EP2321137A1 - Verfahren zum betreiben eines antriebs eines kraftfahrzeugs sowie antriebsvorrichtung und elektronisches steuergerät - Google Patents

Verfahren zum betreiben eines antriebs eines kraftfahrzeugs sowie antriebsvorrichtung und elektronisches steuergerät

Info

Publication number
EP2321137A1
EP2321137A1 EP09781804A EP09781804A EP2321137A1 EP 2321137 A1 EP2321137 A1 EP 2321137A1 EP 09781804 A EP09781804 A EP 09781804A EP 09781804 A EP09781804 A EP 09781804A EP 2321137 A1 EP2321137 A1 EP 2321137A1
Authority
EP
European Patent Office
Prior art keywords
torque
shaft
drive
drive device
motor vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09781804A
Other languages
English (en)
French (fr)
Inventor
Jens-Werner Falkenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2321137A1 publication Critical patent/EP2321137A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/14Central differentials for dividing torque between front and rear axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/12Differentials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a method for operating a drive of a motor vehicle, which has at least two each by means of a shaft drive device driven shafts, wherein a
  • Total drive torque of the motor vehicle substantially corresponds to the sum of applied to the waves shaft torque.
  • the invention further relates to a drive device and an electronic control unit.
  • DE 10 2004 049 324 A1 discloses a method for controlling and regulating the driving dynamics in motor vehicles with hybrid drive.
  • This method is intended to be used for drives with at least one electric machine and one internal combustion engine.
  • a total drive torque is distributed to the electric machine and the internal combustion engine such that in sum the desired drive torque desired by the driver is generated.
  • a yaw moment and thus a self-steering behavior of the motor vehicle to be influenced.
  • Steering interventions are also provided.
  • a degree of distribution is calculated which corresponds to the ratio of the torques of the at least one electric machine to the total drive torque.
  • the moments of the electric machine and the internal combustion engine are determined and forwarded to them.
  • it may thus affect the reliability of the motor vehicle, since, for example, a portion of a drive or braking torque is eliminated and changes the total drive torque.
  • the method for operating a drive of a motor vehicle with the features mentioned in claim 1 has the advantage that said impairment of the operational safety of the motor vehicle is prevented by dangerous changes in the total drive torque can be avoided.
  • This is achieved by taking into account a magnitude and / or a change in the magnitude of one of the shaft moments in a control and / or regulation of the remaining shaft torques.
  • the actual size of one of the shaft moments thus influences the determination of the remaining shaft moments.
  • These can also be appropriately controlled and / or regulated as soon as a change in the magnitude of one of the shaft moments is detected.
  • the drive of the motor vehicle has at least two drivable shafts.
  • the front and rear axles can be driven separately by means of a respective shaft drive device, front and rear axles can each have an axle differential, or each wheel of the motor vehicle can be connected to its own shaft drive device.
  • the total drive torque of the motor vehicle corresponds essentially to the sum of the individual shaft torques.
  • dangerous Bethebszunot, which could at least follow a partial failure of one of the shaft drive devices can be substantially avoided.
  • the failure of the shaft drive device causes a change in the size of one of Shaft moments, so that the size present with it can be taken into account in the control and / or regulation of the remaining shaft torques. It may be provided, for example, that the remaining shaft torques are adjusted so that the change in the size of the one shaft torque is compensated.
  • the method according to the invention can advantageously be used in drives in which the individual shafts each have a shaft drive device and are not connected to one another. However, it can also be used if at least two of the shafts are connected to one another via a coupling, for example via a controllable mechanical coupling, which can be used as a multi-plate clutch in the sense of a central differential. Particularly advantageous method for electric or hybrid vehicles with multiple drive axles is applicable.
  • a unit consisting of an internal combustion engine, a gearbox and possibly an electric machine usually acts on one of the shafts, while one or more further shafts are driven by electric machines in conjunction with a gearbox.
  • shaft is to be understood in the sense of drive axle.
  • the electric machine connected to the internal combustion engine may, for example, be a belt starter generator which is operated to start the internal combustion engine and as a generator.
  • the method is also suitable for drives which provide several similar shaft drive devices.
  • a development of the invention provides that as at least one of the shaft drive devices, an internal combustion engine or an electric machine or a hybrid drive device with at least two different drive units, in particular an electric and an internal combustion engine, or a hydraulic machine is used.
  • the shaft can thus be driven by shaft drive devices of various kinds.
  • At least one of the shaft drive devices may be in the form of the internal combustion engine, the electric machine, the hybrid drive device, or the hydraulic machine.
  • the hybrid drive device has at least two drive units, which are preferably different and formed for example by the electric machine and the internal combustion engine.
  • the total drive torque essentially corresponds to a desired drive torque predetermined by a driver of the motor vehicle and / or a driver assistance system.
  • the total drive torque should be matched to a driver's request.
  • This can specify the target drive torque, for example via an accelerator pedal.
  • the driver assistance system can be formed by various electronic aids, such as a system for maintaining a constant speed, a brake assist, a system for maintaining a certain distance from other vehicles or a stability system.
  • Both the driver of the motor vehicle and the driver assistance system have influence on the target drive torque, which is taken into account as well as the size and / or the change in the size of one of the shaft moments in the control and / or regulation of the remaining shaft torque.
  • the control and / or regulation sets the shaft torques such that the total drive torque, which corresponds to the sum of shaft torques applied to the shafts, is equal to or at least substantially equal to the desired drive torque.
  • a development of the invention provides that when the total drive torque deviates from the desired drive torque due to a limitation of at least one shaft torque, the deviation of the total drive torque is continuous and / or gradient-limited. If there is a limitation of at least one of the shaft moments, then it may happen that the target drive torque can not be achieved due to the limitation and the total drive torque deviates from this. In this case, the deviation or the change of the total drive torque should be continuous and / or gradientenbeordinate.
  • the limitation may, for example, due to limits of the shaft drive device (performance limits of internal combustion engine or charge level and / or load and / or Performance limits of an energy storage device or a traction battery), a downshift (for example, boost control to distribute an available energy content of the energy storage or the traction battery on several boosts), a Notlaufschreibs a shaft drive device (for example due to a fault in a transmission), a switching operation in the Transmission or a vehicle dynamics system present.
  • the latter can influence individual waves, for example in order to avoid blocking the shaft or the wheel arranged thereon.
  • the limitation can also be caused by a spinning or slipping of the wheels of the motor vehicle on a substrate. In this case, sufficient force can not be transmitted to the ground to achieve the target drive torque.
  • the limitation eliminates at least part of one of the shaft moments, so that it can lead to a sudden increase or decrease in the total drive torque.
  • the total drive torque should be adjusted or changed continuously and / or gradient-limited. This means that no or at least only slight jumps occur during the deviation of the total drive torque after the occurrence of the limitation. It can also be provided that a speed of deviation of the total drive torque from the desired drive torque is determined via a gradient limitation. This means that, for example, with a rapid change of the target drive torque, the total drive torque should change quickly.
  • a development of the invention provides that after eliminating the limitation, the total drive torque is adjusted continuously and / or gradientenbe ancestral to the target drive torque. If the limitation is omitted, then the shaft torques can be adjusted again by means of the control and / or regulation such that their sum corresponds to the nominal drive torque.
  • the total drive torque is changed continuously and / or gradient-limited. This means that the deviation of the total drive torque from the target drive torque is reduced steadily and / or gradient-limited. The Change takes place until the total drive torque again substantially corresponds to the target drive torque. In this way, the driver of the motor vehicle has sufficient time to adjust to the changed operating conditions and possibly to adjust the target drive torque.
  • the adaptation of the nominal drive torque in this case can likewise be carried out by means of the driver assistance system.
  • a development of the invention provides that, for the continuous and / or gradient-limited change of the total drive torque, at least one of the shaft drive devices is operated in an overload range and / or in an unfavorable operating point.
  • the shaft drive devices should be operated so that neither overloading nor the shaft drive device is operated at an unfavorable operating point.
  • the latter can for example be characterized by a high specific fuel consumption and / or high emission values.
  • At least one of the shaft drive devices can be operated in the overload range and / or the unfavorable operating point to control the steady state and / or gradient-limited change of the total drive torque to allow.
  • another shaft drive device is operated at a higher power, in which only a short-term operation without damaging the shaft drive device is possible and at the same time there is a high specific fuel consumption.
  • the total drive torque is changed continuously and / or gradient-limited, so that the total drive torque is set to a value that allows operation of the shaft drive device in a permanently permissible range.
  • the safety of the motor vehicle can be significantly increased by the short-term operation of the shaft drive device outside the permanently permissible and / or desired range. Since the operation of the shaft drive device only short-term in the unwanted area, no damage can occur at this.
  • a development of the invention provides that the continuous and / or gradient-limited change of
  • the change of the total drive torque should be jump-free and slow. This can be achieved by using a filter and / or changing the total drive torque according to the course of the ramp, which may be predetermined.
  • a further development of the invention provides that the change of the total drive torque takes place such that an absolute value of the total drive torque is less than an amount of the desired drive torque and / or the total drive torque approaches zero.
  • the changed total drive torque should therefore always be between the original value of the total drive torque or the nominal drive torque and a zero value. In this way, it can not come to a surprise for the driver increase or decrease of the total drive torque. It can therefore also be provided that the total drive torque runs to zero. This may be provided, for example, in the case of a particularly serious fault in one of the shaft drive devices in order to safely stop the motor vehicle.
  • the total drive torque is to reduce toward zero as soon as there is a limitation to avoid unwanted acceleration of the vehicle. Conversely, should a negative total drive torque, the motor vehicle is thus in overrun, the total drive torque preferably change toward zero as soon as the limitation occurs to prevent a sudden deceleration.
  • a development of the invention provides that the target drive torque is filtered.
  • the target drive torque therefore does not correspond directly to the specification of Driver of the motor vehicle, but is merely coupled to this. It is provided that the specification of the driver and / or the driver assistance system is filtered before the total drive torque of the motor vehicle is adapted to it. This is to prevent jumps and / or too rapid changes in the total drive torque of the motor vehicle can occur.
  • a development of the invention provides that a minimum torque and / or a maximum torque is defined for at least one of the shafts.
  • the shaft drive device connected to the shaft is thus given a torque range in which it is operated.
  • the shaft torque is controlled and / or regulated such that it is greater than the minimum torque or less than the maximum torque or lies between the minimum torque and the maximum torque.
  • the minimum torque and / or the maximum torque can be determined on the basis of the minimum and / or maximum achievable torque of the shaft drive device and / or describe a favorable operating range.
  • Minimum torque and / or maximum torque can thus be chosen so that an operation of the shaft drive device is present in a favorable operating point, for example, with a low specific fuel consumption and / or low pollutant emissions. If there is a limitation, it is possible to deviate from these ideal moments. This means that the minimum torque and / or the maximum torque can be set to other values.
  • a further development of the invention provides that the minimum torque and / or maximum torque as a function of a torque range which can be provided by the shaft drive device and / or a reduction of one of the shaft drive devices and / or an emergency / fault state and / or a shift in a transmission and / or Values of a vehicle dynamics control is set.
  • the minimum torque and / or maximum torque can thus be matched to the available torque range of the shaft drive device, or to an optimal torque range of the same.
  • An adjustment of the minimum torque and / or the maximum torque can also be made due to a reduction of one of the shaft drive devices.
  • the reduction can For example, be provided due to a malfunction or an unfavorable operating condition (for example, overheating).
  • the shutdown can also be provided in the form of a Boostabregelung to distribute the available energy content of the electrical energy storage or the traction battery on several boost operations. Furthermore, recognized emergency / fault states and switching processes flow into the values of the minimum torque and / or maximum torque. It is also advantageous if the permissible torque range, that is to say the range limited by the minimum torque and / or the maximum torque, is set as a function of the values of a driving dynamics control. This can be provided to increase the stability of the motor vehicle.
  • a development of the invention provides that the torque range of the shaft drive device is determined as a function of the drive units of the hybrid drive device. If the hybrid drive device is provided as the shaft drive device, the torque range is matched to the drive units of the hybrid drive device. This means that not just one of the drive units, but the whole is considered. For example, the determination of the torque range is carried out to a torque range which is defined by an internal combustion engine and an electric machine.
  • a development of the invention provides that the operation of the shaft drive device in an overload range and / or in an unfavorable operating point by adjusting the minimum torque and / or maximum torque is allowed.
  • minimum torque and / or maximum torque are set so that the operation in the overload range and / or the unfavorable operating point is not permitted.
  • the minimum torque and / or the maximum torque is adjusted accordingly, so that the shaft drive device, the operation is allowed in the corresponding area.
  • a development of the invention provides that, in the control and / or regulation of the remaining shaft torques, an inertia of moving elements, in particular of the shafts and / or of the shafts and / or of the drive units, is considered.
  • an acceleration for example, a rotational acceleration, in particular of the waves
  • a proportion of the generated shaft torque is required to accelerate the inertial mass of the rotating shaft. This is equivalent to delaying the wave as well. This means that the total drive torque is reduced by this proportion.
  • a high spin may occur when a vehicle dynamics system or a transmission gear shift affects the minimum or maximum torque of one of the shafts.
  • the proportion by which the total drive torque is reduced should now not be taken into account in the control and / or regulation of the remaining shaft torque, since it is effectively not the drive of the motor vehicle available.
  • the focus is on the proportion which is present at the elements to be assigned to the one wave moment.
  • a development of the invention provides that the inertia is taken into account by using a low-pass filter and / or determining the acceleration and the inertia of the moving elements.
  • a low-pass filter can be used in an implementation that is easy to implement. This can be applied to the variables used for control and / or regulation, such as the size and / or the change in size and / or intermediate values calculated during the control and / or regulation, in order to control the dynamics of a control and / or regulation system to reduce.
  • the accelerations, in particular rotational accelerations, and the moments of inertia for example the waves and / or wheels assigned to the shafts and / or the drive units, can be determined. Based on these values, an exact correction around the
  • Torque component which is not available by the acceleration and / or deceleration, are made.
  • the invention further relates to a drive device of a motor vehicle, in particular for carrying out the method according to the preceding Embodiments, with at least two each driven by a shaft drive device waves, wherein a total drive torque of the motor vehicle substantially corresponds to the sum of applied to the waves shaft moments. It is provided that, due to a size and / or change in the size of one of the shaft moments, a control and / or regulation of the other shaft moments takes place.
  • the drive device has at least two different or similar drive units.
  • the drive device may be, for example, a hybrid drive device with at least two different drive units. It is advantageous if at least one electric machine and at least one internal combustion engine are assigned to the hybrid drive device.
  • the invention further comprises an electronic control unit, in particular for carrying out the method and / or the control of a drive device according to the above statements, for controlling and / or regulating shaft torque of the at least two waves each driven by a shaft drive device, wherein a total drive torque of the motor vehicle substantially the sum of and the waves applied to the shaft moments. It is envisaged that a size and / or change in the size of one of the shaft moments is taken into account in the control and / or regulation of the remaining shaft torques.
  • the control unit thus serves to implement the described method and / or the regulation / control of the drive device.
  • This can be designed as a hybrid drive device and, for example, as already stated, at least one internal combustion engine and at least one electric machine have.
  • Figure 1 is a schematic representation of a motor vehicle with a
  • Figure 2 is a diagram showing the coordination of adjacent to the waves
  • FIG. 1 shows a schematic illustration of a motor vehicle 1 with a drive 2 which drives a first shaft 4 and above wheels 5 by means of a first shaft drive device 3 and a second shaft drive device 6 which drives wheels 8 via a shaft 7.
  • the first shaft drive device 3 has an electric machine 9, an internal combustion engine 10, and a transmission 11.
  • the electric machine 9 and the internal combustion engine 10 are coupled together by suitable means.
  • the unit of electrical machine 9 and internal combustion engine 10 is connected via a coupling 12 with the gear 11, which performs a speed or torque ratio and is operatively connected on its output side with the shaft 4.
  • the shaft 4 is thus drivable via the combination of the electric machine 9 and the internal combustion engine 10.
  • the second shaft drive device 6 has an electric machine 13, which is connected via a coupling 14 with a transmission 15 designed as a simple transmission 16 with the shaft 7.
  • the shaft 7 is thus drivable via the electric machine 13.
  • the electric machine 13 is further connected via a power electronics 17 to a serving as an energy storage 18 traction battery 19.
  • the first shaft drive device 3 having the electric machine 9 and the engine 10 constitutes a hybrid drive device 20.
  • the wheels 5 and 8 are in communication with a background, not shown, on which the motor vehicle 1 can move.
  • the wheels 5 and 8 or the first shaft drive device 3 and the second shaft drive device 6 are thus in operative connection with each other via this base.
  • the shaft moments can be positive or negative. It can be provided, for example, to drive the motor vehicle 1 by means of the internal combustion engine 10, while the electric machine 13 is operated in a generator mode and thus the traction battery 19 is charging.
  • the electric machine 9 is designed as a belt starter generator 21.
  • the internal combustion engine 10 can be started and during an operation of the internal combustion engine 10 power for an unillustrated electrical system of the motor vehicle 1 are generated.
  • the sum of the applied to the two wheels 5 moments corresponds to that of the first
  • Shaft drive device 3 generated shaft torque, the sum of the applied to the two wheels 8 moments generated by the second shaft drive device 6 shaft torque.
  • the gears 11 and 16 contain axle differentials, not shown. In most driving situations, half of the shaft torque is split between the two wheels, even at different wheel speeds. A deviating distribution may result if the axle differential has a blocking effect.
  • two single electric machines may be used, each of which drives one of the wheels 8. One of a driver of the motor vehicle 1 or not shown
  • Driver assistance system predetermined, possibly for comfort reasons filtered target drive torque is divided into the shaft moments of the two shafts 4 and 7.
  • FIG. 2 shows a diagram which illustrates the coordination of the shaft torques applied to the shafts 4 and 7.
  • a target drive torque M SO ⁇ is specified. This is dependent, for example, on a request of the driver of the motor vehicle 1 or the driver assistance system.
  • the calculation unit 23 divides the target drive torque into shaft desired torques M A i, S oi ⁇ and M A 2, soi ⁇ .
  • the former is provided at a first output 25, the latter at a second output 24 of the calculation unit 23.
  • the two values M A i, S oi ⁇ and M A2, SOII serve as input to a limiter unit 26.
  • the limiter unit 26 has a first limiter 31, a second limiter 32 and a third limiter 33.
  • the inputs 27 and 28 are connected to the first limiter 31, the inputs 29 and 30 respectively to the second and the third limiter 32 and 33.
  • the second output 24 of the io calculation unit 23 is connected to the second limiter 32.
  • the input's signal M A 2, soi ⁇ is therefore limited with the signals present at the inputs 29 and 30 signals M A2, m ⁇ n and M A2, m ax.
  • M A 2, min and M A2 there is therefore a limited moment between (inclusive) M A 2, min and M A2 , m ax.
  • the first limiter 31 limits the value resulting from the addition, which is applied to the input 37, with those at the inputs
  • the 30 adds a node 41 to the moment present at the output 34.
  • the nodes 40 and 41 represent another cross-connection 42.
  • the signal resulting from the addition at the node 41 is used at the input 43 as input to the third limiter 33.
  • the signals M A2 , mm and M A2 , max applied to the inputs 29 and 30 are also applied to this.
  • Limiter 33 limits the signal present at the input 43 to the two latter values.
  • the limited value is present at the output 44.
  • the present at the output 39 signal is referred to as M A i, soi ⁇ , hm and present at the output 44 signal as M A 2, soi ⁇ , hm.
  • These wave output torques M A i, S oi ⁇ and M A 2, soi ⁇ are so in the limiters 31, 32 and 33 with the respective minimum moments M A i , M ⁇ n and M A2 , min and the maximum moments M A i, max and M A2 , m ax limited.
  • the cross connections 38 and 42 ensure that the torque component (difference between the unlimited and the limited shaft nominal torque) which can not be represented on a shaft is transferred to the respective other shaft.
  • the output 39 of the first limiter 31 is connected to a calculation unit 45.
  • the minimum / maximum moments M A i, m ⁇ n , M A2 , m ⁇ n, M A i, max , M A2 , m ax be on the basis of provided by the shaft drive devices 3 and 6 torque ranges, Abregelept, emergency / error states of the shaft drive devices 3 and 6, switching operations in the transmissions 11 and 16 and determined by vehicle dynamics systems. In this case, translations of the gear 11 and 16 are observed.
  • the individual unit limits must be combined, that is to say, for example, both a torque range of the electric machine 9 and the internal combustion engine 10 are taken into account. For example, falls the electric machine 13 of the second
  • the calculation unit 45 divides the limited wave desired torque M A i, SO ⁇ , ⁇ ⁇ m in moments M B KM, I and M e ⁇ , i.
  • the former represents a moment of the internal combustion engine 10, the latter a moment of the electric machine 9.
  • the calculation unit 45 takes into account a present gear ratio of the transmission 11.
  • the connected electric machine 9 and internal combustion engine 10 deliver the torque generated by them to the transmission 11.
  • the limited Wellensollmoment M A i, SO ⁇ , ⁇ ⁇ m or the limited Wellensollmoment M A 2, S oi ⁇ , hm influence high rotational accelerations may be present.
  • a vehicle dynamics system raises the limited shaft desired torque M A i, SO ⁇ , ⁇ m by increasing the limit M A i, m ⁇ n to avoid locking the wheels 5 and to accelerate the rotating parts of the units of the shaft drive devices 3.
  • the effective wave moment M A i then differs from the limited shaft torque M A i, SO ⁇ , ⁇ ⁇ m to the inertia of play.
  • corresponding inertial components in the transverse connections 38 and 42 are corrected, so that only the effective ones Moment differences are transferred to the other wave.
  • the output signals of the nodes 35 and 40 can be low-pass filtered to reduce the dynamics.
  • An exact correction can be achieved by determining the rotational accelerations and the moments of inertia of the rotating parts.
  • a similar correction can also be made to compensate for inertia of the wheels or a drive dynamics of the drive units.
  • the behavior of the limiter unit 26 can be adjusted via the variables applied to the inputs 27, 28, 29 and 30. Normally, the moments M A i, m ⁇ n, M A 2, max, M A 2, min, and M A2 , max are set so that the shaft drive devices 3 and 6 are in a normal operating range, that is not in an overload range and / or in an unfavorable operating point. If the normal operating range changes on a shaft drive device 3 or 6 or if there is a limitation of one of the shaft torques applied to the shafts 4 and 7, the minimum and maximum torques can be adjusted such that the shaft drive devices 3 and 6 are at least temporarily in an overload range and / or or unfavorable operating point may be operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Antriebs (2) eines Kraftfahrzeugs (1), der mindestens zwei jeweils mittelseiner Wellenantriebsvorrichtung (3,6) antreibbare Wellen (4,7) aufweist, wobei ein Gesamtantriebsmoment des Kraftfahrzeugs (1) im Wesentlichen der Summe von an den Wellen (4,7) anliegenden Wellenmomenten entspricht. Dabei ist vorgesehen, dass eine Größe und/oder eine Änderung der Größe eines der Wellenmomente bei einer Steuerung und/oder Regelung der übrigen Wellenmomente berücksichtigt wird.Ferner umfasst die Erfindung eine Antriebsvorrichtung (20) eines Kraftfahrzeugs (1) sowie ein elektronisches Steuergerät.

Description

Beschreibung
Titel Verfahren zum Betreiben eines Antriebs eines Kraftfahrzeugs sowie Antriebsvorrichtung und elektronisches Steuergerät
Die Erfindung betrifft ein Verfahren zum Betreiben eines Antriebs eines Kraftfahrzeugs, der mindestens zwei jeweils mittels einer Wellenantriebsvorrichtung antreibbare Wellen aufweist, wobei ein
Gesamtantriebsmoment des Kraftfahrzeugs im Wesentlichen der Summe von an den Wellen anliegenden Wellenmomenten entspricht. Die Erfindung betrifft ferner eine Antriebsvorrichtung und ein elektronisches Steuergerät.
Stand der Technik
Verfahren der eingangs genannten Art sind aus dem Stand der Technik bekannt. Sie werden beispielsweise bei Elektro- oder Hybridfahrzeugen eingesetzt, bei welchen mit Rädern des Kraftfahrzeugs verbundene Wellen über einen mit den Rädern in Verbindung stehenden Untergrund gekoppelt sind. Bei dieser Art von Kraftfahrzeugen kann auf ein Verteilergetriebe, beispielsweise ein Zentraldifferential oder Achsdifferential, verzichtet werden. Üblicherweise ist den einzelnen Wellen jeweils eine Wellenantriebsvorrichtung zugeordnet, mittels der sie antreibbar sind. Das Gesamtantriebsmoment des Kraftfahrzeugs wird von den Wellenantriebsvorrichtungen auf die Wellen aufgeprägt, sodass das Gesamtantriebsmoment im Wesentlichen der Summe der einzelnen Wellenmomente entspricht. Folglich muss eine Steuerung und/oder Regelung realisiert sein, welche das gewünschte Gesamtantriebsmoment des Kraftfahrzeugs auf die einzelnen Wellenmomente aufteilt. Beispielsweise ist in der DE 10 2004 049 324 A1 ein Verfahren zur Steuerung und Regelung der Fahrdynamik bei Kraftfahrzeugen mit Hybridantrieb offenbart. Dieses Verfahren soll für Antriebe mit mindestens einer elektrischen Maschine und einer Brennkraftmaschine eingesetzt werden. Dabei wird ein Gesamtantriebsmoment so auf die elektrische Maschine und die Brennkraftmaschine aufgeteilt, dass in Summe das von dem Fahrer gewünschte Sollantriebsmoment erzeugt wird. Gleichzeitig soll ein Giermoment und damit ein Eigenlenkverhalten des Kraftfahrzeugs beeinflusst werden. Dabei sind auch Lenkeingriffe vorgesehen. Es wird ein Verteilungsgrad berechnet, der dem Verhältnis der Momente der mindestens einen elektrischen Maschine zu dem Gesamtantriebsmoment entspricht. Es werden also die Momente der elektrischen Maschine und der Brennkraftmaschine festgelegt und an diese weitergeleitet. In bestimmten Betriebssituationen des Antriebs, beispielsweise bei Ausfall der Brennkraftmaschine und/oder der elektrischen Maschine, kann es somit zu Beeinträchtigungen der Betriebssicherheit des Kraftfahrzeugs kommen, da beispielsweise ein Teil eines Antriebs- oder Bremsmoments entfällt und sich das Gesamtantriebsmoment verändert.
Offenbarung der Erfindung
Demgegenüber weist das Verfahren zum Betreiben eines Antriebs eines Kraftfahrzeugs mit den in Anspruch 1 genannten Merkmalen den Vorteil auf, dass die genannte Beeinträchtigung der Betriebssicherheit des Kraftfahrzeugs verhindert wird, indem gefährliche Änderungen des Gesamtantriebsmoments vermieden werden. Dies wird erreicht, indem eine Größe und/oder eine Änderung der Größe eines der Wellenmomente bei einer Steuerung und/oder Regelung der übrigen Wellenmomente berücksichtigt wird. Die tatsächliche Größe eines der Wellenmomente hat also Einfluss auf die Festlegung der übrigen Wellenmomente. Diese können auch entsprechend gesteuert und/oder geregelt werden, sobald eine Änderung der Größe eines der Wellenmomente festgestellt wird. Der Antrieb des Kraftfahrzeugs weist mindestens zwei antreibbare Wellen auf. Beispielsweise können also Vorder- und Hinterachse getrennt mittels jeweils einer Wellenantriebsvorrichtung angetrieben werden, dabei können Vorder- und Hinterachse jeweils ein Achsdifferential aufweisen, oder auch jedes Rad des Kraftfahrzeugs mit einer eigenen Wellenantriebsvorrichtung verbunden sein. Das Gesamtantriebsmoment des Kraftfahrzeugs entspricht dabei im Wesentlichen der Summe der einzelnen Wellenmomente. Auf diese Weise können gefährliche Bethebszustände, welche zumindest auf einen teilweisen Ausfall einer der Wellenantriebsvorrichtungen folgen könnten, im Wesentlichen vermieden werden. Der Ausfall der Wellenantriebsvorrichtung verursacht eine Änderung der Größe eines der Wellenmomente, sodass die damit vorliegende Größe bei der Steuerung und/oder Regelung der übrigen Wellenmomente berücksichtigt werden kann. Es kann beispielsweise vorgesehen sein, dass die übrigen Wellenmomente so eingestellt werden, dass die Änderung der Größe des einen Wellenmoments kompensiert wird. Es ist auch vorstellbar, dass mittels der Steuerung und/oder Regelung das Kraftfahrzeug stabilisiert wird, sollte durch die Änderung der Größe des einen Wellenmoments eine Instabilität hervorgerufen worden sein. Das erfindungsgemäße Verfahren kann vorteilhaft bei Antrieben eingesetzt werden, bei welchen die einzelnen Wellen jeweils eine Wellenantriebsvorrichtung aufweisen und nicht miteinander verbunden sind. Es kann aber auch angewandt werden, wenn mindestens zwei der Wellen über eine Koppelung miteinander verbunden sind, beispielsweise über eine steuerbare mechanische Kupplung, die als Lamellenkupplung im Sinne eines Zentraldifferentials eingesetzt sein kann. Besonders vorteilhaft ist das Verfahren für Elektro- oder Hybridfahrzeuge mit mehreren Antriebsachsen anwendbar. Bei letzteren wirkt meist eine aus Brennkraftmaschine, Getriebe und eventuell elektrischer Maschine bestehende Einheit auf eine der Wellen, während eine oder mehrere weitere Welle(n) von elektrischen Maschinen in Verbindung mit einem Getriebe angetrieben werden. Dabei ist Welle im Sinne von Antriebsachse zu verstehen. Die mit der Brennkraftmaschine verbundene elektrische Maschine kann beispielsweise ein Riemenstartergenerator sein, welcher zum Starten der Brennkraftmaschine und als Generator betrieben wird. Das Verfahren ist jedoch auch für Antriebe geeignet, welche mehrere gleichartige Wellenantriebsvorrichtungen vorsehen.
Eine Weiterbildung der Erfindung sieht vor, dass als zumindest eine der Wellenantriebsvorrichtungen eine Brennkraftmaschine oder eine elektrische Maschine oder eine Hybridantriebsvorrichtung mit zumindest zwei unterschiedlichen Antriebsaggregaten, insbesondere einer elektrischen und einer Brennkraftmaschine, oder eine hydraulische Maschine verwendet wird. Die Welle kann also von Wellenantriebsvorrichtungen unterschiedlichster Art angetrieben sein. Zumindest eine der Wellenantriebsvorrichtungen kann in Form der Brennkraftmaschine, der elektrischen Maschine, der Hybridantriebsvorrichtung oder der hydraulischen Maschine vorliegen. Die Hybridantriebsvorrichtung weist dabei mindestens zwei Antriebsaggregate auf, welche vorzugsweise unterschiedlich und beispielsweise von der elektrischen Maschine und der Brennkraftmaschine gebildet sind.
Eine Weiterbildung der Erfindung sieht vor, dass das Gesamtantriebsmoment im Wesentlichen einem von einem Fahrer des Kraftfahrzeugs und/oder einem Fahrerassistenzsystem vorgegebenen Sollantriebsmoment entspricht. In einem Normalbetrieb des Antriebs soll also das Gesamtantriebsmoment auf einen Fahrerwunsch abgestimmt sein. Dieser kann das Sollantriebsmoment beispielsweise über ein Gaspedal vorgeben. Möglich ist auch ein Einfluss des Fahrerassistenzsystems auf das Gesamtantriebsmoment beziehungsweise das Sollantriebsmoment. Das Fahrerassistenzsystem kann dabei von verschiedenen elektronischen Hilfsmitteln gebildet sein, beispielsweise einem System zum Beibehalten einer konstanten Geschwindigkeit, einem Bremsassistenten, einem System zum Einhalten eines bestimmten Abstandes von weiteren Kraftfahrzeugen oder einem Stabilitätssystem. Sowohl der Fahrer des Kraftfahrzeugs als auch das Fahrerassistenzsystem haben Einfluss auf das Sollantriebsmoment, welches ebenso wie die Größe und/oder die Änderung der Größe eines der Wellenmomente bei der Steuerung und/oder Regelung der übrigen Wellenmomente berücksichtigt wird. In dem Normalbetrieb des Kraftfahrzeugs stellt die Steuerung und/oder Regelung die Wellenmomente so ein, dass das Gesamtantriebsmoment, welches der Summe von an den Wellen anliegenden Wellenmomenten entspricht, gleich oder zumindest nahezu gleich dem Sollantriebsmoment ist.
Eine Weiterbildung der Erfindung sieht vor, dass bei einem Abweichen des Gesamtantriebsmoments von dem Sollantriebsmoment aufgrund einer Limitierung zumindest eines Wellenmoments das Abweichen des Gesamtantriebsmoments stetig und/oder gradientenbegrenzt erfolgt. Liegt eine Limitierung zumindest eines der Wellenmomente vor, so kann der Fall eintreten, dass das Sollantriebsmoment aufgrund der Limitierung nicht erreicht werden kann und das Gesamtantriebsmoment von diesem abweicht. In diesem Fall soll das Abweichen beziehungsweise die Änderung des Gesamtantriebsmoments stetig und/oder gradientenbegrenzt erfolgen. Die Limitierung kann beispielsweise aufgrund von Grenzen der Wellenantriebsvorrichtung (Leistungsgrenzen von Brennkraftmaschine oder Ladestand und/oder Belastung und/oder Leistungsgrenzen eines Energiespeichers beziehungsweise einer Traktionsbatterie), einer Abregelung (beispielsweise Boostabregelung, um einen zur Verfügung stehenden Energieinhalt des Energiespeichers beziehungsweise der Traktionsbatterie auf mehrere Boostvorgänge zu verteilen), eines Notlaufzustands einer Wellenantriebsvorrichtung (beispielsweise aufgrund einer Störung in einem Getriebe), eines Schaltvorgangs in dem Getriebe oder eines Fahrdynamiksystems vorliegen. Letzteres kann einzelne Wellen beeinflussen, beispielsweise um ein Blockieren der Welle beziehungsweise des daran angeordneten Rads zu vermeiden. Die Limitierung kann auch durch ein Durchdrehen beziehungsweise Rutschen der Räder des Kraftfahrzeugs auf einem Untergrund entstehen. In diesem Fall kann nicht ausreichend Kraft auf den Untergrund übertragen werden, um das Sollantriebsmoment zu erreichen. Durch die Limitierung entfällt zumindest ein Teil eines der Wellenmomente, sodass es zu einem sprunghaften Anstieg oder Abfall des Gesamtantriebsmoments kommen kann. Um die Sicherheit des Kraftfahrzeugs zu gewährleisten soll daher das Gesamtantriebsmoment stetig und/oder oder gradientenbegrenzt angepasst beziehungsweise geändert werden. Das bedeutet, dass keine oder zumindest nur geringfügige Sprünge während des Abweichens des Gesamtantriebsmoments nach Auftreten der Limitierung erfolgen. Es kann auch vorgesehen sein, dass eine Geschwindigkeit des Abweichens des Gesamtantriebsmoments von dem Sollantriebsmoment über eine Gradientenbegrenzung festgelegt ist. Das bedeutet, dass sich beispielsweise bei einer schnellen Änderung des Sollantriebsmoments das Gesamtantriebsmoment schnell ändern soll.
Eine Weiterbildung der Erfindung sieht vor, dass nach einem Wegfall der Limitierung das Gesamtantriebsmoment stetig und/oder gradientenbegrenzt an das Sollantriebsmoment angeglichen wird. Entfällt die Limitierung, so können die Wellenmomente mittels der Steuerung und/oder Regelung wieder so eingestellt werden, dass ihre Summe dem Sollantriebsmoment entspricht. Um eine sprunghafte Änderung des Gesamtantriebsmoments, welche die Sicherheit des Kraftfahrzeugs beeinflussen könnte, zu verhindern, wird das Gesamtantriebsmoment stetig und/oder gradientenbegrenzt verändert. Das bedeutet, dass die Abweichung des Gesamtantriebsmoments von dem Sollantriebsmoment stetig und/oder gradientenbegrenzt verringert wird. Die Veränderung erfolgt solange, bis das Gesamtantriebsmoment wieder im Wesentlichen dem Sollantriebsmoment entspricht. Auf diese Weise hat der Fahrer des Kraftfahrzeugs ausreichend Zeit, um sich auf die geänderten Betriebsbedingungen einzustellen und eventuell das Sollantriebsmoment anzupassen. Das Anpassen des Sollantriebsmoments kann in diesem Fall selbstverständlich ebenfalls mittels des Fahrerassistenzsystems vorgenommen werden.
Eine Weiterbildung der Erfindung sieht vor, dass zur stetigen und/oder gradientenbegrenzten Änderung des Gesamtantriebsmoments zumindest eine der Wellenantriebsvorrichtungen in einem Überlastbereich und/oder in einem ungünstigen Betriebspunkt betrieben wird. Während des Normalbetriebs des Kraftfahrzeugs, also ohne Vorliegen der Limitierung, sollen die Wellenantriebsvorrichtungen so betrieben werden, dass weder eine Überlastung vorliegt noch die Wellenantriebsvorrichtung in einem ungünstigen Betriebspunkt betrieben wird. Letzterer kann beispielsweise durch einen hohen spezifischen Kraftstoffverbrauch und/oder hohe Emissionswerte gekennzeichnet sein. Liegt dagegen die Limitierung vor und kann aufgrund der Limitierung zumindest eines der Wellenmomente das Sollantriebsmoment, insbesondere ohne Überlastung beziehungsweise Vorliegen ungünstiger Betriebspunkte, nicht erreicht werden, so kann zumindest eine der Wellenantriebsvorrichtungen in dem Überlastbereich und/oder dem ungünstigen Betriebspunkt betrieben werden, um die stetige und/oder gradientenbegrenzte Änderung des Gesamtantriebsmoments zu ermöglichen. Beispielsweise wird bei Ausfall einer der Wellenantriebsvorrichtungen eine weitere Wellenantriebsvorrichtung mit einer höheren Leistung betrieben, bei der lediglich ein kurzfristiger Betrieb ohne Beschädigung der Wellenantriebsvorrichtung möglich ist und gleichzeitig ein hoher spezifischer Kraftstoffverbrauch vorliegt. Während des derartigen Betriebs der Wellenantriebsvorrichtung wird das Gesamtantriebsmoment stetig und/oder gradientenbegrenzt geändert, sodass das Gesamtantriebsmoment auf einen Wert eingestellt wird, welcher einen Betrieb der Wellenantriebsvorrichtung in einem dauerhaft zulässigen Bereich ermöglicht. Auf diese Weise kann durch den kurzzeitigen Betrieb der Wellenantriebsvorrichtung außerhalb des dauerhaft zulässigen und/oder gewünschten Bereichs die Sicherheit des Kraftfahrzeugs deutlich erhöht werden. Da der Betrieb der Wellenantriebsvorrichtung lediglich kurzfristig in dem nicht gewünschten Bereich erfolgt, können an dieser keine Beschädigungen auftreten.
Eine Weiterbildung der Erfindung sieht vor, dass zur stetigen und/oder gradientenbegrenzten Änderung des Gesamtanthebsmoments das
Gesamtanthebsmoment gefiltert und/oder entsprechend einer Rampe verändert wird. Die Änderung des Gesamtantriebsmoments soll sprungfrei und langsam erfolgen. Dies kann erreicht werden, indem ein Filter verwendet wird und/oder das Gesamtantriebsmoment entsprechend dem Verlauf der Rampe, welcher vorgegeben sein kann, verändert wird.
Eine Weiterbildung der Erfindung sieht vor, dass die Änderung des Gesamtantriebsmoments so erfolgt, dass ein Betrag des Gesamtantriebsmoments geringer ist als ein Betrag des Sollantriebsmoments und/oder das Gesamtantriebsmoment gegen null läuft. Während der Änderung des Gesamtantriebsmoments soll also dessen absoluter Wert den des Sollantriebsmoments nicht übersteigen. Das geänderte Gesamtantriebsmoment soll also stets zwischen dem ursprünglichen Wert des Gesamtantriebsmoments beziehungsweise des Sollantriebsmoments und einem Nullwert liegen. Auf diese Weise kann es nicht zu einer für den Fahrer überraschenden Erhöhung oder Verringerung des Gesamtantriebsmoments kommen. Es kann daher auch vorgesehen sein, dass das Gesamtantriebsmoment gegen null läuft. Dies kann beispielsweise bei einem besonders schweren Fehler in einer der Wellenantriebsvorrichtungen vorgesehen sein, um das Kraftfahrzeug sicher anzuhalten. Das bedeutet, dass wenn sich das Fahrzeug mit positivem Gesamtantriebsmoment in einem Zugbetrieb befindet, sich das Gesamtantriebsmoment in Richtung null vermindern soll, sobald eine Limitierung vorliegt, um eine ungewollte Beschleunigung des Fahrzeugs zu vermeiden. Umgekehrt soll sich bei einem negativen Gesamtantriebsmoment, das Kraftfahrzeug befindet sich also im Schubbetrieb, das Gesamtantriebsmoment vorzugsweise in Richtung null verändern, sobald die Limitierung auftritt, um ein plötzliches Verzögern zu verhindern.
Eine Weiterbildung der Erfindung sieht vor, dass das Sollantriebsmoment gefiltert ist. Das Sollantriebsmoment entspricht also nicht direkt der Vorgabe des Fahrers des Kraftfahrzeugs, sondern ist lediglich an dieses gekoppelt. Es ist vorgesehen, dass die Vorgabe des Fahrers und/oder des Fahrerassistenzsystems gefiltert wird, bevor das Gesamtantriebsmoment des Kraftfahrzeugs darauf angepasst wird. Dies soll verhindern, dass Sprünge und/oder zu schnelle Änderungen des Gesamtantriebsmoments des Kraftfahrzeugs auftreten können.
Eine Weiterbildung der Erfindung sieht vor, dass für zumindest eine der Wellen ein Minimalmoment und/oder ein Maximalmoment festgelegt wird. Der an die Welle angeschlossenen Wellenantriebsvorrichtung wird also ein Momentenbereich vorgegeben, in welchem sie betrieben wird. Das Wellenmoment wird derart gesteuert und/oder geregelt, dass es größer als das Minimalmoment oder kleiner als das Maximalmoment ist oder zwischen dem Minimalmoment und dem Maximalmoment liegt. Das Minimalmoment und/oder das Maximalmoment kann/können anhand des minimal und/oder maximal erreichbaren Moments der Wellenantriebsvorrichtung bestimmt sein und/oder einen günstigen Betriebsbereich beschreiben. Minimalmoment und/oder Maximalmoment können also so gewählt sein, dass ein Betrieb der Wellenantriebsvorrichtung in einem günstigen Betriebspunkt vorliegt, beispielsweise mit einem geringen spezifischen Kraftstoffverbrauch und/oder geringer Schadstoffabgabe. Liegt eine Limitierung vor, so kann von diesen Idealmomenten abgewichen werden. Das bedeutet, dass das Minimalmoment und/oder das Maximalmoment auf andere Werte eingestellt sein können.
Eine Weiterbildung der Erfindung sieht vor, dass das Minimalmoment und/oder Maximalmoment in Abhängigkeit von einem von der Wellenantriebsvorrichtung bereitstellbaren Momentenbereich und/oder einer Abregelung einer der Wellenantriebsvorrichtungen und/oder einem Notlauf-/Fehlerzustand und/oder einem Schaltvorgang in einem Getriebe und/oder Werten einer Fahrdynamikregelung eingestellt wird. Das Minimalmoment und/oder Maximalmoment kann also auf den bereitstellbaren Momentenbereich der Wellenantriebsvorrichtung abgestimmt sein, beziehungsweise auf einen optimalen Momentenbereich derselben. Eine Einstellung des Minimalmoments und/oder des Maximalmoments kann auch aufgrund einer Abregelung einer der Wellenantriebsvorrichtungen vorgenommen werden. Die Abregelung kann beispielsweise aufgrund einer Fehlfunktion oder einem ungünstigen Betriebszustand (zum Beispiel Überhitzung) vorgesehen sein. Die Abregelung kann auch in Form einer Boostabregelung vorgesehen sein, um den zur Verfügung stehenden Energieinhalt des elektrischen Energiespeichers beziehungsweise der Traktionsbatterie auf mehrere Boostvorgänge zu verteilen. Weiterhin fließen erkannte Notlauf-/Fehlerzustände und Schaltvorgänge in die Werte des Minimalmoments und/oder Maximalmoments ein. Vorteilhaft ist es auch, wenn der zulässige Momentenbereich, also der von Minimalmoment und/oder Maximalmoment begrenzte Bereich, in Abhängigkeit von Werten einer Fahrdynamikregelung eingestellt wird. Dies kann vorgesehen sein, um die Stabilität des Kraftfahrzeugs zu erhöhen.
Eine Weiterbildung der Erfindung sieht vor, dass der Momentenbereich der Wellenantriebsvorrichtung in Abhängigkeit von den Antriebsaggregaten der Hybridantriebsvorrichtung festgelegt wird. Ist als Wellenantriebsvorrichtung die Hybridantriebsvorrichtung vorgesehen, so wird der Momentenbereich auf die Antriebsaggregate der Hybridantriebsvorrichtung abgestimmt. Das bedeutet, dass nicht lediglich eines der Antriebsaggregate, sondern die Gesamtheit betrachtet wird. Beispielsweise erfolgt die Festlegung des Momentenbereichs auf einen Momentenbereich, welcher von einer Brennkraftmaschine und einer elektrischen Maschine definiert ist.
Eine Weiterbildung der Erfindung sieht vor, dass der Betrieb der Wellenantriebsvorrichtung in einem Überlastbereich und/oder in einem ungünstigen Betriebspunkt mittels Anpassen des Minimalmoments und/oder Maximalmoments zugelassen wird. In dem Normalbetrieb sind Minimalmoment und/oder Maximalmoment so festgelegt, dass der Betrieb in dem Überlastbereich und/oder dem ungünstigen Betriebspunkt nicht zugelassen ist. Sollte sich beispielsweise aufgrund der Limitierung die Notwendigkeit ergeben, zumindest eine der Wellenantriebsvorrichtungen in dem Überlastbereich und/oder dem ungünstigen Betriebspunkt zu betreiben, so wird das Minimalmoment und/oder das Maximalmoment entsprechend angepasst, sodass der Wellenantriebsvorrichtung der Betrieb in dem entsprechenden Bereich erlaubt ist. Eine Weiterbildung der Erfindung sieht vor, dass bei der Steuerung und/oder Regelung der übrigen Wellenmomente eine Trägheit bewegter Elemente, insbesondere der Wellen und/oder von den Wellen zugeordneten Rädern und/oder der Antriebsaggregate, berücksichtigt wird. Bei einer Beschleunigung, beispielsweise einer Drehbeschleunigung, insbesondere der Wellen, wird ein Anteil des erzeugten Wellenmoments benötigt, um die träge Masse der rotierenden Welle zu beschleunigen. Dies gilt äquivalent ebenso für eine Verzögerung der Welle. Dies bedeutet, dass das Gesamtantriebsmoment um diesen Anteil verringert ist. Eine hohe Drehbeschleunigung kann auftreten, wenn ein Fahrdynamiksystem oder ein Schaltvorgang des Getriebes das Minimal- oder Maximalmoment einer der Wellen beeinflussen. Der Anteil, um welchen das Gesamtantriebsmoment verringert ist, soll nun nicht bei der Steuerung und/oder Regelung der übrigen Wellenmomente berücksichtigt werden, da er effektiv nicht dem Antrieb des Kraftfahrzeugs zur Verfügung steht. Dabei wird insbesondere auf den Anteil abgestellt, welcher an den dem einen Wellenmoment zuzuordnenden Elementen vorliegt.
Eine Weiterbildung der Erfindung sieht vor, dass die Trägheit berücksichtigt wird, indem ein Tiefpassfilter verwendet wird und/oder die Beschleunigung und die Trägheit der bewegten Elemente ermittelt werden. Um die vorstehend beschriebene Trägheit auszugleichen, kann in einer einfach zu realisierenden Umsetzung ein Tiefpassfilter verwendet werden. Dieser kann auf die zur Steuerung und/oder Regelung verwendeten Größen, wie beispielsweise die Größe und/oder die Änderung der Größe und/oder während der Steuerung und/oder Regelung berechneten Zwischenwerte, angewandt werden, um die Dynamik eines Steuerungs- und/oder Regelungssystems zu reduzieren. Alternativ können die Beschleunigungen, insbesondere Drehbeschleunigungen, und die Trägheitsmomente, beispielsweise der Wellen und/oder von den Wellen zugeordneten Rädern und/oder der Antriebsaggregate, ermittelt werden. Basierend auf diesen Werten kann eine exakte Korrektur um den
Drehmomentanteil, welcher durch die Beschleunigung und/oder Verzögerung nicht zur Verfügung steht, vorgenommen werden.
Die Erfindung betrifft ferner eine Antriebsvorrichtung eines Kraftfahrzeugs, insbesondere zur Durchführung des Verfahrens gemäß den vorstehenden Ausführungen, mit mindestens zwei jeweils mittels einer Wellenantriebsvorrichtung antreibbaren Wellen, wobei ein Gesamtantriebsmoment des Kraftfahrzeugs im Wesentlichen der Summe von an den Wellen anliegenden Wellenmomenten entspricht. Dabei ist vorgesehen, dass aufgrund einer Größe und/oder Änderung der Größe eines der Wellenmomente eine Steuerung und/oder Regelung der übrigen Wellenmomente erfolgt. Die Antriebsvorrichtung weist dabei zumindest zwei unterschiedliche oder gleichartige Antriebsaggregate auf. Die Antriebsvorrichtung kann beispielsweise eine Hybridantriebsvorrichtung mit mindestens zwei unterschiedlichen Antriebsaggregaten sein. Vorteilhaft ist es dabei, wenn zumindest eine elektrische Maschine und zumindest eine Brennkraftmaschine der Hybridantriebsvorrichtung zugeordnet sind.
Die Erfindung umfasst weiter ein elektronisches Steuergerät, insbesondere zur Durchführung des Verfahrens und/oder zur Steuerung einer Antriebsvorrichtung gemäß den vorstehenden Ausführungen, zur Steuerung und/oder Regelung von Wellenmomenten der mindestens zwei jeweils mittels einer Wellenantriebsvorrichtung antreibbaren Wellen, wobei ein Gesamtantriebsmoment des Kraftfahrzeugs im Wesentlichen der Summe von and den Wellen anliegenden Wellenmomenten entspricht. Es ist vorgesehen, dass eine Größe und/oder Änderung der Größe eines der Wellenmomente bei der Steuerung und/oder Regelung der übrigen Wellenmomente berücksichtigt wird. Das Steuergerät dient somit zur Umsetzung des beschriebenen Verfahrens und/oder der Regelung/Steuerung der Antriebsvorrichtung. Diese kann als Hybridantriebsvorrichtung ausgeführt sein und beispielsweise, wie bereits angeführt, zumindest eine Brennkraftmaschine und zumindest eine elektrische Maschine, aufweisen.
Kurze Beschreibung der Zeichnungen
Die Erfindung wird im Folgenden anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert, ohne dass eine Beschränkung der Erfindung erfolgt. Es zeigen: Figur 1 die schematische Darstellung eines Kraftfahrzeugs mit einem
Antrieb und mit zwei mittels Wellenantriebsvorrichtungen antreibbaren Wellen, und
Figur 2 ein Schema, das die Koordination von an den Wellen anliegenden
Wellenmomenten beschreibt.
Ausführungsform(en) der Erfindung
Die Figur 1 zeigt eine schematische Darstellung eines Kraftfahrzeugs 1 mit einem Antrieb 2 der mittels einer ersten Wellenantriebsvorrichtung 3 eine erste Welle 4 und darüber Räder 5 antreibt sowie einer zweiten Wellenantriebsvorrichtung 6, die über eine Welle 7 Räder 8 antreibt. Die erste Wellenantriebsvorrichtung 3 weist eine elektrische Maschine 9, eine Brennkraftmaschine 10 und ein Getriebe 11 auf. Die elektrische Maschine 9 und die Brennkraftmaschine 10 sind über geeignete Mittel miteinander gekoppelt. Die Einheit aus elektrischer Maschine 9 und Brennkraftmaschine 10 ist über eine Kupplung 12 mit dem Getriebe 11 verbunden, welches eine Drehzahl- beziehungsweise Momentenübersetzung vornimmt und auf seiner Ausgangsseite mit der Welle 4 wirkverbunden ist. Die Welle 4 ist also über die Kombination der elektrischen Maschine 9 und der Brennkraftmaschine 10 antreibbar. Die zweite Wellenantriebsvorrichtung 6 weist eine elektrische Maschine 13 auf, die über eine Kupplung 14 mit einem als einfache Übersetzung 15 ausgebildeten Getriebe 16 mit der Welle 7 verbunden ist. Die Welle 7 ist somit über die elektrische Maschine 13 antreibbar. Die elektrische Maschine 13 ist weiterhin über eine Leistungselektronik 17 an eine als Energiespeicher 18 dienende Traktionsbatterie 19 angeschlossen. Es kann festgehalten werden, dass die erste Wellenantriebsvorrichtung 3, die über die elektrische Maschine 9 und die Brennkraftmaschine 10 verfügt, eine Hybridantriebsvorrichtung 20 darstellt. Die Räder 5 und 8 stehen mit einem nicht dargestellten Untergrund in Verbindung, auf welchem sich das Kraftfahrzeug 1 fortbewegen kann. Die Räder 5 und 8 beziehungsweise die erste Wellenantriebsvorrichtung 3 und die zweite Wellenantriebsvorrichtung 6 stehen somit über diesen Untergrund miteinander in Wirkverbindung. Das bedeutet, dass sich die von der ersten und der zweiten Wellenantriebsvorrichtung 3 und 6 erzeugten Wellenmomente zu dem Gesamtantriebsmonnent des Kraftfahrzeugs 1 summieren. Dabei können die Wellenmomente jeweils positiv oder negativ sein. Es kann beispielsweise vorgesehen sein, das Kraftfahrzeug 1 mittels der Brennkraftmaschine 10 anzutreiben, während die elektrische Maschine 13 in einem Generatormodus betrieben wird und somit die Traktionsbatterie 19 auflädt. Die elektrische Maschine 9 ist als Riemenstartergenerator 21 ausgelegt. Über diesen kann die Brennkraftmaschine 10 gestartet werden und während eines Betriebs der Brennkraftmaschine 10 Strom für ein nicht dargestelltes Bordnetz des Kraftfahrzeugs 1 erzeugt werden. Die Summe der auf die beiden Räder 5 aufgebrachten Momente entspricht dem von der ersten
Wellenantriebsvorrichtung 3 erzeugten Wellenmoment, die Summe der auf die beiden Räder 8 aufgebrachten Momente dem von der zweiten Wellenantriebsvorrichtung 6 erzeugten Wellenmoment. Die Getriebe 11 und 16 enthalten nicht dargestellte Achsdifferentiale. In den meisten Fahrsituationen wird das Wellenmoment jeweils zur Hälfte auf die beiden Räder aufgeteilt, auch bei unterschiedlichen Raddrehzahlen. Eine davon abweichende Aufteilung kann sich ergeben, falls das Achsdifferential eine Sperrwirkung aufweist. Alternativ können anstatt der elektrischen Maschine 13 zwei einzelne elektrische Maschinen eingesetzt werden, von denen jede eines der Räder 8 antreibt. Ein von einem Fahrer des Kraftfahrzeugs 1 oder einem nicht dargestellten
Fahrerassistenzsystem vorgegebenes, aus Komfortgründen eventuell gefiltertes Sollantriebsmoment wird auf die Wellenmomente der beiden Wellen 4 und 7 aufgeteilt.
Die Figur 2 zeigt ein Schema, das die Koordination der an den Wellen 4 und 7 anliegenden Wellenmomente veranschaulicht. An einem Eingang 22 einer Berechnungseinheit 23 wird ein Sollantriebsmoment MSOιι vorgegeben. Dieses ist beispielsweise abhängig von einem Wunsch des Fahrers des Kraftfahrzeugs 1 oder dem Fahrerassistenzsystem. Die Berechnungseinheit 23 teilt das Sollantriebsmoment in Wellensollmomente MAi,Soiι und MA2,soiι auf. Ersteres wird an einem ersten Ausgang 25, letzteres an einem zweiten Ausgang 24 der Berechnungseinheit 23 zur Verfügung gestellt. Die beiden Werte MAi,Soiι und MA2,SOII dienen als Eingangsgröße einer Begrenzereinheit 26. Dieser werden an einem Eingang 27 eine Größe MAi,mιn (Minimalmoment der Welle 4 beziehungsweise der Wellenantriebsvorrichtung 3), an einem Eingang 28 ein Moment MAi,max (Maxinnalnnonnent der Welle 4 beziehungsweise der Wellenantriebsvorrichtung 3), an einem Eingang 29 ein Moment MA2,mιn (Minimalmoment der Welle 7 beziehungsweise der Wellenantriebsvorrichtung 6) und an einem Eingang 30 ein Moment MA2,max (Maximalmoment der Welle 7 5 beziehungsweise der Wellenantriebsvorrichtung 6) zur Verfügung gestellt. Die Begrenzereinheit 26 weist einen ersten Begrenzer 31 , einen zweiten Begrenzer 32 und einen dritten Begrenzer 33 auf. Die Eingänge 27 und 28 sind an den ersten Begrenzer 31 , die Eingänge 29 und 30 jeweils an den zweiten und den dritten Begrenzer 32 und 33 angeschlossen. Der zweite Ausgang 24 der io Berechnungseinheit 23 ist an den zweiten Begrenzer 32 angeschlossen. Das dort anliegende Signal MA2,soiι wird daher mit den an den Eingängen 29 und 30 anliegenden Signalen MA2,mιn und MA2,max limitiert. An einem Ausgang 34 des zweiten Begrenzers liegt daher ein limitiertes Moment zwischen (einschließlich) MA2,mιn und MA2,max vor. An einem Knoten 35 wird eine Differenz zwischen
15 diesem limitierten Moment und dem Moment MA2,Soiι berechnet. An einem weiteren Knoten 36 wird diese berechnete Differenz zu dem an dem ersten Ausgang 25 der Berechnungseinheit 23 anliegenden Moment MAI ,SOII hinzuaddiert. Das Ergebnis dieser Addition liegt an dem Eingang 37 des ersten Begrenzers 31 an. Die Knoten 35 und 36 bilden eine erste Querverbindung 38.
20 Diese dient auf die beschriebene Weise dazu, die Differenz zwischen dem Eingangs- und Ausgangsmoments des zweiten Begrenzers 32 dem an dem ersten Ausgang 25 der Berechnungseinheit 23 anliegenden Moment hinzuzuaddieren. Der erste Begrenzer 31 limitiert den durch die Addition entstandenen Wert, der an dem Eingang 37 anliegt, mit den an den Eingängen
25 27 und 28 anliegenden Werten MAi,mιn und MAi,max. Das Ergebnis dieser Limitierung wird an dem Ausgang 39 ausgegeben. An einem Knoten 40 wird, analog zu dem Knoten 35, eine Differenz zwischen dem Ein- und Ausgangssignal des ersten Begrenzers 31 , also den an dem Eingang 37 und dem Ausgang 39 vorliegenden Werten, berechnet. Diese Differenz wird an
30 einem Knoten 41 dem an dem Ausgang 34 vorliegenden Moment hinzuaddiert. Die Knoten 40 und 41 stellen eine weitere Querverbindung 42 dar. Das durch die Addition an dem Knoten 41 entstandene Signal wird an dem Eingang 43 als Eingangssignal des dritten Begrenzers 33 verwendet. An diesem liegen auch die an den Eingängen 29 und 30 anliegenden Signale MA2,mm und MA2,max an. Der
35 Begrenzer 33 limitiert das an dem Eingang 43 vorliegende Signal mit den beiden letztgenannten Werten. Der limitierte Wert liegt an dem Ausgang 44 vor. Das an dem Ausgang 39 vorliegende Signal wird als MAi,soiι,hm und das an Ausgang 44 vorliegende Signal als MA2,soiι,hm bezeichnet. Diese stellen Ausgangssignale der Begrenzereinheit 26 dar. Die Wellensollmomente MAi,Soiι und MA2,soiι werden also in den Begrenzern 31 , 32 und 33 mit den jeweiligen Minimalmomenten MAi,mιn und MA2,mιn sowie den Maximalmomenten MAi,max und MA2,max limitiert. Die Querverbindungen 38 und 42 sorgen dafür, dass der an einer Welle nicht darstellbare Momentenanteil (Differenz zwischen dem unlimitierten und dem limitierten Wellensollmoment) auf die jeweils andere Welle umgelagert wird. Der Ausgang 39 des ersten Begrenzers 31 ist an eine Berechnungseinheit 45 angeschlossen. Die Minimal-/Maximalmomente MAi,mιn, MA2,mιn, MAi,max, MA2,max werden anhand von von den Wellenantriebsvorrichtungen 3 und 6 bereitstellbaren Momentenbereichen, Abregelungen, Notlauf-/Fehlerzuständen der Wellenantriebsvorrichtungen 3 und 6, Schaltvorgängen in den Getrieben 11 und 16 sowie von Fahrdynamiksystemen bestimmt. Dabei sind Übersetzungen der Getriebe 11 und 16 zu beachten. Bei mehreren Antriebsaggregaten einer Wellenantriebsvorrichtung 3, 6 sind die einzelnen Aggregatgrenzen zusammenzufassen, also beispielsweise sowohl ein Momentbereich der elektrischen Maschine 9 als auch der Brennkraftmaschine 10 zu berücksichtigen. Fällt zum Beispiel die elektrische Maschine 13 der zweiten
Wellenantriebsvorrichtung 6 infolge eines Fehlerzustandes plötzlich aus, so springen das Minimalmoment MA2 mιn und das Maximalmoment MA2 max der zweiten Wellenantriebsvorrichtung 6 auf Null oder auf das beim Drehen der Wellenantriebsvorrichtungen 6 entstehende Reib- beziehungsweise Verlustmoment. Die Querverbindung 38 weist dann einen an der zweiten Wellenantriebsvorrichtung 6 nicht darstellbaren Momentenanteil der ersten Wellenantriebsvorrichtung 3 zu. Die Berechnungseinheit 45 teilt das limitierte Wellensollmoment MAi,SOιι,ιιm in Momente MBKM,I und Meι,i auf. Ersteres stellt ein Moment der Brennkraftmaschine 10, letzteres ein Moment der elektrischen Maschine 9 dar. Dabei berücksichtigt die Berechnungseinheit 45 eine vorliegende Übersetzung des Getriebes 11. Die miteinander verbundenen elektrische Maschine 9 und Brennkraftmaschine 10 geben das von ihnen erzeugte Moment an das Getriebe 11 ab. Dieses sorgt für eine Drehzahl- /Momentenumsetzung und gibt das übersetzte Moment an die Welle 4 beziehungsweise die Räder 5 ab. Das aus der Umsetzung des Getriebes 11 resultierende Moment wird als Wellenmoment MAi bezeichnet. In den meisten Fahrsituationen teilt sich dieses Moment MAi gleichmäßig auf die Räder 5 auf, sodass an beiden Rädern 5 jeweils V2 MAi an den Untergrund übertragen wird. Dem gegenüber wird das Signal an dem Ausgang 44 als Eingangssignal einer Berechnungseinheit 46 verwendet. Diese berechnet aus dem Wert MA2,soiι,hm ein Moment Meι,2, welches von der elektrischen Maschine 13 erzeugt werden soll. Dabei wird die Übersetzung des Getriebes 16 von der Berechnungseinheit 46 berücksichtigt. Die elektrische Maschine 13 erzeugt somit das Moment Meι,2, welches durch das Getriebe 16 auf das Wellenmoment MA2 umgesetzt wird. Dieses Moment MA2 liegt an der Welle 7 beziehungsweise den Rädern 8 an. Wie vorstehend beschrieben verteilt sich das Moment MA2 in den meisten Fahrsituationen des Kraftfahrzeugs 1 gleichmäßig auf die Räder 8, sodass an beiden Rädern jeweils das Moment V2 MA2 vorliegt.
Im quasistationären Betrieb, das heißt bei geringen Drehbeschleunigungen an den rotierenden Teilen der Aggregate der Wellenantriebsvorrichtung 3 (elektrische Maschine 9, Brennkraftmaschine 10, Getriebe 11 , Kupplung 12) entspricht das Wellenmoment MAi näherungsweise dem limitierten Wellensollmoment MAi,SOιι,ιιm- Bei hohen Drehbeschleunigungen werden Anteile der erzeugten Momente benötigt, um die trägen Massen der rotierenden Teile zu beschleunigen oder zu verzögern. Das Wellenmoment MAi weicht um diese Trägheitsanteile vom limitierten Wellensollmoment MAi,SOιι,ιιm ab. Entsprechendes gilt für die Wellenantriebsvorrichtung 6; das Wellenmoment MA2 weicht bei hohen Drehbeschleunigungen vom limitierten Wellensollmoment MA2,Soiι,hm ab. Insbesondere wenn Fahrdynamiksysteme oder Schaltvorgänge in den Getrieben 11 , 16 das limitierte Wellensollmoment MAi,SOιι,ιιm oder das limitierte Wellensollmoment MA2,Soiι,hm beeinflussen, können hohe Drehbeschleunigungen vorliegen. Zum Beispiel, wenn ein Fahrdynamiksystem das limitierte Wellensollmoment MAi,SOιι,ιιm durch Erhöhen der Grenze MAi,mιn anhebt, um ein Blockieren der Räder 5 zu vermeiden und die rotierenden Teile der Aggregate der Wellenantriebsvorrichtungen 3 zu beschleunigen. Das wirksame Wellenmoment MAi unterscheidet sich dann von dem limitierten Wellensollmoment MAi,SOιι,ιιm um die Trägheitsanteile. In einer Weiterbildung des Ausführungsbeispiels werden entsprechende Trägheitsanteile in den Querverbindungen 38 und 42 korrigiert, so dass nur die wirksamen Momentendifferenzen auf die jeweils andere Welle umgelagert werden. Im einfachen Fall können dazu die Ausgangssignale der Knoten 35 und 40 tiefpassgefiltert werden, um die Dynamik zu reduzieren. Eine exakte Korrektur lässt sich durch Ermitteln der Drehbeschleunigungen und der Trägheitsmomente der rotierenden Teile erreichen. Eine ähnliche Korrektur kann auch erfolgen, um Trägheiten der Räder oder eine Ansteuerdynamik der Antriebsaggregate zu kompensieren.
Über die an den Eingängen 27, 28, 29 und 30 anliegenden Größen kann das Verhalten der Begrenzereinheit 26 eingestellt werden. Normalerweise sind die Momente MAi,mιn, MA2,max, MA2,mιn, und MA2,max so eingestellt, dass die Wellenantriebsvorrichtungen 3 und 6 sich in einem Normalbetriebsbereich, das heißt nicht in einem Überlastbereich und/oder in einem ungünstigen Betriebspunkt, befinden. Ändert sich an einer Wellenantriebsvorrichtung 3 oder 6 der Normalbetriebsbereich oder ergibt sich eine Limitierung eines der an den Wellen 4 und 7 anliegenden Wellenmomente, so können die Minimal- und Maximalmomente so eingestellt werden, dass die Wellenantriebsvorrichtungen 3 und 6 zumindest kurzfristig in einem Überlastbereich und/oder ungünstigen Betriebspunkt betrieben werden dürfen. Auf diese Weise kann eine plötzliche Veränderung eines Gesamtantriebsmoments des Kraftfahrzeugs 1 , welches sich aus den Wellenmomenten MAi und MA2 der Wellen 4 und 7 zusammensetzt, verhindert werden. Auf diese Weise wird die Sicherheit des Kraftfahrzeugs 1 , insbesondere bei einer vorliegenden Limitierung, erhöht. Die Limitierung einer der Wellenantriebsvorrichtungen 3 und 6 kann beispielsweise aufgrund von Momentenbereichen, Abregelungen, Notlaufzuständen, Schaltvorgängen und/oder Eingaben von Fahrdynamiksystemen vorliegen. In diesem Fall kann es vorkommen, dass das Gesamtantriebsmoment des Kraftfahrzeugs 1 , also MA = MAi + MA2, von dem vorgegebenen Sollantriebsmoment MA, son, welches an dem Eingang 22 anliegt, abweicht. In diesem Fall soll dafür gesorgt werden, dass das Gesamtantriebsmoment des Kraftfahrzeugs stetig und/oder gradientenbegrenzt verändert wird, sodass keine plötzlichen Änderungen des Gesamtantriebsmoments auftreten können.

Claims

Ansprüche
1. Verfahren zum Betreiben eines Antriebs (2) eines Kraftfahrzeugs (1 ), der mindestens zwei jeweils mittels einer Wellenantriebsvorrichtung (3,6) antreibbare Wellen (4,7) aufweist, wobei ein Gesamtantriebsmoment des
Kraftfahrzeugs (1 ) im Wesentlichen der Summe von an den Wellen (4,7) anliegenden Wellenmomenten entspricht, dadurch gekennzeichnet, dass eine Größe und/oder eine Änderung der Größe eines der Wellenmomente bei einer Steuerung und/oder Regelung der übrigen Wellenmomente berücksichtigt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als zumindest eine der Wellenantriebsvorrichtungen (3,6) eine Brennkraftmaschine (10) oder eine elektrische Maschine (9,13) oder eine Hybridantriebsvorrichtung (20) mit zumindest zwei unterschiedlichen
Antriebsaggregaten, insbesondere einer elektrischen Maschine (9) und einer Brennkraftmaschine (10), oder eine hydraulische Maschine verwendet wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gesamtantriebsmoment im Wesentlichen einem von einem Fahrer des Kraftfahrzeugs (1 ) und/oder einem Fahrerassistenzsystem vorgegebenen Sollantriebsmoment entspricht.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einem Abweichen des Gesamtantriebsmoments von dem Sollantriebsmoment aufgrund einer Limitierung zumindest eines Wellenmoments das Abweichen des Gesamtantriebsmoments stetig und/oder gradientenbegrenzt erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach einem Wegfall der Limitierung das Gesamtantriebsmoment stetig und/oder gradientenbegrenzt an das Sollantriebsmoment angeglichen wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur stetigen und/oder gradientenbegrenzten Änderung des Gesamtantriebsmoments zumindest eine der Wellenantriebsvorrichtungen (3,6) in einem Überlastbereich und/oder in einem ungünstigen Betriebspunkt betrieben wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur stetigen und/oder gradientenbegrenzten Änderung des Gesamtantriebsmoments das Gesamtantriebsmoment gefiltert und/oder entsprechend einer Rampe verändert wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Änderung des Gesamtantriebsmoments so erfolgt, dass ein Betrag des Gesamtantriebsmoments geringer ist als ein Betrag des Sollantriebsmoments und/oder das Gesamtantriebsmoment gegen null läuft.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Sollantriebsmoment gefiltert ist.
10.Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für zumindest eine der Wellen (4,7) ein Minimalmoment und/oder ein Maximalmoment festgelegt wird.
11.Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Minimalmoment und/oder Maximalmoment in Abhängigkeit von einem von der Wellenantriebsvorrichtung (3,6) bereitstellbaren Momentenbereich und/oder einer Abregelung einer der Wellenantriebsvorrichtungen (3,6) und/oder einem Notlauf-/Fehlerzustand und/oder einem Schaltvorgang in einem Getriebe und/oder Werten einer
Fahrdynamikregelung eingestellt wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Momentenbereich der Wellenantriebsvorrichtung (3,6) in Abhängigkeit von Antriebsaggregaten der Hybridantriebsvorrichtung (20) festgelegt wird.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Betrieb der Wellenantriebsvorrichtung (3,6) in einem Überlastbereich und/oder in einem ungünstigen Betriebspunkt mittels Anpassen des Minimalmoments und/oder Maximalmoments zugelassen wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Steuerung und/oder Regelung der übrigen Wellenmomente eine Trägheit bewegter Elemente, insbesondere der Wellen und/oder von den Wellen zugeordneten Rädern und/oder der Antriebsaggregate, berücksichtigt wird.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Trägheit berücksichtigt wird, indem ein Tiefpassfilter verwendet wird und/oder die Beschleunigung und die Trägheit der bewegten Elemente ermittelt werden.
16. Antriebsvorrichtung (20) eines Kraftfahrzeugs (1 ), insbesondere zur Durchführung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche, mit mindestens zwei jeweils mittels einer Wellenantriebsvorrichtung (3,6) antreibbaren Wellen (4,7), wobei ein Gesamtantriebsmoment des Kraftfahrzeugs (1 ) im Wesentlichen der
Summe von an den Wellen (4,7) anliegenden Wellenmomenten entspricht, dadurch gekennzeichnet, dass aufgrund einer Größe und/oder Änderung der Größe eines der Wellenmomente eine Steuerung und/oder Regelung der übrigen Wellenmomente erfolgt.
17. Elektronisches Steuergerät, insbesondere zur Durchführung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche und/oder zur Steuerung einer Antriebsvorrichtung (20) nach Anspruch 16, zur Steuerung und/oder Regelung von Wellenmomenten von mindestens zwei jeweils mittels einer Wellenantriebsvorrichtung (3,6) antreibbaren Wellen (4,7), wobei ein Gesamtantriebsmonnent des Kraftfahrzeugs (1 ) im Wesentlichen der Summe von an den Wellen (4,7) anliegenden Wellenmomenten entspricht, dadurch gekennzeichnet, dass eine Größe und/oder Änderung der Größe eines der Wellenmomente bei der Steuerung und/oder Regelung der übrigen Wellenmomente berücksichtigt wird.
EP09781804A 2008-09-09 2009-08-13 Verfahren zum betreiben eines antriebs eines kraftfahrzeugs sowie antriebsvorrichtung und elektronisches steuergerät Withdrawn EP2321137A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008041897A DE102008041897A1 (de) 2008-09-09 2008-09-09 Verfahren zum Betreiben eines Antriebs eines Kraftfahrzeugs sowie Antriebsvorrichtung und elektronisches Steuergerät
PCT/EP2009/060498 WO2010028926A1 (de) 2008-09-09 2009-08-13 Verfahren zum betreiben eines antriebs eines kraftfahrzeugs sowie antriebsvorrichtung und elektronisches steuergerät

Publications (1)

Publication Number Publication Date
EP2321137A1 true EP2321137A1 (de) 2011-05-18

Family

ID=41138662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09781804A Withdrawn EP2321137A1 (de) 2008-09-09 2009-08-13 Verfahren zum betreiben eines antriebs eines kraftfahrzeugs sowie antriebsvorrichtung und elektronisches steuergerät

Country Status (5)

Country Link
US (1) US20110276207A1 (de)
EP (1) EP2321137A1 (de)
CN (1) CN102149557A (de)
DE (1) DE102008041897A1 (de)
WO (1) WO2010028926A1 (de)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006305B4 (de) 2010-01-30 2015-02-05 Audi Ag Verfahren zum Betreiben eines Hybridantriebs eines Fahrzeugs
DE102010015424B4 (de) * 2010-04-19 2016-02-18 Audi Ag Antriebsvorrichtung für ein allradgetriebenes Fahrzeug
DE102010015423A1 (de) * 2010-04-19 2011-10-20 Audi Ag Antriebsvorrichtung für ein allradgetriebenes Fahrzeug
US8636620B2 (en) 2010-10-28 2014-01-28 Jatco Ltd Automatic transmission
US8285470B2 (en) * 2010-10-29 2012-10-09 Ford Global Technologies, Llc Engine transient mitigation for hybrid vehicles
JP5693152B2 (ja) 2010-11-01 2015-04-01 ジヤトコ株式会社 車両の油圧制御装置
JP5383626B2 (ja) 2010-11-01 2014-01-08 ジヤトコ株式会社 車両の制御装置
JP5496855B2 (ja) 2010-11-01 2014-05-21 ジヤトコ株式会社 車両の制御装置
JP5496854B2 (ja) * 2010-11-01 2014-05-21 ジヤトコ株式会社 車両の制御装置
JP5693151B2 (ja) 2010-11-01 2015-04-01 ジヤトコ株式会社 車両の制御装置
JP5501937B2 (ja) 2010-11-02 2014-05-28 ジヤトコ株式会社 ハイブリッド車両の制御装置
DE102010056034A1 (de) * 2010-12-15 2012-06-21 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Verfahren zum Betreiben einer Antriebsvorrichtung eines Fahrzeugs, Vorrichtung, Computer-Programmprodukt
JP5501260B2 (ja) 2011-02-03 2014-05-21 ジヤトコ株式会社 車両の制御装置
DE102011005962B4 (de) * 2011-03-23 2023-07-27 Bayerische Motoren Werke Aktiengesellschaft Aufteilen einer Momentenanforderung auf zwei von unterschiedlichen Motoren angetriebenen Antriebsachsen eines Kraftfahrzeugs
FR2994404B1 (fr) * 2012-08-13 2014-08-08 Peugeot Citroen Automobiles Sa Procede de limitation de couple d'une machine electrique de vehicule hybride, comportant des limites de couple nominal et crete
US11802422B2 (en) 2013-03-15 2023-10-31 August Home, Inc. Video recording triggered by a smart lock device
US11352812B2 (en) 2013-03-15 2022-06-07 August Home, Inc. Door lock system coupled to an image capture device
US9704314B2 (en) * 2014-08-13 2017-07-11 August Home, Inc. BLE/WiFi bridge that detects signal strength of Bluetooth LE devices at an exterior of a dwelling
US10388094B2 (en) 2013-03-15 2019-08-20 August Home Inc. Intelligent door lock system with notification to user regarding battery status
US9322194B2 (en) 2013-03-15 2016-04-26 August Home, Inc. Intelligent door lock system
US11043055B2 (en) 2013-03-15 2021-06-22 August Home, Inc. Door lock system with contact sensor
US11441332B2 (en) 2013-03-15 2022-09-13 August Home, Inc. Mesh of cameras communicating with each other to follow a delivery agent within a dwelling
US10691953B2 (en) 2013-03-15 2020-06-23 August Home, Inc. Door lock system with one or more virtual fences
US10181232B2 (en) 2013-03-15 2019-01-15 August Home, Inc. Wireless access control system and methods for intelligent door lock system
US9916746B2 (en) 2013-03-15 2018-03-13 August Home, Inc. Security system coupled to a door lock system
US11527121B2 (en) 2013-03-15 2022-12-13 August Home, Inc. Door lock system with contact sensor
US10140828B2 (en) 2015-06-04 2018-11-27 August Home, Inc. Intelligent door lock system with camera and motion detector
US11421445B2 (en) 2013-03-15 2022-08-23 August Home, Inc. Smart lock device with near field communication
US20160319571A1 (en) * 2014-03-12 2016-11-03 August Home Inc. Intelligent door lock system with optical sensor
US10443266B2 (en) 2013-03-15 2019-10-15 August Home, Inc. Intelligent door lock system with manual operation and push notification
US11072945B2 (en) 2013-03-15 2021-07-27 August Home, Inc. Video recording triggered by a smart lock device
DE102013013860A1 (de) * 2013-08-20 2015-02-26 Audi Ag Fahrzeugantriebssteuerung
FR3012397B1 (fr) * 2013-10-30 2017-02-03 Peugeot Citroen Automobiles Sa Procede de regeneration d'energie pour un vehicule hybride
DE102013019902A1 (de) 2013-11-28 2015-05-28 Audi Ag Vorrichtungen und Verfahren zum Verteilen einer Gesamtsollmoment-Vorgabe
US9691198B2 (en) * 2014-03-12 2017-06-27 August Home, Inc. Wireless access control system and methods for intelligent door lock system
DE102014004522B4 (de) 2014-03-28 2020-11-19 Audi Ag Antriebsvorrichtung für ein Kraftfahrzeug
FR3033538B1 (fr) * 2015-03-10 2017-03-24 Peugeot Citroen Automobiles Sa Procede de repartition de couple entre les trains de roues d'un vehicule automobile
DE102015105135B4 (de) 2015-04-02 2022-12-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrisch antreibbares Allrad-Kraftfahrzeug und Verfahren zum Betrieb eines elektrisch antreibbaren Allrad-Kraftfahrzeugs
US10411631B2 (en) * 2016-04-27 2019-09-10 GM Global Technology Operations LLC Method and apparatus for vibration damping in a powertrain system
KR102441058B1 (ko) * 2016-12-02 2022-09-06 현대자동차주식회사 하이브리드 차량의 엔진 최대 출력 토크 산출 장치 및 그 방법
JP7283073B2 (ja) * 2018-12-25 2023-05-30 スズキ株式会社 四輪駆動車両のトルク制御装置
US11505176B2 (en) 2020-06-30 2022-11-22 Rivian Ip Holdings, Llc Systems and methods for controlling torque induced yaw in a vehicle
WO2022060704A1 (en) 2020-09-17 2022-03-24 ASSA ABLOY Residential Group, Inc. Magnetic sensor for lock position
CN112644453B (zh) * 2020-12-28 2021-12-10 长城汽车股份有限公司 混动车辆扭矩控制方法、装置、存储介质及电子设备
FR3133569A1 (fr) * 2022-03-17 2023-09-22 Psa Automobiles Sa Procédé de commande d'un systeme de trains roulants d'un véhicule automobile

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027894B2 (ja) * 1993-02-18 2000-04-04 日産自動車株式会社 差動制限トルク制御装置
DE4312949A1 (de) * 1993-04-21 1994-10-27 Abb Research Ltd Verfahren zur Steuerung und Regelung eines elektrischen Antriebes eines Fahrzeuges
JP4314723B2 (ja) * 2000-04-24 2009-08-19 アイシン・エィ・ダブリュ株式会社 ハイブリッド型車両の制御装置及び制御方法
JP3589208B2 (ja) * 2001-08-13 2004-11-17 日産自動車株式会社 ハイブリッド車両の駆動装置
AU2003243895A1 (en) * 2002-05-21 2003-12-02 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Automatic gearbox and method for operating a gearbox system
DE10233578B4 (de) * 2002-07-24 2006-06-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
JP3931810B2 (ja) * 2002-12-27 2007-06-20 アイシン・エィ・ダブリュ株式会社 車輌の制御装置
DE10333931A1 (de) * 2003-07-25 2005-02-10 Robert Bosch Gmbh Regelstrategie für elektromechanisch leistungsverzweigende Hybridantriebe
JP2005163595A (ja) * 2003-12-01 2005-06-23 Nissan Motor Co Ltd ハイブリッド車のエンジントルク制御装置
US7024290B2 (en) * 2004-07-30 2006-04-04 Ford Global Technologies, Llc Active motor damping to mitigate electric vehicle driveline oscillations
DE102004049324A1 (de) 2004-10-09 2006-04-20 Zf Friedrichshafen Ag Verfahren zur Steuerung und Regelung der Fahrdynamik bei Kraftfahrzeugen mit Hybridantrieb
DE102006006107A1 (de) * 2006-02-10 2007-08-16 Robert Bosch Gmbh Verfahren zum Betreiben einer Antriebsvorrichtung eines Hybridfahrzeugs
DE102006044427A1 (de) * 2006-09-21 2008-04-03 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebs eines Kraftfahrzeugs
DE102006047655A1 (de) * 2006-10-09 2008-04-10 Robert Bosch Gmbh Verfahren zum Betreiben eines Parallel-Hybridantriebs
FR2907409B1 (fr) * 2006-10-23 2009-06-05 Peugeot Citroen Automobiles Sa Procede et dispositif de compensation d'interruption du couple fourni par le groupe motopropulseur d'un vehicule hybride au cours d'un changement de vitesse.
DE102007023164A1 (de) * 2007-05-16 2008-11-20 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebs eines Fahrzeugs
DE102007042350A1 (de) * 2007-09-06 2009-03-12 Robert Bosch Gmbh Verfahren zur dynamischen Momentenkoordination von Aggregaten eines Hybridantriebs eines Fahrzeugs und entsprechende Vorrichtung
DE102007062796A1 (de) * 2007-12-27 2009-07-02 Robert Bosch Gmbh Verfahren zum Betreiben einer Hybridantriebsvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010028926A1 *

Also Published As

Publication number Publication date
DE102008041897A1 (de) 2010-03-11
CN102149557A (zh) 2011-08-10
US20110276207A1 (en) 2011-11-10
WO2010028926A1 (de) 2010-03-18

Similar Documents

Publication Publication Date Title
EP2321137A1 (de) Verfahren zum betreiben eines antriebs eines kraftfahrzeugs sowie antriebsvorrichtung und elektronisches steuergerät
EP2946963B1 (de) Kraftfahrzeug
DE102005022247B4 (de) Diagnoseverfahren für eine Drehmomentsteuerung eines elektrisch verstellbaren Getriebes
DE102004028101B4 (de) Kraftübertragungsvorrichtung für ein Hybridfahrzeug
EP1458586B1 (de) Vorrichtung und verfahren zur regelung der fahrgeschwindigkeit eines fahrzeugs
DE102005033354B4 (de) Verfahren zur Abdämpfung von Schwingungen im Antriebsstrang eines Elektrofahrzeugs
EP0846590B1 (de) Verfahren zur Regelung des Schleppmomentes in einem dieselelektrischen Antriebssystem und Antriebssystem
DE102015118759A1 (de) Verfahren zur Steuerung eines Antriebsmoments und Antriebsstranganordnung zur Durchführung des Verfahrens
WO2011131321A1 (de) Antriebsvorrichtung für ein allradgetriebenes fahrzeug und verfahren zur verteilung des antriebsmoments auf einen vorderachsantrieb und einen hinterachsantrieb
DE102008014616A1 (de) Kupplungssteuerung für Hybridgetriebe
DE10341676A1 (de) Regelverfahren und System zum Bremsen und zur Steuerbarkeit eines Fahrzeuges mit Nutzbremsung
DE112011104801T5 (de) Antriebssteuergerät und Steuerverfahren für Hybridfahrzeuge und Hybridfahrzeug
DE102010062337A1 (de) Verfahren und Vorrichtung zur Änderung der mechanischen Ankopplung eines Antriebaggregates an einen Triebstrang eines Kraftfahrzeuges, dessen Triebstrang mit mindestens zwei Antriebsaggregaten ausgerüstet ist
DE102013104430A1 (de) Traktionssteuersystem für ein Hybridfahrzeug
EP3354504B1 (de) Antriebsstrangsystem
DE112011104840T5 (de) Antriebssteuervorrichtung und Verfahren zum Bereitstellen einer Antriebssteuerung für ein Hybridfahrzeug und Hybridfahrzeug
DE102006006327A1 (de) Hybridantrieb
DE102013113658A1 (de) Verfahren zum Betreiben eines Triebstranges
DE10333653B3 (de) Steuervorrichtung für ein zumindest zeitweise vierradgetriebenes Kraftfahrzeug
DE102011081709A1 (de) Verfahren zum sicheren Betreiben eines Kraftfahrzeugs mit einem Antriebsaggregat
DE102017103659A1 (de) Hybridfahrzeug mit Ruckdämpfungsstrategie
EP1093956B1 (de) Steuersystem zur variablen Drehmomentverteilung für ein vierradgetriebenes Fahrzeug
DE102020114293A1 (de) Vierradangetriebenes Fahrzeug
DE102010014563B4 (de) Vorrichtung und Verfahren zum Steuern von Anfahrvorgängen von Fahrzeugen mit mehreren Antriebsachsen
DE102018126877B4 (de) Anti-Ruckel-Eingriff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130116

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160301