EP2335302A1 - Methode de formation d'une electrode metallique sur une couche d'oxyde metallique - Google Patents

Methode de formation d'une electrode metallique sur une couche d'oxyde metallique

Info

Publication number
EP2335302A1
EP2335302A1 EP09748268A EP09748268A EP2335302A1 EP 2335302 A1 EP2335302 A1 EP 2335302A1 EP 09748268 A EP09748268 A EP 09748268A EP 09748268 A EP09748268 A EP 09748268A EP 2335302 A1 EP2335302 A1 EP 2335302A1
Authority
EP
European Patent Office
Prior art keywords
layer
metal oxide
oxide layer
metallic electrode
functional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09748268A
Other languages
German (de)
English (en)
Inventor
Harald Hoppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sk Holding & Co KG GmbH
Original Assignee
Sk Holding & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sk Holding & Co KG GmbH filed Critical Sk Holding & Co KG GmbH
Publication of EP2335302A1 publication Critical patent/EP2335302A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of disposing a metallic electrode over a functional layer from which electrons are extractable or into which electrons are injectable.
  • the functional layer may be, for example, a photoactive polymer layer for the production of electronic components, in particular of polymer solar cells.
  • the production of solar cells from a solution requires the application of a charge carrier collecting back contact.
  • State of the art here are thermal sublimation or Sputterdeposition in a vacuum.
  • the use of vacuum processes requires high installation costs of the production plant, high production costs and low throughput of semi-finished products compared with, for example, printing presses.
  • the present invention describes the application of an inorganic back contact by means of pure printing processes or coating processes of liquids.
  • electrodes are made of low work function metals and are thus relatively unstable. Also, the process is difficult alsskalierbar on a roll-to-roll process. Another disadvantage of organic electrodes lies in the degradation under UV light, as well as the water sensitivity due to hygroscopic influences.
  • WO 2007/029750 A1 shows a process for producing an organic thin-film photoelectric converter under atmospheric conditions.
  • a layer of titanium (IV) oxide is formed in a wet process.
  • WO 2007/040601 A1 and WO 2007/079500 A2 show the realization of a titanium oxide layer by means of sol-gel methods.
  • US 2007/0166872 A1 shows a method of depositing an electrode from a semiconductor oxide.
  • EP 1 622 212 A2 shows the coating of a nano-structured electrode.
  • EP 1 670 298 A1 shows the application of printed conductors to a promoter.
  • the object of the present invention starting from the prior art is to provide a method for arranging a metallic electrode over a functional layer, in particular over a photoactive polymer layer of a solar cell, with which the use of vacuum technology can be avoided, so that an optimization of the manufacturing and Installation process can be realized.
  • the method according to the invention serves for arranging a metallic electrode above or below a functional layer from which electrons can be extracted or into which
  • Electrons are injectable.
  • the functional layer is, for example, the photoactive layer, a solar cell or an organic layer of an organic - A -
  • the functional layer is preferably made of a polymer, such as. As polythiophene, wherein in the polymer also other molecules may be included. Alternatively, the functional layer can also consist of another substance, for example an inorganic substance.
  • the electrode in particular a cathode serves to collect the electrons extracted from the functional layer or to inject electrons into the functional layer. With the method according to the invention, the electrode is brought into effective contact with the functional layer, so that the metallic electrode is located above the functional layer with respect to the functional layer.
  • One step of the method according to the invention provides for applying a metal oxide layer from a liquid phase or from a nanoparticulate dispersion. In the liquid
  • Phase is a precursor phase, for example, as part of a sol-gel process.
  • the metal oxide is preferably titanium oxide, zinc oxide or indium oxide.
  • a further step of the method according to the invention provides for applying the metallic electrode from a liquid phase, in particular a solution of metals bound in organic molecules, or from a nanoparticulate dispersion, i. H. a dispersion of metallic nanoparticles, before.
  • the metal of the electrode is preferably gold, silver or
  • the two mentioned steps of the method according to the invention can be carried out according to the embodiment in a different sequence or simultaneously.
  • the metal oxide layer is preferably applied to the functional layer, in order subsequently to apply the metallic electrode to the metal oxide layer.
  • the metallic electrode may be applied to a substrate to thereafter place the metal oxide layer on the metal substrate Apply electrode.
  • the functional layer is then applied to the metal oxide layer.
  • the metal oxide layer is arranged above the functional layer, while the metallic electrode is arranged above the metal oxide layer.
  • a thermal, chemical or photochemical conversion of the metallic electrode to an amorphous, semicrystalline or fully crystalline layer takes place.
  • the thermal conversion can for example also be done by sintering, in which heat is generated or supplied. Furthermore, thermal, chemical or photochemical conversion of the metal oxide layer to an amorphous, semicrystalline or fully crystalline layer also takes place. This conversion is preferably carried out together with the thermal, chemical or photochemical conversion of the metallic electrode.
  • the metal oxide is applied together with the metallic electrode from a common nanoparticulate dispersion or from a common liquid phase.
  • the metal oxide may be applied together with the metallic electrode of a mixture of the nanoparticulate dispersion and the liquid phase. In these embodiments of the method according to the invention, the application of the metal oxide and the application of the metallic electrode take place in a common step.
  • the thermal, chemical or photochemical Conversion of the metal oxide layer and / or the thermal, chemical or photochemical conversion of the metallic electrode preferably at a temperature that is harmless to the film substrate.
  • a temperature of up to 150 0 C for a film substrate of thermally stabilized PET is harmless.
  • a further metal oxide layer or another semitransparent oxide layer of a liquid phase can first be applied to the substrate in order subsequently or simultaneously to coat the metallic electrode with the further metal oxide layer or metal oxide layer on the semitransparent oxide layer. Then the functional layer has to be applied.
  • the inventive method is preferably used for applying a metallic electrode to any, in particular photoactive electron-transporting layer.
  • a metal oxide layer of a liquid phase is applied to the layer to be covered and, in a subsequent sintering process, chemically transformed into an amorphous, semicrystalline or fully crystalline layer, thermally or photochemically converted.
  • the metal oxide is preferably applied together with the metal from a common nanoparticulate dispersion or organic precursor solution.
  • the metal oxide layer is preferably used together with the dispersion of metallic nanoparticles or the solution of metals bound in organic molecules sintered or thermally, chemically or photochemically converted.
  • the metal for the electrode it is preferable to use a metal having a high work function of more than 4.0 eV, more preferably more than 4.5 eV.
  • Solution-processed metallic electrodes in particular cathodes for electronic components, in particular (polymer) solar cells, are realized with the present invention.
  • Direct application of a solution of metallic nanoparticles to a photoactive layer could cause solubilization of the latter. Therefore, it is proposed according to the invention to first apply a metal oxide precursor (solution) to the photovoltaically active layer from the solution. Subsequently, this is converted either alone or together with the subsequent metallic layer thermally, chemically or photochemically into an amorphous or semicrystalline or crystalline opaque thin layer. Afterwards, this layer has the property of being very chemically inert, ie in particular of not reacting with the photovoltaically active material. Furthermore, a special coverage is achieved with this layer, which prevents a diffusing through of the subsequent metal layer.
  • the second layer consists of metallic nanoparticles or organometallic precursors, which is also applied from the solution to the metal oxide layer.
  • This metallic nanoparticle layer is then thermally, chemically or photochemically transformed either independently of or together with the underlying metal oxide layer.
  • the metallic nanoparticle layer makes exploits the property that metallic nanoparticles melt at much lower temperatures and thus form a closed film than particles in the micrometer range. Thus, this method allows the use of plastic film substrates, which are only limited temperature stability.
  • a double layer electrode produced by the method of the present invention d. H.
  • the metallic electrode with the metal oxide layer is, on the one hand, adapted to the electronic energy bands and, on the other hand, has a sufficiently high conductivity. In addition, the stability of the metallic electrode with the metal oxide intermediate layer is also increased.
  • the present invention allows the complete abandonment of vacuum technologies z. As in the production of all successive layers of a polymer solar cell.
  • the method according to the invention can be used, for example, in the production of electronic components such as polymer solar cells, polymer light-emitting diodes or polymer transistors.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Anordnen einer metallischen Elektrode über einer Funktionsschicht, aus welcher Elektronen extrahierbar oder in welche Elektronen injizierbar sind. Bei der Funktionsschicht kann es sich beispielsweise um eine photoaktive Polymerschicht für die Herstellung von elektronischen Bauelementen, insbesondere von Polymer-Solarzellen handeln. Ein Schritt des erfindungsgemäßen Verfahrens sieht ein Aufbringen einer Metalloxidschicht aus einer flüssigen Phase oder aus einer nanopartikulären Dispersion vor. Ein weiterer Schritt des erfindungsgemäßen Verfahrens sieht ein Aufbringen der metallischen Elektrode aus einer flüssigen Phase, insbesondere einer Lösung aus in organischen Molekülen eingebundenen Metallen, oder aus einer aus einer nanopartikulären Dispersion, d. h. einer Dispersion aus metallischen Nanopartikeln, vor. Jedenfalls ist im Ergebnis die Metalloxidschicht über der Funktionsschicht angeordnet, während die metallische Elektrode über der Metalloxidschicht angeordnet ist. In einem weiteren Schritt des erfindungsgemäßen Verfahrens erfolgt ein thermisches, chemisches oder photochemisches Umwandeln der metallischen Elektrode zu einer amorphen, semikristallinen oder vollkristallinen Schicht. Weiterhin erfolgt auch ein thermisches, chemisches oder photochemisches Umwandeln der Metalloxidschicht zu einer amorphen, semikristallinen oder vollkristallinen Schicht.
EP09748268A 2008-10-08 2009-10-08 Methode de formation d'une electrode metallique sur une couche d'oxyde metallique Withdrawn EP2335302A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008051656A DE102008051656A1 (de) 2008-10-08 2008-10-08 Verfahren zum Aufbringen einer metallischen Elektrode auf eine Polymerschicht
PCT/EP2009/063130 WO2010040815A1 (fr) 2008-10-08 2009-10-08 Verfahren zum herstellen einer metallischen elektrode über einer metalloxidschicht

Publications (1)

Publication Number Publication Date
EP2335302A1 true EP2335302A1 (fr) 2011-06-22

Family

ID=41432784

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09748268A Withdrawn EP2335302A1 (fr) 2008-10-08 2009-10-08 Methode de formation d'une electrode metallique sur une couche d'oxyde metallique

Country Status (3)

Country Link
EP (1) EP2335302A1 (fr)
DE (1) DE102008051656A1 (fr)
WO (1) WO2010040815A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011077961A1 (de) 2011-06-22 2012-12-27 Siemens Aktiengesellschaft Schwachlichtdetektion mit organischem fotosensitivem Bauteil
DE102014017063A1 (de) 2014-11-14 2016-05-19 Technische Universität Ilmenau Verfahren zur Erzeugung von flüssigprozessierten Misch-Metalloxidschichten und ihre Verwendung in elektrischen, elektronischen und opto-elektronischen Bauelementen
WO2018071445A1 (fr) 2016-10-11 2018-04-19 Microdose Therapeutx, Inc. Inhalateur et ses méthodes d'utilisation
CN112635102A (zh) * 2020-12-04 2021-04-09 华南理工大学 复合导电薄膜及其制备方法以及薄膜晶体管

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507413A1 (de) 1994-05-06 1995-11-09 Bayer Ag Leitfähige Beschichtungen
DE10255964A1 (de) 2002-11-29 2004-07-01 Siemens Ag Photovoltaisches Bauelement und Herstellungsverfahren dazu
US6949403B2 (en) * 2003-07-22 2005-09-27 Organic Vision Inc. Non-vacuum methods for the fabrication of organic semiconductor devices
FR2869454B1 (fr) * 2004-04-22 2006-11-03 Commissariat Energie Atomique Procede de fabrication de couches minces semi-conductrices photosensibilisees.
ATE465521T1 (de) * 2004-07-29 2010-05-15 Konarka Technologies Inc Verfahren zur beschichtung von nanostrukturierte elektroden
EP1670298A1 (fr) * 2004-12-07 2006-06-14 Samsung SDI Germany GmbH Substrat pour afficheur et son procédé de fabrication
JP2008533745A (ja) 2005-03-17 2008-08-21 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 光学スペーサを用いた高効率ポリマー光起電力セルのためのアーキテクチャ
US20060211272A1 (en) * 2005-03-17 2006-09-21 The Regents Of The University Of California Architecture for high efficiency polymer photovoltaic cells using an optical spacer
EP1902297A4 (fr) 2005-07-14 2009-07-15 Konarka Technologies Inc Dispositifs organiques stables
EP1974391A4 (fr) 2006-01-04 2010-11-17 Univ California Couche de passivation pour des cellules photovoltaiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010040815A1 *

Also Published As

Publication number Publication date
WO2010040815A1 (fr) 2010-04-15
DE102008051656A1 (de) 2010-04-15

Similar Documents

Publication Publication Date Title
EP1565947B1 (fr) Composant photovoltaique et procede de production de ce composant
DE10347856B4 (de) Halbleiterdotierung
EP2436057B1 (fr) Composant électronique et procédé de production
DE102006054523B4 (de) Dithiolenübergangsmetallkomplexe und Selen-analoge Verbindungen, deren Verwendung als Dotand, organisches halbleitendes Material enthaltend die Komplexe, sowie elektronische oder optoelektronisches Bauelement enthaltend einen Komplex
WO2014089708A1 (fr) Matrice nano-composite conductrice et ses utilisations
WO2018069496A9 (fr) Couches mixtes dopées par induction conçues pour un composant optoélectronique et son procédé de production
EP2335302A1 (fr) Methode de formation d'une electrode metallique sur une couche d'oxyde metallique
WO2014076132A1 (fr) Composant optoélectronique
EP3317906B1 (fr) Composant organique électroluminescent et son procédé de fabrication
WO2016045668A1 (fr) Procédé pour appliquer une couche protectrice, couche protectrice et semi-produit pourvu d'une couche protectrice
DE10155346C1 (de) Solarzelle sowie Verfahren zu deren Herstellung
DE102012106607B4 (de) Verfahren zur Versiegelung von Modulen mit optoelektronischen Bauelementen
WO2020043678A1 (fr) Système d'électrodes protégé contre les courts-circuits pour des composants électroniques
EP3523829B1 (fr) Procédé d'impression à température ambiante servant à la production d'une succession de couches pv et succession de couches pv obtenue selon le procédé
AT503849A1 (de) Verfahren zur herstellung photoaktiver schichten sowie bauelemente umfassend diese schichten
EP2183797B1 (fr) Couche de passivation pour une couche d'oxyde conductrice transparente dans un élément doté d'une couche active organique
DE102012210615A1 (de) Leitpaste und Verfahren zur Herstellung einer Solarzelle
EP2502273B1 (fr) Procédé de fabrication de diodes électroluminescentes organiques structurées, et leur utilisation
WO2010108978A1 (fr) Diode de redressement
DE10307772B4 (de) Verfahren zur Passivierung der organischen Elektrode einer organischen Solarzelle und organische Solarzelle
DE102007055137A1 (de) Organische Leuchtdiode und Verfahren zu deren Herstellung
DE102016011319A1 (de) Lösungsprinzip und Verfahren sowie EUV-Laserbearbeitungssystem insbesondere zum Herstellen von Bauelementen mit Strukturen im Nanometerbereich wie organischer Elektronik und elektrischer Bauelemente
EP2441102A2 (fr) Électrode multicouche pour composants photovoltaïques, son procédé de fabrication et composant photovoltaïque présentant une telle électrode
DE102013113590A1 (de) Verfahren zur Herstellung von Passivierungsschichten mit Punktkontakten für Dünnschichtsolarzellen
DE102008018939A1 (de) Verfahren zum Herstellen einer elektrisch leitenden Struktur auf einem temperaturempfindlichen Foliensubstrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130522