EP2320189B1 - Verfahren zum Betreiben eines Rückkühlkreislaufes mit einem Hybridkühler für eine Anlage mit einer diskontinuierlichen Wärmeabgabe - Google Patents

Verfahren zum Betreiben eines Rückkühlkreislaufes mit einem Hybridkühler für eine Anlage mit einer diskontinuierlichen Wärmeabgabe Download PDF

Info

Publication number
EP2320189B1
EP2320189B1 EP10188007.8A EP10188007A EP2320189B1 EP 2320189 B1 EP2320189 B1 EP 2320189B1 EP 10188007 A EP10188007 A EP 10188007A EP 2320189 B1 EP2320189 B1 EP 2320189B1
Authority
EP
European Patent Office
Prior art keywords
spraying
temperature
circuit
recooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10188007.8A
Other languages
English (en)
French (fr)
Other versions
EP2320189A3 (de
EP2320189A2 (de
Inventor
Steffen Kühnert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fahrenheit GmbH
Original Assignee
Fahrenheit GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fahrenheit GmbH filed Critical Fahrenheit GmbH
Publication of EP2320189A2 publication Critical patent/EP2320189A2/de
Publication of EP2320189A3 publication Critical patent/EP2320189A3/de
Application granted granted Critical
Publication of EP2320189B1 publication Critical patent/EP2320189B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/003Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/046Operating intermittently
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0014Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using absorption or desorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • F25B17/083Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately

Definitions

  • the invention relates to a method for operating a recooling circuit with a hybrid cooler for an adsorption refrigerator with an intermittent heat output according to claim 1.
  • Recoolers and recooling circuits are used to dissipate heat from a heat source to the environment.
  • a recooling medium is used to conduct the heat from the heat source to a heat exchange surface that is in thermal contact with the surroundings.
  • the heat is released to the environment either via a dry recooler, in which the recooling medium flows through pipes within the heat exchange surface and thus transfers the heat to the environment, or via a wet cooler, in which the recooling medium, which is predominantly in the form of water, evaporates or evaporates directly , as is the case with a cooling tower, for example.
  • the conventional control of the operation of a hybrid cooler is carried out in such a way that the spraying is started when a certain temperature is established in the supply air or at the outlet of the recooler.
  • a valve is opened and water is continuously sprayed into the supply air flow.
  • the resulting lowering of the temperature in the supply air enables higher heat dissipation in the recooling circuit.
  • Spraying is usually controlled by detecting the temperature at the cooler outlet. This is compared with a specified target value.
  • This control method has the disadvantage that the water consumption during spraying and thus the efficiency of the spraying of the back cooler can only be influenced to a very limited extent.
  • the known control method is designed for continuous spraying. The water consumption is therefore disproportionate, the constant spraying also leads to dirt and lime deposits in the recooler. This further deteriorates the efficiency of the recooling and in turn leads to an additional water consumption during the spraying.
  • control of the spraying of the recooler proves to be variable only to a very limited extent in the currently known methods. For technical reasons, it has a fixed hysteresis, which prevents the spraying from being switched on and off in a timely manner. The entire control process is therefore very sluggish.
  • US 7 021 070 B2 describes a compressor cooling with a cooling subsystem.
  • This is a hybrid cooler with water cooling.
  • a water supply is regulated or controlled depending on the operating parameters of the cooling system.
  • sensors are arranged in the cooling subsystem or in the hybrid cooler. Spraying with water is started when a certain temperature is reached in the supply air or at the outlet of the recooler.
  • the task is to design a recooling circuit with a hybrid cooler in such a way that it is particularly suitable for systems with discontinuous heat emission.
  • the recooling circuit should be particularly suitable for systems in which the heat output changes within comparatively short time cycles.
  • the recooling circuit should have a reduced water consumption during the spraying, increase the efficiency of the recooling and ensure an increased service life of the components present in the recooling circuit, in particular the hybrid cooler itself. In connection with this, the operating and maintenance costs of the recooling circuit and beyond that of the system are to be reduced and optimized.
  • the method for operating a recooling circuit with a hybrid cooler for an adsorption refrigerator with discontinuous heat emission is characterized by spray control of the hybrid cooler with the following method steps:
  • the spray control of the hybrid cooler relates to a working cycle of the adsorption refrigerator, the working cycle being repeated periodically essentially over time:
  • a current operating parameter is continuously recorded within the adsorption refrigerator.
  • the operating parameter recorded in this way is compared with a predetermined first value in a control unit.
  • a spraying device of the hybrid cooler is activated when the predetermined value is reached and / or exceeded by the currently recorded operating parameter until a predetermined second value has been reached and / or fallen below.
  • the spraying device remains activated as long as the relevant operating parameter is exceeded.
  • the spraying device is then deactivated by closing a valve.
  • the valve is open or closed during a fixed interval, so that the hybrid cooler is sprayed at intervals.
  • an operating parameter for example a temperature value
  • an operating parameter for example a temperature value
  • the operation of the spraying device is thus directly related to the operational processes the adsorption chiller and thus coupled with the heat-generating process running there.
  • the spraying device thus reacts directly to the operational processes and thus to the heat generation within the system. This significantly shortens the response times of the control of the spraying device, so that a real discontinuous and / or cyclical operation of the spraying device can be carried out in accordance with the discontinuous heat generation within the adsorption refrigerator.
  • the spraying device thereby reacts in particular to operating cycles occurring within the adsorption refrigerator and is coupled to them. In this way, the amount of water used for spraying and thus the stress on the hybrid cooler is sustainably reduced and the recooling cycle is effectively adjusted to the heat load supplied by the adsorption chiller.
  • the system is designed as an adsorption chiller.
  • the currently recorded operating parameters are recorded within an evaporator in a cold water circuit or a condenser in the adsorption refrigeration machine.
  • Adsorption chillers are characterized by a discontinuously generated and cyclical heat emission.
  • the recooling circuit operated according to the invention is therefore particularly advantageous for such purposes.
  • a method based on the operation of a recooling circuit coupled to an adsorption refrigeration machine, in particular a recooling water circuit, is shown as an example below.
  • an efficient and efficient recooling of the supplied drive energy and the generated cooling energy is also of great importance for such systems.
  • the recooling energy in the form of heat that can no longer be used by the machine must therefore be efficiently dissipated via the recooling circuit and heat exchange.
  • a heat transfer medium which consists, for example, of water or a mixture of water and glycol, circulates in the recooling circuit.
  • the heat transfer temperature in the recooling circuit increases due to the heat absorption in the machine.
  • the heat transfer medium is cooled again to a lower temperature level along the recooling circuit and in particular on a cooler designed as a heat exchanger. It is then available to the refrigeration system for renewed heat absorption.
  • the efficiency and performance of the recooling circuit depend on the outside temperature, the type of cooler used, its peripheral components and the refrigeration system itself.
  • Fig. 1 shows a representation of the cyclic operation of an adsorption refrigerator.
  • the characteristic discontinuous mode of operation of the machine is characterized by the structure and the changing processes of adsorption and desorption. In order for the machine to run as continuously as possible, adsorption and desorption processes are carried out alternately in two adsorbers. At the outlet temperature of a heat transfer circuit shown in curve C, the fluctuations are extremely steep and occur cyclically. These fluctuations can also be seen in a damped form at the inlet temperature of the heat transfer circuit on curve D.
  • the cyclic operation of the machine is particularly clearly expressed in the course of a cooling capacity shown by curve E. In the example shown here, a maximum cooling capacity of 8 kW and a minimum cooling capacity of 2 kW are achieved.
  • the outside temperature represented by curve F shows a course with natural fluctuations up to a point X.
  • the sudden rise in outside temperature in point X is due to incident solar radiation.
  • the rise in the outside temperature results in a delayed rise in the inlet temperature in curve D and the outlet temperature in curve C of the heat transfer circuit.
  • the reduction in cooling capacity at curve E after point X is due to the temperature increase in the circuit.
  • Figure 2 1 shows an exemplary recooling circuit 1 provided for the adsorption chiller
  • Figure 3 an exemplary embodiment of a hybrid cooler connected in the circuit.
  • the recooling circuit contains a hybrid cooler 2, which is expediently arranged outdoors, and a system 3, for example an adsorption refrigerator with the in Fig. 1 shown operating cycles, which discontinuously gives off heat to the recooling circuit.
  • the heat transfer medium flowing in the recooling circuit flows from the system into the hybrid cooler via a feed line 4. There it transfers the heat absorbed by the system to the ambient air.
  • a cooling element 5 is provided in a lamella construction, which offers particularly good thermal contact with the surroundings.
  • the heat carrier cooled in the hybrid cooler flows back to the system via a return 6.
  • a pump 7 is provided for circulating the heat transfer medium within the cooling circuit.
  • the flow of the heat transfer medium in the recooling circuit can be regulated via a series of valves. If necessary, the flow can be blocked via blocking valves 10 arranged in the vicinity of the pump.
  • a storage and expansion tank 11 connected to the recooling circuit compensates for pressure fluctuations.
  • a process medium flows within a process circuit within the system cooled by the recooling circuit.
  • the process cycle corresponds to the cycle of the adsorbed and desorbed refrigerant which is customary in such systems. This exchanges heat via heat exchangers arranged in the circuit, in particular one Condenser 13, two adsorbers 14 and an evaporator 15 with adjacent operating components.
  • the evaporator 15 is thermally coupled to an external cold water circuit, not shown here.
  • the adsorbers 14 are in turn thermally coupled to an external hot water circuit, which contains, for example, a solar storage, not shown here, a district heating device or a waste heat device of a combined heat and power plant.
  • an external hot water circuit which contains, for example, a solar storage, not shown here, a district heating device or a waste heat device of a combined heat and power plant.
  • Temperature sensors 16 are provided at various points on the secondary sides of the heat exchangers or also in the recooling circuit, in particular in the region of the condenser, the evaporator and / or the adsorbers. These transfer the operating parameters recorded at these points, i.e. the temperature values measured in this example to a control unit 17.
  • the already mentioned hybrid cooler is a dry hybrid cooler with a spraying device 18 and a ventilation 19.
  • the spraying device consists of a nozzle arrangement 20 arranged under the cooling element 5, which is supplied with cold water by an inlet line 21.
  • the water supply via the feed line can be released or shut off via a check valve 22.
  • the opening state of the check valve is determined by the control unit 17 via a control line 17a and the electrical switching signals transmitted via this line.
  • the check valve is designed as an electrically switchable valve, for example as a solenoid valve.
  • the nozzle arrangement is in the form of a nozzle assembly under the cooling element.
  • the ambient air sucked in first flows through the nozzle assembly and pulls the water sprayed in there with it.
  • the cooling element is wetted on its surface.
  • An evaporation effect occurring on the one hand in the air volume flow and on the other on the surface of the finned heat exchanger wall of the cooling element enables the heat carrier to be cooled to a temperature which is below the ambient temperature. This intensifies the cooling of the heat transfer medium in the recooling circuit.
  • Spraying can be activated or deactivated via the switching status of the shut-off valve, thus adjusting the effectiveness of the cooling.
  • Fig. 4 shows the effect of discontinuous spraying using an exemplary diagram.
  • the diagram shows the time course of an outlet temperature at the recooler under the influence of a discontinuous heat load during a working cycle of the adsorption chiller. This essentially repeats periodically over time.
  • Curve A shows the temperature profile of the outlet temperature from the recooler without spraying
  • curve B shows the temperature profile of the outlet temperature with spraying.
  • the spraying is carried out within two time intervals t S1 during the working cycle. It can be seen from the course of curve A that the temperature at the outlet of the recooler initially reaches a maximum, which over time drops asymptotically against a limit value due to the onset of the recooler.
  • the start and the duration of the respective time intervals t S1 are determined by the control unit.
  • the spraying then starts when the temperature T to a set value T at a location of the refrigeration cycle of the adsorption reaches or exceeds. It is then turned off and the valve 22 is closed when the predetermined operating parameters should in this case, the target value T, has fallen again.
  • the strong flattening of the curve B in comparison to A is explained by the fact that spraying of the cooling element in the hybrid cooler begins even before the now more heated heat carrier has reached the cooling element via the flow. As a result, the cooling element is already wetted and can therefore absorb the heat brought in by the heat transfer medium very effectively.
  • spraying begins at a point in time when the temperature of the heat transfer medium is still rising.
  • the minimum reached in the curve B 'of the air temperature during the time interval t S1 thus coincides with the increasing section of the curve B of the outlet temperature.
  • the effectiveness of the interval-like spraying regulated by the control unit thus results above all from the fact that the temperature rise of the heat transfer medium in the recooling circuit is counteracted in a timely manner and at the beginning.
  • Fig. 5 shows the beneficial influence of in Fig. 4 shown execution of the spraying on a machine performance factor of an adsorption refrigerator with such a recooling circuit operated at different ambient temperatures.
  • the machine performance figure is a measure of the effectiveness of the adsorption chiller. It indicates the ratio between the heat pumped by the adsorption chiller and the energy required for this. A high machine performance factor therefore means that the refrigeration system is highly effective.
  • the diagram shows that the machine performance factor decreases as the outside temperature increases. Without spraying, it reaches a value of less than 10 at a temperature of 26 ° C. If the spraying is carried out according to the procedure at this temperature Fig. 3 put into operation, the machine work factor increases significantly to a value of 15 and thus one and a half times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)
  • Rectifiers (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben eines Rückkühlkreislaufes mit einem Hybridkühler für eine Adsorptionskältemaschine mit einer diskontinuierlich anfallenden Wärmeabgabe nach Anspruch 1.
  • Rückkühler und Rückkühlkreisläufe werden eingesetzt, um Wärme von einer Wärmequelle an die Umgebung abzuführen. Dabei wird ein Rückkühlmedium verwendet, um die Wärme von der Wärmequelle zu einer Wärmeaustauschfläche zu leiten, die mit der Umgebung im thermischen Kontakt steht. Hierzu sind eine Vielzahl unterschiedlicher Konfigurationen bekannt. Die Wärmeabgabe an die Umgebung erfolgt entweder über einen trockenen Rückkühler, bei dem das Rückkühlmedium durch Rohre innerhalb der Wärmetauschfläche fließt und so die Wärme an die Umgebung überträgt, oder über einen Naßkühler, bei dem das überwiegend in Form von Wasser ausgebildete Rückkühlmedium direkt verdampft oder verdunstet, wie dies beispielsweise bei einem Kühlturm der Fall ist.
  • Bei einem Hybridkühler ist das Prinzip der trockenen Rückkühlung und der Nasskühlung kombiniert. Dabei erfolgt eine trockene Rückkühlung, welche durch eine Wasserbesprühung, -berieselung oder -benetzung der Kühlflächen oder der umgebenden Luft unterstützt wird.
  • Die herkömmliche Steuerung des Betriebs eines Hybridkühlers erfolgt in der Weise, dass die Besprühung dann in Betrieb genommen wird, wenn sich eine bestimmte Temperatur in der Zuluft oder am Ausgang des Rückkühlers einstellt. Bei der Aktivierung der Besprühung wird ein Ventil geöffnet und es wird kontinuierlich Wasser in den Zuluftstrom eingesprüht. Durch die damit bewirkte Absenkung der Temperatur in der Zuluft wird eine höhere Wärmeabfuhr im Rückkühlkreislauf ermöglicht. Die Besprühung wird üblicherweise dadurch geregelt, indem die Temperatur am Rückkühleraustritt erfasst wird. Diese wird mit einem vorgegebenen Sollwert verglichen.
  • Dieses Regelungsverfahren weist den Nachteil auf, dass sich der Wasserverbrauch bei der Besprühung und damit die Effizienz der Besprühung des Rücckühlers in einem nur sehr eingeschränkten Maße beeinflussen lässt. Das bekannte Regelungsverfahren ist für eine kontinuierliche Besprühung ausgelegt. Der Wasserverbrauch ist daher unverhältnismäßig groß, die ständige Besprühung führt außerdem zu Schmutz- und Kalkablagerungen im Rückkühler. Dies verschlechtert die Effizienz der Rückkühlung zusätzlich und führt wiederum zu einem zusätzlichen Wasserverbrauch bei der Besprühung.
  • Außerdem erweist sich die Regelung der Besprühung des Rückkühlers bei den derzeit bekannten Verfahren als nur sehr eingeschränkt variierbar. Sie weist technisch bedingt eine feste Hysterese auf, die verhindert, dass das Ein- und Ausschalten der Besprühung zeitgenau erfolgt. Der gesamte Regelvorgang gestaltet sich somit sehr träge.
  • Die genannten Nachteile werden besonders dann gravierend, wenn Anlagen rückzukühlen sind, die eine diskontinuierliche Wärmeabgabe aufweisen, die noch dazu innerhalb relativ kurzer zeitlicher Zyklen wechselt. Die herkömmlichen Steuerungsverfahren der Rückkühlung führen in diesem Fall dazu, dass die Besprühung immer dann nutzlos im Betrieb bleibt, wenn von der Anlage keine oder eine nur geringe Wärmemenge abzuführen ist. Das bekannte Steuerungsverfahren der Besprühung ist wegen dessen Trägheit nicht in der Lage, auf die sich verändernden zyklischen Wärmelasten der Anlage zu reagieren. Dadurch wird die Rückkühlung einer solchen Anlage ineffizient.
  • In US 7 021 070 B2 wird eine Kompressorkühlung mit einem Kühlsubsystem beschrieben. Hierbei handelt es sich um einen Hybridkühler mit einer Wasserkühlung. In Abhängigkeit von Betriebsparametern der Kühlanlage wird eine Wasserzufuhr geregelt bzw. gesteuert. Hierzu sind im Kühlsubsystem bzw. im Hybridkühler Sensoren angeordnet. Eine Besprühung mit Wasser wird dann in Betrieb genommen, wenn sich eine bestimmte Temperatur in der Zuluft oder am Ausgang des Rückkühlers einstellt.
  • Es besteht die Aufgabe, einen Rückkühlkreislauf mit einem Hybridkühler so zu gestalten, dass dieser sich besonders gut für Anlagen mit einer diskontinuierlichen Wärmeabgabe eignet. Der Rückkühlkreislauf soll insbesondere für Anlagen geeignet sein, bei der die Wärmeabgabe innerhalb vergleichsweise kurzer Zeitzyklen wechselt. Der Rückkühlkreislauf soll einen reduzierten Wasserverbrauch bei der Besprühung aufweisen, die Effizienz der Rückkühlung steigern und eine erhöhte Lebensdauer der in dem Rückkühlkreislauf vorhandenen Komponenten, insbesondere des Hybridkühlers selbst, gewährleisten. In Verbindung damit sollen die Betriebs- und Wartungskosten des Rückkühlkreislaufs und darüber hinaus der Anlage gesenkt und optimiert werden.
  • Die Aufgabe wird hinsichtlich des Verfahrensaspektes gemäß der Lehre zum Betreiben eines Rückkühlkreislaufes mit den Merkmalen des Anspruchs 1 gelöst.
  • Erfindungsgemäß zeichnet sich das Verfahren zum Betreiben eines Rückkühlkreislaufes mit einem Hybridkühler für eine Adsorptionskältemaschine mit einer diskontinuierlichen Wärmeabgabe durch eine Besprühregelung des Hybridkühlers mit folgenden Verfahrensschritten aus:
    Die Besprühregelung des Hybridkühlers betrifft einen Arbeitszyklus der Adsorptionskältemaschine, wobei sich der Arbeitszyklus im Wesentlichen zeitlich periodisch wiederholt:
    Es erfolgt ein kontinuierliches Erfassen eines aktuellen Betriebsparameters innerhalb der Adsorptionskältemaschine. Der so erfasste Betriebsparameter wird mit einem vorgegebenen ersten Wert in einer Regeleinheit verglichen. Eine Besprüheinrichtung des Hybridkühlers wird bei einem Erreichen und/oder Überschreiten des vorgegebenen Wertes durch den aktuell erfassten Betriebsparameter aktiviert, bis ein vorgegebener zweiter Wert erreicht und/oder unterschritten worden ist.
  • Die Besprüheinrichtung bleibt so lange aktiviert, wie der betreffende Betriebsparameter überschritten ist. Danach wird die Besprüheinrichtung deaktiviert, indem ein Ventil geschlossen wird. Das Ventil ist während eines festen Intervalls geöffnet oder geschlossen, sodass der Hybridkühler intervallartig besprüht wird.
  • Im Gegensatz zu der herkömmlichen Steuerung der Besprüheinrichtung, die auf den Temperaturwert am Ausgang des Rückkühlers rückgekoppelt ist, wird ein Betriebsparameter, beispielsweise ein Temperaturwert, aus der Adsorptionskältemaschine selbst zur Regelung der Besprüheinrichtung verwendet. Der Betrieb der Besprüheinrichtung ist somit unmittelbar mit den Betriebsabläufen der Adsorptionskältemaschine und damit mit dem dort ablaufenden wärmeerzeugenden Prozess gekoppelt. Die Besprüheinrichtung reagiert somit unmittelbar auf die Betriebsabläufe und damit auf die Wärmeerzeugung innerhalb der Anlage. Dadurch werden die Ansprechzeiten der Regelung der Besprüheinrichtung entscheidend verkürzt, sodass ein echter diskontinuierlicher und/oder zyklischer Betrieb der Besprüheinrichtung entsprechend der diskontinuierlichen Wärmeerzeugung innerhalb der Adsorptionskältemaschine ausführbar ist. Die Besprüheinrichtung reagiert dadurch insbesondere auf innerhalb der Adsorptionskältemaschine ablaufende Betriebszyklen und ist mit diesen gekoppelt. Damit wird die zum Besprühen verbrauchte Wassermenge und somit die Beanspruchung des Hybridkühlers nachhaltig gesenkt und der Rückkühlkreislauf in effektiver Weise auf die von der Adsorptionskältemaschine gelieferte Wärmelast eingestellt.
  • Die Anlage ist als eine Adsorptionskältemaschine ausgeführt. Dabei wird der aktuell erfasste Betriebsparameter innerhalb eines Verdampfers in einem Kaltwasserkreislauf oder einem Kondensator in der Adsorptionskältema-schine erfasst.
  • Adsorptionskältemaschinen zeichnen sich durch eine diskontinuierlich erzeugte und zyklische Wärmeabgabe aus. Für derartige Zwecke ist der erfindungsgemäß betriebene Rückkühlkreislauf somit besonders vorteilhaft.
  • Das Verfahren und eine beispielhafte Vorrichtung zum Ausführen des Verfahrens sollen nachfolgend anhand von Ausführungsbeispielen näher erläutert werden. Zur Verdeutlichung dienen die Figuren 1 bis 5. Es werden für gleiche und/oder gleichwirkende Teile dieselben Bezugszeichen verwendet.
  • Hierbei zeigen:
  • Fig. 1
    eine Darstellung einer zyklischen Arbeitsweise einer Adsorptionskältemaschine,
    Fig. 2
    eine Darstellung eines beispielhaften Rückkühlkreislaufs im Überblick,
    Fig. 3
    eine zweckmäßige Ausführungsform eines beispielhaften Hybridkühlers,
    Fig. 4
    eine Darstellung eines Temperaturverlaufs am Austritt eines Hybridkühlers unter dem Einfluss einer zeitlich diskontinuierlichen Wärmelast mit und ohne Besprühungsintervalle und
    Fig. 5
    eine Darstellung einer Maschinenarbeitszahl einer rückgekühlten Adsorptionskältemaschine in Abhängigkeit von einer Außentemperatur mit und ohne Besprühung.
  • Nachfolgend wird ein Verfahren anhand eines Betriebs eines mit einer Adsorptionskältemaschine gekoppelten Rückkühlkreislaufes, insbesondere eines Rückkühlwasserkreislaufes, beispielhaft dargestellt. Wie für alle thermisch angetriebenen Kälteanlagen, ist auch für derartige Anlagen eine leistungsfähige und effiziente Rückkühlung der zugeführten Antriebsenergie und der erzeugten Kälteenergie von großer Bedeutung. Die von der Maschine nicht weiter verwertbare Rückkühlenergie in Form von Wärme muss daher über den Rückkühlkreislauf und über einen Wärmeaustausch effizient abgeführt werden. Hierzu zirkuliert in dem Rückkühlkreislauf ein Wärmeträger, der beispielsweise aus Wasser oder einem Gemisch aus Wasser und Glykol besteht.
  • Durch die Wärmeaufnahme in der Maschine steigt die Wärmeträgertemperatur im Rückkühlkreislauf. Der Wärmeträger wird entlang des Rückkühlkreislaufs und insbesondere an einem als ein Wärmeübertrager ausgebildeten Kühler wieder auf ein niedrigeres Temperaturniveau abgekühlt. Er steht danach der Kälteanlage somit für die erneute Wärmeaufnahme zur Verfügung. Die Effizienz und die Leistung des Rückkühlkreislaufs sind von der Außentemperatur, der Art des eingesetzten Kühlers, dessen Peripheriekomponenten und der Kälteanlage selbst abhängig.
  • Fig. 1 zeigt eine Darstellung der zyklischen Arbeitsweise einer Adsorptionskältemaschine. Die charakteristische diskontinuierliche Arbeitsweise der Maschine ist durch den Aufbau und die wechselnden Prozesse Adsorption und Desorption geprägt. Für einen möglichst kontinuierlichen Betrieb der Maschine werden in zwei Adsorbern im Wechsel Adsorptions- und Desorptionsprozesse ausgeführt. Bei der in der Kurve C dargestellten Austrittstemperatur eines Wärmeträgerkreislaufs sind die Schwankungen extrem steil und treten zyklisch auf. Diese Schwankungen zeigen sich auch in gedämpfter Form bei der Eintrittstemperatur des Wärmeträgerkreislaufs an der Kurve D. Die zyklische Arbeitsweise der Maschine kommt besonders deutlich in dem durch die Kurve E gezeigten Verlauf einer Kälteleistung zum Ausdruck. Bei dem hier gezeigten Beispiel wird eine maximale Kälteleistung von 8 kW und eine minimale Kälteleistung von 2 kW erreicht.
  • Die durch die Kurve F dargestellte Außentemperatur zeigt bis zu einem Punkt X einen Verlauf mit natürlichen Schwankungen. Der sprunghafte Anstieg der Außentemperatur im Punkt X ist auf einfallende Sonnenstrahlung zurückzuführen. Der Anstieg der Außentemperatur hat einen verzögerten Anstieg der Eintrittstemperatur bei Kurve D und Austrittstemperatur bei Kurve C des Wärmeträgerkreislaufs zur Folge. Die nach dem Punkt X erfolgende Minderung der Kälteleistung bei Kurve E ist auf die Temperaturerhöhung im Kreislauf zurückzuführen.
  • Figur 2 zeigt einen für die Adsorptionskältemaschine vorgesehenen beispielhaften Rückkühlkreislauf 1, Figur 3 eine beispielhafte Ausführungsform eines in den Kreislauf geschalteten Hybridkühlers.
  • Der Rückkühlkreislauf enthält einen zweckmäßigerweise im Freien angeordneten Hybridkühler 2 und eine Anlage 3, beispielsweise eine Adsorptionskältemaschine mit den in Fig. 1 dargestellten Betriebszyklen, die diskontinuierlich Wärme an den Rückkühlkreislauf abgibt. Der in dem Rückkühlkreislauf strömende Wärmeträger strömt über einen Vorlauf 4 von der Anlage in den Hybridkühler. Er übergibt dort die von der Anlage aufgenommene Wärme an die Umgebungsluft. Hierzu ist ein Kühlelement 5 in einer Lamellenbauweise vorgesehen, die einen besonders guten Wärmekontakt mit der Umgebung bietet.
  • Der in dem Hybridkühler abgekühlte Wärmeträger strömt über einen Rücklauf 6 zur Anlage zurück. Zum Umwälzen des Wärmeträgers innerhalb des Rücckühlkreislaufs ist eine Pumpe 7 vorgesehen. Der Fluss des Wärmeträgers im Rückkühlkreislauf kann über eine Reihe von Ventilen geregelt werden. Über in der Nähe der Pumpe angeordnete Sperrventile 10 kann der Vorlauf bei Bedarf gesperrt werden. Ein mit dem Rückkühlkreislauf verbundener Vorrats- und Ausgleichsbehälter 11 kompensiert Druckschwankungen.
  • Innerhalb der von dem Rückkühlkreislauf gekühlten Anlage strömt ein Prozessmedium innerhalb eines Prozesskreislaufes. Bei einer Adsorptionskältemaschine entspricht der Prozesskreislauf dem bei derartigen Anlagen üblichen Kreislauf des adsorbierten und desorbierten Kältemittels. Dieser tauscht Wärme über in dem Kreislauf angeordnete Wärmetauscher, insbesondere einen Kondensator 13, zwei Adsorbern 14 und einen Verdampfer 15 mit angrenzenden Betriebskomponenten aus.
  • Der Verdampfer 15 ist hierzu thermisch an einen hier nicht gezeigten externen Kaltwasserkreislauf gekoppelt. Dieser schließt beispielsweise eine Kühldecke oder eine Kühlspirale ein. Diese Einrichtungen sind hier nicht dargestellt.
  • Die Adsorber 14 sind wiederum thermisch an einen externen Heißwasserkreislauf gekoppelt, der beispielsweise einen hier nicht dargestellten Solarspeicher, eine Fernwärmeeinrichtung oder eine Abwärmeeinrichtung eines Blockheizkraftwerks enthält.
  • An verschiedenen Stellen der Sekundärseiten der Wärmetauscher oder auch im Rückkühlkreislauf sind, insbesondere im Bereich des Kondensators, des Verdampfers und/oder der Adsorber, Temperatursensoren 16 vorgesehen. Diese übergeben die an diesen Stellen erfassten Betriebsparameter, d.h. die in diesem Beispiel gemessenen Temperaturwerte, an eine Regeleinheit 17.
  • Bei dem bereits erwähnten Hybridkühler handelt es sich um einen Trockenhybridkühler mit einer Besprüheinrichtung 18 und einer Ventilation 19. Die Besprüheinrichtung besteht aus einer unter dem Kühlelement 5 angeordneten Düsenanordnung 20, die von einer Zulaufleitung 21 mit Kaltwasser versorgt wird. Die Wasserzufuhr über die Zulaufleitung kann über ein Sperrventil 22 freigegeben oder abgesperrt werden. Der Öffnungszustand des Sperrventils wird von der Regeleinheit 17 über eine Steuerleitung 17a sowie die über diese Leitung übermittelten elektrischen Schaltsignale bestimmt. Das Sperrventil ist hierzu als ein elektrisch schaltbares Ventil, beispielsweise als ein Magnetventil, ausgebildet.
  • Bei dem hier vorliegenden Aufbau des Hybridkühlers wird Umgebungsluft durch die Ventilation angesaugt. Diese durchströmt das Kühlelement und tritt aus dem Hybridkühler wieder aus. Bei dem Trockenrückkühler mit Besprühung in Ventilationsrichtung befindet sich die Düsenanordnung in Form eines Düsenstocks unter dem Kühlelement. Die angesaugte Umgebungsluft strömt somit zuerst durch den Düsenstock und reißt das dort eingesprühte Wasser mit sich. Durch das Einsprühen von Wasser in die Strömungsrichtung des Luftvolumenstroms wird das Kühlelement an dessen Oberfläche benetzt. Ein zum einem in dem Luftvolumenstrom und zum anderen auf der Oberfläche der Lamellenwärmetauscherwand des Kühlelementes auftretender Verdunstungseffekt ermöglicht eine Abkühlung des Wärmeträgers auf eine Temperatur, die unterhalb der Umgebungstemperatur liegt. Dadurch wird die Kühlung des Wärmeträgers im Rückkühlkreislauf intensiviert. Über den Schaltzustand des Sperrventils kann die Besprühung aktiviert oder deaktiviert und somit die Effektivität der Kühlung eingestellt werden.
  • Fig. 4 zeigt den Effekt der diskontinuierlichen Besprühung anhand eines beispielhaften Diagramms. Das Diagramm zeigt den zeitlichen Verlauf einer Austrittstemperatur am Rückkühler unter dem Einfluss einer diskontinuierlichen Wärmelast während eines Arbeitszyklus der Adsorptionskältemaschine. Dieser wiederholt sich im Wesentlichen zeitlich periodisch.
  • Die Kurve A zeigt dabei den Temperaturverlauf der Austrittstemperatur aus dem Rückkühler ohne Besprühung, die Kurve B gibt den Temperaturverlauf der Austrittstemperatur mit Besprühung an. Bei dem hier gezeigten Beispiel wird die Besprühung während des Arbeitszyklus' innerhalb von zwei Zeitintervallen tS1 ausgeführt. Aus dem Verlauf der Kurve A ist zu entnehmen, dass die Temperatur am Austritt des Rückkühlers zunächst ein Maximum erreicht, das mit der Zeit durch die einsetzende Wirkung des Rückkühlers asymptotisch gegen einen Grenzwert sinkt.
  • Wie der Verlauf der Kurve B zeigt, wird durch die während des ersten Zeitintervalls tS1 erfolgende Besprühung das anfängliche Temperaturmaximum beträchtlich gesenkt. Die Temperaturkurve zeigt im Anschluss daran einen weitaus flacheren Verlauf. Im Gegensatz zu dem Temperaturverlauf bei Kurve A kann durch eine spätere, wiederum innerhalb eines Zeitintervalls tS1 erfolgende Besprühung die zum Zeitpunkt t = 0 vorliegende Anfangstemperatur schnell wieder erreicht werden. Die kurzzeitige Besprühung in den beiden Zeitintervallen genügt somit, um den Temperaturverlauf am Austritt des Hybridkühlers zu glätten und somit eine gleichbleibende Kühlleistung des Hybridkühlers bei einer diskontinuierlichen Wärmelast zu gewährleisten. Die nur innerhalb der Zeitintervalle ausgeführte Besprühung reicht aus, um die diskontinuierlich herangeführte Wärme effektiv abzuführen.
  • Dieser Effekt wird durch die infolge der Besprühung herabgesetzte Temperatur der über die Ventilation angesaugten Umgebungsluft bewirkt. Der Temperaturverlauf der Umgebungsluft ist durch die Kurve B' dargestellt.
  • Erfindungsgemäß wird der Beginn und die Dauer der jeweiligen Zeitintervalle tS1 von der Regeleinheit bestimmt. Die Besprühung setzt dann ein, wenn die Temperatur T an einer Stelle des Kältekreislaufs der Adsorptionskältemaschine einen Sollwert Tsoll erreicht oder überschreitet. Sie wird dann deaktiviert und das Ventil 22 geschlossen, wenn der vorgegebene Betriebsparameter, in diesem Fall der Sollwert Tsoll, wieder unterschritten wird. Die starke Abflachung des Kurvenverlaufs B im Vergleich zu A erklärt sich dadurch, dass die Besprühung des Kühlelementes im Hybridkühler bereits dann einsetzt, bevor der nun stärker erwärmte Wärmeträger das Kühlelement über den Vorlauf erreicht hat. Dadurch ist das Kühlelement bereits benetzt und kann somit die von dem Wärmeträger herangeführte Wärme sehr effektiv aufnehmen.
  • Wie aus dem Diagramm auch hervorgeht, setzt die Besprühung somit zu einem Zeitpunkt ein, wenn die Temperatur des Wärmeträgers noch im Steigen begriffen ist. Das während des Zeitintervalls tS1 erreichte Minimum in der Kurve B' der Lufttemperatur fällt damit zeitlich mit dem ansteigenden Abschnitt der Kurve B der Austrittstemperatur zusammen. Die Wirksamkeit der durch die Regeleinheit geregelten intervallartigen Besprühung ergibt sich somit vor allem daraus, dass dem Temperaturanstieg des Wärmeträgers im Rückkühlkreislauf zeitgenau und bereits zu Beginn begegnet wird.
  • Ein versuchsweise ausgeführter Vergleich der genannten Besprühart für den Hybridrückkühler mit der herkömmlichen Betriebsweise einer quasi kontinuierlichen Besprühung zeigt, dass bei dem Ausführen letzterer eine erheblich größere Wassermenge verbraucht wird. Im Vergleich zur herkömmlichen Betriebsweise ist bei dem erfindungsgemäßen Verfahren der Wasserverbrauch bei der Besprühung auf etwa ein Siebentel reduziert.
  • Fig. 5 zeigt den vorteilhaften Einfluss der in Fig. 4 dargestellten Ausführung der Besprühung auf eine Maschinenarbeitszahl einer Adsorptionskältemaschine mit einem derartig betriebenen Rückkühlkreislauf bei verschiedenen Umgebungstemperaturen. Die Maschinenarbeitszahl ist ein Maß für die Effektivität der Adsorptionskältemaschine. Sie gibt das Verhältnis zwischen der durch die Adsorptionskältemaschine gepumpten Wärme zum dafür benötigten Energieaufwand an. Eine hohe Maschinenarbeitszahl bedeutet somit eine hohe Effektivität der Kälteanlage.
  • Das Diagramm zeigt, dass die Maschinenarbeitszahl erwartungsgemäß bei zunehmender Außentemperatur sinkt. Sie erreicht ohne Besprühung etwa einen Wert von weniger als 10 bei einer Temperatur von 26 °C. Wird bei dieser Temperatur die Besprühung gemäß der Vorgehensweise nach Fig. 3 in Betrieb genommen, steigt die Maschinenarbeitszahl deutlich auf einen Wert von 15 und damit auf das anderthalbfache.
  • Bezugszeichenliste
  • 1
    Rückkühlkreislauf
    2
    Hybridkühler
    3
    Anlage mit diskontinuierlicher Wärmeabgabe
    4
    Vorlauf
    5
    Kühlelement
    6
    Rücklauf
    7
    Pumpe
    10
    Sperrventile
    11
    Vorrats- und Ausgleichsbehälter
    13
    Kondensator
    14
    Adsorber
    15
    Verdampfer
    16
    Temperatursensor
    17
    Regeleinheit
    17a
    Steuerleitung
    18
    Besprüheinrichtung
    19
    Ventilation
    20
    Düsenanordnung
    21
    Zulaufleitung
    22
    Sperrventil
    A
    Austrittstemperatur ohne Besprühung
    B
    Austrittstemperatur mit Intervallbesprühung
    B'
    Temperatur der Umgebungsluft
    C
    zyklisch variierende Austrittstemperatur im Wärmeträgerkreislauf einer AKM
    D
    zyklisch variierende Eintrittstemperatur im Wärmeträgerkreislauf der AKM
    E
    zyklisch variierende Kälteleistung

Claims (1)

  1. Verfahren zum Betreiben eines Rückkühlkreislaufes (1) mit einem Hybridkühler (2) für eine Adsorptionskältemaschine (3) mit einer diskontinuierlichen Wärmeabgabe, betreffend
    eine Besprühregelung des Hybridkühlers (2) während eines Arbeitszyklus der Adsorptionskältemaschine, wobei sich der Arbeitszyklus im Wesentlichen zeitlich periodisch wiederholt, mit folgenden Verfahrensschritten:
    - kontinuierliches Erfassen eines aktuellen Betriebsparameters der Adsorptionskältemaschine (3), wobei der aktuell erfasste Betriebsparameter eine aktuelle Temperatur (T) in der Adsorptionskältemaschine (3) ist und innerhalb eines Wärmeträgerkreislaufs erfasst wird,
    - Vergleich des erfassten Betriebsparameters mit einem vorgegebenen Temperatursollwert in einer Regeleinheit (17),
    - Aktivieren einer Besprüheinrichtung (18) des Hybridkühlers (2) bei einem Erreichen und/oder Überschreiten des Temperatursollwertes durch den aktuell erfassten Betriebsparameter bis zu einem Erreichen oder Unterschreiten des Temperatursollwertes,
    wobei
    - die Besprühung dann einsetzt, wenn die Temperatur T an einer Stelle des Kältekreislaufs der Adsorptionskältemaschine einen Sollwert Tsoll erreicht oder überschritten hat und dabei ein Schaltsignal zum Öffnen eines Ventils der Besprüheinrichtung ausgegeben wird
    und
    - die Besprühung während des Arbeitszyklus innerhalb von zwei Zeitintervallen tS1 ausgeführt wird, wobei der Beginn und die Dauer der jeweiligen Zeitintervalle tS1 von der Regeleinheit bestimmt werden
    und
    - die Besprühung deaktiviert und das Ventil geschlossen wird, wenn der vorgegebene Betriebsparameter Tsoll wieder unterschritten wird.
EP10188007.8A 2009-11-04 2010-10-19 Verfahren zum Betreiben eines Rückkühlkreislaufes mit einem Hybridkühler für eine Anlage mit einer diskontinuierlichen Wärmeabgabe Active EP2320189B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009051888 2009-11-04
DE102010008408.5A DE102010008408B4 (de) 2009-11-04 2010-02-18 Verfahren zum Betreiben eines Rückkühlkreislaufes mit einem Hybridkühler für eine Anlage mit einer diskontinuierlichen Wärmeabgabe und Vorrichtung hierfür

Publications (3)

Publication Number Publication Date
EP2320189A2 EP2320189A2 (de) 2011-05-11
EP2320189A3 EP2320189A3 (de) 2014-09-03
EP2320189B1 true EP2320189B1 (de) 2020-07-22

Family

ID=43530901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10188007.8A Active EP2320189B1 (de) 2009-11-04 2010-10-19 Verfahren zum Betreiben eines Rückkühlkreislaufes mit einem Hybridkühler für eine Anlage mit einer diskontinuierlichen Wärmeabgabe

Country Status (3)

Country Link
EP (1) EP2320189B1 (de)
DE (1) DE102010008408B4 (de)
ES (1) ES2820876T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014101463U1 (de) 2013-12-23 2014-06-20 Entrade Energiesysteme Ag Modulare Anlage zur Bereitstellung von thermischer und elektrischer Energie
CN109612184A (zh) * 2018-11-13 2019-04-12 上海可瑞视冷链科技有限公司 一种移动方舱冷凝器的散热装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU165521B (de) 1972-07-03 1974-09-28
DE3408192A1 (de) 1984-03-06 1985-09-19 Markus 8085 Erding Rothmeyer Verfahren zum hochtransformieren der temperatur von waerme sowie waermetransformator
DE4215898C2 (de) 1992-04-09 1997-09-04 E W Gohl Gmbh Verfahren zum Kühlen von Flüssigkeit in einem geschlossenen Primärkreislauf sowie Kühlvorrichtung dafür
DE19906954A1 (de) 1999-02-19 2000-08-24 E W Gohl Gmbh Verfahren zum Kühlen von Flüssigkeiten sowie Vorrichtung dafür
DE20001528U1 (de) * 2000-01-28 2000-04-06 Kuehlturm Gmbh Kühlvorrichtung
US6823684B2 (en) 2002-02-08 2004-11-30 Tim Allan Nygaard Jensen System and method for cooling air
US7310958B2 (en) 2004-03-08 2007-12-25 Baltimore Aircoil Company, Inc. Control of heat exchanger operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102010008408B4 (de) 2019-07-11
DE102010008408A1 (de) 2011-07-14
EP2320189A3 (de) 2014-09-03
ES2820876T3 (es) 2021-04-22
EP2320189A2 (de) 2011-05-11

Similar Documents

Publication Publication Date Title
DE2748415C2 (de) Heizverfahren und bimodales Heizsystem zum Heizen von Gebäuden
EP2256438B1 (de) Verbesserte Kälteerzeugungsvorrichtung, insbesondere für Flugzeuge
DE112013003304T5 (de) Fahrzeugklimaanlageneinheit
EP0086383A2 (de) Sorptionsapparate und Verfahren für ihren Betrieb
DE102012004094B3 (de) Vorrichtung, insbesondere Wärmepumpe, mit einem in einem Kreislauf geführten Kältemittel sowie Verfahren zum Betrieb einer derartigen Vorrichtung
DE2700123A1 (de) Klimaanlage mit waermepumpe
DE3938875A1 (de) Mobiles und transportables klimageraet zur kuehlung und klimatisierung innenliegender raeume
WO2011082790A1 (de) System und verfahren zur kühlung einer rechenanlage
WO2006024065A1 (de) Vorrichtung zur wärmezu- und/oder -abfuhr zu zumindest einem verbraucher
WO2006018216A1 (de) Absorptionskältemaschine
EP3097360A1 (de) Kälteanlage mit einem luftgekühlten wärmetauscher
DE202011111059U1 (de) Wärmepumpenanlage
EP2320189B1 (de) Verfahren zum Betreiben eines Rückkühlkreislaufes mit einem Hybridkühler für eine Anlage mit einer diskontinuierlichen Wärmeabgabe
EP2204619B1 (de) Vorrichtung und verfahren für einen optimierten betrieb eines klimatisierungssystems und klimatisierungssystem
WO2017013163A1 (de) Wärmepumpenanlage
WO2012000002A2 (de) Anordnung zum umwandeln thermischer energie und vorrichtung zum erwärmen und kühlen eines mediums
DE102008049896A1 (de) Luftwärmepumpe und Lamellenluftwärmetauscher sowie Verfahren zu deren Betrieb
WO2013152749A2 (de) Kühlgerät für einen schaltschrank sowie ein entsprechendes verfahren
EP3480534B1 (de) Heizungsanlage und steuerverfahren für eine heizungsanlage
WO2020182462A9 (de) Wärmepumpeneinrichtung, heizungs- und/oder warmwasserbereitungssystem und verfahren zum betrieb einer wärmepumpeneinrichtung
DE102008057110A1 (de) Kühlvorrichtung
DE102007062343B4 (de) Verfahren und Anordnung zur Kälteerzeugung nach einem Wasser-Lithiumbromid-Resorptionskälteprozess
DE102012024577A1 (de) Wärmepumpenanordnung und Verfahren zum Betrieb einer Wärmepumpenanordnung
DE10240659B4 (de) Verfahren und Vorrichtung zur solarthermischen Kälteerzeugung
AT504762B1 (de) Wärmepumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 27/00 20060101AFI20140730BHEP

Ipc: F25B 17/08 20060101ALI20140730BHEP

Ipc: F28D 5/02 20060101ALI20140730BHEP

17P Request for examination filed

Effective date: 20141209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FAHRENHEIT GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190410

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016706

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293805

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2820876

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016706

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201019

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201019

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1293805

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201019

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211020

Year of fee payment: 12

Ref country code: GB

Payment date: 20211022

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211029

Year of fee payment: 12

Ref country code: FR

Payment date: 20211021

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201020

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010016706

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221019

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221019