallschmelze zugegeben werden und diese vor der Zugabe zu der Metallschmelze mit einem metallischen Überzug versehen werden, wobei der Schmelzpunkt des metallischen Überzugs über dem der Metallschmelze liegt.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Metallschmelze aus den Elementen Aluminium, Titan, Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink, Zirkonium, Niob, Molybdän, Ruthenium, Rhodium, Palladium, Silber, Cadmium, Indium, Zinn, Hafnium, Tantal, Wolfram, Rhenium, Osmium, Iridium, Platin, Gold, Quecksilber, Tellur, Blei, Wismut, Polonium, sowie Mischungen oder Legierungen hiervon besteht.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Partikelgröße der Partikel im Mikrometer, Sub-Mikrometer- oder im Nanometerbereich liegt.
4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der metallische Überzug auf den Partikeln, Fasern oder Hohlkugeln durch naßchemische Verfahren, pulvermetallurgische Verfahren, elektrochemische Verfahren oder durch Plasmaverfahren aufgebracht wird.
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der metallische Überzug aus Lithium, Beryllium, Natrium, Magnesium, Aluminium, Kalium, Calcium, Titan, Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink, Rubidium, Strontium, Zirkonium, Niob, Molybdän, Ruthenium, Rhodium, Palladium, Silber, Cadmium, Indium, Zinn, Caesium, Barium, Hafnium, Tantal, Wolfram, Rhenium, Osmium, Iridium, Platin, Gold, Quecksilber, Tellur, Blei, Wismut, Polonium, sowie Mischungen oder Legierungen hiervon besteht.
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Schmelzpunkt des metallischen Überzugs mindestens 200C, vorzugsweise 100 bis 8000C über dem Schmelzpunkt der Metallschmelze liegt.
7. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß im Falle amorpher oder teilamorpher Überzüge die Glasübergangstemperatur Tg des Metallüberzugs unterhalb der Temperatur der Metallschmelze liegt.
8. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Anteil an Partikeln in der Metallschmelze 0,1 bis 75 Gew.-%, bevorzugt zwischen 1 und 50 Gew.-%, besonders bevorzugt 2-40 Gew.-% beträgt.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß eine oder mehrere physikalische oder chemische Eigenschaften, insbesondere die Härte, das Elastizitätsmodul, die elektrischen Eigenschaften, die magnetischen Eigenschaften, die elektrische Leitfähigkeit, die thermische Leitfähigkeit, die Duktilität, der Reibbeiwert, der Schmelzpunkt, die Verzunderungstendenz oder die Korrosionstendenz modifziert werden.
10. Verwendung des Verfahrens gemäß den Ansprüchen 1 bis 9 zur Herstellung von Metallerzeugnissen, insbesondere Stahlerzeugnissen.
EP10710177A 2009-01-20 2010-01-18 Verfahren zum modifizieren von metallschmelzen Withdrawn EP2379254A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009005537A DE102009005537A1 (de) 2009-01-20 2009-01-20 Verfahren zum Modifizieren von Metallschmelzen
PCT/DE2010/075007 WO2010083826A1 (de) 2009-01-20 2010-01-18 Verfahren zum modifizieren von metallschmelzen

Publications (1)

Publication Number Publication Date
EP2379254A1 true EP2379254A1 (de) 2011-10-26

Family

ID=42173239

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10710177A Withdrawn EP2379254A1 (de) 2009-01-20 2010-01-18 Verfahren zum modifizieren von metallschmelzen

Country Status (3)

Country Link
EP (1) EP2379254A1 (de)
DE (1) DE102009005537A1 (de)
WO (1) WO2010083826A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
CA2936851A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CA3012511A1 (en) 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3028234A (en) * 1961-03-03 1962-04-03 Du Pont Process for producing mixture of refractory metal oxides and metal and product thereof
FR95986E (fr) * 1968-03-25 1972-05-19 Int Nickel Ltd Alliages graphitiques et leurs procédés de production.
AU615265B2 (en) * 1988-03-09 1991-09-26 Toyota Jidosha Kabushiki Kaisha Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements
US5228494A (en) * 1992-05-01 1993-07-20 Rohatgi Pradeep K Synthesis of metal matrix composites containing flyash, graphite, glass, ceramics or other metals
JPH08506143A (ja) * 1992-11-19 1996-07-02 シェフィールド フォゲマスターズ リミテッド エンジニアリング・フェラス・メタル類
DE19813176C2 (de) * 1998-03-25 2000-08-24 Fraunhofer Ges Forschung Verfahren zur Herstellung von Verbundwerkstoffbauteilen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010083826A1 *

Also Published As

Publication number Publication date
WO2010083826A1 (de) 2010-07-29
DE102009005537A1 (de) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2010083826A1 (de) Verfahren zum modifizieren von metallschmelzen
EP1242642B1 (de) Verfahren zur herstellung von pulvermischungen bzw. verbundpulver
EP2066822B1 (de) Cermetpulver
DE60213687T2 (de) Behälter für silicium und verfahren zu seiner herstellung
EP1324946B1 (de) Ultragrobes, einkristallines wolframkarbid und verfahren zu dessen herstellung; und daraus hergestelltes hartmetall
DE19822663A1 (de) Sinteraktive Metall- und Legierungspulver für pulvermetallurgische Anwendungen und Verfahren zu deren Herstellung und deren Verwendung
DE3780133T2 (de) Korrosionsbestaendige legierung.
EP2782967B1 (de) Zink-magnesium-korrosionsschutzpigmente, korrosionsschutzlack und verfahren zur herstellung der korrosionsschutzpigmente
EP2785806B1 (de) Zinkmagnesiumlegierung-korrosionsschutzpigmente, korrosionsschutzlack und verfahren zur herstellung der korrosionsschutzpigmente
EP2337874A2 (de) Molybdänhaltiges metallpulver zur herstellung von hartmetallen auf wolframcarbid-basis
DE2060605C3 (de) Pulvermetallurgisch durch Sintern hergestellte, ausscheidungshärtbare, korrosions- und hochwarmfeste Nickel-Chrom-Legierung
DE102018116728A1 (de) Sinterpulver und sintercarbidzusammensetzungen
DE2830376C2 (de) Verfahren zur Herstellung kugelförmiger Teilchen für das Spritzauftragen von Schutzschichten
DE112013004564T5 (de) Metallkeramik-Nanoverbundstoffe mit Eisenaluminidmetallmatrix und deren Verwendung als Schutzbeschichtungen für tribologische Anwendungen
DE19521333C1 (de) Verfahren zur Herstellung von Natriumwolframat
DE1752757B2 (de) Verfahren zur Herstellung von Profilen, z.B. Rohren und Stäben voller Dichte
EP1811049B1 (de) Verfahren zur Herstellung partikelverstärkter Metalle
DE102005028435A1 (de) Herstellungsverfahren für Kokille mit Antihaftbeschichtung
EP2823077A2 (de) Siliziumhaltige kupfer-nickel-zink-legierung
DE622347C (de) Verfahren zur Herstellung von Hartmetallegierungen fuer Arbeitsgeraete und Werkzeuge aus Wolframkarbid und einem zusaetzlichen Hilfsmetall
EP2678455B1 (de) Verfahren zur rückgewinnung von hartstoffpartikeln
DE2520703C3 (de) Anwendung des Verfahrens zum Aufbringen eines harten Überzuges auf einer metallischen Oberfläche auf ein Hartmetall
DE102012009374B4 (de) Anorganischer, Metall enthaltender, Formkörper in einer bestimmten, zuvor in einer Papierstruktur abgebildeten Form und Verfahren zu seiner Herstellung
EP0768386B1 (de) Verfahren zur Senkung des Schmelzpunktes der Restasche von Kohle
DE102009011763B4 (de) Verfahren zur Herstellung einer offenporigen metallischen Gitterstruktur und hieraus bestehender Leichtbauwerkstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140506

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140801