EP2326800B1 - Dampfkraftanlage zur erzeugung elektrischer energie - Google Patents

Dampfkraftanlage zur erzeugung elektrischer energie Download PDF

Info

Publication number
EP2326800B1
EP2326800B1 EP09783070.7A EP09783070A EP2326800B1 EP 2326800 B1 EP2326800 B1 EP 2326800B1 EP 09783070 A EP09783070 A EP 09783070A EP 2326800 B1 EP2326800 B1 EP 2326800B1
Authority
EP
European Patent Office
Prior art keywords
steam
bypass
pipeline
pressure
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09783070.7A
Other languages
English (en)
French (fr)
Other versions
EP2326800A2 (de
Inventor
Bernd Leu
Andreas Logar
Heinz Lötters
Stephan Minuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09783070.7A priority Critical patent/EP2326800B1/de
Priority to PL09783070T priority patent/PL2326800T3/pl
Publication of EP2326800A2 publication Critical patent/EP2326800A2/de
Application granted granted Critical
Publication of EP2326800B1 publication Critical patent/EP2326800B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by

Definitions

  • the invention relates to a steam power plant for generating electrical energy comprising a steam turbine, a steam generator and a condenser and a live steam pipe, which fluidly connects the steam turbine to the steam generator, a Abdampfrohr ein which fluidly connects the steam turbine to the condenser and a Umleitrohr admir, the Fresh steam pipe with the exhaust steam pipe fluidly connects together.
  • Such a steam power plant is eg in documents DE 102 27 709 A1 and US 6,457,313 B1 disclosed.
  • the steam flowing out of the steam generator flows into the steam turbine and cools down, the vapor pressure decreasing.
  • the effluent steam from the steam turbine is fed to the condenser.
  • a live steam valve arranged in front of the steam turbine is closed and the live steam is conducted via a bypass pipe, the bypass pipe leading into an exhaust steam pipe of the steam turbine.
  • the Abdampfrohr ein is usually referred to as a cold reheater line, if it opens into a reheater in which the steam is heated to a higher temperature. The higher the steam temperatures are, the higher the cost of the piping, bypass stations and the Umleitdampfeinspritzung to the condenser.
  • Efforts are being made to achieve steam temperatures of about 720 ° C. Such high temperatures require the use of special materials, such as nickel-based materials.
  • Materials made of nickel are materials with a nickel content of about 40 to 50 wt .-%. However, such nickel base materials are comparatively expensive.
  • a material made of nickel-based is particularly resilient thermally.
  • the invention begins, whose task is to provide a steam power plant, which is suitable for high temperatures and can be formed comparatively low.
  • the bypass steam cooler is arranged immediately after a first branch from the live steam pipe to Umleitrohr admir.
  • the bypass steam cooler should be placed as close to the first branch as possible. This has the advantage that the costs for the production of the steam power plant can be further reduced because the use of expensive nickel base material is avoided. The closer the bypass steam cooler is mounted to the first branch from the live steam piping to the bypass piping, the less nickel base material is needed between the first branch to the bypass steam cooler.
  • cooling of the steam takes place in the bypass steam cooler by injecting cooling medium such as condensate, steam or a mixture of water and steam.
  • cooling medium such as condensate, steam or a mixture of water and steam.
  • the distance between the bypass steam cooler and the high-pressure bypass valve is selected such that the cooling medium is completely mixed with the steam.
  • the FIG. 1 shows a steam power plant 1 according to the prior art.
  • the steam power plant 1 comprises a steam generator 2, a steam turbine 3, wherein the steam turbine 3 comprises a high-pressure turbine section 3a, medium-pressure turbine section 3b and low-pressure turbine section 3c and a condenser 4. Furthermore, a live steam pipe 5 is provided, which the steam turbine 3 with the steam generator 2 fluidly connects to each other. After the steam turbine 3, a Abdampfrohr Arthur 6 is arranged, which connects the steam turbine 3 with the condenser 4 fluidly. Between the high-pressure turbine part 3a and the condenser 4, a reheater 7 is provided.
  • the steam flowing into the reheater 7 is heated to a higher temperature and conducted via a hot reheater line 8 to the medium-pressure turbine section 3b.
  • the Abdampfrohr Arthur 6 can also be referred to as a cold reheater line 9.
  • a quick-closing and control valve 10 is arranged in front of the steam turbine 3.
  • a quick-closing and control valve 11 is also arranged in front of the steam turbine 3.
  • the live steam pipe 5 is fluidly connected to the exhaust steam pipe 6 and the cold reheater pipe 9 via a Umleitrohrtechnisch 12.
  • a high-pressure diverter valve 13 is arranged.
  • the hot reheater line 8 is fluidically connected to the condenser 4 via a medium-pressure Umleitrohrtechnisch 14.
  • a medium-pressure diverter valve 17 is arranged in the medium-pressure Umleitrohr admir 14.
  • the steam is conducted from the live steam pipe 5 via the bypass pipe 12 into the cold reheater pipe 9.
  • the quick-closing and control valve 10 is closed and the high-pressure diverter valve 13 is opened. Since the temperature of the live steam flowing into the bypass pipe 12 is comparatively high, the steam is sprayed with a cooling medium 15 in a cooling unit 16 before entering the cold reheater pipe 9.
  • the steam is then passed through the reheater 7, the hot reheater line 8 to the medium-pressure Umleitrohrtechnisch 14 in the condenser 4.
  • the quick-closing and control valve 11 is closed and the medium-pressure diverter valve 17 is opened.
  • the steam is in turn injected with a cooling medium 18 in a cooling unit 19, so that the capacitor can absorb the amounts of energy. Since the temperatures and the pressure of the steam are comparatively high, the live steam pipe 5, the bypass pipe 12, the hot reheater pipe 9 and the medium pressure bypass pipe 14 must be designed for the pressure and the temperature of the reheater 7. The higher the steam temperatures are, the higher are the costs for the pipelines 5, 12, 9, 8, 1, for the valves 17, 13 and the cooling units 16 and 19.
  • FIG. 2 a steam power plant 1 according to the invention is shown.
  • the difference to the in FIG. 1 illustrated steam power plant 1 is that in the Umleitrohr admir 12 and in the medium-pressure Umleitrohr admir 14 a Umleitdampfkühler 20 and a medium-pressure Umleitdampfkühler 21 are arranged.
  • the bypass steam cooler 20 and the medium pressure bypass steam cooler 21 are for cooling one in the bypass pipe 12 and the medium-pressure Umleitrohrtechnisch 14 located flowable or stationary steam formed.
  • condensate, steam or a mixture of water and steam is injected into the flowing or standing steam.
  • the temperature of the flowing or standing steam is reduced.
  • the supplied into the steam cooling medium 22 thus cools the steam.
  • the injection of the cooling medium 22 into the Umleitrohrtechnisch 12, and in the medium-pressure Umleitrohr admir 14 should be as close to a first branch 23 and after a second branch 24 are arranged.
  • the distance between the bypass steam cooler 20 and the high-pressure bypass valve 13 is selected such that the steam is completely mixed with the cooling medium 22.
  • the distance between the medium-pressure Umleitdampfkühler 21 and the medium-pressure diverter valve 17 is selected such that the steam with the cooling medium 22 can be completely mixed.
  • the cooling unit 16 and 19 can be dispensed with the cooling unit 16 and 19, if the live steam parameters have corresponding values. For this, the live steam mass flow, pressure and temperature, water injection quantity and temperature must have permissible values.
  • the bypass steam cooler 20 and the medium-pressure bypass steam cooler 21 are switched on as soon as the bypass valve 13 and the medium-pressure bypass valve 17 are opened. As a result, an inadmissible temperature exceeded in the cooled Umleitrohrön 25 and 26 effectively avoided.
  • the bypass steam cooler 20 is operated until the temperatures before the bypass steam cooler 20 fall below the permissible temperature in the pipelines 25. If drainages or Anürmtechnischen are arranged in the cooled Umleitrohr Oberen 25 and 26, they must remain closed until the temperature before Umleitdampfkühler 20 and medium-pressure Umleitdampfkühler 21 below the allowable temperature in the cooled pipes 25 and 26 respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

  • Die Erfindung betrifft eine Dampfkraftanlage zur Erzeugung elektrischer Energie umfassend eine Dampfturbine, einen Dampferzeuger und einen Kondensator sowie eine Frischdampfrohrleitung, die die Dampfturbine mit dem Dampferzeuger strömungstechnisch miteinander verbindet, einer Abdampfrohrleitung, die die Dampfturbine mit dem Kondensator strömungstechnisch miteinander verbindet und einer Umleitrohrleitung, die die Frischdampfrohrleitung mit der Abdampfrohrleitung strömungstechnisch miteinander verbindet.
  • Eine solche Dampfkraftanlage ist z.B in Dokumenten DE 102 27 709 A1 und US 6 457 313 B1 offenbart.
  • In einer Dampfkraftanlage wird Wärmeenergie in mechanische Energie und schließlich in elektrische Energie umgewandelt, wobei Wasserdampf vom Dampferzeuger in eine Expansionsmaschine wie z.B. einer Dampfturbine strömt, wobei sich der Dampf in der Dampfturbine unter Arbeitsabgabe entspannt. Der aus der Dampfturbine ausströmende Dampf wird in einem nachgeschalteten Kondensator durch Wärmeentzug wieder verflüssigt. Das im Kondensator entstehende Wasser wird von einer Speisewasserpumpe wieder zum Dampferzeuger gefördert, wodurch ein geschlossener Kreislauf entsteht.
  • Im Betriebszustand strömt der aus dem Dampferzeuger strömende Dampf in die Dampfturbine und kühlt sich hierbei ab, wobei der Dampfdruck abnimmt. Der aus der Dampfturbine ausströmende Dampf wird dem Kondensator zugeleitet. Beim Anfahren, Abfahren oder bei einem Dampfturbinenschnellschluss wird ein vor der Dampfturbine angeordnetes Frischdampfventil geschlossen und der Frischdampf über eine Umleitrohrleitung geleitet, wobei die Umleitrohrleitung in eine Abdampfrohrleitung der Dampfturbine mündet. Die Abdampfrohrleitung wird in der Regel als kalte Zwischenüberhitzerleitung bezeichnet, sofern diese in einen Zwischenüberhitzer mündet, in dem der Dampf auf eine höhere Temperatur erhitzt wird. Je höher die Dampftemperaturen sind, desto höher sind die Kosten für die Rohrleitungen, Umleitstationen und der Umleitdampfeinspritzung zum Kondensator. Es werden Bestrebungen unternommen, Dampftemperaturen von ca. 720°C zu erreichen. Solch hohe Temperaturen erfordern den Einsatz von besonderen Werkstoffen, wie z.B. Werkstoffe aus Nickelbasis. Werkstoffe aus Nickelbasis sind Werkstoffe mit einem Nickelgehalt von ca. 40 bis 50 Gew.-%. Allerdings sind solche Werkstoffe aus Nickelbasis vergleichweise teuer. Auf der anderen Seite ist ein Werkstoff aus Nickelbasis thermisch besonders belastbar.
  • Wünschenswert wäre es, Werkstoffe einsetzen zu können, die günstiger sind als Werkstoffe aus Nickelbasis. An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Dampfkraftanlage anzugeben, die für hohe Temperaturen geeignet ist und vergleichsweise günstig ausgebildet werden kann.
  • Gelöst wird diese Aufgabe durch eine Dampfkraftanlage zur Erzeugung elektrischer Energie gemäß unabhängigen Anspruch 1.
  • Durch die Kühlung des Dampfes mit dem Umleitdampfkühler können die Komponenten hinter der Kühlung ohne Nickelbasis-Werkstoffe ausgeführt werden. Die nach dem Umleitdampfkühler angeordnete Rohrleitung wird somit gekühlt, was dazu führt, dass die Umleitrohrleitung weniger thermisch beansprucht wird. Durch die geringere thermische Beanspruchung, ist es nun nicht mehr erforderlich, teure Werkstoffe aus Nickelbasis zu verwenden.
  • Dabei wird der Umleitdampfkühler unmittelbar nach einem ersten Abzweig von der Frischdampfrohrleitung zur Umleitrohrleitung angeordnet. Idealerweise sollte der Umleit- dampfkühler so nah wie möglich nach dem ersten Abzweig angeordnet werden. Dies hat den Vorteil, dass die Kosten für die Herstellung der Dampfkraftanlage weiter verringert werden können, denn die Verwendung von teurem Nickelbasiswerkstoff wird vermieden. Je näher der Umleitdampfkühler an dem ersten Abzweig von der Frischdampfrohrleitung zur Umleitrohrleitung angebracht wird, umso weniger Nickelbasiswerkstoff wird zwischen dem ersten Abzweig zum Umleitdampfkühler benötigt.
  • Sofern die Abdampfrohrleitung in einen Zwischenüberhitzer mündet, wird diese auch als kalte Zwischenüberhitzerleitung bezeichnet. Im Zwischenüberhitzer wird Dampf auf eine höhere Temperatur erhitzt.
  • Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
  • So ist es vorteilhaft, wenn die Kühlung des Dampfes im Umleitdampfkühler durch Eindüsen von Kühlmedium wie Kondensat, Dampf oder einer Mischung aus Wasser und Dampf erfolgt. Die Verwendung von Kondensat, oder einer Mischung aus Wasser und Dampf ist in einer Dampfkraftanlage vergleichsweise einfach, da diese Kühlmedien in einer Dampfkraftanlage zur Verfügung stehen. Der Einsatz von zusätzlichen Rohrleitungen wird dadurch minimiert.
  • In einer weiteren vorteilhaften Weiterbildung ist der Abstand zwischen dem Umleitdampfkühler und dem Hochdruck-Umleitventil derart gewählt, dass sich das Kühlmedium mit dem Dampf vollständig vermischt.
  • Eine vollständige Vermischung des Kühlmediums mit dem Dampf führt zu einer effizienten Kühlung der Umleitrohrleitung und dadurch zu einer weiteren Verringerung der Kosten bei der Herstellung der Dampfkraftanlage, da weniger Nickelbasiswerkstoff für die Umleitrohrleitung verwendet werden kann. Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert.
  • Es zeigen, teilweise schematisch und nicht maßstäblich:
  • Figur 1
    eine Dampfkraftanlage gemäß dem Stand der Technik
    Figur 2
    eine erfindungsgemäße Dampfkraftanlage.
  • Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.
  • Die Figur 1 zeigt eine Dampfkraftanlage 1 gemäß dem Stand der Technik. Die Dampfkraftanlage 1 umfasst einen Dampferzeuger 2, eine Dampfturbine 3, wobei die Dampfturbine 3 eine Hochdruck-Teilturbine 3a, Mitteldruck-Teilturbine 3b und Niederdruck-Teilturbine 3c umfasst sowie einem Kondensator 4. Des Weiteren ist eine Frischdampfrohrleitung 5 vorgesehen, die die Dampfturbine 3 mit dem Dampferzeuger 2 strömungstechnisch miteinander verbindet. Nach der Dampfturbine 3 ist eine Abdampfrohrleitung 6 angeordnet, die die Dampfturbine 3 mit dem Kondensator 4 strömungstechnisch miteinander verbindet. Zwischen der Hochdruck-Teilturbine 3a und dem Kondensator 4 ist ein Zwischenüberhitzer 7 vorgesehen. Der in den Zwischenüberhitzer 7 einströmende Dampf wird auf eine höhere Temperatur erhitzt und über eine heiße Zwischenüberhitzerleitung 8 zu der Mitteldruck-Teilturbine 3b geführt. Die Abdampfrohrleitung 6 kann auch als kalte Zwischenüberhitzerleitung 9 bezeichnet werden. Vor der Dampfturbine 3 ist ein Schnellschluss- und Regelventil 10 angeordnet. Vor der Mitteldruck-Teilturbine 3b ist ebenso ein Schnellschluss- und Regelventil 11 angeordnet. Die Frischdampfrohrleitung 5 ist mit der Abdampfrohrleitung 6 bzw. der kalten Zwischenüberhitzerleitung 9 strömungstechnisch über eine Umleitrohrleitung 12 verbunden. In der Umleitrohrleitung 12 ist ein Hochdruck-Umleitventil 13 angeordnet.
  • Die heiße Zwischenüberhitzerleitung 8 ist mit dem Kondensator 4 über eine Mitteldruck-Umleitrohrleitung 14 strömungstechnisch miteinander verbunden. In der Mitteldruck-Umleitrohrleitung 14 ist ein Mitteldruck-Umleitventil 17 angeordnet. Beim Anfahren, Abfahren oder bei einem Turbinenschnellschluss der Dampfturbine 3 wird der Dampf von der Frischdampfrohrleitung 5 über die Umleitrohrleitung 12 in die kalte Zwischenüberhitzerrohrleitung 9 geleitet. Dazu wird das Schnellschluss- und Regelventil 10 geschlossen und das Hochdruck-Umleitventil 13 geöffnet. Da die Temperatur des in die Umleitrohrleitung 12 strömenden Frischdampfes vergleichsweise hoch ist, wird vor Eintritt in die kalte Zwischenüberhitzerrohrleitung 9 der Dampf mit einem Kühlmedium 15 in einer Kühleinheit 16 abgespritzt. Der Dampf wird anschließend über den Zwischenüberhitzer 7, der heißen Zwischenüberhitzerleitung 8 zur Mitteldruck-Umleitrohrleitung 14 in den Kondensator 4 geführt. Dazu wird das Schnellschluss- und Regelventil 11 geschlossen und das Mitteldruck-Umleitventil 17 geöffnet. Nach dem Mitteldruck-Umleitventil 17 wird der Dampf wiederum mit einem Kühlmedium 18 in einer Kühleinheit 19 abgespritzt, damit der Kondensator die Energiemengen aufnehmen kann. Da die Temperaturen und der Druck des Dampfes vergleichsweise hoch sind, müssen die Frischdampfrohrleitung 5, die Umleitrohrleitung 12, die heiße Zwischenüberhitzerleitung 9 und die Mitteldruck-Umleitrohrleitung 14 für den Druck und die Temperatur des Zwischenüberhitzers 7 ausgelegt werden. Je höher die Dampftemperaturen sind, desto höher sind die Kosten für die Rohrleitungen 5, 12, 9, 8, 1, für die Ventile 17, 13 und die Kühleinheiten 16 und 19.
  • In der Figur 2 ist eine erfindungsgemäße Dampfkraftanlage 1 dargestellt. Der Unterschied zu der in Figur 1 dargestellten Dampfkraftanlage 1 besteht darin, dass in der Umleitrohrleitung 12 und in der Mitteldruck-Umleitrohrleitung 14 ein Umleitdampfkühler 20 bzw. ein Mitteldruck-Umleitdampfkühler 21 angeordnet sind. Der Umleitdampfkühler 20 und der Mitteldruck-Umleitdampfkühler 21 sind zum kühlen eines in der Umleitrohrleitung 12 und der Mitteldruck-Umleitrohrleitung 14 befindlichen strömbaren oder stehenden Dampfes ausgebildet. Mittels des Umleitdampfkühlers 20 und des Mitteldruck-Umleitdampfkühlers 21 wird Kondensat, Dampf oder ein Gemisch aus Wasser und Dampf in den strömenden oder stehenden Dampf eingespritzt. Somit wird die Temperatur des strömenden oder stehenden Dampfes verringert. Das in den Dampf zugeführte Kühlmedium 22 kühlt somit den Dampf ab. Die Eindüsung des Kühlmediums 22 in die Umleitrohrleitung 12, und in die Mitteldruck-Umleitrohrleitung 14 sollte möglichst nah an einem ersten Abzweig 23 bzw. nach einem zweiten Abzweig 24 angeordnet werden. Der Abstand zwischen dem Umleitdampfkühler 20 und dem Hochdruck-Umleitventil 13 wird derart gewählt, dass der Dampf mit dem Kühlmedium 22 vollständig vermischt wird. Ebenso wird der Abstand zwischen dem Mitteldruck-Umleitdampfkühler 21 und dem Mitteldruck-Umleitventil 17 derart gewählt, dass der Dampf mit dem Kühlmedium 22 vollständig vermischt werden kann.
  • Evtl. kann auf die Kühleinheit 16 bzw. 19 verzichtet werden, wenn die Frischdampfparameter entsprechende Werte aufweisen. Dafür müssen der Frischdampfmassenstrom, -druck und -temperatur, Wassereinspritzmenge und Temperatur zulässige Werte aufweisen. Der Umleitdampfkühler 20 und der Mitteldruck-Umleitdampfkühler 21 werden sobald das Umleitventil 13 und das Mitteldruck-Umleitventil 17 geöffnet ist, eingeschaltet. Dadurch wird eine unzulässige Temperaturüberschreitung in der gekühlten Umleitrohrleitung 25 bzw. 26 wirksam vermieden.
  • Sobald das Umleitventil 13 geschlossen wird, wird der Umleitdampfkühler 20 so lange betrieben, bis die Temperaturen vor dem Umleitdampfkühler 20 die zulässige Temperatur in den Rohrleitungen 25 unterschreitet. Sofern Entwässerungen oder Anwärmleitungen in den gekühlten Umleitrohrleitungen 25 und 26 angeordnet sind, müssen diese so lange geschlossen bleiben, bis die Temperatur vor dem Umleitdampfkühler 20 und Mitteldruck-Umleitdampfkühler 21 die zulässige Temperatur in den gekühlten Rohrleitungen 25 bzw. 26 unterschreitet.

Claims (11)

  1. Dampfkraftanlage (1) zur Erzeugung elektrischer Energie umfassend eine Dampfturbine (3), einen Dampferzeuger (2) und einen Kondensator (4) sowie eine Frischdampfrohrleitung (5), die die Dampfturbine (3) mit dem Dampferzeuger (2) strömungstechnisch miteinander verbindet,
    einer Abdampfleitung (6), die die Dampfturbine (3) mit dem Kondensator (4) strömungstechnisch miteinander verbindet, einer Umleitrohrleitung (12), die die Frischdampfrohrleitung (5) mit der Abdampfrohrleitung (6) strömungstechnisch miteinander verbindet,
    wobei ein Umleitdampfkühler (20) in der Umleitrohrleitung (12) vorgesehen ist,
    der zum Kühlen eines in der Umleitrohrleitung (12) strömbaren Dampfes ausgebildet ist,
    dadurch gekennzeichnet,
    dass der Umleitdampfkühler (20) unmittelbar nach einem ersten Abzweig (23) von der Frischdampfrohrleitung (5) zur Umleitrohrleitung (12) angeordnet ist.
  2. Dampfkraftanlage (1) nach Anspruch 1,
    wobei die Dampfturbine (3) eine Hochdruck- (3a), eine Mitteldruck- (3b) sowie eine Niederdruck-Teilturbine (3c) umfasst.
  3. Dampfkraftanlage (1) nach Anspruch 2,
    mit einem Zwischenüberhitzer (7),
    wobei eine kalte Zwischenüberhitzerrohrleitung (9) vorgesehen ist, die den Dampfaustritt der Hochdruck-Teilturbine (3a) mit dem Zwischenüberhitzer (7) strömungstechnisch verbindet,
    wobei die Umleitrohrleitung (12) die Frischdampfrohrleitung (5) mit der kalten Zwischenüberhitzerrohrleitung (9) strömungstechnisch verbindet.
  4. Dampfkraftanlage (1) nach dem Anspruch oder 3, mit einer heißen Zwischenüberhitzerrohrleitung (8), die den Zwischenüberhitzer (7) mit der Mitteldruck-Teilturbine (3b) strömungstechnisch verbindet,
    wobei eine Mitteldruck-Umleitrohrleitung (14) vorgesehen ist, die die heiße Zwischenüberhitzerleitung (8) mit dem Kondensator (4) strömungstechnisch verbindet,
    wobei ein Mitteldruck-Umleitdampfkühler (21) in der Mitteldruck-Umleitrohrleitung (14) vorgesehen ist, der zum Kühlen eines in der Mitteldruck-Umleitrohrleitung (14) strömbaren Dampfes ausgebildet ist.
  5. Dampfkraftanlage (1) nach einem der Ansprüche 1 bis 3, wobei ein Hochdruck-Umleitventil (13) in der Umleitrohrleitung (12) vorgesehen ist.
  6. Dampfkraftanlage (1) nach Anspruch 4,
    wobei ein Mitteldruck-Umleitventil (17) in der Mitteldruck-Umleitrohrleitung (14) vorgesehen ist.
  7. Dampfkraftanlage (1) nach einem der Ansprüche 1, bis 6, wobei die Kühlung des Dampfes im Umleitdampfkühler (20) durch Eindüsung von Kühlmedien (22) wie Kondensat, Dampf oder einer Mischung aus Wasser und Dampf erfolgt.
  8. Dampfkraftanlage (1) nach Anspruch 4,
    wobei die Kühlung des Dampfes in der Mitteldruck-Umleitdampfkühlung (21) durch Eindüsung von Kühlmedien (22) wie Kondensat, Dampf oder einer Mischung aus Wasser und Dampf erfolgt.
  9. Dampfkraftanlage (1) nach Anspruch 4,
    wobei der Mitteldruck-Umleitdampfkühler (21) unmittelbar nach einem zweiten Abzweig (24) von der heißen Zwischenüberhitzerleitung (8) zur Mitteldruck-Umleitrohrleitung (14) angeordnet ist.
  10. Dampfkraftanlage (1) nach Anspruch 5,
    wobei der Abstand zwischen dem Umleitdampfkühler (20) und dem Hochdruck-Umleitventil (13) derart gewählt ist,
    dass sich das Kühlmedium (15) mit dem Dampf vollständig vermischen kann.
  11. Dampfkraftanlage (1) nach Anspruch 6,
    wobei der Abstand zwischen dem Mitteldruck-Umleitdampfkühler (21) und dem Mitteldruck-Umleitventil (17) derart gewählt ist, dass sich das Kühlmedium (22) mit dem Dampf vollständig vermischen kann.
EP09783070.7A 2008-09-24 2009-09-16 Dampfkraftanlage zur erzeugung elektrischer energie Not-in-force EP2326800B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09783070.7A EP2326800B1 (de) 2008-09-24 2009-09-16 Dampfkraftanlage zur erzeugung elektrischer energie
PL09783070T PL2326800T3 (pl) 2008-09-24 2009-09-16 Elektrownia parowa do wytwarzania energii elektrycznej

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08016801A EP2213847A1 (de) 2008-09-24 2008-09-24 Dampfkraftanlage zur Erzeugung elektrischer Energie
EP09783070.7A EP2326800B1 (de) 2008-09-24 2009-09-16 Dampfkraftanlage zur erzeugung elektrischer energie
PCT/EP2009/061993 WO2010034659A2 (de) 2008-09-24 2009-09-16 Dampfkraftanlage zur erzeugung elektrischer energie

Publications (2)

Publication Number Publication Date
EP2326800A2 EP2326800A2 (de) 2011-06-01
EP2326800B1 true EP2326800B1 (de) 2016-11-16

Family

ID=42060159

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08016801A Withdrawn EP2213847A1 (de) 2008-09-24 2008-09-24 Dampfkraftanlage zur Erzeugung elektrischer Energie
EP09783070.7A Not-in-force EP2326800B1 (de) 2008-09-24 2009-09-16 Dampfkraftanlage zur erzeugung elektrischer energie

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08016801A Withdrawn EP2213847A1 (de) 2008-09-24 2008-09-24 Dampfkraftanlage zur Erzeugung elektrischer Energie

Country Status (8)

Country Link
US (1) US8925321B2 (de)
EP (2) EP2213847A1 (de)
JP (2) JP2012503737A (de)
KR (1) KR101322148B1 (de)
CN (1) CN102165145B (de)
PL (1) PL2326800T3 (de)
RU (1) RU2481477C2 (de)
WO (1) WO2010034659A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428653A1 (de) * 2010-09-10 2012-03-14 Siemens Aktiengesellschaft Einzelbetriebsmodus mit mittlerem Druck für solar angetriebene Dampfturbinenanlagen
GB2485836A (en) 2010-11-27 2012-05-30 Alstom Technology Ltd Turbine bypass system
EP2500549A1 (de) * 2011-03-14 2012-09-19 Siemens Aktiengesellschaft Einspritzblende für ein Dampfkraftwerk
EP3262284B1 (de) 2015-02-24 2019-01-02 Siemens Aktiengesellschaft Kombikraftwerk mit überkritischer dampfturbine
JP2015187448A (ja) * 2015-07-27 2015-10-29 三菱重工業株式会社 舶用主機蒸気タービン設備およびそれを備えた船舶
DE102016104538B3 (de) * 2016-03-11 2017-01-19 Mitsubishi Hitachi Power Systems Europe Gmbh Thermisches Dampfkraftwerk mit verbesserter Abwärmenutzung und Verfahren zum Betrieb desselben
JP6654497B2 (ja) 2016-04-05 2020-02-26 三菱日立パワーシステムズ株式会社 蒸気タービンプラント
EP3258074A1 (de) 2016-06-14 2017-12-20 Siemens Aktiengesellschaft Dampfkraftwerk zur erzeugung elektrischer energie

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH406247A (de) * 1963-07-23 1966-01-31 Sulzer Ag Dampfkraftanlage mit Zwanglaufdampferzeuger und Zwischenüberhitzer
SU642493A1 (ru) * 1977-01-19 1979-01-15 Предприятие П/Я А-3513 Энергетическа установка
US4435963A (en) 1980-05-05 1984-03-13 Tempo G Means for retaining jewelery for interlocking with precise preforms
US4352270A (en) * 1980-06-26 1982-10-05 Westinghouse Electric Corp. Method and apparatus for providing process steam of desired temperature and pressure
US4357803A (en) * 1980-09-05 1982-11-09 General Electric Company Control system for bypass steam turbines
JPS5812604U (ja) * 1981-07-16 1983-01-26 株式会社東芝 2段再熱タ−ビンバイパス装置
US4471620A (en) * 1981-11-13 1984-09-18 Westinghouse Electric Corp. Turbine low pressure bypass spray valve control system and method
US4576008A (en) * 1984-01-11 1986-03-18 Westinghouse Electric Corp. Turbine protection system for bypass operation
JPS60228710A (ja) * 1984-04-27 1985-11-14 Toshiba Corp 蒸気タ−ビンの制御装置
JPS6193208A (ja) * 1984-10-15 1986-05-12 Hitachi Ltd タ−ビンバイパス系統
US4598551A (en) * 1985-10-25 1986-07-08 General Electric Company Apparatus and method for controlling steam turbine operating conditions during starting and loading
US4873827A (en) * 1987-09-30 1989-10-17 Electric Power Research Institute Steam turbine plant
RU2099542C1 (ru) * 1990-01-23 1997-12-20 Фостер Вилер Энержи Ой Энергетическая паросиловая установка и способ регулирования температуры пара в двухступенчатом промежуточном пароперегревателе этой установки
SE469606B (sv) * 1991-12-20 1993-08-02 Abb Carbon Ab Foerfarande vid start och laaglastdrift av genomstroemningspanna och anordning foer genomfoerande av foerfarandet
JPH0577501U (ja) * 1992-03-24 1993-10-22 株式会社東芝 蒸気タービンプラント
JPH06228710A (ja) 1993-01-29 1994-08-16 Nippon Steel Corp 耐食性の優れたジーゼル排気系用ステンレス鋼
RU2090542C1 (ru) 1994-04-12 1997-09-20 Красноярская государственная техническая академия Способ деструкции твердого ракетного топлива и способ получения раствора нитрозобензола для деструкции твердого ракетного топлива
JPH0814009A (ja) * 1994-06-30 1996-01-16 Toshiba Corp 加圧流動床ボイラ式複合サイクル発電プラントの運転制御方法
JP2002341947A (ja) * 2001-05-21 2002-11-29 Mitsubishi Heavy Ind Ltd 圧力流量制御装置
DE10227709B4 (de) * 2001-06-25 2011-07-21 Alstom Technology Ltd. Dampfturbinenanlage sowie Verfahren zu deren Betrieb
EP1288761B1 (de) * 2001-07-31 2017-05-17 General Electric Technology GmbH Verfahren zur Regelung eines Niederdruckbypassystems
ITTO20050873A1 (it) * 2005-12-15 2007-06-16 Ansaldo Energia Spa Dispositivo per il comando di apertura di una valvola di intercettazione in un impianto di turbina a vapore provvisto di una linea di by-pass
JP4619958B2 (ja) * 2006-01-20 2011-01-26 株式会社東芝 蒸気タービン用制御弁及び蒸気タービン発電プラント
EP1881164B1 (de) * 2006-07-21 2016-09-14 Ansaldo Energia S.P.A. Vorrichtung für das Regulieren von Absperrventilen einer Dampfturbinenanlage

Also Published As

Publication number Publication date
JP2012211595A (ja) 2012-11-01
US8925321B2 (en) 2015-01-06
WO2010034659A3 (de) 2010-08-26
CN102165145B (zh) 2014-05-14
RU2011116163A (ru) 2012-10-27
CN102165145A (zh) 2011-08-24
WO2010034659A2 (de) 2010-04-01
KR20110047245A (ko) 2011-05-06
PL2326800T3 (pl) 2017-05-31
KR101322148B1 (ko) 2013-10-28
JP5314178B2 (ja) 2013-10-16
US20110167827A1 (en) 2011-07-14
JP2012503737A (ja) 2012-02-09
RU2481477C2 (ru) 2013-05-10
EP2326800A2 (de) 2011-06-01
EP2213847A1 (de) 2010-08-04

Similar Documents

Publication Publication Date Title
EP2326800B1 (de) Dampfkraftanlage zur erzeugung elektrischer energie
DE102008037410B4 (de) Superkritischen Dampf verwendender kombinierter Kreisprozess und Verfahren
EP1934434B1 (de) Verfahren zum aufwärmen einer dampfturbine
EP2067940B2 (de) Verfahren zum Betrieb eines Kombikraftwerks sowie Kombikraftwerk zur Durchführung des Verfahrens
EP2480762B1 (de) Kraftwerksanlage mit Überlast-Regelventil
DE102008029941B4 (de) Dampfkraftanlage und Verfahren zur Regelung der Leistung einer Dampfkraftanlage
CH702740A2 (de) Systeme und Verfahren zum Vorwärmen des Rohrsystems eines Wärmerückgewinnungsdampfgenerators.
DE102018123663A1 (de) Brennstoffvorwärmsystem für eine Verbrennungsgasturbine
EP1998014A2 (de) Verfahren zum Betreiben einer mehrstufigen Dampfturbine
DE102017104091A1 (de) System und Verfahren zum Aufheizen von Komponenten eines Abhitzedampferzeugers
EP1377730B1 (de) Dampfkraftwerk mit nachrüstsatz und verfahren zum nachrüsten eines dampfkraftwerks
EP2592241A1 (de) Verfahren zum Betrieb einer Gas- und Dampfturbinenanlage für die Frequenzstützung
DE102011011123B4 (de) Dampfanlage und Verfahren zum Konfigurieren der Dampfanlage
EP1801363A1 (de) Kraftwerksanlage
DE4432960C1 (de) Verfahren zum Betrieb eines Dampfkraftwerkes und Dampfkraftwerk
EP1055801B1 (de) Verfahren zum Betrieb eines Dampfkraftwerkes
DE10155508C5 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
EP2918793A1 (de) Regelkonzept zur Fernwärmeauskopplung bei einer Dampfkraftanlage
DE102016112601A1 (de) Vorrichtung zur Energieerzeugung nach dem ORC-Prinzip, Geothermieanlage mit einer solchen Vorrichtung und Betriebsverfahren
EP4004349B1 (de) Druckregelung für geschlossene joule-kreisprozesse
EP3810907B1 (de) Abgasrezirkulation in gas- und dampfturbinenanlagen
EP3775518B1 (de) Erweiterter gasturbinenprozess mit erdgasregasifizierung
EP0657627B1 (de) Verfahren und Anordnung zum Anfahren eines Abhitzekessels mit wenigstens zwei getrennten Drucksystemen
EP2426337A1 (de) Einrichtung zur Brennstoffvorwärmung sowie Verfahren zur Brennstoffvorwärmung
EP2805031A1 (de) Kraftwerk und verfahren zum betreiben einer kraftwerksanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110223

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 846157

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013384

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013384

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

26N No opposition filed

Effective date: 20170817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170916

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180926

Year of fee payment: 10

Ref country code: FR

Payment date: 20180924

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 846157

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20180914

Year of fee payment: 10

Ref country code: PL

Payment date: 20180906

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181210

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009013384

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916