EP2324194B1 - Verfahren zur förderung von bitumen und/oder schwerstöl aus einer unterirdischen lagerstätte, zugehörige anlage und betriebsverfahren dieser anlage - Google Patents

Verfahren zur förderung von bitumen und/oder schwerstöl aus einer unterirdischen lagerstätte, zugehörige anlage und betriebsverfahren dieser anlage Download PDF

Info

Publication number
EP2324194B1
EP2324194B1 EP09781501A EP09781501A EP2324194B1 EP 2324194 B1 EP2324194 B1 EP 2324194B1 EP 09781501 A EP09781501 A EP 09781501A EP 09781501 A EP09781501 A EP 09781501A EP 2324194 B1 EP2324194 B1 EP 2324194B1
Authority
EP
European Patent Office
Prior art keywords
bitumen
heavy oil
steam
extra
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09781501A
Other languages
English (en)
French (fr)
Other versions
EP2324194A1 (de
Inventor
Norbert Huber
Bernd Wacker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2324194A1 publication Critical patent/EP2324194A1/de
Application granted granted Critical
Publication of EP2324194B1 publication Critical patent/EP2324194B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2406Steam assisted gravity drainage [SAGD]
    • E21B43/2408SAGD in combination with other methods

Definitions

  • the invention relates to a method for the production of bitumen and / or heavy oil from an underground deposit, in which the viscosity of the bitumen and / or heavy oil is lowered in situ, including the deposit energy in the form of vapor flowing through the deposit on the one hand and electrical Heating is supplied on the other hand.
  • the invention also relates to the associated system and to an operating method of this system.
  • the steam for SAGD or CSS processes is usually produced in separate steam boilers, which typically are fed with natural gas (e.g. Suncor's Millenium Project from Canadas Oilsands and Heavy Oil, April 2000, http://www.centreforenergy.com/documents/187.pdf - p. 23, below en) or bitumen be fired. It has also been proposed to deprive existing CCGT systems whose electrical energy is fed into the grid for the above purpose process steam. These systems are therefore always centrally located and stationary, with the transfer of energy brings not negligible losses.
  • natural gas e.g. Suncor's Millenium Project from Canadas Oilsands and Heavy Oil, April 2000, http://www.centreforenergy.com/documents/187.pdf - p. 23, below en
  • the invention relates to a procedural concept for the promotion of bitumen or heavy oil from oil sands, which is characterized by a self-sufficient energy supply and by an economically particularly favorable promotion.
  • the one for it necessary resources are provided with the invention- ⁇ en system.
  • an operating concept for the bitumen or heavy oil production from particular oil sand deposits is proposed, in which an industrial turbine is used, which is combined with a generator and a waste heat boiler or a separately fired boiler.
  • the industrial turbine can either be a gas turbine or a steam turbine.
  • either a waste heat boiler or a fired boiler can be used in the optional use of the gas turbine or the steam turbine.
  • the waste heat boiler the waste heat is introduced in the generation of electrical power.
  • the waste heat boiler is supplied by a valve unit with operating water, which is evaporated by the waste heat of the gas turbine.
  • the steam thus generated is supplied to the collector unit.
  • the steam can be generated equally from externally supplied water both for the SAGD method and for the generation of electrical power via the steam turbine.
  • a gas turbine and a steam turbine can be combined with one another within the scope of the invention.
  • the waste heat is utilized in the generation of electrical power in the gas turbine.
  • the fired boiler steam can continue to be produced according to the boiler principle, provided that the exhaust gas used for the gas turbine from the steam generator of the waste heat boiler is insufficient. With the resulting excess steam, the steam turbine is operated.
  • a portion of the extracted bitumen preferably about 20%, is burned.
  • electrical power and steam in the ratio of, for example, about 1: 4 are generated in terms of performance.
  • Such a power distribution corresponds to a favorable Ratio of previously performed reservoir simulations for electromagnetic heating combined with steam injection (EM-SAGD).
  • the self-contained, self-contained circuit in the operation of the EM-SAGD system in the invention is particularly advantageous.
  • the gas turbine which must be suitable for the combustion of bitumen or heavy oil, is fired directly with the fuel, which comes from the bitumen production of the exploited ⁇ lsandvorticians.
  • the exhaust gas of the gas turbine can be thermally fed to a waste heat boiler with steam generator, which generates such a vapor, the z. B. is up to about 300 ° C hot.
  • the feedwater system of the heat recovery steam generator may be provided with a feed pump so that the reservoir specific pressure can be regulated.
  • the reservoir serves as the condenser, where the steam is fed in via the so-called "injector well".
  • steam heats the reservoir and makes it more permeable.
  • steam is generated with a separately fired boiler, in which fuel is burned from the bitumen production.
  • the steam originating from this boiler can on the one hand be put on the steam rail of the injector pipes and on the other hand can drive the steam turbine.
  • the gas turbine or the steam turbine is mechanically coupled to a generator which generates electrical power in a known manner, but which is now used exclusively for the personal use of bitumen or heavy oil production.
  • the electrical power generated in this way is distributed via transformers and switchgear of a so-called "WellPad” in such a way that the individual electrical modules for the EM-SAGD power supply are supplied.
  • the EM-SAGD modules supply in particular inductors, which are arranged as special lines in the ground of the reservoir and over which an additional warming up of the soil takes place through alternating current losses, resulting in a Optimization of bitumen production leads.
  • bitumen production of an existing SAGD plant can be provided with so-called "well pairs" in which a pair consists of an injector well and an associated drainage bitumen production tube or, briefly, production tubing to be improved to a considerable extent.
  • the bitumen-water mixture is conveyed via the conveyor pipe, which lies horizontally under the inductor.
  • the ratio of applied electrical energy to the inductor and the energy and vapor thus introduced into the reservoir is equal to the ratio of turbine generator generation and the waste heat boiler downstream of the gas turbine.
  • the ratio is typically 1: 3 in both cases.
  • the power for a Wellpair can be about 1 MW of electrical heating and between 3 and 4 MW of steam.
  • the extracted bitumen-water mixture is purified in a treatment plant and the water is removed.
  • the recovered water is fed into the feedwater system for use in kettles.
  • the bitumen is treated as suitable for transport or refinery, i. dried and cleaned.
  • Undiluted bitumen is branched off to burn it in the industrial gas turbine or in the heated steam boiler. For this purpose, it is necessary to heat the bitumen to about 110 ° C in order to convert it into a sufficiently low viscosity.
  • FIG. 2 and FIG. 3 are described so far together that their differences become clear.
  • FIG. 1 is part of an oil sands deposit that can be located a few hundred meters underground.
  • FIG. 1 in a unit cell 100 of a reservoir, a steam injector with an injection pipe 101 and a production pipe 102 for bitumen / heavy oil production with simultaneous water recycling.
  • a steam injector with an injection pipe 101 and a production pipe 102 for bitumen / heavy oil production with simultaneous water recycling.
  • inductive heating are separate lines 10, 20 are present as inducers which are closed either underground or over days via a loop 25.
  • Other cells 100 ', 100 "... of the reservoir are designed accordingly.
  • FIG. 2 is a gas turbine with a compressor designated 1.
  • the gas turbine 1 may be a common industrial turbine that is fuelable with different fuels. At the back there is an air inlet and at the side a feed for a fuel.
  • the gas turbine 1 is followed by an electric generator 2, wherein gas turbine 1 and generator 2 are mechanically coupled.
  • a switchgear or electrical distribution unit 3 is controlled for power distribution.
  • a general distributor and collector unit 4 for the distribution of steam and electricity on the one hand and for the collection of the product on the other hand, driven.
  • Such a device 4 is generally referred to in the art as "WellPad".
  • the individual in the cells 100, 100 ', 100 ", ... from FIG. 1 located "Wellpairs" each driven from a pair of tubes with injector 101. There is a distribution of energy in the form of steam on the one hand and in the form of electrical power on the other hand made.
  • the WellPad includes a non-detail illustrated steam busbar, an electrical switchgear and a receiving device for the subsidized product
  • a non-detail illustrated steam busbar an electrical switchgear and a receiving device for the subsidized product
  • Reference numerals 8, 8 ', 8 "... represent inverters for the AC power supply, which is fed by the switchgear.
  • a device for separating the extracted bitumen / heavy oil from the recycled water is also present, which is denoted by 13.
  • a unit for treatment and recycling of the recirculated water may equally be integrated, further comprising a unit 14 for supply and removal of the water.
  • the treated water can then be equally used for steam generation and is supplied by means of a pump 15 with motor 15 'the waste heat boiler 16 for generating steam.
  • the steam thus generated passes through a valve assembly 22 in the distribution unit 4. Via internal distribution rails, the electrical power and the steam is given to the corresponding outputs of the distributor unit 4.
  • At 17 is in FIG. 2 denotes a reservoir for the extracted bitumen and / or heavy oil, leaving in particular an outgoing line for treatment and refining purposes of the subsidized product.
  • a small part of the conveyed bitumen and / or heavy oil is passed through a heat exchanger unit 18, which has an output for heating the gas turbine 1.
  • FIG. 2 alternative or supplementary equipment for realizing a combined SAGD method and electrical heating, in particular inductive heating, illustrates:
  • FIG. 3 a steam turbine designated 11.
  • the steam turbine 11 is a specific industrial turbine that can only be operated with steam.
  • the steam turbine 11 is followed by an electric generator 2, wherein the steam turbine 11 and generator 2 are mechanically coupled.
  • the individual "Wellpairs" are each driven from a pair of tubes through which a distribution of energy in the form of vapor on the one hand and in the form of electrical power on the other hand is made.
  • the WellPad includes a non-detailed steam busbar, an electrical switchgear and a receiving device for the subsidized product. This means are realized for controlling the flow of material in the promotion of bitumen and / or heavy oil including water.
  • Reference numeral 8 represents an operating unit for the power supply, which is fed by the switchgear.
  • a device for separating the extracted bitumen / heavy oil from the recirculating water which is denoted by 13.
  • a unit for treatment and reprocessing of the water is equally integrated, with 14 the feedwater system is designated.
  • FIG. 2 and FIG. 3 Storage or storage for the subsidized bitumen and / or heavy oil referred to, away from the particular a leaving pipe for treatment and refining purposes.
  • a certain portion of the extracted bitumen and / or heavy oil is passed through a unit 18, and is used to generate steam in the boiler, ie equally steam for the SAGD process and steam for the production of electrical power in the steam turbine for the purpose of inductive heating of the deposit.
  • a gas turbine can be operated with different fuels, with the resulting waste heat of the steam for the SAGD process is generated.
  • a steam turbine can only be operated with steam, which is initially generated in a boiler by electrically heating water.
  • a plant of 50 well pairs is used to produce about 50,000 bl bitumen per day.
  • Three gas turbines each with 17 MW electric power are used.
  • Each wellpair requires 1 MW of electrical energy and 3 ... 4 MW of steam.
  • the electricity and steam required for the company's own use to operate the system is diverted.
  • the power consumption for bitumen production is controlled reduced and distributed according to also distributes the amount of steam.
  • bitumen or a bitumen mixture consisting of bitumen / light oil or bitumen / solvent is used, using naphtha as the solvent.
  • a gas turbine is used as an industrial turbine, a fuel treatment before the combustion chambers of the gas turbine can ensure that by heating the fuel to up to 150 ° C, a sufficient viscosity is reached, the injection can take place in the combustion chambers.
  • Separators and filters can be used in the fuel processing, which produce heavy metals, ashes and other particles.
  • distiller whose distillate is fed to the fuel treatment of the industrial turbine, wherein the heavier polyaromatics, ie asphaltenes, the produced bitumen, which is transported as a product to the refinery added becomes.
  • a so-called cracker may be provided which degrades long-chain hydrocarbons to a suitable fuel.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, bei dem die Viskosität des Bitumens und/oder Schwerstöl in-situ erniedrigt wird, wozu der Lagerstätte Energie in Form von die Lagerstätte durchströmendem Dampf einerseits und elektrischer Beheizung andererseits zugeführt wird. Daneben bezieht sich die Erfindung auch auf die zugehörige Anlage und auf ein Betriebsverfahren dieser Anlage.
  • Beim "in situ"-Abbauverfahren von Bitumen aus Ölsänden mittels Dampf (z. B. Cyclic Steam Stimulation = CSS; Steam Assisted Gravity Drainage = SAGD) werden große Mengen Wasserdampf zum Aufheizen des Bitumen in der Lagerstätte benötigt. Typischerweise wird Dampf mit der Temperatur 250°C und einer Qualität 0,95, d.h. im nahezu überhitzten Zustand, verwendet. Obwohl dieser Dampf sehr hohen Energieinhalt aufweist, fallen sehr große Wassermengen an, die zusammen mit dem Öl wieder an die Erdoberfläche gefördert und dort aufbereitet werden müssen.
  • Die Verwendung zusätzlicher elektrischer Aufheizung eines Reservoirs wird bereits in der DE 10 2007 008 292 A1 sowie in den älteren nicht vorveröffentlichten deutschen Patentanmeldungen der Anmelderin AZ 10 2007 036 832.3 , AZ 10 2007 040 605.5 und AZ 10 2007 040 607.1 vorbeschrieben und kann durch rechnerische Simulationen erfolgreich demonstriert werden. Speziell im Fall der dort vorgeschlagenen zusätzlichen induktiven Beheizung wird vom EM(Electromagnetic)-SAGD-Verfahren gesprochen.
  • Der vergleichsweise hohe Preis für elektrische Leistung reduziert allerdings im Vergleich zur Energieform "Dampf" den ökonomischen Vorteil letzterer Vorschläge.
  • In der Praxis ist eine durch elektrische Heizung gestützte Bitumenförderung aus Ölsanden kommerziell noch nicht eingesetzt. Bei bekannten Pilotanlagen, die eine rein elektrische, resistive Heizung einsetzen, wird die elektrische Leistung aus dem Netz genommen.
  • Der Dampf für SAGD- oder CSS-Verfahren wird zumeist in separaten Dampfkesseln erzeugt, welche typischerweise mit Erdgas (z. B. Suncor's Millenium Project aus "Canadas Oilsands and Heavy Oil, April 2000, http://www.centreforenergy.com/documents/187.pdf - S. 23, unten) oder Bitumen befeuert werden. Es wurde auch vorgeschlagen, vorhandenen GuD-Anlagen, deren elektrische Energie in das Netz eingespeist wird, für obigen Zweck Prozessdampf zu entziehen. Diese Anlagen sind daher immer zentral und ortsfest angeordnet, wobei die Übertragung der Energie nicht vernachlässigbare Verluste mit sich bringt.
  • Ein bekanntes Verfahren und eine bekannte Vorrichtung ist auch in dem Dokument WO 2008/098850 A1 offenbart. Dieses Dokument wird als nächstliegender Stand der Technik angesehen.
  • Davor ausgehend ist es Aufgabe der Erfindung, ein Verfahrenskonzept vorzuschlagen, mit dem die Wirtschaftlichkeit der bereits vorgeschlagenen Verfahren verbessert werden kann. Daneben soll eine zugehörige Anlage mit entsprechendem Betriebsverfahren angegeben werden.
  • Die Aufgabe ist erfindungsgemäß durch ein Verfahren gemäß Patentanspruch 1 gelöst. Eine zugehörige Anlage ist im nebengeordneten Patentanspruch 12 angegeben. Deren vorteilhaftes Betriebsverfahren ist Gegenstand des weiteren nebengeordneten Patentanspruches 24. Weiterbildungen des Verfahrens, der Anlage und des zugehörigen Betriebsverfahrens sind Gegenstand der abhängigen Ansprüche.
  • Gegenstand der Erfindung ist ein verfahrenstechnisches Konzept zur Förderung von Bitumen oder Schwerstöl aus Ölsänden, das sich durch eine autarke Energieversorgung und durch eine ökonomisch besonders günstige Förderung auszeichnet. Die dafür notwendigen Betriebsmittel werden mit der erfindungsgemä-βen Anlage bereitgestellt.
  • Mit der Erfindung wird ein Betriebskonzept für die Bitumen oder Schwerstölproduktion aus insbesondere Ölsandlagerstätten vorgeschlagen, bei dem eine Industrieturbine zum Einsatz kommt, die mit einem Generator und einem Abhitzekessel bzw. einem separat gefeuerten Kessel kombiniert ist. Die Industrieturbine kann entweder ein Gasturbine oder aber eine Dampfturbine sein.
  • Erfindungsgemäß kann bei der fakultativen Verwendung der Gasturbine oder der Dampfturbine entweder ein Abhitzekessel oder ein gefeuerter Kessel verwendet werden. In den Abhitzekessel wird die Abhitze bei der Erzeugung der elektrischen Leistung eingeleitet. Der Abhitzekessel wird von einer Ventileinheit mit Betriebswasser versorgt, das durch die Abwärme der Gasturbine verdampft wird. Der so erzeugte Dampf wird der Sammlereinheit zugeführt. Mit einem separat befeuerten Kessel kann dagegen aus extern zugeführtem Wasser gleichermaßen der Dampf sowohl für das SAGD-Verfahren als auch zur Generierung von elektrischer Leistung über die Dampfturbine erzeugt werden.
  • Gegebenenfalls sind im Rahmen der Erfindung auch eine Gasturbine und eine Dampfturbine miteinander kombinierbar. Darin wird die Abhitze bei der Erzeugung der elektrischen Leistung in der Gasturbine verwertet. Im gefeuerten Kessel kann weiter Dampf nach dem Boilerprinzip erzeugt werden, sofern das aus der Gasturbine genutzte Abgas zur Dampferzeugung des Abhitzekessels nicht ausreicht. Mit dem dabei anfallendem Dampfüberschuss wird die Dampfturbine betrieben.
  • In beiden Alternativen wird ein Teil des geförderten Bitumens, vorzugsweise ca. 20 %, verbrannt. Damit kann gleichzeitig elektrische Leistung und Dampf im Verhältnis von beispielsweise ca. 1:4 bezüglich der Leistung erzeugt werden. Eine solche Leistungsaufteilung entspricht einem günstigen Verhältnis bei bisher durchgeführten Reservoir-Simulationen für das elektromagnetische Heizen kombiniert mit Dampfinjektion (EM-SAGD).
  • Besonders vorteilhaft ist bei der Erfindung der in sich geschlossene, autarke Kreislauf beim Betrieb der EM-SAGD-Anlage. Dies ergibt sich in erster Alternative insbesondere dadurch, dass die Gasturbine, welche für die Verbrennung von Bitumen oder Schwerstöl geeignet sein muss, direkt mit dem Brennstoff befeuert wird, welcher aus der Bitumenproduktion des auszubeutenden Ölsandvorkommens kommt. Das Abgas der Gasturbine kann dabei thermisch einem Abhitzekessel mit Dampferzeuger zugeführt werden, der einen solchen Dampf erzeugt, der z. B. ca. bis zu 300°C heiß ist. Das Speisewassersystem des Abhitzedampferzeugers kann mit einer Speisepumpe versehen werden, so dass der Reservoir-spezifische Druck geregelt werden kann. Als Kondensator dient das Reservoir, wo der Dampf eingespeist wird über das sogenannte "Injektor Well". Der Dampf erhitzt das Reservoir und macht es permeabler. Bei der zweiten Alternative mit der Dampfturbine wird dagegen Dampf mit einem separat gefeuerten Kessel erzeugt, in welchem Brennstoff aus der Bitumenproduktion verfeuert wird. Der aus diesem Kessel stammende Dampf kann einerseits auf die Dampfschiene der Injektorrohrleitungen gegeben werden und kann andererseits die Dampfturbine antreiben.
  • In beiden Fällen ist die Gasturbine oder die Dampfturbine mechanisch mit einem Generator gekoppelt, welcher in bekannter Weise elektrische Leistung erzeugt, die aber nunmehr ausschließlich für den Eigenbedarf der Bitumen- bzw. SchwerstölProduktion verwendet wird. Die so generierte elektrische Leistung wird über Transformatoren und Schaltanlagen eines so genanten "WellPads" derart verteilt, dass die einzelnen elektrischen Module für die EM-SAGD-Stromversorgung versorgt werden. Die EM-SAGD-Module versorgen insbesondere Induktoren, welche als spezielle Leitungen im Erdreich des Reservoirs angeordnet sind und über welche durch Wechselstromverluste eine zusätzliche Aufwärmung des Erdreiches erfolgt, was zu einer Optimierung der Bitumenproduktion führt.
  • Mit der Erfindung kann die Bitumenproduktion einer vorhandenen SAGD-Anlage mit so genannten "Well pairs", bei denen ein Paar aus einem Dampfinjektionsrohr("injector well") und einem zugeordneten Drainage-Bitumenproduktionsrohr ("producer well") oder kurz "Förderrohr" besteht, in beachtlichem Maß verbessert werden. Über das Förderrohr, das horizontal unter dem Induktor liegt wird das Bitumen-Wasser-Gemisch gefördert.
  • Das Verhältnis zwischen aufgebrachter elektrischer Energie auf den Induktor und der damit in das Reservoir eingebrachten Energie und dem Dampf ist gleich dem Verhältnis der Erzeugung aus Turbinengenerator sowie dem Abhitzekessel, welcher der Gasturbine nachgelagert ist. Entsprechendes gilt für den separat feuerbaren Dampfkessel der Dampfturbine. Das Verhältnis beträgt in beiden Fällen typischerweise 1:3. Die Leistung für ein Wellpair kann dabei bei etwa 1 MW elektrischer Heizleistung sowie zwischen 3 und 4 MW Dampfleistung liegen.
  • Beim erfindungsgemäßen Verfahren wird das geförderte Bitumen-Wasser-Gemisch in einer Aufbereitungsanlage gereinigt und das Wasser entfernt. Das gewonnene Wasser wird kesseltauglich dem Speisewassersystem zugeführt. Das Bitumen wird transport- bzw. raffinerietauglich behandelt, d.h. getrocknet und gesäubert. Unverdünntes Bitumen wird abgezweigt um dieses in der Industriegasturbine oder im gefeurten Dampfkessel zu verbrennen. Hierzu ist es notwendig, das Bitumen auf ca. 110°C aufzuheizen, um es in eine hinreichend niedrige Viskosität zu überführen.
  • Speziell bei Verwendung einer Gasturbine ist es zwar für das Anfahren aus dem Kaltstart notwendig, vorübergehend konventionelles leichtes Heizöl zu verwenden. Nach dem erreichen einer ausreichenden Brennkammertemperatur und nach dem Aufheizen des Bitumens, welches aus einem Teilstrom des Dampfes aus dem Abhitzekessel erfolgen kann, kann das Brennstoffversorgungssystem ("Fuel skid") der Gasturbine auf Bitumenverbrennung umgestellt werden. Soll die Turbine abgestellt werden, so ist vorher zurück auf Heizölbetrieb zu stellen, so dass sämtlicher Bitumen aus den Zuleitungen zu den Brennern gespült ist.
  • Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Patentansprüchen.
  • Es zeigen
  • Figur 1
    perspektivisch einen Teil einer Ölsandlagerstätte, die Mittel für das bekannte SAGD-Verfahren aufweist und in die weitere Mittel zur induktiven Beheizung des Reservoirs eingebracht sind,
    Figur 2
    eine erste Ausführungsform der anlagentechnischen Mittel zur Erzeugung elektrischer Leistung einerseits und Dampferzeugung andererseits und
    Figur 3
    eine zweite Ausführungsform der anlagentechnischen Mittel zur Erzeugung elektrischer Leistung einerseits und Dampferzeugung andererseits.
  • In den Figuren haben gleiche Einheiten gleiche Bezugszeichen. Figur 2 und Figur 3 werden so weit zusammen beschrieben, dass deren Unterschiede deutlich werden.
  • In der Figur 1 ist ein Teil einer Ölsandlagerstätte dargestellt, die sich einige hundert Meter unter Tage befinden kann.
  • Entsprechend dem in der älteren, nicht vorveröffentlichten deutschen Patentanmeldung AZ 10 2007 040 605.5 vorbeschriebenen Stand der Technik beinhaltet Figur 1 in einer Elementarzelle 100 eines Reservoirs einen Dampfinjektor mit einem Injektionsrohr 101 und ein Produktionsrohr 102 für die Bitumen-/Schwerstöl-Produktion mit gleichzeitiger Wasserrückführung. Insbesondere für eine induktive Heizung sind separate Leitungen 10, 20 als Induktoren vorhanden, die entweder unter Tage oder über Tage über eine Schleife 25 geschlossen sind. Weitere Zellen 100', 100" ... des Reservoirs sind entsprechend ausgelegt.
  • Anhand der Figuren 2 und 3 sind die unterschiedlichen Betriebsmittel zur Realisierung eines kombinierten EM-SAGD-Verfahrens mit induktiver Beheizung verdeutlicht:
  • In Figur 2 ist eine Gasturbine mit einem Kompressor mit 1 bezeichnet. Die Gasturbine 1 kann eine übliche Industrieturbine sein, die mit unterschiedlichen Brennstoffen befeuerbar ist. Rückseitig ist ein Lufteinlass vorhanden und seitlich eine Zuführung für einen Brennstoff.
  • Der Gasturbine 1 ist ein elektrischer Generator 2 nachgeschaltet, wobei Gasturbine 1 und Generator 2 mechanisch gekoppelt sind. Vom Generator 2 wird eine Schaltanlage bzw. elektrischen Verteilereinheit 3 zur Leistungsverteilung angesteuert. Von der Einheit 3 zur elektrischen Leistungsverteilung wird eine allgemeine Verteiler- und Sammlereinheit 4 für die Verteilung von Dampf und Strom einerseits und für das Einsammeln des Produktes andererseits angesteuert. In der Fachwelt wird eine solche Einrichtung 4 allgemein als "WellPad" bezeichnet.
  • Von der Verteilereinheit 4 werden die einzelnen in den Zellen 100, 100', 100", ... aus Figur 1 befindlichen "Wellpairs" aus jeweils einem Rohrpaar mit Injektorrohrleitung 101 angesteuert. Es wird eine Verteilung der Energie in Form von Dampf einerseits und in Form von elektrischer Leistung andererseits vorgenommen.
  • Das WellPad beinhaltet dazu eine nicht im Einzelnen dargestellte Dampf-Sammelschiene, eine elektrische Schaltanlage und eine Aufnahmeeinrichtung für das geförderte Produkt Damit sind Mittel zur Steuerung des Materialflusses bei der Förderung des Bitumens und/oder Schwerstöls einschließlich des rückgeführten Wassers realisiert. Bezugszeichen 8, 8', 8" ... stellen Umrichter für die Wechselstromversorgung dar, welche von der Schaltanlage gespeist wird.
  • In der Versorgungseinheit mit den Betriebsmitteln ist weiterhin eine Vorrichtung zur Separierung des geförderten Bitumens/Schwerstöls vom rückgeführten Wasser vorhanden, die mit 13 bezeichnet ist. Darin kann gleichermaßen eine Einheit zur Behandlung und Wiederaufbereitung des rückgeführten Wassers integriert sein, wobei weiterhin eine Einheit 14 zur Zu- und Wegführung des Wassers vorhanden ist. Das aufbereitete Wasser kann dann gleichermaßen zur Dampferzeugung verwendet werden und wird mittels einer Pumpe 15 mit Motor 15' dem Abhitzekessel 16 zur Erzeugung von Dampf zugeführt. Der so erzeugte Dampf gelangt über eine Ventilanordnung 22 in die Verteilereinheit 4. Über interne Verteilerschienen wird die elektrische Leistung und der Dampf an die entsprechenden Ausgänge der Verteilereinheit 4 gegeben.
  • Mit 17 ist in Figur 2 ein Speicher für das geförderte Bitumen und/oder Schwerstöl bezeichnet, von dem insbesondere eine Abgangsleitung zu Aufbereitungs- und Raffinierungszwecke des geförderten Produktes weggeht. Ein kleiner Teil des geförderten Bitumens und/oder Schwerstöl wird über eine Wärmetauschereinheit 18 geführt, die einen Ausgang zur Beheizung der Gasturbine 1 hat.
  • Anhand Figur 3 werden zu Figur 2 alternative bzw. ergänzende Betriebsmittel zur Realisierung eines kombinierten SAGD-Verfahrens und elektrischer Beheizung, insbesondere induktiver Beheizung, verdeutlicht:
  • in Figur 3 ist eine Dampfturbine mit 11 bezeichnet. Die Dampfturbine 11 ist eine spezifische Industrieturbine, die ausschließlich mit Dampf betreibbar ist. Der Dampfturbine 11 ist ein elektrischer Generator 2 nachgeschaltet, wobei Dampfturbine 11 und Generator 2 mechanisch gekoppelt sind. Vom Generator 2 wird wiederum die Einheit 3 zur elektrischen Leistungsverteilung sowie eine allgemeine Verteiler- und Sammlereinheit 4 für die Verteilung von Dampf und Strom einerseits und für das Einsammeln des Produktes andererseits angesteuert, die oben bereits als "WellPad" bezeichnet wurde. Damit ist in der englischsprachigen Fachterminologie die Zusammenfassung mehrerer Bohrlöcher zu einer technischen Einheit definiert (well = Bohrloch, pad = Block, Feld).
  • Von der Verteilereinheit 4 werden die einzelnen "Wellpairs" aus jeweils einem Rohrpaar angesteuert, über das eine Verteilung der Energie in Form von Dampf einerseits und in Form von elektrischer Leistung andererseits vorgenommen wird.
  • Das WellPad beinhaltet dazu eine nicht im Einzelnen dargestellte Dampf-Sammelschiene, eine elektrische Schaltanlage und eine Aufnahmeeinrichtung für das geförderte Produkt. Damit sind Mittel zur Steuerung des Materialflusses bei der Förderung des Bitumens und/oder Schwerstöls einschließlich Wasser realisiert. Bezugszeichen 8 stellt eine Betriebseinheit für die Stromversorgung dar, welche von der Schaltanlage gespeist wird.
  • In der Versorgungseinheit mit den Betriebsmitteln ist weiterhin eine Vorrichtung zur Separierung vom geförderten Bitumen-/Schwerstöl vom rückzuführenden Wasser vorhanden, die mit 13 bezeichnet ist. Darin ist gleichermaßen eine Einheit zur Behandlung und Wiederaufbereitung des Wassers integriert, wobei mit 14 das Speisewassersystem bezeichnet ist.
  • Mit 17 sind in Figur 2 und Figur 3 Speicher bzw. Lager für das geförderte Bitumen und/oder Schwerstöl bezeichnet, von dem insbesondere eine Abgangsleitung zu Aufbereitungs- und Raffinierungszwecke weggeht. Ein bestimmter Teil des geförderten Bitumens und/oder Schwerstöl wird über eine Einheit 18 geführt, und dient der Dampfzeugung im Kessel, d.h. gleichermaßen Dampf für das SAGD-Verfahren und Dampf zur Erzeugung von elektrischer Leistung in der Dampfturbine zwecks induktiver Beheizung der Lagerstätte.
  • Die beiden Verfahrenskonzepte unterscheiden sich also speziell in der Auslegung der Industrieturbine: Eine Gasturbine ist mit unterschiedlichen Brennstoffen betreibbar, wobei mit der anfallenden Abwärme der Dampf für das SAGD-Verfahren erzeugt wird. Eine Dampfturbine kann dagegen nur mit Dampf betrieben werden, der zunächst in einem Boiler durch elektrisches Erhitzen von Wasser erzeugt wird.
  • In einem spezifischen Ausführungsbeispiel wird eine Anlage mit 50 Wellpairs zugrunde gelegt, um ca. 50.000 bl Bitumen pro Tag zu produzieren. Es werden drei Gasturbinen mit je 17 MW elektrische Leistung verwendet. Jedes Wellpair benötigt 1 MW elektrische Energie und 3... 4 MW Dampf. Der für den Eigenbedarf zum Betrieb der Anlage benötigte Strom und Dampf wird abgezweigt. Bei Ausfall einer Gasturbine wird der Stromverbrauch für die Bitumenproduktion gesteuert reduziert und entsprechend ebenfalls die zu verteilende Dampfmenge verteilt.
  • Insgesamt erfolgt bei beiden Ausführungsbeispielen die Erzeugung der zur Förderung notwendige Energie durch Verbrennung von gefördertem Bitumen oder Schwerstöl in einem autarken, in sich geschlossenen Kreislauf. Zur Verbrennung wird das Bitumen oder ein Bitumen-Gemisch bestehend aus Bitumen/Leichtöl oder Bitumen/Lösungsmittel verwendet, wobei als Lösungsmittel Naphta verwendet wird. Sofern als Industrieturbine eine Gasturbine verwendet wird, kann eine Brennstoff-Aufbereitung vor den Brennkammern der Gasturbine dafür sorgen, dass durch Aufheizung des Brennstoffes auf bis zu 150°C eine hinreichende Viskosität erreicht ist die Einspritzung in die Brennkammern erfolgen kann. Es können Separatoren und Filter in der Brennstoffaufbereitung verwendet werden, die Schwermetalle, Asche und sonstige Partikel ausbringen. Es kann auch, ein Destiller vorgeschaltet sein, dessen Destillat der Brennstoff-Aufbereitung der Industrieturbine zugeführt wird, wobei die schwereren Polyaromate, d.h. Asphaltene, dem produzierten Bitumen, welcher als Produkt zur Raffinerie transportiert wird, zugesetzt wird. Anstelle eines Destillers kann ein sog. Cracker vorgesehen sein, der langkettige Kohlenwasserstoffe bis zu einem tauglichen Brennstoff degradiert.
  • Bei beiden im Einzelnen beschrieben Anlagenschemata ist wesentlich, jeweils einen in sich geschlossenen, autarken Kreislauf zur Bitumen-/Schwerstölförderung zu realisieren, der keine zusätzliche externe elektrische Energieversorgung benötigt. Damit ist man von vorhandenen Netzen unabhängig, so dass die gesamte Anlage mobil und an wechselnden Einsatzorten eines Ölsand- bzw. Ölschiefervorkommens mit jeweils bereits vorhandener SAGD-Förderanlage einsatzfähig ist.

Claims (26)

  1. Verfahren zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, bei dem die Viskosität des Bitumen und/oder Schwerstöls 'in situ' erniedrigt wird, wozu der Lagerstätte Energie in Form von die Lagerstätte durchströmenden Dampf einerseits und elektrischer Leistung zur induktiven und/oder resistiven Beheizung andererseits zugeführt wird,
    mit folgenden Maßnahmen:
    - die Energie zur Erzeugung des Dampfes und gleichermaßen zur elektrischen Beheizung wird dezentral am Ort der Fördereinrichtungen erzeugt,
    - dazu wird ein Teil des geförderten Bitumens und/oder Schwerstöls zum Betreiben einer Industrieturbine mit angekoppeltem Generator verwendet,
    - wobei einerseits der der Industrieturbine nachgeschaltete Generator die elektrische Leistung zur Beheizung liefert und andererseits ein der Industrieturbine zugeordneter Kessel zur Dampferzeugung durch Verdampfung von Wasser dient,
    - und mindestens ein Wellpair vorgesehen ist, dem die im Generator erzeugte elektrische Leistung und Leistung in Dampfform im Verhältnis zwischen 1 zu 3 und 1 zu 4 zugeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung der elektrischen Leistung einerseits und des Wasserdampfes andererseits etwa 20 % des geförderten Bitumens und/oder Schwerstöls eingesetzt wird.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die erzeugte elektrische Leistung und der Wasserdampf im Verhältnis von etwa 1:4 bezüglich des Energieinhaltes erzielt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Verbrennung und Einsatz des Bitumens und/oder Schwerstöls in einem autarken geschlossenen Kreislauf erfolgt.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass zur Verbrennung Bitumen oder ein Bitumen-Gemisch bestehend aus Bitumen/Leichtöl oder Bitumen/Lösungsmittel (Naphta) verwendet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Industrieturbine eine Gasturbine verwendet wird, mit der unterschiedliche gasförmige Brennstoffe verbrennbar sind.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass eine Brennstoff-Aufbereitung vor den Brennkammern der Gasturbine dafür sorgt, dass durch Aufheizung des Brennstoffes auf bis zu 150°C eine solche Viskosität des Brennstoffes erreicht wird, welche die Einspritzung in die Brennkammern erlaubt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Industrieturbine eine Dampfturbine verwendet wird, die mit dem aus der Bitumen-/Schwerstöl-Verbrennung erzeugten Dampf betreibbar ist.
  9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass Separatoren und Filter zur Brennstoffaufbereitung verwendet werden, die Schwermetalle, Asche und sonstige Partikel ausbringen
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass ein Destiller vorgeschaltet ist, dessen Destillat der Brennstoff-Aufbereitung der Industrieturbine zugeführt wird, wobei die schwereren Polyaromate (Asphaltene) dem produzierten Bitumen, welcher als Produkt zur Raffinerie transportiert wird, zugesetzt wird
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass anstelle eines Destillers ein Cracker vorgesehen wird, der langkettige Kohlenwasserstoffe bis zu einem tauglichen Brennstoff degradiert.
  12. Anlage zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, die zur Verminderung der Viskosität des Bitumen und/oder Schwerstöls beheizt wird, wozu Wasserdampf einerseits in die Lagerstätte eingeleitet und durchgeleitet wird und wozu die Lagerstätte zusätzlich elektrisch beheizt wird, dadurch gekennzeichnet, dass eine Industrieturbine (1, 11) mit nachfolgendem elektrischem Generator (2) vorhanden ist, wobei die Industrieturbine (1) mit dem Bitumen und/oder Schwerstöl beheizbar ist, das aus der unterirdischen Lagerstätte (100) gefördert wird, wobei mindestens ein Wellpair vorgesehen ist, dem die im Generator erzeugte elektrische Leistung und Leistung in Dampfform im Verhältnis zwischen 1 zu 3 und 1 zu 4 zugeführt wird.
  13. Anlage nach Anspruch 12, dadurch gekennzeichnet, dass die Industrieturbine eine Gasturbine (1) ist.
  14. Anlage nach Anspruch 12, dadurch gekennzeichnet, dass die Industrieturbine eine Dampfturbine (11) ist.
  15. Anlage nach Anspruch 12, dadurch gekennzeichnet, dass ein oberirdische Zwischenlager (17) für das geförderte Bitumen und/oder Schwerstöl vorhanden ist.
  16. Anlage nach Anspruch 15, dadurch gekennzeichnet, dass dem Zwischenlager (17) eine Einrichtung zur Trennung des Wasser-Bitumen-/-Schwerstöl-Gemisches und zur Behandlung des Bitumens und/oder Schwerstöls vorgeschaltet ist.
  17. Anlage nach Anspruch 12, dadurch gekennzeichnet, dass eine Schaltanlage (4) zur Ansteuerung der elektrischen Heizeinrichtung (8, 10, 20, 25) vorhanden ist.
  18. Anlage nach Anspruch 17, dadurch gekennzeichnet, dass die elektrische Heizeinrichtung aus wenigstens einem Induktor (10, 20, 25) besteht, der als geschlossene elektrische Schleife zueinander in der Lagerstätte (100) geführt sind.
  19. Anlage nach Anspruch 12, dadurch gekennzeichnet, dass der Industrieturbine (1, 11) ein Abhitzekessel (16) als Wärmespeicher zugeordnet ist, dessen gespeicherte wärme zur Verdampfung von Wasser dient.
  20. Anlage nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, dass die Industrieturbine (1, 11) einschließlich Generator (2) und Abwärmespeicher (16) sowie die Versorgungseinheiten für die Dampfbereitungseinrichtungen (16, 16') und die Induktoren (10, 20, 25) einen vernetzten Kreislauf bilden.
  21. Anlage nach Anspruch 20, gekennzeichnet durch einen autarker Betrieb bei der Versorgung der Industrieturbine (1, 11) mit gefördertem Bitumen und/oder Schwerstöl.
  22. Anlage nach Anspruch 17, gekennzeichnet dadurch, dass die Industrieturbine (1, 11) heizungsbedarfsgerecht geregelt wird, indem der zur Aufwärmung des Reservoirs notwendige wärme in einem Regelungseinrichtung errechnet wird und der für die Industrieturbine (1, 11) einschließlich Elektrizitäts- und Dampferzeugung notwendige Brennstoff zugeführt wird.
  23. Anlage nach Anspruch 22, dadurch gekennzeichnet, dass mit der Industrieturbine (1, 11) soviel Dampf erzeugt wird wie für den Prozess notwendig und dass die überschüssige elektrische Leistung in das Netz gespeist wird.
  24. Betriebsverfahren für eine Anlage nach Anspruch 12 oder einem der Ansprüche 13 bis 23, mit einer Industriegasturbine, separaten Speichern für leichtes Heizöl sowie für Bitumen und/oder Schwerstöl und zugehörigen Zuleitungen, gekennzeichnet durch folgende Verfahrensschritte:
    - die Industrieturbine wird zunächst mit konventionellem leichtem Heizöl angefahren
    - nach dem Anfahren wird Bitumen und/oder Schwerstöl in die Industrieturbine eingespeist und
    - es wird die Verbrennung von Bitumen und/oder Schwerstöl zur Erzeugung elektrischer Leistung einerseits und Dampf andererseits genutzt.
  25. Betriebsverfahren nach Anspruch 24, dadurch gekennzeichnet, dass Bitumen und/oder Schwerstöl aus dem Zwischenspeicher verwendet wird.
  26. Betriebsverfahren nach Anspruch 24, dadurch gekennzeichnet, dass vor dem Abstellen der Industrieturbine (1, 11) auf Heizölbetrieb umgestellt und das Bitumen und/oder Schwerstöl aus allen Zuleitungen gespült wird.
EP09781501A 2008-09-15 2009-08-05 Verfahren zur förderung von bitumen und/oder schwerstöl aus einer unterirdischen lagerstätte, zugehörige anlage und betriebsverfahren dieser anlage Active EP2324194B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008047219A DE102008047219A1 (de) 2008-09-15 2008-09-15 Verfahren zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, zugehörige Anlage und Betriebsverfahren dieser Anlage
PCT/EP2009/060132 WO2010028917A1 (de) 2008-09-15 2009-08-05 Verfahren zur förderung von bitumen und/oder schwerstöl aus einer unterirdischen lagerstätte, zugehörige anlage und betriebsverfahren dieser anlage

Publications (2)

Publication Number Publication Date
EP2324194A1 EP2324194A1 (de) 2011-05-25
EP2324194B1 true EP2324194B1 (de) 2012-02-29

Family

ID=41211755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09781501A Active EP2324194B1 (de) 2008-09-15 2009-08-05 Verfahren zur förderung von bitumen und/oder schwerstöl aus einer unterirdischen lagerstätte, zugehörige anlage und betriebsverfahren dieser anlage

Country Status (7)

Country Link
US (1) US8739866B2 (de)
EP (1) EP2324194B1 (de)
AT (1) ATE547588T1 (de)
CA (1) CA2737083C (de)
DE (1) DE102008047219A1 (de)
RU (1) RU2480579C2 (de)
WO (1) WO2010028917A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646527B2 (en) * 2010-09-20 2014-02-11 Harris Corporation Radio frequency enhanced steam assisted gravity drainage method for recovery of hydrocarbons
DE102010041329A1 (de) 2010-09-24 2012-03-29 Siemens Aktiengesellschaft Vorrichtung zur Erwärmung von Erdreich
CN102393149B (zh) * 2011-11-15 2013-10-30 东方希望重庆水泥有限公司 利用水泥生产***余热的热工联动动力***及其使用方法
DE102012000092B4 (de) * 2012-02-24 2014-08-21 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Gewinnung von kohlenstoffhaltigen Substanzen aus Ölsanden
US9228738B2 (en) 2012-06-25 2016-01-05 Orbital Atk, Inc. Downhole combustor
DE102012014658B4 (de) 2012-07-24 2014-08-21 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Gewinnung von kohlenstoffhaltigen Substanzen aus Ölsand
DE102012014656A1 (de) * 2012-07-24 2014-01-30 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Gewinnung vonkohlenstoffhaltigen Substanzen aus Ölsand
DE102012014657A1 (de) * 2012-07-24 2014-01-30 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Gewinnung von kohlenstoffhaltigen Substanzen aus Ölsand
US9291041B2 (en) 2013-02-06 2016-03-22 Orbital Atk, Inc. Downhole injector insert apparatus
WO2015066796A1 (en) 2013-11-06 2015-05-14 Nexen Energy Ulc Processes for producing hydrocarbons from a reservoir
WO2018223232A1 (en) * 2017-06-05 2018-12-13 643096 Alberta Limited Methods and systems for water treatment and steam production
RU2741642C1 (ru) * 2020-02-18 2021-01-28 Прифолио Инвестментс Лимитед Технологический комплекс для добычи трудноизвлекаемых углеводородов (варианты)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1008861B (de) * 1953-05-25 1957-05-23 Svenska Skifferolje A B Verfahren zur Gewinnung von kohlenwasserstoffhaltigen Stoffen aus Teersand in seiner natuerlichen Lagerstaette im Erdboden
US3848671A (en) * 1973-10-24 1974-11-19 Atlantic Richfield Co Method of producing bitumen from a subterranean tar sand formation
US4037655A (en) * 1974-04-19 1977-07-26 Electroflood Company Method for secondary recovery of oil
DE2636590A1 (de) * 1976-08-13 1978-02-16 Fisher Extraktion von kohlenwasserstoffen
US4160479A (en) * 1978-04-24 1979-07-10 Richardson Reginald D Heavy oil recovery process
US4679626A (en) * 1983-12-12 1987-07-14 Atlantic Richfield Company Energy efficient process for viscous oil recovery
CA2055549C (en) 1991-11-14 2002-07-23 Tee Sing Ong Recovering hydrocarbons from tar sand or heavy oil reservoirs
RU2060378C1 (ru) * 1993-04-06 1996-05-20 Александр Константинович Шевченко Способ разработки нефтяного пласта
US6357526B1 (en) * 2000-03-16 2002-03-19 Kellogg Brown & Root, Inc. Field upgrading of heavy oil and bitumen
EP1276965B1 (de) * 2000-04-24 2005-12-14 Shell Internationale Researchmaatschappij B.V. Verfahren zur behandlung von erdöllagerstätten
US7441603B2 (en) 2003-11-03 2008-10-28 Exxonmobil Upstream Research Company Hydrocarbon recovery from impermeable oil shales
US7091460B2 (en) 2004-03-15 2006-08-15 Dwight Eric Kinzer In situ processing of hydrocarbon-bearing formations with variable frequency automated capacitive radio frequency dielectric heating
CN101163857B (zh) 2005-04-22 2012-11-28 国际壳牌研究有限公司 用于对地下岩层进行加热的***和方法
CA2505449C (en) * 2005-04-27 2007-03-13 Steve Kresnyak Flue gas injection for heavy oil recovery
DE602006020314D1 (de) * 2005-10-24 2011-04-07 Shell Int Research Verfahren zur filterung eines in einem in-situ-wärmebehandlungsprozess erzeugten flüssigkeitsstroms
US7562708B2 (en) * 2006-05-10 2009-07-21 Raytheon Company Method and apparatus for capture and sequester of carbon dioxide and extraction of energy from large land masses during and after extraction of hydrocarbon fuels or contaminants using energy and critical fluids
WO2008049201A1 (en) 2006-10-24 2008-05-02 Acs Engineering Technologies Inc. Steam generation apparatus and method
DE102007008292B4 (de) 2007-02-16 2009-08-13 Siemens Ag Vorrichtung und Verfahren zur In-Situ-Gewinnung einer kohlenwasserstoffhaltigen Substanz unter Herabsetzung deren Viskosität aus einer unterirdischen Lagerstätte
US20090020456A1 (en) * 2007-05-11 2009-01-22 Andreas Tsangaris System comprising the gasification of fossil fuels to process unconventional oil sources
DE102007036832B4 (de) 2007-08-03 2009-08-20 Siemens Ag Vorrichtung zur In-Situ-Gewinnung einer kohlenwasserstoffhaltigen Substanz
DE102007040605B3 (de) 2007-08-27 2008-10-30 Siemens Ag Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl
DE102007040607B3 (de) 2007-08-27 2008-10-30 Siemens Ag Verfahren und Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl
WO2009098597A2 (en) * 2008-02-06 2009-08-13 Osum Oil Sands Corp. Method of controlling a recovery and upgrading operation in a reservor

Also Published As

Publication number Publication date
US8739866B2 (en) 2014-06-03
WO2010028917A1 (de) 2010-03-18
DE102008047219A1 (de) 2010-03-25
CA2737083C (en) 2015-04-21
CA2737083A1 (en) 2010-03-18
RU2480579C2 (ru) 2013-04-27
US20110227349A1 (en) 2011-09-22
EP2324194A1 (de) 2011-05-25
ATE547588T1 (de) 2012-03-15
RU2011114802A (ru) 2012-10-20

Similar Documents

Publication Publication Date Title
EP2324194B1 (de) Verfahren zur förderung von bitumen und/oder schwerstöl aus einer unterirdischen lagerstätte, zugehörige anlage und betriebsverfahren dieser anlage
DE102007040607B3 (de) Verfahren und Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl
EP2409003A2 (de) Vorrichtung und verfahren zur erzeugung von dampf mit hohem wirkungsgrad
EP1791790A1 (de) Meerwasserentsalzungsanlage
DE102013210430B4 (de) Energiespeichervorrichtung zur Vorwärmung von Speisewasser
WO2010097203A2 (de) Verfahren zum betreiben eines kraftwerks
AT510279B1 (de) Verfahren zur umwandlung von energie
EP1507069B1 (de) Verfahren und Einrichtung zur Gewinnung von Wasser bei einer Kraftwerksanlage
DE102012000092B4 (de) Vorrichtung und Verfahren zur Gewinnung von kohlenstoffhaltigen Substanzen aus Ölsanden
EP2805113B1 (de) Verfahren zum nachrüsten eines gasturbinenkraftwerks
EP2122165B1 (de) Verfahren und eine vorrichtung zur dampferzeugung in dampfkraftwerken
DE102010041329A1 (de) Vorrichtung zur Erwärmung von Erdreich
DE102007004526A1 (de) Förderungseinrichtung
DE3240745A1 (de) Verfahren und anlage zur gewinnung von kohlenwasserstoffen aus oelhaltigem sand oder gestein
EP2847422B1 (de) Vorrichtung und verfahren zur gewinnung von kohlenstoffhaltigen substanzen aus ölsand
EP3152487B1 (de) Anordnung mit mehreren wärmeübertragern und verfahren zum verdampfen eines arbeitsmediums
DE102015118098A1 (de) Verfahren zur Speisewasservorwärmung eines Dampferzeugers eines Kraftwerks
WO2014016067A2 (de) Vorrichtung und verfahren zur gewinnung von kohlenstoffhaltigen substanzen aus ölsand
DE102013008216A1 (de) Verfahren zum Einleiten von Wasserdampf und/oder Warmwasser in eine Öllagerstätte
DE10240952A1 (de) Brennstoffzellenanlage zur Hausenergieversorgung
DE102012004275A1 (de) Vorrichtung zur Stromerzeugung aus Abwärme (Strompumpe)
WO2009068292A2 (de) Anlage für die geothermische energiegewinnung und verfahren zu deren betrieb
WO2014016066A2 (de) Vorrichtung und verfahren zur gewinnung von kohlenstoffhaltigen substanzen aus ölsand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 547588

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002926

Country of ref document: DE

Effective date: 20120426

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120529

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121130

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002926

Country of ref document: DE

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120609

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130805

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140803

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 547588

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009002926

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20220729

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230828

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230805