EP2324552A1 - Photovoltaic system with integrated photovoltaic panel and battery - Google Patents

Photovoltaic system with integrated photovoltaic panel and battery

Info

Publication number
EP2324552A1
EP2324552A1 EP09782806A EP09782806A EP2324552A1 EP 2324552 A1 EP2324552 A1 EP 2324552A1 EP 09782806 A EP09782806 A EP 09782806A EP 09782806 A EP09782806 A EP 09782806A EP 2324552 A1 EP2324552 A1 EP 2324552A1
Authority
EP
European Patent Office
Prior art keywords
battery
photovoltaic
photovoltaic system
photovoltaic panel
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09782806A
Other languages
German (de)
French (fr)
Inventor
Sylvie Genies
Hélène ROUAULT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2324552A1 publication Critical patent/EP2324552A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention relates to a photovoltaic system integrating in a single device several functions such as the conversion of solar energy into electrical energy, the storage of the electrical energy produced or the management of the electrical energy produced.
  • Photovoltaic systems for storing electrical energy produced, operating autonomously or connected to an electrical network consist of several distinct components:
  • FIG. 1 A diagram of an autonomous photovoltaic system 1, used for example to power a telecommunications device, street furniture, an isolated site such as a dwelling or a vehicle is shown in FIG. 1.
  • This photovoltaic system 1 comprises a photovoltaic panel 2, an electrochemical battery 4, a switch or a DC / DC voltage converter 6 (also called a converter). DC / DC), a switch or a DC / DC converter or an inverter 8, and an electronic energy management system 10, or dashboard, controlling the components referenced 6 and 8.
  • This photovoltaic system 1 is The components are interconnected by electrical cables and can be more or less distant from each other.
  • the component 6 When the component 6 is a switch, it allows to connect or not the output of the photovoltaic panel 2 to the other components of the photovoltaic system 1.
  • the component 6 When the component 6 is a DC / DC converter, it converts the DC voltage obtained at the output of the photovoltaic panel 2 in a DC voltage adapted to the voltage of the battery 4.
  • the component 8 When the component 8 is a switch, it allows to connect or not the output of the component 8 to the device 12.
  • the component 8 When the component 8 is a DC / DC converter or an inverter, the latter makes it possible to convert the DC voltage obtained at the output of the component 6 into a DC or AC voltage corresponding to the operating voltage of the device 12.
  • the photovoltaic system 14 comprises a switch 18, controlled by the electronic management system of the energy 10 and allowing to connect or not the output of the inverter 8 to the electrical network 20.
  • lead-acid technology is the most widely used technology for producing batteries, mainly because of its low cost and availability.
  • batteries have a relatively low mass energy and a relatively low energy density, respectively equal to about 40 Wh / kg and 80 Wh / L, which corresponds to a weight and a high occupied volume per kWh stored.
  • the weight and the volume of the batteries are important constraints for the transport (especially when the photovoltaic systems are isolated and remote from the road infrastructures) and the installation of the photovoltaic systems.
  • the size of the batteries is also very restrictive for isolated applications such as street furniture where space is often limited.
  • the installation of lead-acid batteries therefore generates additional costs for the camouflage of batteries in decorative elements such as concrete bases or benches, or for the burial of these batteries.
  • this congestion is also constraining because the presence of lead-acid batteries involves providing a technical room for their storage.
  • the space initially provided for storing the batteries can become limiting and prevent the resizing of the installation.
  • lithium-based batteries for example of lithium-ion type, having a higher specific energy and a higher energy density (respectively between about 100 Wh / kg and 150 Wh / kg, and between about 150 Wh / kg). L and 200 Wh / L) than lead-acid batteries.
  • these batteries can be made in various forms: cylindrical, prismatic, flat, etc.
  • Lithium also has other advantages over lead, such as a longer life (about 20 years and 3000 cycles at 100% use for batteries made in the form of flat plates, against 3 years for lead), better energy efficiency (this output corresponds to the number of kWh returned by the battery compared to the kWh injected into the battery) and a lack of maintenance, ultimately making the cost per kWh returned from these batteries equivalent or less than that of lead-acid batteries when the usage profile of the application requires successive charging-discharging cycles at high discharge depths (> 50% of nominal capacity).
  • the life of the batteries, whether lead-acid or lithium-ion is thus strongly influenced on the one hand by the depths of the discharges reached during the charge-discharge cycles, and on the other hand by the temperature of the environment in which they operate.
  • the curves 22, 24 and 26 shown in FIG. 3 illustrate the evolution, depending on the years, of the storage capacity of a lithium-ion battery with respect to its initial storage capacity, respectively at an operating temperature of 20 ° C., 40 ° C. and 60 ° C., for a given depth of discharge. It is clear from these curves that an increase in the ambient operating temperature causes a drop in the battery life.
  • An object of the present invention is to provide a compact multifunctional photovoltaic system integrating in particular the functions of converting solar energy into electrical energy and storing the electrical energy produced within a single autonomous device, thus facilitating its integration. and its installation in any type of site, whether isolated or connected to an electrical network, and also to prevent degradation over time of its storage capacity of the electrical energy produced.
  • a photovoltaic system comprising at least: - a photovoltaic panel, a battery mechanically connected to the photovoltaic panel by a holding structure, a space open to the environment outside the photovoltaic system and separating the battery and the photovoltaic panel a distance of at least about 1 cm.
  • the space between the battery and the photovoltaic panel can form an air circulation space between the battery and the photovoltaic panel.
  • no component of the photovoltaic system compromises the life of the other components of the system, including the battery, because of the heat generated during operation of the system, including the photovoltaic panel.
  • This integration mode thus guarantees a comparable lifetime between all system components, also limiting the impact of the ambient temperature and the radiation received on the various integrated components.
  • the present invention further relates to a photovoltaic system comprising at least:
  • a photovoltaic panel comprising a face intended to receive light rays
  • Such a photovoltaic system therefore has a planar shape, that is to say a small thickness compared to other dimensions of the system.
  • This system makes it possible to guarantee a comparable service life between all system components, while also limiting the impact of the ambient temperature and the radiation received on the various integrated components, while ensuring a high compactness of the system.
  • the distance separating the battery and the photovoltaic panel that is to say the thickness of the air gap, can be between about 1 cm and 30 cm, or between 1 cm and 20 cm, or between 1 cm and 10 cm.
  • Such a structure can therefore also optimize the weight and thickness of the photovoltaic system, and allow the photovoltaic system to achieve low dimensional and mass characteristics, facilitating its transport, installation and maintenance.
  • the ratio between the thickness of the air gap and the dimension of one side of the face of the photovoltaic panel may be less than or equal to about 1/10.
  • the surface of the face of the photovoltaic panel can be between about 0.25 m 2 and 2 m 2 .
  • the ratio between the thickness of the photovoltaic system and the dimension of one side of the face of the photovoltaic panel can be between about 1/7 and 1/8.
  • the battery may be lithium-based and / or comprise at least one prismatic electrical energy storage element.
  • the battery can be lithium-ion type and include several electrical energy storage elements of prismatic form electrically connected in series. With this lithium technology, the battery is best integrated with the photovoltaic system and allows the system to have a reduced thickness and weight, especially when the battery is formed by thin elements, for example prismatic, present under the assembly or a part of the surface of the photovoltaic panel.
  • the surface presented by the battery in a plane parallel to the face of the photovoltaic panel intended to receive light rays may be included in the surface presented by said face of the photovoltaic panel in this plane or in another plane parallel to the face of the photovoltaic panel intended to receive light rays.
  • the surface presented by the battery in a plane parallel to the face of the photovoltaic panel intended to receive light rays may be less than or equal to, or have a dimension less than or equal to, that of said face of the photovoltaic panel in this plane or in a another plane parallel to the face of the photovoltaic panel intended to receive light rays.
  • the photovoltaic panel and the associated open space form a shield thermally protecting the other components of the photovoltaic system arranged behind the photovoltaic panel vis-à-vis the light rays received by the photovoltaic panel.
  • the photovoltaic system may further comprise electronic elements for managing and / or converting the generated electrical energy disposed on a support plate mechanically connected to the battery, the support plate being disposed between the electronic elements and the battery.
  • the photovoltaic system comprises all its integrated functional components in a single device.
  • the management elements and / or conversion can also integrate on the same plane as the battery, in a free space between the outer edge of the panel and the battery, the overall thickness of these electronic elements being less than or equal to the total thickness of the photovoltaic system.
  • the photovoltaic system may further comprise a second space open to the environment outside the system.
  • this space can form an air circulation space between the battery and the support plate, that is to say between the battery and the electronic elements. This space formed between the battery and the electronic elements allows air circulation avoiding the battery to undergo increases in temperature due to the heating of the management and / or conversion electronics during operation.
  • the electronic elements for managing and / or converting the electrical energy produced may comprise at least one DC / DC voltage converter, and / or an optimal energy conversion device, and / or a battery charge regulator, and / or a block of connections, and / or a battery discharge regulator, and / or a DC / AC voltage converter, and / or a microcontroller.
  • the surface presented by the support plate and the electronic elements for managing and / or converting the electrical energy produced, in a plane parallel to the face of the photovoltaic panel intended to receive light rays may be included in the surface of said face of the photovoltaic panel in this plane or in another plane parallel to the face of the photovoltaic panel intended to receive light rays.
  • the surface presented by the support plate and the electronic elements for managing and / or converting the electrical energy produced, in a plane parallel to the face of the photovoltaic panel intended to receive light rays may be less than or equal to, or have a dimension less than or equal to that of said face of the photovoltaic panel in this plane or in another plane parallel to the face of the photovoltaic panel intended to receive light rays.
  • This second space forming the second air gap allows in particular to cool the electronics through the air flow in the second space, but also allows the expansion of the battery during aging.
  • the photovoltaic system further comprises dissipation and / or heat dissipation means arranged in the space forming the air gap separating the battery and the photovoltaic panel, and / or in the second space forming the second blade of air separating the battery and the support plate when the photovoltaic system has this second space.
  • FIGS. 1 and 2 respectively represent a diagram of an autonomous photovoltaic system and a diagram of a photovoltaic system connected to an electrical network according to the prior art
  • FIG. 3 represents curves illustrating the evolution, depending on the years, of the storage capacity of a lithium-ion battery with respect to its initial storage capacity, at different operating temperatures
  • FIG. 4 represents a diagram of a photovoltaic system, object of the present invention, according to a particular embodiment
  • FIG. 5 represents a partial sectional sectional view of a photovoltaic system, object of the present invention, according to a particular embodiment
  • FIG. 6 represents curves illustrating the evolution, during a day of operation. of the temperature of the components of a photovoltaic system, object of the present invention, as a function of the spacing between these components
  • FIGS. 7A and 7B represent sectional views of a photovoltaic system, object of the present invention, according to a particular embodiment.
  • Identical, similar or equivalent parts of the different figures described below bear the same numerical references so as to facilitate the passage from one figure to another. The different parts shown in the figures are not necessarily in a uniform scale, to make the figures more readable.
  • FIG. 4 shows a diagram of a photovoltaic system 100, object of the present invention, according to a particular embodiment.
  • the photovoltaic system 100 comprises a photovoltaic panel 102 whose output is electrically connected to a first DC / DC voltage converter 104, also called DC / DC converter.
  • An optimum energy conversion device 106 (also called MPPT or "Maximum Power Point Tracker” in English) is electrically connected to the first DC / DC converter 104.
  • the output of the first DC / DC converter 104 is electrically connected to the input of a battery charge regulator 108 (also called BCR, "Battery Charge Regulator” in English) and the input of a second DC / DC converter 110 via a connection block 112.
  • the output of the battery charge regulator 108 is electrically connected to a battery 114, here of the lithium-ion type, and to the input of a battery discharge regulator 116 (also called BDR or “Battery Discharge Regulator”). which is also electrically connected to the battery 114 and to the input of a second DC / DC converter 110.
  • the output of the second DC / DC converter 110 is electrically connected to the input of a DC / AC voltage converter 118 , also called DC / AC converter.
  • the system 100 also comprises a microcontroller 120 controlling in particular the MPPT 106, the connection block 112, the BCR 108 and the BDR 116.
  • the voltage obtained at the output of the photovoltaic panel 102 can be adapted by the DC / DC converter 104 so that it corresponds to the nominal voltage of the battery 114.
  • the DC / DC converter 104 is also controlled. by the MPPT 106.
  • the MPPT 106 thus makes it possible to drive the static converter (here the DC / DC converter 104) connecting the load (here the battery 114) and the photovoltaic panel 102 so as to permanently provide maximum power to the load.
  • This MPPT 106 is itself controlled by the microcontroller 120.
  • the microcontroller 120 also controls the connection block 112 which directs the electrical energy produced either to the battery 114 or to the electrical network to which the system 100 is connected or the device intended to be powered by the system 100.
  • the microcontroller 120 driver also the BCR 108 and the BDR 116 which regulate the incoming and outgoing electric power of the battery 114.
  • connection block 112 When the connection block 112 sends the generated electrical energy to the device to be supplied or the network, or when the battery delivers electrical energy to the device to be powered or the network, the voltage is then converted by the DC converter / DC 110 and then by the DC / AC converter 118, allowing for example to output a 230 V AC voltage synchronized with the mains (50Hz for example).
  • FIG. 5 represents a partial cross-sectional view of the photovoltaic system 100.
  • the photovoltaic panel 102 forms the front face of the photovoltaic system 100 which is intended to receive the solar energy. This front face is parallel to the plane (X, Y) along the X and Y axes shown in FIG. 5. All the components of the system 100 are positioned at the rear of the panel 102 and are superimposed on each other, forming a stack successive layers, so that the photovoltaic panel 102 forms a thermal shield vis-à-vis these components.
  • the battery 114 is here made by prismatic lithium-ion elements.
  • the surface of these lithium-ion elements occupied in a plane parallel to the plane (X, Y) is maximized so that it substantially corresponds to the surface of the front face of the panel 102, while remaining protected from the light rays received on the front face of the panel 102.
  • the elements of the battery 114 are held in the rest of the system 100 by a mechanical support structure 122 which is connected to the photovoltaic panel 102.
  • the system 100 also comprises a support plate 124, for example based on epoxy on which a control electronics 126 is produced, for example in the form of an electronic card, comprising the control elements. 104, 106, 108, 110, 112, 116, 118 and 120 previously described in connection with FIG. 4.
  • the electronic card consists of electronic blocks associated with each of these elements and allowing the management of the charge and the discharge of the battery, as well as their balancing.
  • the electronic card 126 is screwed to the battery 114 through the support plate 124, directly on the terminals 130 of the battery by a screw 131.
  • this very short connection avoids the ohmic drops which can for example appear if wired connections were used.
  • a protection plate 128 forms the rear face of the photovoltaic system 100.
  • the electronic card 126 is connected to the battery 114 by a wired connection.
  • the photovoltaic system 100 also comprises a first space 132, forming an air space, allowing an air flow in the system 100, between the photovoltaic panel 102 and the battery 114.
  • the distance formed by the space 132 between these components is for example between about 1 cm and 10 cm.
  • the photovoltaic system 100 also comprises a second space 133, forming a second air gap, between the battery 114 and the support plate 124.
  • This second space 133 makes it possible to carry out a circulation of air between the photovoltaic panel 102 and the support plate 124, that is to say between the photovoltaic panel 102 and the control electronics 126.
  • the battery 114 is maintained at a distance, for example between about 1 cm and 10 cm. the support plate 124.
  • the various components of the photovoltaic system 100 are superimposed and spaced apart by the spaces 132, 133, which here are voids, through which the air can circulate, so that the thermal interaction of a component of the system 100 vis- another component of the system 100 is limited.
  • no component compromises the life of the other components because of the heat generated during operation of the system 100 by these components, and in particular the photovoltaic panel 102 and control electronics 126 which are the components that generally release the most heat from all the components of the system 100.
  • the curves shown in FIG. 6 describe the evolution of the maximum temperature of the battery 114 and the photovoltaic panel 102 according to the time of a summer day.
  • the curves 134 and 136 respectively represent the changes in the temperatures of the photovoltaic panel 102 and the battery 114 when the gaps 132, 133 are non-existent, the battery 114 being in this case pressed against the photovoltaic panel 102 and against the support plate 124.
  • the curves 138 and 140 respectively represent the evolutions of the temperatures of the photovoltaic panel 102 and of the battery 114 when the spaces 132, 133 have a thickness equal to about 1 cm, the curves 142 and 146 representing the evolutions of these same components when the spaces 132 133 have a thickness of about 5 cm.
  • Curve 146 represents the evolution of the ambient temperature during this day.
  • the temperature of the battery 114 increases with sunshine on the one hand and with the heat emitted by the panel 102. It is observed that without the spaces 132, 133 (curves 134, 136), the temperature of the battery 114 corresponds approximately to that of the photovoltaic panel 102 is, for the hottest hours of the day, at a temperature between about 60 ° C and 65 ° C. With spaces 132, 133 of thickness equal to about 1 cm, the the maximum temperature reached by the photovoltaic panel 102 then drops by about 70 ° C. (curve 138) and that of the battery 114 drops by about 25 ° C. (curve 140) with respect to the Without spaces 132, 133.
  • the maximum temperature reached by the photovoltaic panel 102 drops by about 18 ° C. (curve 142) and that of the battery 114. drop about 33 0 C (curve 144) compared to the configuration without spaces 132, 133.
  • the daily gradient (difference between the highest temperature and the coldest temperature) also drops for the battery 114 and the panel 132 for the two spaces thicknesses 132, 133. It can therefore be seen that by virtue of the presence of spaces 132, 133 forming air knives, the thermal impact of the photovoltaic panel 102 and the control electronics 126 on the battery 114 is very small.
  • the thermal stresses experienced by the battery 114 during its operation are less severe, reducing the impact of these thermal stresses on its service life.
  • the spaces 132, 133 also limit the maximum temperature reached by the photovoltaic panel 102, thus ensuring a better production of daily electrical energy because the efficiency of the photovoltaic panel 102 is better at low temperature.
  • the thickness of one of the spaces 132, 133 is at least equal to approximately 1 cm in order to limit the thermal impact of the photovoltaic panel 102 on the life of the battery 114. Moreover, this thickness is for example chosen less than or equal to 10 cm in order to limit the size in the system 100 vis-à-vis the desired integration level.
  • FIGS. 7A and 7B show detailed sectional views of the system 100.
  • the references indicated in these figures correspond to those of FIGS. 4 and 5.
  • the photovoltaic panel 102 has for example a nominal power equal to about 75 Wp (peak watt), and overall dimensions equal to about 1237 mm x 556 mm x 24.5 mm, for a total weight of 7.8 kg. Such a panel makes it possible to obtain on average a daily electricity production equal to about 350 Wh (with a yield of 13% of the panel), or about 125 kWh per year.
  • the surface of the face of the photovoltaic panel 102 intended to receive the light rays is between about 0.25 m 2 and 2 m 2 , the dimensions of the sides of the panel 102, for example rectangular and possibly elongated or square, being between about 0.5 m and 2 m.
  • the output power of the photovoltaic panel 102 which is directly proportional to the area intended to receive the light rays and the technology used, is between a few tens of W and about 250 W.
  • the panel 102 may comprise photovoltaic cells based on monocrystalline silicon, polycrystalline, amorphous and / or in thin layers.
  • the panel 102 can be fixed on a metal frame or integrated in the form of solar tiles.
  • the panel thickness 102 may be between about 24 mm and 50 mm
  • the size of the battery 114 is made taking into account the amount of electricity that can be produced by the photovoltaic panel
  • Such a photovoltaic system 100 is for example intended, when it is used with a dwelling connected to the electricity grid and consuming an average of 2 kW, to cope with consumption peaks that occur at midday
  • the photovoltaic system 100 can also ensure the supply of electricity in case of power failure (for example about 1000 Wh for half an hour).
  • This house can for example be equipped with 25 photovoltaic systems similar to the photovoltaic system 100, each comprising a photovoltaic panel whose nominal power is equal to about 75 Wc, a total of 1875 Wc for the 25 photovoltaic panels.
  • a representative cycle of the operation of the photovoltaic systems of this dwelling can for example take place over 4 days.
  • each photovoltaic system can produce about 350 Wh. Since the batteries are initially 100% charged, the electrical energy produced is either consumed in the home or sold to the power grid operator. The batteries provide the extra consumption of the evening, either about 80 Wh per photovoltaic system.
  • the systems do not produce electricity (no sunshine). In this case, the batteries ensure the surplus consumption of lunch and evening, and a consumption of 2kW for half an hour of power outage, totaling 160 Wh per photovoltaic system.
  • photovoltaic systems do not produce electricity (no sunshine). The batteries ensure the surplus consumption of lunch and evening, about 120 kW per photovoltaic system.
  • each photovoltaic system produces about 350 Wh. All the electricity produced by the photovoltaic panels is used to recharge the batteries.
  • the available electrical energy is equal to about 350 Wh.
  • the initial storage capacity of the batteries is therefore approximately 480 Wh.
  • the battery 114 is formed by prismatic-shaped lithium-ion elements, making it possible to cover a large part of the available area of the photovoltaic panel 102 in the plane (x, y).
  • Each of these elements has a nominal capacity of 10 Ah.
  • the number, dimensions and layout of these elements may in particular be functions of the technological nature of the battery 114 (for example here lithium-ion), defining the nominal voltages of the elements and thus obtaining the specified energy.
  • the thickness of the battery may be between about 10 mm and 40 mm.
  • the elements of the holding structure 122 mechanically connecting the battery 114 to the photovoltaic panel 102 may have a dimension, parallel to the thicknesses of the panel 102 and the battery 114, of between about 10 mm and 25 mm.
  • the total mass of the system 100 is here less than 30 kg. Its dimensions in length and width (dimensions along the x and y axes) correspond to those of the simple photovoltaic panel 102, and for example equal to 1237 mm in length and 556 mm in width.
  • the total thickness of the system 100 is for example equal to about 60.5 mm, and may be between about 60 mm and 240 mm.
  • the dimensions, the configuration and the number of elements of the battery will be chosen according to the energy needs that the photovoltaic system must satisfy, whether for an isolated type application (street furniture for example), or type connected to the network as shown in the example.
  • the thickness of the system is for example equal to about 66 mm. The ratio between the thickness of the photovoltaic system and the dimension of one side of the face of the photovoltaic panel is therefore about 1/7.
  • the thickness of the system is for example equal to about 240 mm.
  • the ratio between the thickness of the photovoltaic system and the dimension of one side of the face of the photovoltaic panel is therefore about 1/8.
  • the spaces 132, 133 previously described are empty in order to allow air circulation in the photovoltaic system, especially around the battery.
  • the spaces 132, 133 are not empty, but have devices for evacuation or dissipation of heat, possibly arranged against the components releasing heat such as the photovoltaic panel 102 or the control electronics 126 (or support plate 124).
  • Such devices may, for example, comprise fins for dissipating heat, and / or any other device making it possible to improve the dissipation of heat and / or to accelerate the evacuation of heat outside the photovoltaic system 100.

Abstract

Photovoltaic system (100) comprising at least: a photovoltaic panel (102), having one face intended to receive light rays; a battery (114) mechanically connected to the photovoltaic panel by a retaining structure (122); and a space (132) which opens onto the environment external to the photovoltaic system and forms an air layer separating the battery from the photovoltaic panel and having a thickness at least equal to about 1 cm, the ratio of the thickness of the photovoltaic system to one dimension on one side of said face of the photovoltaic panel being less than or equal to about 1/5.

Description

SYSTEME PHOTOVOLTAIQUE A BATTERIE ET PANNEAU PHOTOVOLTAIQUE INTEGRES PHOTOVOLTAIC SYSTEM WITH INTEGRATED BATTERY AND PHOTOVOLTAIC PANEL
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
L' invention concerne un système photovoltaïque intégrant dans un unique dispositif plusieurs fonctions telles que la conversion de l'énergie solaire en énergie électrique, le stockage de l'énergie électrique produite ou encore la gestion de l'énergie électrique produite.The invention relates to a photovoltaic system integrating in a single device several functions such as the conversion of solar energy into electrical energy, the storage of the electrical energy produced or the management of the electrical energy produced.
ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART
Les systèmes photovoltaïques permettant le stockage de l'énergie électrique produite, fonctionnant de manière autonome ou connectés à un réseau électrique, sont constitués de plusieurs composants distincts :Photovoltaic systems for storing electrical energy produced, operating autonomously or connected to an electrical network, consist of several distinct components:
- un ou plusieurs panneaux photovoltaïques, ou panneaux solaires, formés par des matrices de cellules photovoltaïques et réalisant la conversion de l'énergie solaire reçue en énergie électrique, une ou plusieurs batteries stockant l'énergie électrique produite par le ou les panneaux photovoltaïques, - un système électronique de gestion de l'énergie électrique produite.one or more photovoltaic panels, or solar panels, formed by matrices of photovoltaic cells and converting the received solar energy into electrical energy, one or more batteries storing the electrical energy produced by the photovoltaic panel (s), an electronic system for managing the electrical energy produced.
Un schéma d'un système photovoltaïque autonome 1, utilisé par exemple pour alimenter un dispositif de télécommunications, un mobilier urbain, un site isolé tel qu'une habitation ou encore un véhicule, est représenté sur la figure 1. Ce système photovoltaïque 1 comporte un panneau photovoltaïque 2, une batterie électrochimique 4, un interrupteur ou un convertisseur de tension continu/continu 6 (également appelé convertisseur DC/DC) , un interrupteur ou un convertisseur DC/DC ou un onduleur 8, ainsi qu'un système électronique de gestion de l'énergie 10, ou tableau de bord, commandant les composants référencés 6 et 8. Ce système photovoltaïque 1 est destiné à alimenter un dispositif 12. Ces composants sont reliés entre eux par des câbles électriques et peuvent être plus ou moins éloignés les uns des autres.A diagram of an autonomous photovoltaic system 1, used for example to power a telecommunications device, street furniture, an isolated site such as a dwelling or a vehicle is shown in FIG. 1. This photovoltaic system 1 comprises a photovoltaic panel 2, an electrochemical battery 4, a switch or a DC / DC voltage converter 6 (also called a converter). DC / DC), a switch or a DC / DC converter or an inverter 8, and an electronic energy management system 10, or dashboard, controlling the components referenced 6 and 8. This photovoltaic system 1 is The components are interconnected by electrical cables and can be more or less distant from each other.
Lorsque le composant 6 est un interrupteur, celui-ci permet de relier ou non la sortie du panneau photovoltaïque 2 aux autres composants du système photovoltaïque 1. Lorsque le composant 6 est un convertisseur DC/DC, celui-ci permet de convertir la tension continue obtenue en sortie du panneau photovoltaïque 2 en une tension continue adaptée à la tension de la batterie 4. Lorsque le composant 8 est un interrupteur, celui-ci permet de relier ou non la sortie du composant 8 au dispositif 12. Lorsque le composant 8 est un convertisseur DC/DC ou un onduleur, celui-ci permet de convertir la tension continue obtenue en sortie du composant 6 en une tension continue ou alternative correspondant à la tension de fonctionnement du dispositif 12.When the component 6 is a switch, it allows to connect or not the output of the photovoltaic panel 2 to the other components of the photovoltaic system 1. When the component 6 is a DC / DC converter, it converts the DC voltage obtained at the output of the photovoltaic panel 2 in a DC voltage adapted to the voltage of the battery 4. When the component 8 is a switch, it allows to connect or not the output of the component 8 to the device 12. When the component 8 is a DC / DC converter or an inverter, the latter makes it possible to convert the DC voltage obtained at the output of the component 6 into a DC or AC voltage corresponding to the operating voltage of the device 12.
Un schéma d'un système photovoltaïque 14 connecté à un réseau électrique 20, permettant, en plus d'alimenter le dispositif 12, de fournir au réseau électrique 20 l'énergie électrique produite par le système photovoltaïque 14, est représenté sur la figure 2. Par rapport au système photovoltaïque autonome 1 représenté sur la figure 1, ce système photovoltaïque 14 comporte un interrupteur 18, commandé par le système électronique de gestion de l'énergie 10 et permettant de relier ou non la sortie de l'onduleur 8 au réseau électrique 20.A diagram of a photovoltaic system 14 connected to an electrical network 20, allowing, in addition to supplying the device 12, to supply the network electrical 20 the electrical energy produced by the photovoltaic system 14, is shown in Figure 2. Compared to the autonomous photovoltaic system 1 shown in Figure 1, the photovoltaic system 14 comprises a switch 18, controlled by the electronic management system of the energy 10 and allowing to connect or not the output of the inverter 8 to the electrical network 20.
Dans ces systèmes photovoltaïques, la technologie plomb-acide est la technologie la plus répandue pour la réalisation des batteries, essentiellement en raison de son coût modéré et de sa disponibilité. Toutefois, de telles batteries présentent une énergie massique et une énergie volumique relativement faibles, respectivement égales à environ 40 Wh/kg et 80 Wh/L, ce qui correspond à un poids et un volume occupé élevés par kWh stockés.In these photovoltaic systems, lead-acid technology is the most widely used technology for producing batteries, mainly because of its low cost and availability. However, such batteries have a relatively low mass energy and a relatively low energy density, respectively equal to about 40 Wh / kg and 80 Wh / L, which corresponds to a weight and a high occupied volume per kWh stored.
Le poids et le volume des batteries sont des contraintes importantes pour le transport (notamment lorsque les systèmes photovoltaïques sont isolés et éloignés des infrastructures routières) et l'installation des systèmes photovoltaïques. L'encombrement des batteries est également très contraignant pour des applications isolées telles que du mobilier urbain où la place est souvent limitée. L' installation de batteries plomb-acide engendre donc un surcoût pour le camouflage des batteries dans des éléments de décor tels que des socles en béton ou des bancs, ou pour l'enterrement de ces batteries. Dans le cas de systèmes photovoltaïques isolés ou connectés au réseau électrique et intégrés à un bâti, cet encombrement est également contraignant car la présence de batteries plomb-acide implique de prévoir un local technique pour leur stockage. De plus, en cas d'augmentation des besoins énergétiques, et donc d'un accroissement de la puissance des systèmes photovoltaïques, l'espace prévu initialement pour le stockage des batteries peut devenir limitant et empêcher le redimensionnement de l'installation.The weight and the volume of the batteries are important constraints for the transport (especially when the photovoltaic systems are isolated and remote from the road infrastructures) and the installation of the photovoltaic systems. The size of the batteries is also very restrictive for isolated applications such as street furniture where space is often limited. The installation of lead-acid batteries therefore generates additional costs for the camouflage of batteries in decorative elements such as concrete bases or benches, or for the burial of these batteries. In the case of photovoltaic systems isolated or connected to the electrical network and integrated into a frame, this congestion is also constraining because the presence of lead-acid batteries involves providing a technical room for their storage. In addition, in the event of an increase in energy requirements, and therefore an increase in the power of the photovoltaic systems, the space initially provided for storing the batteries can become limiting and prevent the resizing of the installation.
Il existe également des batteries réalisées à base de lithium, par exemple de type lithium-ion, présentant une énergie massique et une énergie volumique plus élevées (respectivement comprises entre environ 100 Wh/kg et 150 Wh/kg, et entre environ 150 Wh/L et 200 Wh/L) que celles des batteries plomb- acide. De plus, ces batteries peuvent être réalisées sous diverses formes : cylindriques, prismatiques, plates, etc. Le lithium a par ailleurs d'autres avantages par rapport au plomb, tels qu'une durée de vie plus importante (de l'ordre de 20 ans et 3000 cycles à 100% d'utilisation pour des batteries réalisées sous forme de plaques planes, contre 3 ans pour le plomb) , un meilleur rendement énergétique (ce rendement correspond au nombre de kWh restitués par la batterie par rapport aux kWh injectés dans la batterie) et une absence de maintenance, rendant finalement le coût au kWh restitué de ces batteries équivalent ou inférieur à celui des batteries au plomb dès lors que le profil d'usage de l'application requiert des cycles successifs de charge - décharge à des profondeurs de décharge élevées (> 50% de la capacité nominale) . La durée de vie des batteries, qu'elles soient de type plomb-acide ou lithium-ion, est ainsi fortement influencée d'une part par les profondeurs des décharges atteintes au cours des cycles de charge - décharge, et d'autre part par la température du milieu dans lequel elles fonctionnent. Les courbes 22, 24 et 26 représentées sur la figure 3 illustrent l'évolution, en fonction des années, de la capacité de stockage d'une batterie lithium-ion par rapport à sa capacité de stockage initiale, respectivement à une température de fonctionnement de 2O0C, 4O0C et 6O0C, pour une profondeur de décharge donnée. Il ressort clairement de ces courbes qu'une augmentation de la température ambiante de fonctionnement engendre une chute de la durée de vie de la batterie.There are also lithium-based batteries, for example of lithium-ion type, having a higher specific energy and a higher energy density (respectively between about 100 Wh / kg and 150 Wh / kg, and between about 150 Wh / kg). L and 200 Wh / L) than lead-acid batteries. In addition, these batteries can be made in various forms: cylindrical, prismatic, flat, etc. Lithium also has other advantages over lead, such as a longer life (about 20 years and 3000 cycles at 100% use for batteries made in the form of flat plates, against 3 years for lead), better energy efficiency (this output corresponds to the number of kWh returned by the battery compared to the kWh injected into the battery) and a lack of maintenance, ultimately making the cost per kWh returned from these batteries equivalent or less than that of lead-acid batteries when the usage profile of the application requires successive charging-discharging cycles at high discharge depths (> 50% of nominal capacity). The life of the batteries, whether lead-acid or lithium-ion, is thus strongly influenced on the one hand by the depths of the discharges reached during the charge-discharge cycles, and on the other hand by the temperature of the environment in which they operate. The curves 22, 24 and 26 shown in FIG. 3 illustrate the evolution, depending on the years, of the storage capacity of a lithium-ion battery with respect to its initial storage capacity, respectively at an operating temperature of 20 ° C., 40 ° C. and 60 ° C., for a given depth of discharge. It is clear from these curves that an increase in the ambient operating temperature causes a drop in the battery life.
Ainsi, lorsqu'il n'est pas possible de réaliser un stockage des batteries dans une zone contrôlée en température, par exemple dans un local technique avec air conditionné, la durée de vie des batteries est réduite, quelque soit la profondeur de décharge atteinte. De plus, l'enfouissement des batteries, bien que permettant de réduire les fluctuations thermiques de l'environnement de fonctionnement des batteries, empêche de réaliser une maintenance et un suivi régulier du fonctionnement des batteries, réduisant par suite la durée de vie des batteries . EXPOSE DE L' INVENTIONThus, when it is not possible to store the batteries in a temperature controlled area, for example in a technical room with air conditioning, the life of the batteries is reduced, regardless of the depth of discharge reached. In addition, burial of batteries, while reducing thermal fluctuations in the operating environment of the batteries, prevents maintenance and regular monitoring of battery operation, thereby reducing battery life. SUMMARY OF THE INVENTION
Un but de la présente invention est de proposer un système photovoltaïque multifonctionnel compact intégrant notamment les fonctions de conversion de l'énergie solaire en énergie électrique et de stockage de l'énergie électrique produite au sein d'un seul dispositif autonome, facilitant ainsi son intégration et son installation dans tout type de site, qu'il soit isolé ou connecté à un réseau électrique, et permettant également d'éviter les dégradations au fil du temps de ses capacités de stockage de l'énergie électrique produite.An object of the present invention is to provide a compact multifunctional photovoltaic system integrating in particular the functions of converting solar energy into electrical energy and storing the electrical energy produced within a single autonomous device, thus facilitating its integration. and its installation in any type of site, whether isolated or connected to an electrical network, and also to prevent degradation over time of its storage capacity of the electrical energy produced.
Pour cela, il est proposé un système photovoltaïque comportant au moins : - un panneau photovoltaïque, une batterie reliée mécaniquement au panneau photovoltaïque par une structure de maintien, un espace ouvert sur l'environnement extérieur au système photovoltaïque et séparant la batterie et le panneau photovoltaïque d'une distance au moins égale à environ 1 cm.For this, it is proposed a photovoltaic system comprising at least: - a photovoltaic panel, a battery mechanically connected to the photovoltaic panel by a holding structure, a space open to the environment outside the photovoltaic system and separating the battery and the photovoltaic panel a distance of at least about 1 cm.
L'espace séparant la batterie et le panneau photovoltaïque peut former un espace de circulation d'air entre la batterie et le panneau photovoltaïque. Ainsi, aucun composant du système photovoltaïque ne compromet la durée de vie des autres composants du système, notamment de la batterie, en raison de la chaleur dégagée lors du fonctionnement du système, et notamment du panneau photovoltaïque. Ce mode d'intégration garantit ainsi une durée de vie comparable entre tous les composants du système, en limitant également l'impact de la température ambiante et du rayonnement reçu sur les différents composants intégrés .The space between the battery and the photovoltaic panel can form an air circulation space between the battery and the photovoltaic panel. Thus, no component of the photovoltaic system compromises the life of the other components of the system, including the battery, because of the heat generated during operation of the system, including the photovoltaic panel. This integration mode thus guarantees a comparable lifetime between all system components, also limiting the impact of the ambient temperature and the radiation received on the various integrated components.
La présente invention concerne en outre un système photovoltaïque comportant au moins :The present invention further relates to a photovoltaic system comprising at least:
- un panneau photovoltaïque comportant une face destinée à recevoir des rayons lumineux,a photovoltaic panel comprising a face intended to receive light rays,
- une batterie reliée mécaniquement au panneau photovoltaïque par une structure de maintien, - un espace ouvert sur l'environnement extérieur au système photovoltaïque formant une lame d' air séparant la batterie et le panneau photovoltaïque et comportant une épaisseur au moins égale à environ 1 cm, le rapport entre l'épaisseur du système photovoltaïque et une dimension d'un côté de ladite face du panneau photovoltaïque étant inférieur ou égal à environ 1/5.- A battery mechanically connected to the photovoltaic panel by a holding structure, - a space open to the external environment of the photovoltaic system forming an air gap separating the battery and the photovoltaic panel and having a thickness of at least about 1 cm , the ratio between the thickness of the photovoltaic system and a dimension of one side of said face of the photovoltaic panel being less than or equal to about 1/5.
Un tel système photovoltaïque présente donc une forme planaire, c'est-à-dire une épaisseur faible par rapport aux autres dimensions du système. Ce système permet donc de garantir une durée de vie comparable entre tous les composants du système, en limitant également l'impact de la température ambiante et du rayonnement reçu sur les différents composants intégrés, tout en assurant une forte compacité du système .Such a photovoltaic system therefore has a planar shape, that is to say a small thickness compared to other dimensions of the system. This system makes it possible to guarantee a comparable service life between all system components, while also limiting the impact of the ambient temperature and the radiation received on the various integrated components, while ensuring a high compactness of the system.
La distance séparant la batterie et le panneau photovoltaïque, c'est-à-dire l'épaisseur de la lame d'air, peut être comprise entre environ 1 cm et 30 cm, ou entre 1 cm et 20 cm, ou entre 1 cm et 10 cm. Une telle structure peut donc optimiser également le poids et l'épaisseur du système photovoltaïque, et permettre au système photovoltaïque d'atteindre des caractéristiques dimensionnelles et massiques faibles, facilitant son transport, son installation et sa maintenance.The distance separating the battery and the photovoltaic panel, that is to say the thickness of the air gap, can be between about 1 cm and 30 cm, or between 1 cm and 20 cm, or between 1 cm and 10 cm. Such a structure can therefore also optimize the weight and thickness of the photovoltaic system, and allow the photovoltaic system to achieve low dimensional and mass characteristics, facilitating its transport, installation and maintenance.
Le rapport entre l'épaisseur de la lame d'air et la dimension d'un côté de la face du panneau photovoltaïque peut être inférieur ou égal à environ 1/10.The ratio between the thickness of the air gap and the dimension of one side of the face of the photovoltaic panel may be less than or equal to about 1/10.
La surface de la face du panneau photovoltaïque peut être comprise entre environ 0,25 m2 et 2 m2.The surface of the face of the photovoltaic panel can be between about 0.25 m 2 and 2 m 2 .
Le rapport entre l'épaisseur du système photovoltaïque et la dimension d'un côté de la face du panneau photovoltaïque peut être compris entre environ 1/7 et 1/8.The ratio between the thickness of the photovoltaic system and the dimension of one side of the face of the photovoltaic panel can be between about 1/7 and 1/8.
La batterie peut être à base de lithium et/ou comporter au moins un élément de stockage d'énergie électrique de forme prismatique. La batterie peut être de type lithium-ion et comporter plusieurs éléments de stockage d'énergie électrique de forme prismatique reliés électriquement en série. Avec cette technologie au lithium, la batterie est intégrée au mieux au système photovoltaïque et permet au système de présenter une épaisseur et un poids réduits, notamment lorsque la batterie est formée par des éléments fins, par exemple prismatiques, présents sous l'ensemble ou une partie de la surface du panneau photovoltaïque. La surface présentée par la batterie dans un plan parallèle à la face du panneau photovoltaïque destinée à recevoir des rayons lumineux peut être incluse dans la surface présentée par ladite face du panneau photovoltaïque dans ce plan ou dans un autre plan parallèle à la face du panneau photovoltaïque destinée à recevoir des rayons lumineux. La surface présentée par la batterie dans un plan parallèle à la face du panneau photovoltaïque destinée à recevoir des rayons lumineux peut être inférieure ou égale, ou avoir une dimension inférieures ou égale, à celle de ladite face du panneau photovoltaïque dans ce plan ou dans un autre plan parallèle à la face du panneau photovoltaïque destinée à recevoir des rayons lumineux. Ainsi, le panneau photovoltaïque et l'espace ouvert associé forment un écran protégeant thermiquement les autres composants du système photovoltaïques disposés derrière le panneau photovoltaïque vis-à-vis des rayons lumineux reçus par le panneau photovoltaïque.The battery may be lithium-based and / or comprise at least one prismatic electrical energy storage element. The battery can be lithium-ion type and include several electrical energy storage elements of prismatic form electrically connected in series. With this lithium technology, the battery is best integrated with the photovoltaic system and allows the system to have a reduced thickness and weight, especially when the battery is formed by thin elements, for example prismatic, present under the assembly or a part of the surface of the photovoltaic panel. The surface presented by the battery in a plane parallel to the face of the photovoltaic panel intended to receive light rays may be included in the surface presented by said face of the photovoltaic panel in this plane or in another plane parallel to the face of the photovoltaic panel intended to receive light rays. The surface presented by the battery in a plane parallel to the face of the photovoltaic panel intended to receive light rays may be less than or equal to, or have a dimension less than or equal to, that of said face of the photovoltaic panel in this plane or in a another plane parallel to the face of the photovoltaic panel intended to receive light rays. Thus, the photovoltaic panel and the associated open space form a shield thermally protecting the other components of the photovoltaic system arranged behind the photovoltaic panel vis-à-vis the light rays received by the photovoltaic panel.
Le système photovoltaïque peut comporter, en outre, des éléments électroniques de gestion et/ou de conversion de l'énergie électrique produite disposés sur une plaque support reliée mécaniquement à la batterie, la plaque support étant disposée entre les éléments électroniques et la batterie. Ainsi, le système photovoltaïque comporte tous ses composants fonctionnels intégrés en un seul dispositif. Les éléments de gestion et/ou de conversion peuvent également s'intégrer sur le même plan que la batterie, dans un espace libre situé entre le bord extérieur du panneau et la batterie, l'épaisseur globale de ces éléments électronique étant inférieure ou égale à l'épaisseur totale du système photovoltaïque. Dans le cas où les éléments électroniques de conversion et/ou de gestion de l'énergie électrique produite sont disposés sur une plaque support reliée mécaniquement à la batterie, le système photovoltaïque peut comporter en outre un second espace ouvert sur l'environnement extérieur au système photovoltaïque formant une seconde lame d' air et séparant la batterie et la plaque support d'une distance au moins égale à 1 cm, cette distance correspondant à l'épaisseur de la seconde lame d'air. De préférence, cette distance, ou l'épaisseur de la seconde lame d'air, peut être comprise entre environ 1 cm et 30 cm, ou comprise entre environ 1 cm et 20 cm, ou comprise entre environ 1 cm et 10 cm. Ainsi, cet espace peut former un espace de circulation d'air entre la batterie et la plaque support, c'est-à-dire entre la batterie et les éléments électroniques. Cet espace formé entre la batterie et les éléments électroniques permet une circulation d'air évitant à la batterie de subir des augmentations de température dues à l' échauffement de l'électronique de gestion et/ou de conversion lors de son fonctionnement.The photovoltaic system may further comprise electronic elements for managing and / or converting the generated electrical energy disposed on a support plate mechanically connected to the battery, the support plate being disposed between the electronic elements and the battery. Thus, the photovoltaic system comprises all its integrated functional components in a single device. The management elements and / or conversion can also integrate on the same plane as the battery, in a free space between the outer edge of the panel and the battery, the overall thickness of these electronic elements being less than or equal to the total thickness of the photovoltaic system. In the case where the electronic elements for converting and / or managing the electrical energy produced are arranged on a support plate mechanically connected to the battery, the photovoltaic system may further comprise a second space open to the environment outside the system. photovoltaic forming a second air gap and separating the battery and the support plate by a distance of at least 1 cm, this distance corresponding to the thickness of the second air gap. Preferably, this distance, or the thickness of the second air gap, may be between about 1 cm and 30 cm, or between about 1 cm and 20 cm, or between about 1 cm and 10 cm. Thus, this space can form an air circulation space between the battery and the support plate, that is to say between the battery and the electronic elements. This space formed between the battery and the electronic elements allows air circulation avoiding the battery to undergo increases in temperature due to the heating of the management and / or conversion electronics during operation.
Les éléments électroniques de gestion et/ou de conversion de l'énergie électrique produite peuvent comporter au moins un convertisseur de tension continu/continu, et/ou un dispositif de conversion optimale d'énergie, et/ou un régulateur de charge de batterie, et/ou un bloc de connexions, et/ou un régulateur de décharge de batterie, et/ou un convertisseur de tension continu/alternatif, et/ou un microcontrôleur. La surface présentée par la plaque support et les éléments électroniques de gestion et/ou de conversion de l'énergie électrique produite, dans un plan parallèle à la face du panneau photovoltaïque destinée à recevoir des rayons lumineux, peut être incluse dans la surface de ladite face du panneau photovoltaïque dans ce plan ou dans un autre plan parallèle à la face du panneau photovoltaïque destinée à recevoir des rayons lumineux. La surface présentée par la plaque support et les éléments électroniques de gestion et/ou de conversion de l'énergie électrique produite, dans un plan parallèle à la face du panneau photovoltaïque destinée à recevoir des rayons lumineux, peut être inférieure ou égale, ou avoir une dimension inférieure ou égale, à celle de ladite face du panneau photovoltaïque dans ce plan ou dans un autre plan parallèle à la face du panneau photovoltaïque destinée à recevoir des rayons lumineux.The electronic elements for managing and / or converting the electrical energy produced may comprise at least one DC / DC voltage converter, and / or an optimal energy conversion device, and / or a battery charge regulator, and / or a block of connections, and / or a battery discharge regulator, and / or a DC / AC voltage converter, and / or a microcontroller. The surface presented by the support plate and the electronic elements for managing and / or converting the electrical energy produced, in a plane parallel to the face of the photovoltaic panel intended to receive light rays, may be included in the surface of said face of the photovoltaic panel in this plane or in another plane parallel to the face of the photovoltaic panel intended to receive light rays. The surface presented by the support plate and the electronic elements for managing and / or converting the electrical energy produced, in a plane parallel to the face of the photovoltaic panel intended to receive light rays, may be less than or equal to, or have a dimension less than or equal to that of said face of the photovoltaic panel in this plane or in another plane parallel to the face of the photovoltaic panel intended to receive light rays.
Ce second espace formant la seconde lame d'air permet notamment de refroidir l'électronique grâce à la circulation d'air dans ce second espace, mais permet également la dilatation de la batterie lors de son vieillissement.This second space forming the second air gap allows in particular to cool the electronics through the air flow in the second space, but also allows the expansion of the battery during aging.
Le système photovoltaïque comporte en outre des moyens de dissipation et/ou d'évacuation de chaleur disposés dans l'espace formant la lame d'air séparant la batterie et le panneau photovoltaïque, et/ou dans le second espace formant la seconde lame d' air séparant la batterie et la plaque support lorsque le système photovoltaïque comporte ce second espace. BRÈVE DESCRIPTION DES DESSINSThe photovoltaic system further comprises dissipation and / or heat dissipation means arranged in the space forming the air gap separating the battery and the photovoltaic panel, and / or in the second space forming the second blade of air separating the battery and the support plate when the photovoltaic system has this second space. BRIEF DESCRIPTION OF THE DRAWINGS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif en faisant référence aux dessins annexés sur lesquels : les figures 1 et 2 représentent respectivement un schéma d'un système photovoltaïque autonome et un schéma d'un système photovoltaïque connecté à un réseau électrique selon l'art antérieur, la figure 3 représente des courbes illustrant l'évolution, en fonction des années, de la capacité de stockage d'une batterie lithium-ion par rapport à sa capacité de stockage initiale, à différentes températures de fonctionnement, la figure 4 représente un schéma d'un système photovoltaïque, objet de la présente invention, selon un mode de réalisation particulier,The present invention will be better understood on reading the description of exemplary embodiments given purely by way of indication and in no way limiting, with reference to the appended drawings in which: FIGS. 1 and 2 respectively represent a diagram of an autonomous photovoltaic system and a diagram of a photovoltaic system connected to an electrical network according to the prior art, FIG. 3 represents curves illustrating the evolution, depending on the years, of the storage capacity of a lithium-ion battery with respect to its initial storage capacity, at different operating temperatures, FIG. 4 represents a diagram of a photovoltaic system, object of the present invention, according to a particular embodiment,
- la figure 5 représente une vue partielle de profil en coupe d'un système photovoltaïque, objet de la présente invention, selon un mode de réalisation particulier, la figure 6 représente des courbes illustrant l'évolution, au cours d'une journée de fonctionnement, de la température des composants d'un système photovoltaïque, objet de la présente invention, en fonction de l'espacement entre ces composants, les figures 7A et 7B représentent des vues en coupe d'un système photovoltaïque, objet de la présente invention, selon un mode de réalisation particulier . Des parties identiques, similaires ou équivalentes des différentes figures décrites ci-après portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre. Les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles .FIG. 5 represents a partial sectional sectional view of a photovoltaic system, object of the present invention, according to a particular embodiment, FIG. 6 represents curves illustrating the evolution, during a day of operation. of the temperature of the components of a photovoltaic system, object of the present invention, as a function of the spacing between these components, FIGS. 7A and 7B represent sectional views of a photovoltaic system, object of the present invention, according to a particular embodiment. Identical, similar or equivalent parts of the different figures described below bear the same numerical references so as to facilitate the passage from one figure to another. The different parts shown in the figures are not necessarily in a uniform scale, to make the figures more readable.
Les différentes possibilités (variantes et modes de réalisation) doivent être comprises comme n'étant pas exclusives les unes des autres et peuvent se combiner entre elles.The different possibilities (variants and embodiments) must be understood as not being exclusive of each other and can be combined with one another.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
On se réfère à la figure 4 qui représente un schéma d'un système photovoltaïque 100, objet de la présente invention, selon un mode de réalisation particulier .Referring to Figure 4 which shows a diagram of a photovoltaic system 100, object of the present invention, according to a particular embodiment.
Le système photovoltaïque 100 comporte un panneau photovoltaïque 102 dont la sortie est reliée électriquement à un premier convertisseur de tension continu/continu 104, également appelé convertisseur DC/DC. Un dispositif de conversion optimale d'énergie 106 (également appelé MPPT ou « Maximum Power Point Tracker » en anglais) est relié électriquement au premier convertisseur DC/DC 104. La sortie du premier convertisseur DC/DC 104 est reliée électriquement à l'entrée d'un régulateur de charge de batterie 108 (également appelé BCR, « Battery Charge Regulator » en anglais) et à l'entrée d'un second convertisseur DC/DC 110 par l'intermédiaire d'un bloc de connexions 112. La sortie du régulateur de charge de batterie 108 est reliée électriquement à une batterie 114, ici du type lithium-ion, et à l'entrée d'un régulateur de décharge de batterie 116 (également appelé BDR ou « Battery Discharge Regulator » en anglais) qui est également relié électriquement à la batterie 114 et à l'entrée d'un second convertisseur DC/DC 110. La sortie du second convertisseur DC/DC 110 est reliée électriquement à l'entrée d'un convertisseur de tension continu/alternatif 118, également appelé convertisseur DC/AC. Enfin, le système 100 comporte également un microcontrôleur 120 pilotant notamment le MPPT 106, le bloc de connexion 112, le BCR 108 et le BDR 116.The photovoltaic system 100 comprises a photovoltaic panel 102 whose output is electrically connected to a first DC / DC voltage converter 104, also called DC / DC converter. An optimum energy conversion device 106 (also called MPPT or "Maximum Power Point Tracker" in English) is electrically connected to the first DC / DC converter 104. The output of the first DC / DC converter 104 is electrically connected to the input of a battery charge regulator 108 (also called BCR, "Battery Charge Regulator" in English) and the input of a second DC / DC converter 110 via a connection block 112. The The output of the battery charge regulator 108 is electrically connected to a battery 114, here of the lithium-ion type, and to the input of a battery discharge regulator 116 (also called BDR or "Battery Discharge Regulator"). which is also electrically connected to the battery 114 and to the input of a second DC / DC converter 110. The output of the second DC / DC converter 110 is electrically connected to the input of a DC / AC voltage converter 118 , also called DC / AC converter. Finally, the system 100 also comprises a microcontroller 120 controlling in particular the MPPT 106, the connection block 112, the BCR 108 and the BDR 116.
La tension obtenue en sortie du panneau photovoltaïque 102, par exemple de 12 V, peut être adaptée par le convertisseur DC/DC 104 afin que celle- ci corresponde à la tension nominale de la batterie 114. Le convertisseur DC/DC 104 est également piloté par le MPPT 106. Ce MPPT 106 permet de suivre le point de puissance maximale d'un générateur électrique non linéaire. En effet, le panneau photovoltaïque 102 peut être vu comme un générateur dont la caractéristique J = f (U) est fortement non linéaire. En conséquence, pour un même éclairement, la puissance délivrée sera différente selon la charge reliée à la sortie du panneau 102. Le MPPT 106 permet donc de piloter le convertisseur statique (ici le convertisseur DC/DC 104) reliant la charge (ici la batterie 114) et le panneau photovoltaïque 102 de manière à fournir en permanence le maximum de puissance à la charge. Ce MPPT 106 est lui-même piloté par le microcontrôleur 120. Le microcontrôleur 120 pilote également le bloc de connexions 112 qui dirige l'énergie électrique produite soit vers la batterie 114, soit vers le réseau électrique auquel est relié le système 100 ou le dispositif destiné à être alimenté par le système 100. Le microcontrôleur 120 pilote également le BCR 108 et le BDR 116 qui permettent de réguler la puissance électrique entrante et sortante de la batterie 114.The voltage obtained at the output of the photovoltaic panel 102, for example 12 V, can be adapted by the DC / DC converter 104 so that it corresponds to the nominal voltage of the battery 114. The DC / DC converter 104 is also controlled. by the MPPT 106. This MPPT 106 makes it possible to follow the maximum power point of a non-linear electrical generator. Indeed, the photovoltaic panel 102 can be seen as a generator whose characteristic J = f (U) is strongly nonlinear. Consequently, for the same illumination, the power delivered will be different according to the load connected to the output of the panel 102. The MPPT 106 thus makes it possible to drive the static converter (here the DC / DC converter 104) connecting the load (here the battery 114) and the photovoltaic panel 102 so as to permanently provide maximum power to the load. This MPPT 106 is itself controlled by the microcontroller 120. The microcontroller 120 also controls the connection block 112 which directs the electrical energy produced either to the battery 114 or to the electrical network to which the system 100 is connected or the device intended to be powered by the system 100. The microcontroller 120 driver also the BCR 108 and the BDR 116 which regulate the incoming and outgoing electric power of the battery 114.
Lorsque le bloc de connexions 112 envoie l'énergie électrique produite vers le dispositif à alimenter ou le réseau, ou lorsque la batterie délivre de l'énergie électrique vers le dispositif à alimenter ou le réseau, la tension est alors convertie par le convertisseur DC/DC 110 puis par le convertisseur DC/AC 118, permettant par exemple d'obtenir en sortie une tension alternative de 230 V synchronisée avec le réseau électrique (50Hz par exemple) .When the connection block 112 sends the generated electrical energy to the device to be supplied or the network, or when the battery delivers electrical energy to the device to be powered or the network, the voltage is then converted by the DC converter / DC 110 and then by the DC / AC converter 118, allowing for example to output a 230 V AC voltage synchronized with the mains (50Hz for example).
La figure 5 représente une vue partielle de profil en coupe du système photovoltaïque 100. Le panneau photovoltaïque 102 forme la face avant du système photovoltaïque 100 qui est destinée à recevoir l'énergie solaire. Cette face avant est parallèle au plan (X, Y) selon les axes X et Y représentés sur la figure 5. Tous les composants du système 100 sont positionnés à l'arrière du panneau 102 et sont superposés les uns aux autres, formant un empilement de couches successives, afin que le panneau photovoltaïque 102 forme un écran de protection thermique vis-à-vis de ces composants. La batterie 114 est ici réalisée par des éléments lithium-ion de forme prismatique. La surface de ces éléments lithium-ion occupée dans un plan parallèle au plan (X, Y) est maximisée afin que celle-ci corresponde sensiblement à la surface de la face avant du panneau 102, tout en restant protégée des rayons lumineux reçus sur la face avant du panneau 102. Les éléments de la batterie 114 sont maintenus au reste du système 100 par une structure de maintien mécanique 122 qui est reliée au panneau photovoltaïque 102.FIG. 5 represents a partial cross-sectional view of the photovoltaic system 100. The photovoltaic panel 102 forms the front face of the photovoltaic system 100 which is intended to receive the solar energy. This front face is parallel to the plane (X, Y) along the X and Y axes shown in FIG. 5. All the components of the system 100 are positioned at the rear of the panel 102 and are superimposed on each other, forming a stack successive layers, so that the photovoltaic panel 102 forms a thermal shield vis-à-vis these components. The battery 114 is here made by prismatic lithium-ion elements. The surface of these lithium-ion elements occupied in a plane parallel to the plane (X, Y) is maximized so that it substantially corresponds to the surface of the front face of the panel 102, while remaining protected from the light rays received on the front face of the panel 102. The elements of the battery 114 are held in the rest of the system 100 by a mechanical support structure 122 which is connected to the photovoltaic panel 102.
Dans l'exemple décrit ici, le système 100 comporte également une plaque support 124, par exemple à base d' époxy sur laquelle est réalisée une électronique de commande 126, par exemple sous la forme d'une carte électronique, comportant les éléments de commande 104, 106, 108, 110, 112, 116, 118 et 120 précédemment décrits en liaison avec la figure 4. La carte électronique est constituée de blocs électroniques associés à chacun de ces élément et permettant la gestion de la charge et de la décharge de la batterie, ainsi que de leur équilibrage. La carte électronique 126 est vissée à la batterie 114 à travers la plaque support 124, directement sur les bornes 130 de la batterie par une vis 131. Ainsi, cette connexion très courte évite les chutes ohmiques qui peuvent par exemple apparaître si des connexions filaires étaient utilisées. On optimise ainsi le rendement énergétique et la puissance électrique du système. De plus, une telle connexion par vissage direct sur les bornes de la batterie est très fiable et facilement réalisable. Enfin, une plaque de protection 128 forme la face arrière du système photovoltaïque 100. Toutefois, il est possible que la carte électronique 126 soit reliée à la batterie 114 par une connexion filaire.In the example described here, the system 100 also comprises a support plate 124, for example based on epoxy on which a control electronics 126 is produced, for example in the form of an electronic card, comprising the control elements. 104, 106, 108, 110, 112, 116, 118 and 120 previously described in connection with FIG. 4. The electronic card consists of electronic blocks associated with each of these elements and allowing the management of the charge and the discharge of the battery, as well as their balancing. The electronic card 126 is screwed to the battery 114 through the support plate 124, directly on the terminals 130 of the battery by a screw 131. Thus, this very short connection avoids the ohmic drops which can for example appear if wired connections were used. This optimizes the energy efficiency and the electrical power of the system. In addition, such a connection by direct screwing on the terminals of the battery is very reliable and easily achievable. Finally, a protection plate 128 forms the rear face of the photovoltaic system 100. However, it It is possible that the electronic card 126 is connected to the battery 114 by a wired connection.
Le système photovoltaïque 100 comporte également un premier espace 132, formant une lame d'air, permettant une circulation d'air dans le système 100, entre le panneau photovoltaïque 102 et la batterie 114. La distance formée par l'espace 132 entre ces composants, (dimension selon l'axe z représenté sur la figure 5) est par exemple comprise entre environ 1 cm et 10 cm.The photovoltaic system 100 also comprises a first space 132, forming an air space, allowing an air flow in the system 100, between the photovoltaic panel 102 and the battery 114. The distance formed by the space 132 between these components , (dimension along the z axis shown in Figure 5) is for example between about 1 cm and 10 cm.
De plus, dans cet exemple de réalisation, le système photovoltaïque 100 comporte également un second espace 133, formant une seconde lame d'air, entre la batterie 114 et la plaque support 124. Ce second espace 133 permet de réaliser une circulation d'air entre le panneau photovoltaïque 102 et la plaque support 124, c'est-à-dire entre le panneau photovoltaïque 102 et l'électronique de commande 126. La batterie 114 est maintenue à une distance par exemple comprise entre environ 1 cm et 10 cm de la plaque support 124.In addition, in this exemplary embodiment, the photovoltaic system 100 also comprises a second space 133, forming a second air gap, between the battery 114 and the support plate 124. This second space 133 makes it possible to carry out a circulation of air between the photovoltaic panel 102 and the support plate 124, that is to say between the photovoltaic panel 102 and the control electronics 126. The battery 114 is maintained at a distance, for example between about 1 cm and 10 cm. the support plate 124.
Les différents composants du système photovoltaïque 100 sont superposés et espacés par les espaces 132, 133, qui sont ici des espaces vides, à travers lesquels l'air peut circuler, de sorte que l'interaction thermique d'un composant du système 100 vis-à-vis d'un autre composant du système 100 soit limitée. Ainsi, aucun composant ne compromet la durée de vie des autres composants en raison de la chaleur dégagée lors du fonctionnement du système 100 par ces composants, et notamment du panneau photovoltaïque 102 et de l'électronique de commande 126 qui sont les composants dégageant généralement le plus de chaleur parmi tous les composants du système 100.The various components of the photovoltaic system 100 are superimposed and spaced apart by the spaces 132, 133, which here are voids, through which the air can circulate, so that the thermal interaction of a component of the system 100 vis- another component of the system 100 is limited. Thus, no component compromises the life of the other components because of the heat generated during operation of the system 100 by these components, and in particular the photovoltaic panel 102 and control electronics 126 which are the components that generally release the most heat from all the components of the system 100.
Les courbes représentées sur la figure 6 décrivent l'évolution de la température maximale de la batterie 114 et du panneau photovoltaïque 102 selon l'heure d'une journée d'été. Les courbes 134 et 136 représentent respectivement les évolutions des températures du panneau photovoltaïque 102 et de la batterie 114 lorsque les espaces 132, 133 sont inexistants, la batterie 114 étant dans ce cas plaquée contre le panneau photovoltaïque 102 et contre la plaque support 124. Les courbes 138 et 140 représentent respectivement les évolutions des températures du panneau photovoltaïque 102 et de la batterie 114 lorsque les espaces 132, 133 ont une épaisseur égale à environ 1 cm, les courbes 142 et 146 représentant les évolutions de ces mêmes composants lorsque les espaces 132, 133 ont une épaisseur égale à environ 5 cm. La courbe 146 représente l'évolution de la température ambiante lors de cette journée.The curves shown in FIG. 6 describe the evolution of the maximum temperature of the battery 114 and the photovoltaic panel 102 according to the time of a summer day. The curves 134 and 136 respectively represent the changes in the temperatures of the photovoltaic panel 102 and the battery 114 when the gaps 132, 133 are non-existent, the battery 114 being in this case pressed against the photovoltaic panel 102 and against the support plate 124. The curves 138 and 140 respectively represent the evolutions of the temperatures of the photovoltaic panel 102 and of the battery 114 when the spaces 132, 133 have a thickness equal to about 1 cm, the curves 142 and 146 representing the evolutions of these same components when the spaces 132 133 have a thickness of about 5 cm. Curve 146 represents the evolution of the ambient temperature during this day.
Ces courbes correspondent à une étude réalisée de manière stationnaire, dans un plan à deux dimensions, le panneau photovoltaïque 102, la batterie 114 et les espaces 132, 133 étant assimilés à trois parallélépipèdes rectangles de mêmes longueurs et de mêmes largeurs, les échanges thermiques entre la structure de maintien 122 et le reste du système 100 étant négligés, et l'énergie dissipée sous forme de chaleur dans la batterie en fonctionnement étant négligée . On observe sur cette figure 6 que toutes les courbes se superposent la nuit. En revanche, la température du panneau photovoltaïque 102 augmente avec l'ensoleillement en raison des rayons lumineux reçus sur le panneau photovoltaïque 102. La température du panneau photovoltaïque 102 augmente également en raison de la transformation de l'énergie solaire en énergie électrique réalisée par le panneau 102. La température de la batterie 114 augmente avec l'ensoleillement d'une part et avec la chaleur émise par le panneau 102. On observe que sans les espaces 132, 133 (courbes 134, 136) , la température de la batterie 114 correspond approximativement à celle du panneau photovoltaïque 102 soit, pour les heures les plus chaudes de la journée, à une température comprise entre environ 6O0C et 650C. Avec des espaces 132, 133 d'épaisseur égale à environ 1 cm, la température maximale atteinte par le panneau photovoltaïque 102 chute alors d'environ 70C (courbe 138) et celle de la batterie 114 chute d'environ 250C (courbe 140) par rapport à la configuration sans les espaces vides 132, 133. Pour une épaisseur d'espaces 132, 133 égale à environ 5 cm, la température maximale atteinte par le panneau photovoltaïque 102 chute d'environ 180C (courbe 142) et celle de la batterie 114 chute d'environ 330C (courbe 144) par rapport à la configuration sans les espaces 132, 133. Le gradient journalier (écart entre la température la plus élevée et la température la plus froide) chute également pour la batterie 114 et le panneau 132 pour les deux épaisseurs d'espaces 132, 133. On voit donc que grâce à la présence des espaces 132, 133 formant des lames d'air, l'impact thermique du panneau photovoltaïque 102 et de l'électronique de commande 126 sur la batterie 114 est très réduit. Les contraintes thermiques subies par la batterie 114 lors de son fonctionnement sont moins sévères, réduisant l'impact de ces contraintes thermiques sur sa durée de vie. Les espaces 132, 133 limitent également la température maximale atteinte par le panneau photovoltaïque 102, assurant ainsi une meilleure production d'énergie électrique journalière car le rendement du panneau photovoltaïque 102 est meilleur à basse température.These curves correspond to a study carried out in a stationary manner, in a two-dimensional plane, the photovoltaic panel 102, the battery 114 and the spaces 132, 133 being assimilated to three rectangular parallelepipeds of the same lengths and the same widths, the heat exchanges between the holding structure 122 and the rest of the system 100 being neglected, and the energy dissipated as heat in the operating battery being neglected. This figure 6 shows that all the curves are superimposed at night. On the other hand, the temperature of the photovoltaic panel 102 increases with the sunshine due to the light rays received on the photovoltaic panel 102. The temperature of the photovoltaic panel 102 also increases because of the transformation of the solar energy into electrical energy carried out by the panel 102. The temperature of the battery 114 increases with sunshine on the one hand and with the heat emitted by the panel 102. It is observed that without the spaces 132, 133 (curves 134, 136), the temperature of the battery 114 corresponds approximately to that of the photovoltaic panel 102 is, for the hottest hours of the day, at a temperature between about 60 ° C and 65 ° C. With spaces 132, 133 of thickness equal to about 1 cm, the the maximum temperature reached by the photovoltaic panel 102 then drops by about 70 ° C. (curve 138) and that of the battery 114 drops by about 25 ° C. (curve 140) with respect to the Without spaces 132, 133. For a space thickness 132, 133 equal to about 5 cm, the maximum temperature reached by the photovoltaic panel 102 drops by about 18 ° C. (curve 142) and that of the battery 114. drop about 33 0 C (curve 144) compared to the configuration without spaces 132, 133. The daily gradient (difference between the highest temperature and the coldest temperature) also drops for the battery 114 and the panel 132 for the two spaces thicknesses 132, 133. It can therefore be seen that by virtue of the presence of spaces 132, 133 forming air knives, the thermal impact of the photovoltaic panel 102 and the control electronics 126 on the battery 114 is very small. The thermal stresses experienced by the battery 114 during its operation are less severe, reducing the impact of these thermal stresses on its service life. The spaces 132, 133 also limit the maximum temperature reached by the photovoltaic panel 102, thus ensuring a better production of daily electrical energy because the efficiency of the photovoltaic panel 102 is better at low temperature.
Cette intégration d'espaces de circulation d'air entre le panneau photovoltaïque et la batterie, et entre la batterie et les autres composants du système 100 permet d'atteindre des durées de vie comparables entre les différents composants du système 100, estimées au minimum à 15 ans, période pendant laquelle les performances initiales sont satisfaites. Au delà et jusqu'à environ 30 ans, une légère dégradation des performances sera possible. Afin de garder une maintenance réduite, cet inconvénient est pris en compte par le dimensionnement de la batterie 114 ce qui permet de répondre aux besoins de l'application sur une durée plus longue comme cela est décrit plus loin.This integration of air circulation spaces between the photovoltaic panel and the battery, and between the battery and the other components of the system 100 makes it possible to achieve comparable lifetimes between the different components of the system 100, estimated at least at 15 years, during which the initial performances are satisfied. Beyond and up to about 30 years, a slight degradation of performance will be possible. In order to keep maintenance reduced, this disadvantage is taken into account by the dimensioning of the battery 114 which makes it possible to meet the needs of the application over a longer period as described below.
L'épaisseur d'un des espaces 132, 133 est au moins égale à environ 1 cm afin de limiter l'impact thermique du panneau photovoltaïque 102 sur la durée de vie de la batterie 114. De plus, cette épaisseur est par exemple choisie inférieure ou égale à 10 cm afin de limiter l'encombrement dans le système 100 vis-à-vis du niveau d'intégration souhaité.The thickness of one of the spaces 132, 133 is at least equal to approximately 1 cm in order to limit the thermal impact of the photovoltaic panel 102 on the life of the battery 114. Moreover, this thickness is for example chosen less than or equal to 10 cm in order to limit the size in the system 100 vis-à-vis the desired integration level.
Les figures 7A et 7B représentent des vues en coupe détaillées du système 100. Les références indiquées sur ces figures correspondent à celles des figures 4 et 5.FIGS. 7A and 7B show detailed sectional views of the system 100. The references indicated in these figures correspond to those of FIGS. 4 and 5.
Le panneau photovoltaïque 102 a par exemple une puissance nominale égale à environ 75 Wc (Watt crête) , et des dimensions hors tout égales à environ 1237 mm x 556 mm x 24,5 mm, pour un poids total de 7,8 kg. Un tel panneau permet d'obtenir en moyenne une production d'électricité journalière égale à environ 350 Wh (avec un rendement de 13% du panneau) , soit environ 125 kWh par an.The photovoltaic panel 102 has for example a nominal power equal to about 75 Wp (peak watt), and overall dimensions equal to about 1237 mm x 556 mm x 24.5 mm, for a total weight of 7.8 kg. Such a panel makes it possible to obtain on average a daily electricity production equal to about 350 Wh (with a yield of 13% of the panel), or about 125 kWh per year.
De manière générale, la surface de la face du panneau photovoltaïque 102 destinée à recevoir les rayons lumineux est comprise entre environ 0,25 m2 et 2 m2, les dimensions des côtés du panneau 102, par exemple de forme rectangulaire et éventuellement allongée ou carré, étant comprises entre environ 0,5 m et 2 m. La puissance de sortie du panneau photovoltaïque 102, qui est directement proportionnelle à la surface destinée à recevoir les rayons lumineux et à la technologie utilisée, est comprise entre quelques dizaines de W et environ 250 W. Le panneau 102 peut comporter des cellules photovoltaïques à base de silicium monocristallin, polycristallin, amorphe et/ou en couches minces. Enfin, le panneau 102 peut être fixé sur un cadre métallique ou intégré sous la forme de tuiles solaires. L'épaisseur de panneau 102 peut être comprise entre environ 24 mm et 50 mmIn general, the surface of the face of the photovoltaic panel 102 intended to receive the light rays is between about 0.25 m 2 and 2 m 2 , the dimensions of the sides of the panel 102, for example rectangular and possibly elongated or square, being between about 0.5 m and 2 m. The output power of the photovoltaic panel 102, which is directly proportional to the area intended to receive the light rays and the technology used, is between a few tens of W and about 250 W. The panel 102 may comprise photovoltaic cells based on monocrystalline silicon, polycrystalline, amorphous and / or in thin layers. Finally, the panel 102 can be fixed on a metal frame or integrated in the form of solar tiles. The panel thickness 102 may be between about 24 mm and 50 mm
Le dimensionnement de la batterie 114 est réalisé en tenant compte de la quantité d'électricité pouvant être produite par le panneau photovoltaïqueThe size of the battery 114 is made taking into account the amount of electricity that can be produced by the photovoltaic panel
102, ainsi que des flux d'énergie destinés à circuler dans la batterie 114.102, as well as energy flows intended to flow in the battery 114.
Un tel système photovoltaïque 100 est par exemple destiné, lorsque celui-ci est utilisé avec une habitation connectée au réseau électrique et consommant en moyenne 2 kW, à faire face aux pointes de consommation qui interviennent à la mi-journéeSuch a photovoltaic system 100 is for example intended, when it is used with a dwelling connected to the electricity grid and consuming an average of 2 kW, to cope with consumption peaks that occur at midday
(1000 Wh) et en soirée (2000 Wh) . Le système photovoltaïque 100 peut également assurer en sus la fourniture d'électricité en cas de coupure d'électricité (par exemple environ 1000 Wh pendant une demi-heure) . Cette habitation peut par exemple être équipée de 25 systèmes photovoltaïques semblables au système photovoltaïque 100, comportant chacun un panneau photovoltaïque dont la puissance nominale est égale à environ 75 Wc, soit un total de 1875 Wc pour les 25 panneaux photovoltaïques.(1000 Wh) and in the evening (2000 Wh). The photovoltaic system 100 can also ensure the supply of electricity in case of power failure (for example about 1000 Wh for half an hour). This house can for example be equipped with 25 photovoltaic systems similar to the photovoltaic system 100, each comprising a photovoltaic panel whose nominal power is equal to about 75 Wc, a total of 1875 Wc for the 25 photovoltaic panels.
Un cycle représentatif du fonctionnement des systèmes photovoltaïques de cette habitation peut par exemple avoir lieu sur 4 jours. Le premier jour, chacun des systèmes photovoltaïques peut produire environ 350 Wh. Les batteries étant initialement chargées à 100%, l'énergie électrique produite est alors soit consommée dans l'habitation, soit vendue au gestionnaire du réseau électrique. Les batteries assurent le surplus de consommation du soir, soit environ 80 Wh par système photovoltaïque . Le deuxième jour, les systèmes ne produisent pas d'électricité (pas d'ensoleillement) . Dans ce cas, les batteries assurent les surplus de consommation du midi et du soir, ainsi qu'une consommation de 2kW pendant une demi-heure de coupure du réseau électrique, soit au total 160 Wh par système photovoltaïque. Le troisième jour, les systèmes photovoltaïques ne produisent pas d'électricité (pas d'ensoleillement) . Les batteries assurent les surplus de consommation du midi et du soir, soit environ 120 kW par système photovoltaïque. Le quatrième jour, chacun des systèmes photovoltaïques produit environ 350 Wh. Toute l'électricité produite par les panneaux photovoltaïques est utilisée pour recharger les batteries.A representative cycle of the operation of the photovoltaic systems of this dwelling can for example take place over 4 days. On the first day, each photovoltaic system can produce about 350 Wh. Since the batteries are initially 100% charged, the electrical energy produced is either consumed in the home or sold to the power grid operator. The batteries provide the extra consumption of the evening, either about 80 Wh per photovoltaic system. On the second day, the systems do not produce electricity (no sunshine). In this case, the batteries ensure the surplus consumption of lunch and evening, and a consumption of 2kW for half an hour of power outage, totaling 160 Wh per photovoltaic system. On the third day, photovoltaic systems do not produce electricity (no sunshine). The batteries ensure the surplus consumption of lunch and evening, about 120 kW per photovoltaic system. On the fourth day, each photovoltaic system produces about 350 Wh. All the electricity produced by the photovoltaic panels is used to recharge the batteries.
On voit donc, d'après ce cycle de fonctionnement, que l'énergie électrique disponible est égale à environ 350 Wh. Pour assurer cette valeur en fin de vie, la capacité de stockage initiale des batteries est donc égale à environ 480 Wh.Thus, according to this operating cycle, the available electrical energy is equal to about 350 Wh. To ensure this end-of-life value, the initial storage capacity of the batteries is therefore approximately 480 Wh.
Dans l'exemple représenté sur les figures 7A et 7B, la batterie 114 est formée par 15 éléments lithium-ion de forme prismatique, permettant de couvrir une grande partie de la surface disponible du panneau photovoltaïque 102 dans le plan (x,y) . Les dimensions de chacun des éléments de la batterie 114 sont les suivantes : largeur (dimension selon l'axe y) = 185 mm ; longueur (dimension selon l'axe x) = 145 mm ; épaisseur (dimension selon l'axe z) = 10 mm. Chacun de ces éléments a une capacité nominale de 10 Ah. Le nombre, les dimensions et la disposition de ces éléments peuvent notamment être fonctions de la nature technologique de la batterie 114 (par exemple ici lithium-ion) , définissant les tensions nominales des éléments et permettant d'obtenir ainsi l'énergie spécifiée. De manière générale, l'épaisseur de la batterie peut être comprise entre environ 10 mm et 40 mm. De plus, les éléments de la structure de maintien 122 reliant mécaniquement la batterie 114 au panneau photovoltaïque 102 peuvent présenter une dimension, parallèlement aux épaisseurs du panneau 102 et de la batterie 114, comprise entre environ 10 mm et 25 mm.In the example shown in FIGS. 7A and 7B, the battery 114 is formed by prismatic-shaped lithium-ion elements, making it possible to cover a large part of the available area of the photovoltaic panel 102 in the plane (x, y). The dimensions of each of the elements of the battery 114 are as follows: width (dimension along the y axis) = 185 mm; length (dimension along the x axis) = 145 mm; thickness (dimension along the z axis) = 10 mm. Each of these elements has a nominal capacity of 10 Ah. The number, dimensions and layout of these elements may in particular be functions of the technological nature of the battery 114 (for example here lithium-ion), defining the nominal voltages of the elements and thus obtaining the specified energy. In general, the thickness of the battery may be between about 10 mm and 40 mm. In addition, the elements of the holding structure 122 mechanically connecting the battery 114 to the photovoltaic panel 102 may have a dimension, parallel to the thicknesses of the panel 102 and the battery 114, of between about 10 mm and 25 mm.
La masse totale du système 100 est ici inférieure à 30 kg. Ses dimensions en longueur et en largeur (dimensions selon les axes x et y) correspondent à celles du panneau photovoltaïque 102 simple, et par exemple égales à 1237 mm en longueur et 556 mm en largeur. L'épaisseur totale du système 100 est par exemple égale à environ 60,5 mm, et peut être comprise entre environ 60 mm et 240 mm.The total mass of the system 100 is here less than 30 kg. Its dimensions in length and width (dimensions along the x and y axes) correspond to those of the simple photovoltaic panel 102, and for example equal to 1237 mm in length and 556 mm in width. The total thickness of the system 100 is for example equal to about 60.5 mm, and may be between about 60 mm and 240 mm.
De manière générale, les dimensions, la configuration et le nombre d'éléments de la batterie seront choisis en fonction des besoins énergétiques que le système photovoltaïque doit satisfaire, que ce soit pour un application de type isolé (mobilier urbain par exemple) , ou de type connecté au réseau comme présenté dans l'exemple. Plus le système photovoltaïque présente une puissance élevée, et donc une surface importante, plus la batterie 114 sera de forte capacité, plus la lame d'air sera épaisse et plus la structure de maintien sera importante. Pour un panneau photovoltaïque de faible puissance dont les dimensions des côtés sont égales à environ 0,5 m, l'épaisseur du système est par exemple égale à environ 66 mm. Le rapport entre l'épaisseur du système photovoltaïque et la dimension d'un côté de la face du panneau photovoltaïque est donc égal à environ 1/7. Pour un panneau photovoltaïque de forte puissance dont les dimensions des côtés sont égales à environ 2 m, l'épaisseur du système est par exemple égale à environ 240 mm. Le rapport entre l'épaisseur du système photovoltaïque et la dimension d'un côté de la face du panneau photovoltaïque est donc égal à environ 1/8.In general, the dimensions, the configuration and the number of elements of the battery will be chosen according to the energy needs that the photovoltaic system must satisfy, whether for an isolated type application (street furniture for example), or type connected to the network as shown in the example. The more the photovoltaic system has a high power, and therefore a large area, the higher the capacity of the battery 114, the thicker the air gap and the greater the holding structure will be. For a panel photovoltaic low power whose side dimensions are equal to about 0.5 m, the thickness of the system is for example equal to about 66 mm. The ratio between the thickness of the photovoltaic system and the dimension of one side of the face of the photovoltaic panel is therefore about 1/7. For a high power photovoltaic panel whose side dimensions are equal to about 2 m, the thickness of the system is for example equal to about 240 mm. The ratio between the thickness of the photovoltaic system and the dimension of one side of the face of the photovoltaic panel is therefore about 1/8.
Les espaces 132, 133 précédemment décrits sont vides afin de permettre d'avoir une circulation d'air dans le système photovoltaïque, notamment autour de la batterie. Dans une variante, il est possible que les espaces 132, 133 ne soient pas vides, mais comportent des dispositifs d'évacuation ou de dissipation de la chaleur, éventuellement disposés contre les composants dégageant de la chaleur comme par exemple le panneau photovoltaïque 102 ou l'électronique de commande 126 (ou la plaque support 124) . De tels dispositifs peuvent par exemple comporter des ailettes de dissipation de chaleur, et/ou tout autre dispositif permettant d'améliorer la dissipation de la chaleur et/ou d'accélérer l'évacuation de la chaleur à l'extérieur du système photovoltaïque 100. The spaces 132, 133 previously described are empty in order to allow air circulation in the photovoltaic system, especially around the battery. Alternatively, it is possible that the spaces 132, 133 are not empty, but have devices for evacuation or dissipation of heat, possibly arranged against the components releasing heat such as the photovoltaic panel 102 or the control electronics 126 (or support plate 124). Such devices may, for example, comprise fins for dissipating heat, and / or any other device making it possible to improve the dissipation of heat and / or to accelerate the evacuation of heat outside the photovoltaic system 100.

Claims

REVENDICATIONS
1. Système photovoltaïque (100) comportant au moins : - un panneau photovoltaïque (102) comportant une face destinée à recevoir des rayons lumineux,Photovoltaic system (100) comprising at least: a photovoltaic panel (102) having a face intended to receive light rays,
- une batterie (114) reliée mécaniquement au panneau photovoltaïque (102) par une structure de maintien (122), un espace (132) ouvert sur l'environnement extérieur au système photovoltaïque (100) formant une lame d'air séparant la batterie (114) et le panneau photovoltaïque (102) et comportant une épaisseur au moins égale à environ 1 cm, le rapport entre l'épaisseur du système photovoltaïque et une dimension d'un côté de ladite face du panneau photovoltaïque étant inférieur ou égal à environ 1/5.a battery (114) mechanically connected to the photovoltaic panel (102) by a holding structure (122), a space (132) open to the outside environment of the photovoltaic system (100) forming an air gap separating the battery ( 114) and the photovoltaic panel (102) and having a thickness of at least about 1 cm, the ratio between the thickness of the photovoltaic system and a dimension of one side of said face of the photovoltaic panel being less than or equal to about 1 / 5.
2. Système photovoltaïque (100) selon la revendication 1, dans lequel l'épaisseur de la lame d'air (132) est comprise entre environ 1 cm et 10 cm.The photovoltaic system (100) of claim 1, wherein the thickness of the air gap (132) is between about 1 cm and 10 cm.
3. Système photovoltaïque (100) selon l'une des revendications précédentes, dans lequel le rapport entre l'épaisseur de la lame d'air (132) et la dimension d'un côté de la face du panneau photovoltaïque est inférieur ou égal à environ 1/10. The photovoltaic system (100) according to one of the preceding claims, wherein the ratio between the thickness of the air gap (132) and the dimension of one side of the face of the photovoltaic panel is less than or equal to about 1/10.
4. Système photovoltaïque (100) selon l'une des revendications précédentes, dans lequel la surface de la face du panneau photovoltaïque est comprise entre environ 0,25 m2 et 2 m2.4. Photovoltaic system (100) according to one of the preceding claims, wherein the surface of the face of the photovoltaic panel is between about 0.25 m 2 and 2 m 2 .
5. Système photovoltaïque (100) selon l'une des revendications précédentes, dans lequel le rapport entre l'épaisseur du système photovoltaïque et la dimension d'un côté de la face du panneau photovoltaïque est compris entre environ 1/7 et 1/8.5. Photovoltaic system (100) according to one of the preceding claims, wherein the ratio between the thickness of the photovoltaic system and the dimension of one side of the face of the photovoltaic panel is between about 1/7 and 1/8 .
6. Système photovoltaïque (100) selon l'une des revendications précédentes, dans lequel la batterie6. Photovoltaic system (100) according to one of the preceding claims, wherein the battery
(114) est à base de lithium.(114) is lithium based.
7. Système photovoltaïque (100) selon la revendication 6, dans lequel la batterie (114) comporte au moins un élément de stockage d'énergie électrique de forme prismatique.The photovoltaic system (100) of claim 6, wherein the battery (114) includes at least one prismatic shaped electrical energy storage element.
8. Système photovoltaïque (100) selon l'une des revendications précédentes, dans lequel la batterieThe photovoltaic system (100) according to one of the preceding claims, wherein the battery
(114) est de type lithium-ion et comporte plusieurs éléments de stockage d'énergie électrique de forme prismatique reliés électriquement en série.(114) is of the lithium-ion type and comprises a plurality of prismatic electrical energy storage elements electrically connected in series.
9. Système photovoltaïque (100) selon l'une des revendications précédentes, dans lequel la surface présentée par la batterie (114) dans un plan parallèle à la face du panneau photovoltaïque (102) est inférieure ou égale à la surface de ladite face du panneau photovoltaïque (102) dans ce plan. 9. Photovoltaic system (100) according to one of the preceding claims, wherein the surface presented by the battery (114) in a plane parallel to the face of the photovoltaic panel (102) is less than or equal to the surface of said face of the photovoltaic panel (102). photovoltaic panel (102) in this plan.
10. Système photovoltaïque (100) selon l'une des revendications précédentes, comportant en outre des éléments électroniques (126) de gestion et/ou de conversion de l'énergie électrique produite disposés sur une plaque support (124) reliée mécaniquement à la batterie (114), la plaque support (124) étant disposée entre les éléments électroniques (126) et la batterie10. photovoltaic system (100) according to one of the preceding claims, further comprising electronic elements (126) for management and / or conversion of the electrical energy produced disposed on a support plate (124) mechanically connected to the battery (114), the support plate (124) being disposed between the electronic elements (126) and the battery
(114) .(114).
11. Système photovoltaïque (100) selon la revendication 10, comportant en outre un second espaceThe photovoltaic system (100) of claim 10, further comprising a second space
(133) ouvert sur l'environnement extérieur au système photovoltaïque (100) formant une seconde lame d'air séparant la batterie (114) et la plaque support (124) et comportant une épaisseur au moins égale à environ 1 cm.(133) open on the external environment to the photovoltaic system (100) forming a second air gap separating the battery (114) and the support plate (124) and having a thickness of at least about 1 cm.
12. Système photovoltaïque (100) selon la revendication 11, dans lequel l'épaisseur de la seconde lame d'air (133) est comprise entre environ 1 cm et 10 cm.The photovoltaic system (100) of claim 11, wherein the thickness of the second air gap (133) is between about 1 cm and 10 cm.
13. Système photovoltaïque (100) selon l'une des revendications 10 à 12, dans lequel les éléments électroniques (126) de gestion et/ou de conversion de l'énergie électrique produite comportent au moins un convertisseur de tension continu/continu13. Photovoltaic system (100) according to one of claims 10 to 12, wherein the electronic elements (126) for managing and / or converting the electrical energy produced comprise at least one DC / DC voltage converter.
(104, 110), et/ou un dispositif de conversion optimale d'énergie (106), et/ou un régulateur de charge de batterie (108), et/ou un bloc de connexions (112), et/ou un régulateur de décharge de batterie (116), et/ou un convertisseur de tension continu/alternatif (118), et/ou un microcontrôleur (120) . (104, 110), and / or an optimum power conversion device (106), and / or a battery charge controller (108), and / or a terminal block (112), and / or a controller battery discharge device (116), and / or a DC / AC voltage converter (118), and / or a microcontroller (120).
14. Système photovoltaïque (100) selon l'une des revendications 10 à 13, dans lequel la surface présentée par la plaque support (124) et les éléments électroniques (126) de gestion et/ou de conversion de l'énergie électrique produite, dans un plan parallèle à la face du panneau photovoltaïque14. Photovoltaic system (100) according to one of claims 10 to 13, wherein the surface provided by the support plate (124) and the electronic elements (126) for managing and / or converting the electrical energy produced, in a plane parallel to the face of the photovoltaic panel
(102), étant inférieure ou égale à la surface de ladite face du panneau photovoltaïque (102) dans ce plan.(102), being less than or equal to the area of said face of the photovoltaic panel (102) in this plane.
15. Système photovoltaïque (100) selon l'une des revendications précédentes, comportant en outre des moyens de dissipation et/ou d'évacuation de chaleur disposés dans la lame d'air (132) séparant la batterie (114) et le panneau photovoltaïque (102), et/ou dans la seconde lame d'air (133) séparant la batterie (114) et la plaque support (124) lorsque le système photovoltaïque (100) comporte cette seconde lame d' air (133) . 15. Photovoltaic system (100) according to one of the preceding claims, further comprising means for dissipation and / or heat removal disposed in the air gap (132) separating the battery (114) and the photovoltaic panel (102), and / or in the second air gap (133) separating the battery (114) and the support plate (124) when the photovoltaic system (100) has this second air gap (133).
EP09782806A 2008-09-12 2009-09-09 Photovoltaic system with integrated photovoltaic panel and battery Withdrawn EP2324552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856151A FR2936111B1 (en) 2008-09-12 2008-09-12 PHOTOVOLTAIC SYSTEM WITH INTEGRATED BATTERY AND PHOTOVOLTAIC PANEL
PCT/EP2009/061676 WO2010029099A1 (en) 2008-09-12 2009-09-09 Photovoltaic system with integrated photovoltaic panel and battery

Publications (1)

Publication Number Publication Date
EP2324552A1 true EP2324552A1 (en) 2011-05-25

Family

ID=40651389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782806A Withdrawn EP2324552A1 (en) 2008-09-12 2009-09-09 Photovoltaic system with integrated photovoltaic panel and battery

Country Status (8)

Country Link
US (1) US8710349B2 (en)
EP (1) EP2324552A1 (en)
JP (1) JP5497042B2 (en)
CN (1) CN102150341B (en)
BR (1) BRPI0919021A2 (en)
FR (1) FR2936111B1 (en)
WO (1) WO2010029099A1 (en)
ZA (1) ZA201101864B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136732B2 (en) 2011-10-15 2015-09-15 James F Wolter Distributed energy storage and power quality control in photovoltaic arrays
KR101306441B1 (en) * 2011-11-18 2013-09-09 엘지이노텍 주식회사 Solar cell module
DE102011121250A1 (en) 2011-12-15 2013-06-20 Volkswagen Aktiengesellschaft Method of operating charge storage device of electric car, involves setting primary charging direct current (DC) and secondary charging DC so as to be adjusted in dependence on total charging current of charge storage device
US20140059510A1 (en) * 2012-08-27 2014-02-27 Shin-Guang Chen Sizing Method for Stand-alone Photovoltaic System
FR2998094A1 (en) * 2012-11-14 2014-05-16 Xavier Duport Photovoltaic module for use in autonomous solar generator, has electronic components fixed on support, metal blades allowing passage of air flow, and metal cap including connection socket and ventilation holes for discharging hot air
FR3015810B1 (en) * 2013-12-24 2017-04-28 Sunna Design THERMAL MANAGEMENT SOLUTION LIMITING THE PREMATURE AGING OF A BATTERY POWERED BY A PHOTOVOLTAIC ENERGY SOURCE FOR AUTONOMOUS APPLICATION.
FR3021822B1 (en) * 2014-05-27 2017-11-03 Sp2A ELECTRONIC CARD, ENERGY CONVERSION MODULE COMPRISING SUCH A CARD, SOLAR GENERATOR COMPRISING SUCH A MODULE
US10418930B2 (en) * 2014-07-15 2019-09-17 Panasonic Intellectual Property Management Co., Ltd. Solar panel unit and solar power generation apparatus
KR102456811B1 (en) * 2015-10-27 2022-10-20 엘지전자 주식회사 Method for operating heater of energy storage device
FR3075497B1 (en) 2017-12-15 2021-02-12 Commissariat Energie Atomique PHOTOVOLTAIC SYSTEM WITH INTEGRATED BATTERY AND MOBILE DEVICE CONTAINING SUCH A SYSTEM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9011149U1 (en) * 1990-07-28 1990-10-11 Baudisch, Julieta, 8042 Oberschleissheim, De
US20030127126A1 (en) * 2002-01-09 2003-07-10 Tzung-Cheng Yang Rechargeable solar battery
EP1369815A1 (en) * 2002-06-03 2003-12-10 Dialog Semiconductor GmbH Battery pack with electronics assembly
DE10244473A1 (en) * 2002-09-18 2004-04-08 Roto Frank Ag Photovoltaic device for solar panels/cells has a photovoltaic element ventilated from behind and a frame for holding the photovoltaic element
US20050199278A1 (en) * 2004-03-15 2005-09-15 Peter Aschenbrenner Ventilated photovoltaic module frame
US20070277876A1 (en) * 2006-06-02 2007-12-06 The Boeing Company Integrated solar cell and battery device including conductive electrical and thermal paths

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9101417U1 (en) * 1991-02-08 1992-06-04 Robert Bosch Gmbh, 7000 Stuttgart, De
JPH1154780A (en) * 1997-08-05 1999-02-26 Matsushita Denchi Kogyo Kk Thin film solar battery module
US7150938B2 (en) * 2001-03-30 2006-12-19 Lithium Power Technologies, Inc. Structurally embedded intelligent power unit
JP3928397B2 (en) * 2001-10-04 2007-06-13 松下電器産業株式会社 Power supply
CN1316712C (en) * 2004-01-15 2007-05-16 中山大学 Small-sized solar energy integrated photovoltaic electric source
TW200816596A (en) * 2006-10-17 2008-04-01 Samya Technology Co Ltd Solar charger capable of extending and adjusting angle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9011149U1 (en) * 1990-07-28 1990-10-11 Baudisch, Julieta, 8042 Oberschleissheim, De
US20030127126A1 (en) * 2002-01-09 2003-07-10 Tzung-Cheng Yang Rechargeable solar battery
EP1369815A1 (en) * 2002-06-03 2003-12-10 Dialog Semiconductor GmbH Battery pack with electronics assembly
DE10244473A1 (en) * 2002-09-18 2004-04-08 Roto Frank Ag Photovoltaic device for solar panels/cells has a photovoltaic element ventilated from behind and a frame for holding the photovoltaic element
US20050199278A1 (en) * 2004-03-15 2005-09-15 Peter Aschenbrenner Ventilated photovoltaic module frame
US20070277876A1 (en) * 2006-06-02 2007-12-06 The Boeing Company Integrated solar cell and battery device including conductive electrical and thermal paths

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010029099A1 *

Also Published As

Publication number Publication date
FR2936111A1 (en) 2010-03-19
WO2010029099A1 (en) 2010-03-18
BRPI0919021A2 (en) 2015-12-08
US8710349B2 (en) 2014-04-29
ZA201101864B (en) 2012-02-29
FR2936111B1 (en) 2011-07-22
CN102150341B (en) 2014-12-10
JP5497042B2 (en) 2014-05-21
JP2012502615A (en) 2012-01-26
CN102150341A (en) 2011-08-10
US20110165441A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2010029099A1 (en) Photovoltaic system with integrated photovoltaic panel and battery
EP0734111B1 (en) High voltage photovoltaic energy station using a custom storage means
EP3758969B1 (en) Supply module for electric vehicle motor
WO2006067350A1 (en) Method and system for stand-alone electrical supply by means of renewable energy
EP3676541B1 (en) Heating apparatus comprising a battery and a power inverter for introducing energy from the battery to the electrical supply source
EP3000163A2 (en) Installation for returning energy to an item of equipment to be supplied with energy, in particular an electric vehicle
EP3384727A1 (en) Heating apparatus including electrical energy storage batteries
EP3545724B1 (en) Electric radiator type heating apparatus including a voltage converter
WO2010063913A2 (en) Electrical power supply device, and equipment for controlling breaker that includes such device
EP3134921A1 (en) Electrical energy storage module for device for converting photovoltaic energy into electrical energy
EP3535791A1 (en) Unitary module for a battery pack, and battery pack
WO2019166732A2 (en) Power supply module for electric vehicle motor with heat transfer
FR3061405A1 (en) MINIATURE PHOTOVOLTAIC SYSTEM AND MOBILE APPARATUS COMPRISING SUCH A SYSTEM
FR2945072A1 (en) Multifunctional energetic occulting system i.e. occulting blind, for window of e.g. office building, has management module supplying portion of energy to illumination unit and another portion of energy to apparatus external to system
WO2016059345A1 (en) Cooling system with energy reservoir supplied by a solar energy source
EP3016240B1 (en) Autonomous electrical production unit autoregulated and its utilisation for a relais antenna
EP1850577A1 (en) Mobile phone with photovoltaic power supply
FR2878682A1 (en) Portable telephone for e.g. industrial field, has semiconductor batteries, associated/not with rechargeable battery, with photovoltaic cells to obtain current of sufficient voltage, where one semiconductor battery is placed behind telephone
FR3113722A1 (en) Instantaneous electric water heater including two types of heating resistance and installation comprising such a water heater
EP3499677A1 (en) Photovoltaic system with built-in battery and mobile device comprising such a system
FR3113719A1 (en) Instantaneous electric water heater comprising a front face capable of capturing and emitting waste heat lost by the heating tank and installation
WO2019243572A1 (en) System for converting energy
FR3136539A1 (en) Heating and/or air conditioning system
FR2933815A1 (en) RECHARGEABLE BATTERY PACK WITH ELECTRONIC CONTROL CIRCUITS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180430

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180911