EP2341156A1 - Verwendung einer Stahllegierung in einem Warmform- und Presshärteprozess - Google Patents

Verwendung einer Stahllegierung in einem Warmform- und Presshärteprozess Download PDF

Info

Publication number
EP2341156A1
EP2341156A1 EP10016155A EP10016155A EP2341156A1 EP 2341156 A1 EP2341156 A1 EP 2341156A1 EP 10016155 A EP10016155 A EP 10016155A EP 10016155 A EP10016155 A EP 10016155A EP 2341156 A1 EP2341156 A1 EP 2341156A1
Authority
EP
European Patent Office
Prior art keywords
max
press
steel
steel alloy
thermoformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10016155A
Other languages
English (en)
French (fr)
Other versions
EP2341156B1 (de
Inventor
Hubertus Dr. Giefers
Karsten Bake
Andreas Dr. Frehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Publication of EP2341156A1 publication Critical patent/EP2341156A1/de
Application granted granted Critical
Publication of EP2341156B1 publication Critical patent/EP2341156B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention describes the use of a steel alloy.
  • thermoforming and press hardening It has been proven to produce high strength, relatively thin components with complex shape and high dimensional accuracy for structural and safety parts such as A and B pillars or bumpers in the automotive industry.
  • sheets with thicknesses of 3 mm or less are typically formed and steels with a low carbon content are used.
  • the cited document describes a steel alloy with C ⁇ 0.4%; Silicon in a steel-making method dependent, but otherwise insignificant Salary; 0.5 to 2.0% Mn; Max. 0.05% P; Max. 0.05% S; 0.1 to 0.5% Cr and / or 0.05 to 0.5% Mo; up to 0.1% Ti; 0.0005 to 0.01% B, up to a total of 0.1% Al and, where appropriate, levels of copper and nickel up to 0.2% each.
  • a typical boron-alloyed steel for thermoforming and hardening is, for example, In DE 197 43 802 C2 disclosed.
  • the DE 197 43 802 C2 describes a method of making a metallic mold component for automotive components having regions of higher ductility.
  • a board is provided of a steel alloy, which is in weight percent of carbon (C) from 0.18% to 0.3%; Silicon (Si) 0.1% to 0.7%; Manganese (Mn) 1.0% to 2.5%; Phosphorus (P) maximum 0.025%; Chromium (Cr) 0.1% to 0.8%; Molybdenum (Mo) 0.1% to 0.5%; Sulfur (S) maximum 0.01%; Titanium (Ti) 0.02% to 0.05%: boron (B) 0.002% to 0.005%; Aluminum (Al) 0.01% to 0.06% and the balance iron including melting impurities.
  • the named alloy is outstandingly suitable for thermoforming and press hardening. However, the alloy structure in the hardened state consists predominantly of martensite. Thus, there is not always enough ductility in the material for the particular load case.
  • the DE 10 2005 054 847 B3 therefore proposes to use a thermoformed and press-hardened structural member which has been heat treated at 320 to 400 degrees Celsius after the thermoforming and press hardening process.
  • This heat treatment specifically influences the high-strength properties of the component.
  • the yield strength R p0.2 and the elongation A 5 remain almost unchanged. Only the tensile strength values Rm are reduced by 100 to 200 N / mm 2 .
  • the material still has the necessary high-strength mechanical properties, but due to the slightly lower tensile strength Rm, the material is so ductile that it wrinkles when it is loaded instead of breaking or tearing.
  • Rm slightly lower tensile strength
  • the prior art is also the US 6,544,354 B1 to name, which relates to the production of a high-strength steel alloy.
  • the steel alloy has a structure that is composed of ferrite and / or bainite and retained austenite. This steel alloy is particularly suitable for absorbing high forces under dynamic load.
  • the thermoformed structure is suitable for compression molding.
  • the prior art are the EP 2 003 221 A1 as well as the EP 2 039 791 A1 to be mentioned, each of which relates to high-strength steel alloys and corresponding manufacturing processes.
  • TRIP steels (TRANSformation Induced Plasticity) are well known. These are particularly high-strength steel alloys that have a multi-phase structure. TRIP steels are stronger and, at the same time, more ductile than conventional steel grades. They thereby enable the production of lighter components with a given required strength and ductility.
  • the TRIP effect is the special martensite formation during forming. This causes a simultaneous increase in hardness and formability in mechanical forming in product manufacture or use.
  • the manifestation of the effect is mainly influenced by the cost-effective alloying elements aluminum and silicon. In addition, much more expensive alloying elements such as nickel can be saved. The inherent yield strength is higher than that of comparable steels, since the silicon enables the form of solid solution hardening.
  • the metastable carbon-rich begins Austenite transforming into martensite induced by deformation.
  • the TRIP steel is purposefully solidified after the plastic deformation.
  • TRIP steel is cold formed.
  • cold-formed components with high yield strength and tensile strength are limited in the complexity of the geometry.
  • the springback of the steel must already be considered when designing the tool.
  • the residual strain is lower than in the un-formed area. The component consequently has uneven component properties.
  • the WO 2004/022794 A1 shows a method of producing a steel having a retained austenite content in the steel structure by heating a corresponding steel to produce austenite and then quenching it to at least partially convert the austenite to martensite. Then carbon is redistributed from martensite into the remaining austenite. This redistribution takes place in the area of the martensite start temperature. Therefore, the steel is kept in this temperature range correspondingly long or heated again and then selectively cooled.
  • the WO 2004/022794 A1 does not disclose boron-alloyed steel.
  • the DE 10 2008 010 168 A1 describes the use of a type of steel for tanking a vehicle, expressed as a percentage by weight, of 0.35 to 0.55% carbon; 0.1 to 2.5% silicon; 0.3 to 2.5% manganese; Max. 0.05% phosphorus, max. 0.01% sulfur; Max. 0.08% aluminum; Max. 0.5% copper; 0.1 to 2.0% chromium; max 3.0% nickel; max 1.0% molybdenum; max 2.0% cobalt; From 0.001 to 0.005% boron; 0.01 to 0.08 niobium; Max. 0.4% vanadium; Max. 0.02% nitrogen; Max. 0.2% titanium, remainder iron and impurities caused by melting.
  • This steel grade is also thermoformed. In addition to being used for armor purposes, this alloy has a relatively high carbon content which reduces weldability.
  • the invention is therefore the object of a hot-formed and press-hardened component with a high yield strength and a high tensile strength, but at the same time to provide improved over the prior art ductility.
  • thermoforming and press hardening process Remaining iron and unavoidable impurities dissolved in a thermoforming and press hardening process.
  • a board separated from a strip material or an already preformed component is heated to a temperature above the Ac 3 point of the alloy, so that a transformation of the microstructure into austenite takes place.
  • the blank or preformed component is placed in a forced-cooled mold, reshaped and simultaneously cured by cooling to a temperature below about 200 ° C. Pressing in the closed tool prevents a delay.
  • the finished thermoformed and press-hardened component is removed from the tool. Due to the special composition of the steel, in particular the relatively large addition of silicon, hardening does not only produce martensite.
  • austenite remains as retained austenite, which remains stable up to temperatures of minus 100 ° C.
  • the microstructure may also contain portions of bainite.
  • the silicon in the steel prevents carbide formation, which makes carbon available to stabilize retained austenite.
  • the retained austenite gives the steel according to the invention a higher Elongation at break as the classical boron-alloyed pure martensitic hot-forming steel.
  • the crash case of structural and safety components are typically used for the thermoformed and press-hardened components, formed from the remaining austenite martensite again, which additionally hardens the steel in the event of a crash.
  • tensile strengths are achieved, which are comparable to conventional thermoforming steel with a comparable carbon content.
  • the desired structure is not achieved in the hot rolling process, but in the thermoforming process (press hardening). If the structure already exists after hot rolling, the steel is suitable for cold forming. During the forming of the steel, the metastable retained austenite present in the hot strip can be transformed into martensite. On the other hand, in hot working / press hardening, the hot strip, which in the initial state may have any structure, is austenitized, thermoformed and press hardened, so that in combination with a subsequent tempering, the desired microstructure of mainly martensite with proportions of bainite and retained austenite is achieved.
  • the steel according to the invention has the following composition expressed in weight percent: C 0.22 - 0; 25% Mn 1.5-1.7% Si 1,95-2,1% Cr Max. 0.15% al 0.03 - 0.05% Ni Max. 0.2% B 0.002 - 0.0035% P Max. 0.015% S max: 0.01% Ti 0.005 - 0.1% Nb Max. 0.1% N Max. 0.01%
  • this alloy composition After being heated above Ac 3 and thermoformed and press-hardened in a water-cooled indirect thermoforming tool, this alloy composition reaches a yield strength Rm> 1600 MPa, a tensile strength R p0 . 2 > 1050 MPa and an elongation at break A 5 > 10.5%.
  • the hardened structure consists of martensite and retained austenite.
  • the fraction of retained austenite in the finished component increases the elongation at break of the component.
  • a typical for press hardening as fast and direct cooling process for the achievement of the desired structure sufficient.
  • a separate carbon redistribution need not be performed. Due to the thermoforming and press hardening, no springback of the material is to be expected.
  • the surface of the component is less scaled when heated than with conventional thermoforming steels. This makes it possible to produce a thermoformed and press-hardened component having a surface that can be directly coated without previous blasting. In addition, the hardened steel is more durable due to the high silicon content.
  • the formation of carbides during tempering is suppressed, so that the material can be galvanized even at 400 to 450 ° C, while maintaining the tensile strength Rm still> 1450 MPa. Since the Ac 3 temperature of the alloy is increased by the high silicon content, the heating temperature must be set correspondingly higher. It must be at least 960 ° C with a silicon content of 2%.
  • the inventive use of the alloy composition according to the invention in a thermoforming and Press hardening process good for producing a dimensionally accurate high strength component with increased ductility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

Es wird eine Stahlsorte für die Verwendung in einem Warmform- und Presshärteprozess vorgeschlagen, die sich in Gewichtsprozent zusammensetzt aus: C 0,15 % ‰¤ C < 0,35 % Mn 0,8 - 2,5 % Si 1,5 - 2,5 % Cr max. 0,4 % Al max. 0,1 % Ni max. 0,3 % B 0,0008 - 0,005 % Ti 0,005-0,1 % Nb max. 0,1 % Rest Eisen und unvermeidbare Verunreinigungen sowie ein warmgeformtes und pressgehärtetes Bauteil aus dieser Stahlsorte.

Description

    Verwendung einer Stahllegierung
  • Die Erfindung beschreibt die Verwendung einer Stahllegierung.
  • Aus der DE 24 52 486 C2 ist ein Verfahren zum Pressformen und Härten eines Stahlblechs mit geringer Materialdicke und guter Maßhaltigkeit bekannt, bei dem ein Stahlblech aus einem borlegierten Stahl auf über Ac3 erwärmt und dann in weniger als 5 Sekunden in die endgültige Form zwischen zwei indirekt gekühlten Werkzeugen unter wesentlicher Formveränderung gepresst wird und unter Verbleib in der Presse einer Schnellkühlung so unterzogen wird, dass ein martensitisches und/ oder bainitisches feinkörniges Gefüge erzielt wird. Dieses Verfahren ist nachfolgend mit Warmformen und Presshärten gemeint. Es hat sich zum Herstellen hochfester, relativ dünner Bauteile mit komplexer Formgebung und hoher Maßhaltigkeit für Struktur- und Sicherheitsteile wie A-und B-Säulen oder Stoßfänger in der Fahrzeugindustrie bewährt. Hierbei werden typischerweise Bleche mit Dicken von 3 mm oder weniger geformt und Stähle mit einem geringen Kohlenstoffgehalt eingesetzt. Die genannte Druckschrift beschreibt eine Stahllegierung mit C< 0,4 %; Silizium in einem von der Stahlherstellungsmethode abhängigen, aber im übrigen unwesentlichen Gehalt; 0,5 bis 2,0 % Mn; max. 0,05 % P; max. 0,05 % S; 0,1 bis 0,5 % Cr und/ oder 0,05 bis 0,5 % Mo; bis zu 0,1 % Ti; 0,0005 bis 0,01 % B, bis zu insgesamt 0,1 % Al und gegebenenfalls Gehalte an Kupfer und Nickel bis zu je 0,2 %.
  • Ein typischer borlegierter Stahl zum Warmformen und Härten ist beispielsweise In der DE 197 43 802 C2 offenbart. Die DE 197 43 802 C2 beschreibt ein Verfahren zur Herstellung eines metallischen Formbauteils für Kraftfahrzeugkomponenten mit Bereichen höherer Duktilität. Hierbei wird eine Platine bereitgestellt aus einer Stahllegierung, die in Gewichtsprozent ausgedrückt aus Kohlenstoff (C) 0,18 % bis 0,3 %; Silizium (Si) 0,1 % bis 0,7 %; Mangan (Mn) 1,0 % bis 2,5 %; Phosphor (P) maximal 0,025 %; Chrom (Cr) 0,1 % bis 0,8 %; Molybdän (Mo) 0,1 % bis 0,5 %; Schwefel (S) maximal 0,01 %; Titan (Ti) 0,02 % bis 0,05 %: Bor (B) 0,002 % bis 0,005 %; Aluminium (Al) 0,01 % bis 0,06 % und Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen besteht. Die genannte Legierung eignet sich hervorragend zum Warmformen und Presshärten. Allerdings besteht das Leglerungsgefüge im gehärteten Zustand überwiegend aus Martensit. Damit ist nicht immer genug Duktilität im Material für den jeweiligen Belastungsfall vorhanden.
  • Die DE 10 2005 054 847 B3 schlägt deswegen vor, ein warmgeformtes- und pressgehärtetes Strukturbauteil einzusetzen, das nach dem Warmform- und Presshärtungsprozess bei 320 bis 400 Grad Celsius wärmebehandelt worden ist. Durch diese Wärmebehandlung werden die hochfesten Eigenschaften des Bauteils gezielt beeinflusst. Die Streckgrenze Rp0.2 und die Dehnung A5 bleiben nahezu unverändert. Lediglich die Zugfestigkeitswerte Rm werden um 100 bis 200 N/mm2 reduziert. Bei der bereits zuvor offenbarten Stahlsorte, die sich in Gewichtsprozent aus Kohlenstoff (C) 0,18 % bis 0,3 %, Silizium (Si) 0,1 % bis 0,7 %, Mangan (Mn) 1,0 % bis 2,5 %, Phosphor (P) maximal 0,025 %, Chrom (Cr) bis 0,8 %, Molybdän (Mo) bis 0,5 %, Schwefel (S) maximal 0,01 %, Titan (Ti) 0,02 % bis 0,05 %, Bor (B) 0,002 % bis 0,005 % und Aluminium (AI) 0,01 % bis 0,06 %, Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen zusammensetzt, stellen sich nach der Wärmebehandlung bei 320 bis 400°C eine Zugfestigkeit Rm von 1200 bis 1400 N/mm2, eine Streckgrenze Rp0,2 von 950 bis 1250 N/mm2 und eine Dehnung A5 von 6 -12 % ein. Der Werkstoff verfügt nach wie vor über die notwendigen hochfesten mechanischen Eigenschaften, durch die etwas geringere Zugfestigkeit Rm ist der Werkstoff aber so duktil, dass er bei entsprechender Belastung Falten wirft, anstatt zu brechen oder reißen. Der zusätzliche Anlassprozess ist jedoch wieder relativ aufwändig und teuer.
  • Zum Stand der Technik ist ferner die US 6,544,354 B1 zu nennen, welche die Herstellung einer hochfesten Stahllegierung betrifft. Die Stahllegierung besitzt ein Gefüge, dass sich aus Ferrit und/oder Bainit sowie Restaustenit zusammensetzt. Diese Stahllegierung eignet sich insbesondere dafür bei dynamischer Belastung hohe Kräfte aufzunehmen. Das warmgeformte Gefüge eignet sich zum Pressformen.
  • Ferner sind zum Stand der Technik die EP 2 003 221 A1 sowie die EP 2 039 791 A1 zu nennen, die jeweils hochfeste Stahllegierungen und entsprechende Herstellungsverfahren betreffen.
  • Zudem sind sogenannte TRIP-Stähle (engl. TRansformation Induced Plasticity, dt.: »umwandfungsbewirkte Plastizität«) allgemein bekannt. Hierbei handelt es sich um besonders hochfeste Stahllegierungen, die ein Mehrphasengefüge aufweisen. TRIP-Stähle sind fester und dabei gleichzeitig dehnbarer als herkömmliche Stahlsorten. Sie ermöglichen dadurch die Herstellung leichterer Bauteile bei einer vorgegebenen erforderlichen Festigkeit und Dehnbarkeit. Der TRIP-Effekt ist die besondere Martensitbildung bei Umformung. Dies bewirkt eine gleichzeitige Steigerung der Härte und Umformbarkeit bei mechanischer Umformung in der Produktherstellung oder -Verwendung. Die Ausprägung des Effekts wird hauptsächlich durch die kostengünstigen Legierungselemente Aluminium und Silizium beeinflusst. Zusätzlich können dabei wesentlich teurere Legierungselemente wie Nickel eingespart werden. Die werkstoffeigene Streckgrenze liegt höher als bei vergleichbaren Stählen, da das Silizium die Form der Mischkristallverfestigung ermöglicht. Sobald es bei der Verformung in den plastischen Bereich kommt, beginnt der metastabile kohlenstoffreiche Austenit sich verformungsinduziert in Martensit umzuwandeln. Dadurch wird der TRIP-Stahl nach der plastischen Verformung gezielt verfestigt. TRIP- Stahl wird kalt umgeformt. Kaltumgeformte Bauteile mit hoher Streckgrenze und Zugfestigkeit sind jedoch in der Komplexität der Geometrie begrenzt. Außerdem muss bei einer Kaltumformung die Rückfederung des Stahls bereits bei der Werkzeugauslegung berücksichtigt werden. Hinzu kommt, dass im umgeformten Bereich die Restdehnung niedriger ist als im nicht umgeformten Bereich. Das Bauteil verfügt folglich über ungleichmäßige Bauteileigenschaften.
  • Die WO 2004/ 022794 A1 zeigt ein Verfahren zur Herstellung eines Stahls mit einem Anteil von Restaustenit im Stahlgefüge, indem ein entsprechender Stahl erwärmt wird, um Austenit zu produzieren und anschließend abgeschreckt wird, um den Austenit zumindest teilweise in Martensit umzuwandeln. Dann wird Kohlenstoff umverteilt von Martensit in den noch vorhandenen Austenit. Diese Umverteilung findet im Bereich der Martensitstarttemperatur statt. Deswegen wird der Stahl entsprechend lange in diesem Temperaturbereich gehalten oder noch mal erwärmt und anschließend gezielt abgekühlt. Die WO 2004/ 022794 A1 offenbart keinen borlegierten Stahl.
  • Die DE 10 2008 010 168 A1 beschreibt die Verwendung einer Stahlsorte zum Panzern eines Fahrzeugs, die sich ausgedrückt in Gewichtsprozent zusammensetzt aus 0,35 bis 0,55 % Kohlenstoff; 0,1 bis 2,5 % Silizium; 0,3 bis 2,5 % Mangan; max. 0,05 % Phosphor, max. 0,01 % Schwefel; max. 0,08 % Aluminium; max. 0,5 % Kupfer; 0,1 bis 2,0 % Chrom; max 3,0 % Nickel; max 1,0 % Molybdän; max 2,0 % Kobalt; 0,001 bis 0,005 % Bor; 0,01 bis 0,08 Niob; max. 0,4 % Vanadium; max. 0,02 % Stickstoff; max. 0,2 % Titan, Rest Eisen und erschmelzungsbedingte Verunreinigungen. Auch diese Stahlsorte wird warmgeformt. Abgesehen davon, dass diese Legierung für Panzerungzwecke eingesetzt wird, verfügt sie über einen relativ hohen Kohlenstoffgehalt, der die Schweißbarkeit herabsetzt.
  • Ausgehend von diesem Stand der Technik liegt der Erfindung daher die Aufgabe zugrunde, ein warmgeformtes und pressgehärtetes Bauteil mit einer hohen Streckgrenze und einer hohen Zugfestigkeit, aber gleichzeitig einer gegenüber dem Stand der Technik verbesserten Duktilitat bereitzustellen.
  • Diese Aufgabe wird durch die Verwendung einer Stahllegierung, die sich ausgedrückt in Gewichtsprozent zusammensetzt aus:
    C 0,15 % ≤ C< 0,35 %
    Mn 0,8 - 2,5 %
    Si 1,5-2,5 %
    Cr max. 0,4 %
    Al max. 0,1 %
    Ni max. 0,3 %
    B 0,0008 - 0,005 %
    Ti 0,005-0,1 %
    Nb max. 0,1 %
  • Rest Eisen und unvermeidbare Verunreinigungen in einem Warmform- und Presshärteprozess gelöst. Dabei wird eine aus einem Bandmaterial abgetrennte Platine oder ein bereits vorgeformtes Bauteil auf eine Temperatur über den Ac3 Punkt der Legierung erwärmt, so dass eine Umwandlung des Gefüges in Austenit stattfindet. Anschließend wird die Platine oder das vorgeformte Bauteil in ein zwangsgekühltes Werkzeug eingelegt, umgeformt und dabei gleichzeitig gehärtet, indem es auf eine Temperatur unterhalb etwa 200° C abgekühlt wird. Durch das Pressen im geschlossenen Werkzeug unterbleibt ein Verzug. Anschließend wird das fertige warmgeformte und pressgehärtete Bauteil dem Werkzeug entnommen. Durch die spezielle Zusammensetzung des Stahls, insbesondere die relativ große Zugabe von Silizium, entsteht beim Härten nicht nur Martensit. Stattdessen bleibt ein Teil des Austenits als Restaustenit erhalten, der bis Temperaturen von minus 100° C stabil bleibt. Das Gefüge kann neben Restaustenit auch Anteile von Bainit enthalten. Das Silizium im Stahl verhindert die Karbidbildung, wodurch Kohlenstoff zur Stabilisierung des Restaustenits zur Verfügung steht. Der Restaustenit verleiht dem erfindungsgemäßen Stahl eine höhere Bruchdehnung als der klassisische borlegierte rein martensitische Warmformstahl. Zudem wird bei einer späteren Umformung, also dem Crashfall bei Struktur- und Sicherheitsbauteilen, für die warmgeformte und pressgehärtete Bauteile typischerweise eingesetzt werden, aus dem noch vorhandenen Restaustenit wieder Martensit gebildet, was den Stahl im Crashfall zusätzlich aufhärtet. Dadurch werden Zugfestigkeiten erreicht, die dem herkömmlichen Warmformstahl mit einem vergleichbaren Kohlenstoffgehalt vergleichbar sind.
  • Bei der Erfindung wird das gewünschte Gefüge nicht im Warmwalzprozess, sondem im Warmformprozess (Presshärten) erreicht. Liegt das Gefüge bereits nach dem Warmwalzen vor, eignet sich der Stahl für die Kaltumformung. Bei der Umformung des Stahls kann sich der im Warmband vorliegende metastabile Restaustenit in Martensit umwandeln. Dahingegen wird bei der Warmumformung / dem Presshärten das Warmband, das im Ausgangszustand ein beliebiges Gefüge aufweisen kann, austenitisiert, warmgeformt und pressgehärtet, so dass in Kombination mit einem sich anschließenden Anlassen die gewünschte Gefügestruktur aus hauptsächlich Martensit mit Anteilen an Bainit und Restaustenit erreicht wird.
  • In einer bevorzugten Ausführungsform hat der erfindungsgemäße Stahl folgende Zusammensetzung ausgedrückt in Gewichtsprozent:
    C 0,22 - 0;25 %
    Mn 1,5-1,7 %
    Si 1,95-2,1 %
    Cr max. 0,15 %
    Al 0,03 - 0,05 %
    Ni max. 0,2 %
    B 0,002 - 0,0035 %
    P max. 0,015 %
    S max: 0.01 %
    Ti 0,005 - 0,1 %
    Nb max. 0,1%
    N max. 0,01 %
  • Rest Eisen und unvermeidbare Verunreinigungen. Bevorzugt ist dabei das Verhältnis von Titan zu Stickstoff 1 Ti auf 3,4 N bis 5 N. Dadurch wird genügend Stickstoff durch Titan gebunden. Nach einem Erwärmen über Ac3 und einem Warmformen und Presshärten in einem mit Wasser indirekt gekühlten Warmformwerkzeug erreicht diese Legierungszusammensetzung eine Streckgrenze Rm > 1600 MPa, eine Zugfestigkeit Rp0.2 > 1050 MPa und eine Bruchdehnung A5 >10,5 %. Das gehärtete Gefüge besteht aus Martensit und Restaustenit.
  • Durch die Anteile an Restaustenit im fertigen Bauteil erhöht sich die Bruchdehnung des Bauteils. Dabei ist ein für das Presshärten typischer, möglichst schneller und direkter Abkühlvorgang für das Erreichen des gewünschten Gefüges ausreichend. Eine separate Kohlenstoffumverteilung muss nicht durchgeführt werden. Durch die Warmformung und Presshärtung ist nicht mit einer Rückfederung des Materials zu rechnen. Außerdem verzundert durch den hohen Silizium Antell die Oberfläche des Bauteils bei der Erwärmung geringer als bei herkömmlichen Warmformstählen. Dadurch ist es möglich, ein warmgeformtes und pressgehärtetes Bauteil mit einer Oberfläche zu erzeugen, die ohne vorheriges Strahlen direkt KTL beschichtet werden kann. Außerdem ist der gehärtete Stahl durch den hohen Silizium Anteil anlassbeständiger. Die Entstehung von Karbiden beim Anlassen wird unterdrückt, so dass der Werkstoff auch noch bei 400 bis 450° C verzinkt werden kann, wobei gleichzeitig die Zugfestigkeit Rm nach wie vor > 1450 MPa erhalten bleibt. Da durch den hohen Silizium Gehalt die Ac3 Temperatur der Legierung erhöht wird, muss auch die Erwärmungstemperatur entsprechend höher angesetzt werden. Sie muss bei einem Siliziumgehalt von 2 % mindestens 960° C betragen.
  • Insgesamt eignet sich die erfindungsgemäße Verwendung der erfindungsgemäßen Legierungszusammensetzung in einem Warmform- und Presshärteprozess gut zur Erzeugung eines maßgenauen hochfesten Bauteils mit erhöhter Duktilität.

Claims (8)

  1. Verwendung einer Stahllegierung, die sich ausgedrückt in Gewichtsprozent zusammensetzt aus: C 0.15 % ≤ C< 0.35 % Mn 0,8 - 2,5 % Si 1,5-2,5 % Cr max. 0.4 % Al max. 0.1 % Ni max. 0,3 % B 0,0008 - 0,005 % Ti 0,005 - 0,1 % Nb max. 0,1 %
    Rest Eisen und unvermeidbare Verunreinigungen in einem Warmform- und Presshärteprozess.
  2. Verwendung einer Stahllegierung nach Anspruch 1,
    gekennzeichnet durch
    eine Zusammensetzung ausgedrückt in Gewichtsprozent aus C 0,22 - 0,25 % Mn 1,5 -1,7 % Si 1,95-2,1 % Cr max. 0;15 % Al 0,03 - 0,05 % Ni max. 0,2 % B 0,002 - 0,0035 % P max. 0,015 % S max. 0,01 % Ti 0,005 - 0,1 % Nb max. 0,1 % N max. 0,01 %
    Rest Eisen und unvermeidbare Verunreinigungen in einem Warmform- und Presshärteprozess.
  3. Verwendung einer Stahllegierung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass das Verhältnis von Ti 3,4 N bis 5 N ist.
  4. Verwendung einer Stahllegierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,
    dass das pressgehärtete Gefüge hauptsächlich aus Martensit besteht mit Anteilen von Restaustenit und Bainit.
  5. Warmgeformtes und pressgehärtetes Bauteil,
    dadurch gekennzeichnet,
    dass es aus einer Stahlsorte besteht, die sich in Gewichtsprozent zusammensetzt aus C 0,15% ≤ C< 0,35 % Mn 0,8 - 2,5 Si 1,5 - 2,5 Cr max. 0,4 Al max. 0,1 Ni max. 0,3 B 0,0008 - 0,005 Ti 0,005 - 0,1 % Nb max. 0,1
    Rest Eisen und unvermeidbare Verunreinigungen.
  6. Warmgeformtes und pressgehärtetes Bauteil nach Anspruch 5, dadurch gekennzeichnet,
    dass es aus einer Stahlsorte besteht, die sich in Gewichtsprozent zusammensetzt aus C 0,2 ― 0,25% Mn 1,5 ― 1,7 % Si 1,95 ― 2,1 % Cr max. 0,15 % Al 0,03 - 0,05 % NI max. 0,2 % B 0,002 - 0,0035 % P max. 0,015 % S max. 0,01 % Ti 0,005 - 0,1 % Nb max. 0,1 % N max. 0,01 %
    Rest Eisen und unvermeidbare Verunreinigungen.
  7. Warmgeformtes und pressgehärtetes Bauteil nach Anspruch 5 oder 6,
    dadurch gekennzeichnet,
    dass es ein hauptsächlich martensitisches Gefüge mit Anteilen Restaustenit und Bainit aufweist.
  8. Warmgeformtes und pressgehärtetes Bauteil nach einem der Ansprüche 5 bis 7.
    dadurch gekennzeichnet,
    dass es sich um ein Struktur- und/ oder Sicherheitsbauteil handelt.
EP10016155.3A 2010-01-04 2010-12-29 Verwendung einer Stahllegierung in einem Warmform- und Presshärteprozess Not-in-force EP2341156B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010003997A DE102010003997A1 (de) 2010-01-04 2010-01-04 Verwendung einer Stahllegierung

Publications (2)

Publication Number Publication Date
EP2341156A1 true EP2341156A1 (de) 2011-07-06
EP2341156B1 EP2341156B1 (de) 2017-03-29

Family

ID=43734285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10016155.3A Not-in-force EP2341156B1 (de) 2010-01-04 2010-12-29 Verwendung einer Stahllegierung in einem Warmform- und Presshärteprozess

Country Status (3)

Country Link
US (1) US20110182765A1 (de)
EP (1) EP2341156B1 (de)
DE (1) DE102010003997A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765014A1 (de) * 2013-02-08 2014-08-13 Benteler Automobiltechnik GmbH Verfahren zur Herstellung eines Kraftfahrzeugstabilisators
EP2735620A4 (de) * 2011-07-21 2015-06-03 Kobe Steel Ltd Verfahren zur herstellung eines heissgepressten stahlteils
EP2728027B1 (de) 2011-06-30 2019-01-16 Hyundai Steel Company Wärmegehärteter stahl mit hervorragender kollisionstauglichkeit und verfahren zur herstellung wärmehärtbarer teile damit
WO2022189606A1 (en) * 2021-03-11 2022-09-15 Tata Steel Nederland Technology B.V. A cold-rolled and hot-press formed high strength steel product with excellent hole expandability and process of producing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6001883B2 (ja) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 プレス成形品の製造方法およびプレス成形品
JP6001884B2 (ja) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 プレス成形品の製造方法およびプレス成形品
DE102012024626A1 (de) * 2012-12-17 2014-06-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Fahrzeugkarosserie und Verfahren zur Fertigung eines Formteils dafür
US9475107B2 (en) 2013-02-05 2016-10-25 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle axle component
DE102013010946B3 (de) * 2013-06-28 2014-12-31 Daimler Ag Verfahren und Anlage zum Herstellen eines pressgehärteten Stahlblechbauteils
HUE045545T2 (hu) * 2015-01-30 2019-12-30 Bekaert Sa Nv Nagyszilárdságú szálacél
BR102016001063B1 (pt) 2016-01-18 2021-06-08 Amsted Maxion Fundição E Equipamentos Ferroviários S/A liga de aço para componentes ferroviários, e processo de obtenção de uma liga de aço para componentes ferroviários
DE102016108836B4 (de) * 2016-05-12 2018-05-24 Benteler Automobiltechnik Gmbh Kraftfahrzeugbauteil sowie Verfahren zu dessen Herstellung
WO2018220412A1 (fr) 2017-06-01 2018-12-06 Arcelormittal Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
DE102019130381A1 (de) * 2019-11-11 2021-05-12 Benteler Automobiltechnik Gmbh Kraftfahrzeugbauteil mit gesteigerter Festigkeit

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2452486C2 (de) 1973-11-06 1985-10-17 Plannja AB, Luleå Verfahren zum Preßformen und Härten eines Stahlblechs mit geringer Materialdicke und guter Maßhaltigkeit
DE19743802C2 (de) 1996-10-07 2000-09-14 Benteler Werke Ag Verfahren zur Herstellung eines metallischen Formbauteils
US6544354B1 (en) 1997-01-29 2003-04-08 Nippon Steel Corporation High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
WO2004102279A2 (en) 2003-05-19 2004-11-25 Koninklijke Philips Electronics N.V. Method of manufacturing an electronic device
JP2006070346A (ja) * 2004-09-06 2006-03-16 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
DE102005054847B3 (de) 2005-11-15 2007-10-04 Benteler Automobiltechnik Gmbh Hochfestes Stahlbauteil mit gezielter Deformation im Crashfall
EP2003221A1 (de) 2006-04-04 2008-12-17 Nippon Steel Corporation Sehr dünnes hartstahlblech und verfahren zu seiner herstellung
EP2039791A1 (de) 2006-06-01 2009-03-25 HONDA MOTOR CO., Ltd. Hochfestes stahlblech und herstellungsverfahren dafür
EP2093304A1 (de) * 2008-02-20 2009-08-26 Benteler Automobiltechnik GmbH Panzerung für ein Fahrzeug
WO2010032776A1 (ja) * 2008-09-18 2010-03-25 国立大学法人岡山大学 ホットプレス加工を施した鋼板部材及びその製造方法
EP2246456A1 (de) * 2008-01-31 2010-11-03 JFE Steel Corporation Hochfestes stahlblech und herstellungsverfahren dafür
WO2010137343A1 (ja) * 2009-05-29 2010-12-02 株式会社神戸製鋼所 耐水素脆化特性に優れた高強度鋼板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060011274A1 (en) 2002-09-04 2006-01-19 Colorado School Of Mines Method for producing steel with retained austenite
JP4288201B2 (ja) * 2003-09-05 2009-07-01 新日本製鐵株式会社 耐水素脆化特性に優れた自動車用部材の製造方法
JP3816937B1 (ja) * 2005-03-31 2006-08-30 株式会社神戸製鋼所 熱間成形品用鋼板およびその製造方法並びに熱間成形品
EP2053140B1 (de) * 2006-07-14 2013-12-04 Kabushiki Kaisha Kobe Seiko Sho Hochfeste stahlbleche und herstellungsverfahren dafür

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2452486C2 (de) 1973-11-06 1985-10-17 Plannja AB, Luleå Verfahren zum Preßformen und Härten eines Stahlblechs mit geringer Materialdicke und guter Maßhaltigkeit
DE19743802C2 (de) 1996-10-07 2000-09-14 Benteler Werke Ag Verfahren zur Herstellung eines metallischen Formbauteils
US6544354B1 (en) 1997-01-29 2003-04-08 Nippon Steel Corporation High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
WO2004102279A2 (en) 2003-05-19 2004-11-25 Koninklijke Philips Electronics N.V. Method of manufacturing an electronic device
JP2006070346A (ja) * 2004-09-06 2006-03-16 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
DE102005054847B3 (de) 2005-11-15 2007-10-04 Benteler Automobiltechnik Gmbh Hochfestes Stahlbauteil mit gezielter Deformation im Crashfall
EP2003221A1 (de) 2006-04-04 2008-12-17 Nippon Steel Corporation Sehr dünnes hartstahlblech und verfahren zu seiner herstellung
EP2039791A1 (de) 2006-06-01 2009-03-25 HONDA MOTOR CO., Ltd. Hochfestes stahlblech und herstellungsverfahren dafür
EP2246456A1 (de) * 2008-01-31 2010-11-03 JFE Steel Corporation Hochfestes stahlblech und herstellungsverfahren dafür
EP2093304A1 (de) * 2008-02-20 2009-08-26 Benteler Automobiltechnik GmbH Panzerung für ein Fahrzeug
DE102008010168A1 (de) 2008-02-20 2009-08-27 Benteler Automobiltechnik Gmbh Panzerung für ein Fahrzeug
WO2010032776A1 (ja) * 2008-09-18 2010-03-25 国立大学法人岡山大学 ホットプレス加工を施した鋼板部材及びその製造方法
WO2010137343A1 (ja) * 2009-05-29 2010-12-02 株式会社神戸製鋼所 耐水素脆化特性に優れた高強度鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200621, Derwent World Patents Index; AN 2006-200847, XP002629965 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728027B1 (de) 2011-06-30 2019-01-16 Hyundai Steel Company Wärmegehärteter stahl mit hervorragender kollisionstauglichkeit und verfahren zur herstellung wärmehärtbarer teile damit
EP2735620A4 (de) * 2011-07-21 2015-06-03 Kobe Steel Ltd Verfahren zur herstellung eines heissgepressten stahlteils
EP2995691A1 (de) * 2011-07-21 2016-03-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Verfahren zur herstellung eines heissgepressten stahlteils
US11344941B2 (en) * 2011-07-21 2022-05-31 Kobe Steel, Ltd. Method of manufacturing hot-press-formed steel member
EP2765014A1 (de) * 2013-02-08 2014-08-13 Benteler Automobiltechnik GmbH Verfahren zur Herstellung eines Kraftfahrzeugstabilisators
WO2022189606A1 (en) * 2021-03-11 2022-09-15 Tata Steel Nederland Technology B.V. A cold-rolled and hot-press formed high strength steel product with excellent hole expandability and process of producing the same

Also Published As

Publication number Publication date
US20110182765A1 (en) 2011-07-28
EP2341156B1 (de) 2017-03-29
DE102010003997A1 (de) 2011-07-07

Similar Documents

Publication Publication Date Title
EP2341156B1 (de) Verwendung einer Stahllegierung in einem Warmform- und Presshärteprozess
DE102008051992B4 (de) Verfahren zur Herstellung eines Werkstücks, Werkstück und Verwendung eines Werkstückes
EP2297367B9 (de) Verfahren zum herstellen eines stahlformteils mit einem überwiegend ferritisch-bainitischen gefüge
DE102005014298B4 (de) Panzerung für ein Fahrzeug
KR20210003236A (ko) 열간 스탬핑용 강, 열간 스탬핑 방법, 및 열간 스탬핑된 구성요소
KR101609968B1 (ko) 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법
KR101827187B1 (ko) 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법
EP3504349B1 (de) Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
EP2374910A1 (de) Stahl, Stahlflachprodukt, Stahlbauteil und Verfahren zur Herstellung eines Stahlbauteils
EP1939308A1 (de) Verfahren zum Herstellen eines Bauteils durch Wärmepresshärten und hochfestes Bauteil mit verbesserter Bruchdehnung
EP2749659A1 (de) Verfahren zur Herstellung eines Kraftfahrzeugbauteils sowie Kraftfahrzeugbauteil
EP3728657B1 (de) Verfahren zum erzeugen metallischer bauteile mit angepassten bauteileigenschaften
WO2018050387A1 (de) Verfahren zur herstellung eines umgeformten bauteils aus einem manganhaltigen stahlflachprodukt und ein derartiges bauteil
WO2009090228A1 (de) Bauteile aus hochmanganhaltigem, festem und zähem stahlformguss, verfahren zu deren herstellung sowie deren verwendung
DE102019101546A1 (de) Mikrolegierter mangan-bor-stahl
EP2664682A1 (de) Stahl für die Herstellung eines Stahlbauteils, daraus bestehendes Stahlflachprodukt, daraus hergestelltes Bauteil und Verfahren zu dessen Herstellung
EP3724359A1 (de) Hochfestes, warmgewalztes stahlflachprodukt mit hohem kantenrisswiderstand und gleichzeitig hohem bake-hardening potential, ein verfahren zur herstellung eines solchen stahlflachprodukts
DE102016117508B4 (de) Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl und ein derartiges Stahlflachprodukt
DE112008001181B4 (de) Verwendung einer Stahllegierung für Achsrohre sowie Achsrohr
DE102008022401A1 (de) Verfahren zum Herstellen eines Stahlformteils mit einem überwiegend bainitischen Gefüge
DE102016117494A1 (de) Verfahren zur Herstellung eines umgeformten Bauteils aus einem mittelmanganhaltigen Stahlflachprodukt und ein derartiges Bauteil
EP3469108B1 (de) Verfahren zur herstellung eines kaltgewalzten stahlbandes mit trip-eigenschften aus einem hochfesten, manganhaltigen stahl
DE102018122901A1 (de) Verfahren zur Herstellung ultrahochfester Stahlbleche und Stahlblech hierfür
EP1992710B1 (de) Verwendung einer Stahllegierung
KR20230048109A (ko) 강의 단조 부품 및 그 제조 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161130

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BENTELER AUTOMOBILTECHNIK GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 879829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013370

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170731

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013370

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171221

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171220

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171229

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 879829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101229

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010013370

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170329

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329