EP2319159A2 - Rotor einer elektrische maschine - Google Patents

Rotor einer elektrische maschine

Info

Publication number
EP2319159A2
EP2319159A2 EP09781774A EP09781774A EP2319159A2 EP 2319159 A2 EP2319159 A2 EP 2319159A2 EP 09781774 A EP09781774 A EP 09781774A EP 09781774 A EP09781774 A EP 09781774A EP 2319159 A2 EP2319159 A2 EP 2319159A2
Authority
EP
European Patent Office
Prior art keywords
rotor
electrical machine
machine according
groove
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09781774A
Other languages
English (en)
French (fr)
Inventor
Kurt Reutlinger
Markus Heidrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEG Automotive Germany GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2319159A2 publication Critical patent/EP2319159A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • H02K1/265Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • H02K21/042Windings on magnets for additional excitation ; Windings and magnets for additional excitation with permanent magnets and field winding both rotating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the invention relates to an electric machine, as described in the earlier DE patent application 10 2007 025 971.0. Such a hybrid excited
  • Synchronous machine is particularly suitable for powering the electrical system of motor vehicles, being used in generator mode with controlled induced voltage in a multi-phase stator winding system and the poles of the rotor are permanently magnetically and / or electrically excited.
  • the electric machine according to the invention with the features of the independent claim has the advantage that the excitation winding can be performed by the proposed shaping of the rotor grooves without difficulty with a high fill factor and with a low mean turn length with low electrical resistance.
  • the proposed groove geometry in particular in the arrangement of permanent magnets on the rotor periphery to achieve an additional permanent magnetic excitation, the design of the rotor to achieve a low electrical and magnetic resistance can be optimized particularly advantageous.
  • an automatic winding of the groove is possible without difficulty.
  • the rotor winding can be very easily subdivided into partial coils, which can then be arranged symmetrically on both sides of the rotor shaft in an advantageous manner. As a result, the imbalance of the rotor is minimized.
  • the rotor grooves rise on the groove base on both sides towards the middle of the groove, in particular curved circularly towards the groove opening and are formed concentrically to the passage opening of the rotor shaft.
  • the winding process is facilitated, since the individual turns of the field winding pass through the groove cross-section sloping to the groove cross-section with little lateral guidance in all areas of the groove and allow a high fill factor.
  • the winding length and thus the electrical resistance of the field winding are minimized.
  • the lateral groove walls are preferably curved towards the center of the groove so that the grooves as a whole receive a substantially bell-shaped cross section.
  • the iron cross-section of the rotor along the groove edges can be adapted in a particularly effective manner to the respective size of the magnetic flux and the magnetic resistance between the core of the rotor and the poles can be reduced.
  • the advantages which can be achieved by the proposed shaping of the grooves are particularly evident.
  • the rotor has at its periphery only two grooves in which a field winding of two substantially identical, arranged symmetrically to the rotor shaft coil sections can be accommodated in a particularly advantageous manner.
  • a very secure and permanent fixation of introduced into the rotor grooves as electrical insulation insulating results from the fact that they are locked in the groove openings on the inner sides of the poles in a suitable manner, in particular fixed in slots on the inside of the poles. It is expedient if the slots for the locking of the insulating films as undercuts in the poles, preferably in extension of the lateral groove walls, are executed.
  • the insulating films are suitably made of stiff insulating paper.
  • Figure 2 shows a rotor lamination section for a two-pole electrically excited, a total of 14-pole machine with six permanent magnetically excited poles and
  • Figure 3 is a perspective view of an inventive, two-pole excited machine with two symmetrically arranged to the rotor shaft partial coils with removed bearing plate and
  • Figure 4 shows a partial section of the rotor of the alternator according to the invention with a representation of the slot insulation.
  • FIG. 1 shows a section through an electric machine 10 in the embodiment as an alternator for motor vehicles.
  • This has a two-part housing 13, which consists of a first bearing plate 13.1 and a second bearing plate 13.2.
  • the bearing plate 13.1 and the bearing plate 13.2 receive a stator 16, with an annular stator lamination 17, in the inwardly open and axially extending grooves 19, a stator winding 18 is inserted.
  • the annular stator 16 surrounds with its radially inwardly directed surface a rotor 20, which is designed as a hybrid-excited rotor.
  • the stator 16 acts in this case via a working air gap with the rotatably mounted in the stator 16 rotor 20.
  • the rotor 20 has over its circumference in a predetermined sequence a plurality of north poles N and south poles S, which are formed by permanent magnets 24, 25 and by the exciter winding 29.
  • N and south poles S which are formed by permanent magnets 24, 25 and by the exciter winding 29.
  • the number of poles of the rotor 20 depending on the strength and direction of a
  • the rotor 20 has a magnetically conductive body, which is designed as a laminated core 21.
  • the rotor core is laminated in the axial direction with a thickness between 0.1 mm and 2.0 mm. Below 0.1 mm, the resistance of the laminated core 21 against centrifugal forces is too low. Above 2.0 mm, the reduction of the eddy current losses on the outer surface of the rotor 20 is no longer sufficient, so that the built-permanent magnets 24, 25 can be damaged or demagnetized.
  • the axial length of the rotor laminated core 21 preferably corresponds to the axial length of the annular stator lamination 17, or is for a tolerance compensation up to 2 mm longer or shorter than the stator lamination 17 and is preferably held together by welds. It can be used instead of welds and rivets, or knobs.
  • the field winding 29 is formed as an example in the two-pole variant as a diameter coil and lies in grooves 40, which are punched out of the laminated core 21.
  • the exciter winding 29 can be wrapped, for example, as a flyer winding (double flyer) directly into the rotor core 21.
  • areas 41 are recessed in the rotor laminated core, into which permanent magnets 24, 25 can be inserted.
  • the magnets 24, 25 are preferably inserted into punched-out regions 41 in the rotor laminated core. This makes it possible to absorb the centrifugal forces occurring during operation and thereby ensure a secure hold of the magnets on the rotor.
  • a magnetic material a material with a remanence of greater than 1 T proves to be particularly advantageous.
  • These magnetic properties have in particular permanent magnets made of rare earth material.
  • the magnets are in this case installed in the rotor so that they generate a substantially radial field. This field then enters from the rotor via the air gap in the stator lamination and induces a voltage in the windings of the stator upon rotation of the rotor.
  • the rotor 20 is rotatably supported in the respective end shields 13.1 and 13.2, respectively, by means of a shaft 27 and one respective rolling bearing 28 located on each side of the rotor. It has two axial end faces, on each of which a L favorer30 is attached.
  • These fans essentially consist of a plate-shaped or disk-shaped section from which fan blades originate in a known manner.
  • the fans 30 serve, via openings 48 in the Lüschilden 13.1 and 13.2 a
  • openings 48 are provided at the axial ends of the end shields 13.1 and 13.2, via which by means of the fan 30 cooling air in the Interior of the electric machine 10 is sucked.
  • This cooling air is accelerated radially outward by the rotation of the fans 30, so that they can pass through the cool air-permeable winding heads 50 on the drive side and 51 on the electronics side.
  • the cooling air takes after passing through the winding heads 50, 51, or after the flow around the winding heads, a path radially outward through openings, not shown.
  • FIG. 1 On the right side there is a protective cap 47, which protects various components against environmental influences.
  • this protective cap 47 covers a slip ring assembly 49, which supplies the excitation winding 29 with exciting current.
  • a heat sink 53 Around this slip ring assembly 49 around a heat sink 53 is arranged, which acts here as a plus heat sink, are mounted on the positive diodes 59.
  • a so-called minus heat sink of the bearing plate acts 13.2.
  • a connection plate 56 is arranged, which in the bearing plate 13.2 attached minus diodes 58 and positive diodes 59 in the form of a bridge circuit 69 interconnects.
  • Figure 2 shows a rotor lamination section of a total of 14-pole electric machine 10 with a two-pole electric ground excitation, distributed on four north poles 32 and four south poles 34, and with six permanent magnetically excited poles 24 and 25.
  • an electrical excitation which in the upper half of Representation north pole 32 and generated in the lower half of south poles 34, the permanent magnets are magnetized oppositely, so that they form on the circumference of the rotor 20 in the upper half south poles 25 and in the lower half north poles 24.
  • the Permanent magnets 24 and 25 are held in pockets 43 which are punched out of the rotor laminated core 21 between the electrically energized poles 32, 34. In the pockets, the permanent magnets are held securely, especially against the high centrifugal forces during operation of the machine.
  • permanent magnets 24 and 25 preferably rare earth magnets. If the power density of the machine is lower, ferrite magnets can also be used as permanent magnets instead. With regard to the number of poles of the machine alternatives are possible, in particular, the assembly with four or eight permanent magnets between electrically excited poles, whereby the total number of poles of the machine changes accordingly in an electrically two-pole excitation.
  • the rotor sheet section illustrated in FIG. 2 has two bell-shaped grooves 40, which are disproportionately expanded towards the bottom of the groove 44 up to a width B which is greater than the diameter d of the rotor shaft 27 or an opening 45 for the passage of the rotor shaft.
  • the largest width B of the grooves 40 is based on the rotor diameter D and is at most 40% of
  • Rotor diameter This design of the grooves makes it easily possible to divide the exciter winding into two partial coils, which can be arranged symmetrically and evenly distributed on both sides of the rotor shaft 27 with minimized winding head length and correspondingly reduced electrical resistance in the end windings 50, 51.
  • a two exciter grooves 40 in the rotor core 26 As a minimum distance a two exciter grooves 40 in the rotor core 26, a range between 20% and 45% of the rotor diameter D has proven to be advantageous. At a such dimensioning of the rotor iron at this bottleneck is ensured a sufficient cross section for the magnetic flux.
  • the grooves 40 of the rotor 20 are further designed so that the groove bottom 44 rises on both sides towards the middle of the groove, preferably with a circular curvature, so that the groove bottom 44 extends concentrically to the passage opening 46 for the rotor shaft 27.
  • the radius R of the groove bottom should in this case be in the range between twice and four times the radius d / 2 of the rotor shaft 27 in order to ensure a uniform and sufficient magnetic cross section in the rotor core 26 as well.
  • the bell-shaped shape of the grooves 40 is further characterized in that the lateral groove walls 39 are curved towards the groove center, so that even in this area for the magnetic flux to the immediately laterally of the grooves lying electrically energized poles 32 and 34, a sufficient iron cross section available stands.
  • Another parameter in this area of the rotor iron is the edge distance b at the side of the exciter grooves 40 from the adjacent edge of the permanent magnets 24 and 25 arranged there. To ensure a sufficient cross section between the corners of the permanent magnets 24, 25 and the adjacent groove edges, the lateral spacing should be there b between 25% and 100% of the pole pitch ⁇ of the electrically or permanently magnetically excited rotor poles are.
  • Figure 3 shows a perspective view of a synchronous machine according to the invention when removed
  • the machine has an electrical two-pole basic excitation, wherein the excitation winding 29 is divided into two, substantially equal partial coils 29a and 29b, which the rotor shaft 27 on both sides surround and are arranged symmetrically to this.
  • the laminated core 17 of the rotor 20 corresponds to the sheet metal section shown in Figure 2 with bell-shaped grooves, of which only the groove openings 45 can be seen.
  • Excitation winding engage over a base plate 63 of the fan 30.
  • the field winding 29 fills out the grooves 40 completely and is designed such that the ratio of the copper mass m N in the excitation grooves 40 to the copper mass m w of the winding heads 0.4 to 2.5, preferably 0.5 to 1.
  • the mass ratio of the winding parts in the grooves, or in the winding heads corresponds to the respective wire lengths and represents in the specified ratio an advantageous compromise with respect to the design of the field winding 29 and the stator winding 18, wherein the specified ratio of the copper mass in the grooves, or in the Winding heads at the stator is larger than at the rotor. From the stator 16, only the winding head of the stator winding 18 and its laminated core 17 can be seen in Figure 3, which, as shown in FIG.
  • Figure 1 sits in the bearing plate 13.1 of the two-part housing 13.
  • the described and illustrated form of the hybrid-excited rotor 20 of the machine according to the invention forms an advantageous compromise with regard to the requirements of strength, flow control,
  • Figure 4 shows a perspective view of a portion of the laminated core 21 of the rotor 20 with a groove 40, as described in detail previously in particular with reference to FIG 2. For the same parts the same reference numerals are used.
  • the excitation winding 29 is shown in Figure 4 only as hatching. She is against the slats of the
  • Rotor laminated core 21 isolated by means of a film 38, which preferably consists of insulating paper.
  • the insulating film 38 is supported in the region of the slot openings 45 on the inner sides 33,35 of the poles 32,34 and is locked there in slots 36 which are formed as undercuts in the poles 32,34 and extend in extension of the lateral groove walls 39.
  • This type of locking the slot insulation in undercut-like slots 36 is basically usable for other Nutformen than for the illustrated bell-shaped groove. In this groove shape, however, the advantage of the proposed locking of the slot insulation is particularly pronounced, since the insulating film due to the groove shape tends to dodge in the region of the slot opening to the groove inside, whereby the introduction of the exciter winding 29 could be disturbed.
  • groove wedges 37 can be inserted in the region of the slot openings 45, which improve the insulation of the winding on the insides 33, 35 of the poles 32, 34, arrest the insulating film 38 in its position and support the field winding 29 against high centrifugal forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

Die Erfindung betrifft eine hybriderregte Synchronmaschine, insbesondere einen Generator zur Speisung des Bordnetzes eines Kraftfahrzeuges, mit einem geblechten Stator (16) mit einer mehrphasigen Statorwicklung (18) und mit einem geblechten Rotor (20) mit einer Erregerwicklung (29), welche gemeinsam mit am Rotorumfang angeordneten Permanentmagneten (24, 25) die Erregung der Maschine liefert. Zur Erzielung günstiger elektrischer und magnetischer Eigenschaften sowie zur Verbesserung der Fertigungsbedingungen der Maschine sind die Nuten (40) für die Erregerwicklung (29) zum Nutgrund (44) hin überproportional erweitert und vorzugsweise glockenförmig ausgebildet

Description

Beschreibung
Titel
Elektrische Maschine
Stand der Technik
Die Erfindung geht aus von einer elektrischen Maschine, wie sie in der älteren DE-Patentanmeldung 10 2007 025 971.0 beschrieben ist. Eine derartige hybriderregte
Synchronmaschine eignet sich insbesondere für die Speisung des Bordnetzes von Kraftfahrzeugen, wobei sie im Generatorbetrieb mit geregelter induzierter Spannung in einem mehrphasigen Ständerwicklungssystem benutzt und die Pole des Rotors permanentmagnetisch und/oder elektrisch erregt werden.
Offenbarung der Erfindung
Die erfindungsgemäße elektrische Maschine mit den Merkmalen des unabhängigen Anspruchs hat den Vorteil, dass durch die vorgeschlagene Formgebung der Rotornuten die Erregerwicklung ohne Schwierigkeiten mit einem hohen Füllfaktor sowie mit einer geringen mittleren Windungslänge mit niedrigem elektrischen Widerstand ausgeführt werden kann. Außerdem kann durch die vorgeschlagene Nutgeometrie, insbesondere bei der Anordnung von Permanentmagneten am Rotorumfang zur Erzielung einer zusätzlichen permanentmagnetischen Erregung, die Gestaltung des Rotors zur Erzielung eines niedrigen elektrischen und magnetischen Widerstandes besonders vorteilhaft optimiert werden. Ferner ist ohne Schwierigkeit ein automatisches Bewickeln der Nut möglich. Weiterhin lässt sich auf diese Weise die Rotorwicklung sehr einfach in Teilspulen unterteilen, welche dann in vorteilhafter Weise symmetrisch beiderseits der Rotorwelle angeordnet werden können. Hierdurch wird auch die Unwucht des Rotors minimiert .
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im unabhängigen Anspruch angegebenen elektrischen Maschine möglich. Dabei ist es zweckmäßig, wenn die Rotornuten am Nutgrund beidseitig zur Nutmitte hin ansteigen, insbesondere zur Nutöffnung hin kreisförmig gekrümmt und konzentrisch zur Durchtrittsöffnung der Rotorwelle ausgebildet sind. Hierdurch wird einerseits der Wickelvorgang erleichtert, da die einzelnen Windungen der Erregerwicklung durch den zu den Nutecken hin abfallenden Nutquerschnitt mit geringer seitlicher Führung in alle Bereiche der Nut gelangen und einen hohen Füllfaktor ermöglichen. Gleichzeitig werden die Windungslänge und damit der elektrische Widerstand der Erregerwicklung minimiert.
Die seitlichen Nutwände sind vorzugsweise zur Nutmitte hin gekrümmt, sodass die Nuten insgesamt einen im Wesentlichen glockenförmigen Querschnitt erhalten. Hierbei kann auch der Eisenquerschnitt des Rotors entlang der Nutränder in besonders wirkungsvoller Weise der jeweiligen Größe des Magnetflusses angepasst und der magnetische Widerstand zwischen dem Kern des Rotors und den Polen verringert werden . Insbesondere bei einer elektrisch zweipoligen Rotorgrunderregung treten die durch die vorgeschlagene Formgebung der Nuten erreichbaren Vorteile besonders deutlich hervor. In diesem Fall besitzt der Rotor an seinem Umfang nur zwei Nuten, in denen eine Erregerwicklung aus zwei im Wesentlichen gleichen, symmetrisch zur Rotorwelle angeordnete Teilspulen in besonders vorteilhafter Weise untergebracht werden kann. Bei einer geeigneten Gestaltung und Dimensionierung der Nuten, wie sie in den Unteransprüchen hervorgehoben ist, erhält man sehr günstige Verhältnisse sowohl in fertigungstechnischer Hinsicht als auch hinsichtlich des elektrischen und magnetischen Widerstandes .
Eine sehr sichere und dauerhafte Fixierung von in die Rotornuten als elektrische Isolation eingebrachten Isolierfolien ergibt sich dadurch, dass diese im Bereich der Nutöffnungen an den Innenseiten der Pole in geeigneter Weise arretiert, insbesondere in Schlitzen an der Innenseite der Pole fixiert sind. Hierbei ist es zweckmäßig, wenn die Schlitze für die Arretierung der Isolierfolien als Hinterschnitte in den Polen, vorzugsweise in Verlängerung der seitlichen Nutwände, ausgeführt sind. Die Isolierfolien bestehen zweckmäßigerweise aus steifem Isolierpapier.
Weitere Einzelheiten und Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung der Ausführungsbeispiele.
Kurze Beschreibung der Zeichnungen:
Ausführungsbeispiele der Erfindung ist in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert . E s zeigen
Figur 1 einen Längsschnitt durch einen Wechselstromgenerator für Kraftfahrzeuge mit einem hybriderregten Rotor in PolWechselanordnung,
Figur 2 einen Rotorblechschnitt für eine elektrisch zweipolig erregte, insgesamt 14-polige Maschine mit sechs permanentmagnetisch erregten Polen und
Figur 3 eine perspektivische Darstellung einer erfindungsgemäßen, elektrisch zweipolig erregten Maschine mit zwei symmetrisch zur Rotorwelle angeordneten Teilspulen bei abgenommenem Lagerschild und
Figur 4 einen Teilschnitt des Rotors des erfindungsgemäßen Wechselstromgenerators mit einer Darstellung der Nutisolation.
Ausführungsform der Erfindung
In Figur 1 ist ein Schnitt durch eine elektrische Maschine 10 in der Ausführung als Wechselstromgenerator für Kraftfahrzeuge dargestellt. Dieser weist ein zweiteiliges Gehäuse 13 auf, das aus einem ersten Lagerschild 13.1 und einem zweiten Lagerschild 13.2 besteht. Der Lagerschild 13.1 und der Lagerschild 13.2 nehmen einen Stator 16 auf, mit einen kreisringförmigen Statorblechpaket 17, in dessen nach innen offene und sich axial erstreckende Nuten 19 eine Statorwicklung 18 eingelegt ist. Der ringförmige Stator 16 umgibt mit seiner radial nach innen gerichteten Oberfläche einen Rotor 20, der als hybriderregter Rotor ausgebildet ist. Der Stator 16 wirkt hierbei über einen Arbeitsluftspalt mit dem im Stator 16 drehbar gelagerten Rotor 20 zusammen.
Der Rotor 20 weist über seinen Umfang in einer vorgegebenen Folge mehrere Nordpole N und Südpole S auf, die durch Permanentmagnete 24, 25 sowie durch die Erregerwicklung 29 ausgebildet werden. Dabei lässt sich die Polzahl des Rotors 20 in Abhängigkeit von der Stärke und Richtung eines
Erregerstromes Ie in der Erregerwicklung 29 und durch die Zahl der eingesetzten Permanentmagnete verändern.
Der Rotor 20 besitzt einen magnetisch leitfähigen Körper, der als Blechpaket 21 ausgebildet ist. Das Rotorblechpaket ist in Achsrichtung laminiert mit einer Blechstärke zwischen 0,1 mm und 2,0 mm. Unterhalb 0,1 mm ist die Widerstandsfähigkeit des Blechpaketes 21 gegen Fliehkräfte zu gering. Oberhalb von 2,0 mm ist die Verringerung des Wirbelstromverluste auf der Außenfläche des Rotors 20 nicht mehr ausreichend, so dass die eingebauten Permanentmagnete 24, 25 geschädigt, beziehungsweise entmagnetisiert werden können .
Die axiale Länge des Rotorblechpaketes 21 entspricht vorzugsweise der axialen Länge des kreisringförmigen Statorblechpaketes 17, beziehungsweise ist für einen Toleranzausgleich bis zu 2 mm länger oder kürzer als das Statorblechpaket 17 und wird vorzugsweise durch Schweißnähte zusammengehalten. Es können statt Schweißungen auch Nieten, beziehungsweise Knöpfungen eingesetzt werden.
Die Erregerwicklung 29 ist beispielhaft bei der zweipoligen Variante als Durchmesserspule ausgebildet und liegt in Nuten 40, die aus dem Blechpaket 21 ausgestanzt sind. Die Erregerwicklung 29 kann z.B. als Flyerwicklung (Doppelflyer) direkt in das Rotorblechpaket 21 eingewickelt werden. Des Weiteren sind in dem Rotorblechpaket Bereiche 41 ausgespart, in die Permanentmagnete 24, 25 eingesetzt werden können.
Erfindungsgemäß werden die Magnete 24, 25 vorzugsweise in ausgestanzte Bereiche 41 im Rotorblechpaket eingesetzt. Hierdurch ist es möglich, die im Betrieb auftretenden Fliehkräfte aufzunehmen und dadurch einen sicheren Halt der Magnete auf dem Rotor zu gewährleisten. Als Magnetmaterial erweist sich ein Material mit einer Remanenzinduktion von größer 1 T als besonders vorteilhaft. Diese magnetischen Eigenschaften weisen insbesondere Permanentmagnete aus Seltenerde-Material auf. Die Magnete werden hierbei in den Rotor derart eingebaut, dass sie ein im Wesentlichen radiales Feld erzeugen. Dieses Feld tritt dann vom Rotor über den Luftspalt in das Statorblechpaket ein und induziert bei Drehung des Rotors eine Spannung in den Wicklungen des Stators.
Der Rotor 20 ist mittels einer Welle 27 und je einem auf je einer Rotorseite befindlichen Wälzlager 28 in den jeweiligen Lagerschilden 13.1 beziehungsweise 13.2 drehbar gelagert. Er weist zwei axiale Stirnflächen auf, an denen jeweils ein Lüfter30 befestigt ist. Diese Lüfter bestehen im Wesentlichen aus einem plattenförmigen, beziehungsweise scheibenförmigen Abschnitt, von dem Lüfterschaufeln in bekannter Weise ausgehen. Die Lüfter 30 dienen dazu, über Öffnungen 48 in den Lageschilden 13.1 und 13.2 einen
Luftaustausch zwischen der Außenseite und dem Innenraum der elektrischen Maschine 10 zu ermöglichen. Dazu sind Öffnungen 48 an den axialen Enden der Lagerschilde 13.1 und 13.2 vorgesehen, über die mittels der Lüfter 30 Kühlluft in den Innenraum der elektrischen Maschine 10 eingesaugt wird. Diese Kühlluft wird durch die Rotation der Lüfter 30 radial nach außen beschleunigt, so dass sie durch die kühlluftdurchlässigen Wickelköpfe 50 auf der Antriebsseite und 51 auf der Elektronikseite hindurchtreten kann. Durch diesen Effekt werden die Wickelköpfe 50, 51 gekühlt. Die Kühlluft nimmt nach dem Hindurchtreten durch die Wickelköpfe 50, 51, beziehungsweise nach dem Umströmen der Wickelköpfe, einen Weg radial nach außen durch nicht dargestellte Öffnungen.
In Figur 1 auf der rechten Seite befindet sich eine Schutzkappe 47, die verschiedene Bauteile vor Umgebungseinflüssen schützt. So deckt diese Schutzkappe 47 eine Schleifringbaugruppe 49 ab, welche die Erregerwicklung 29 mit Erregerstrom versorgt. Um diese Schleifringbaugruppe 49 herum ist ein Kühlkörper 53 angeordnet, der hier als Pluskühlkörper wirkt, an dem Plusdioden 59 montiert sind. Als sogenannter Minuskühlkörper wirkt der Lagerschild 13.2. Zwischen dem Lagerschild 13.2 und dem Kühlkörper 53 ist eine Anschlussplatte 56 angeordnet, welche im Lagerschild 13.2 befestigte Minusdioden 58 und Plusdioden 59 in Form einer Brückenschaltung 69 miteinander verbindet.
Figur 2 zeigt einen Rotorblechschnitt einer insgesamt 14- poligen elektrischen Maschine 10 mit einer elektrisch zweipoligen Grunderregung, verteilt auf vier Nordpole 32 und vier Südpole 34, sowie mit sechs permanentmagnetisch erregten Polen 24 und 25. Bei einer elektrischen Erregung, welche in der oberen Hälfte der Darstellung Nordpole 32 und in der unteren Hälfte Südpole 34 erzeugt, sind die Permanentmagnete jeweils entgegengesetzt magnetisiert, sodass diese am Umfang des Rotors 20 in der oberen Hälfte Südpole 25 und in der unteren Hälfte Nordpole 24 bilden. Die Permanentmagnete 24 und 25 sind in Taschen 43 gehalten, welche zwischen den elektrisch erregten Polen 32, 34 aus dem Rotorblechpaket 21 ausgestanzt sind. In den Taschen sind die Permanentmagnete sicher gehalten, insbesondere gegen die hohen Fliehkräfte im Betrieb der Maschine.
Zur Erzielung einer hohen Leistungsdichte der Maschine werden als Permanentmagnete 24 und 25 vorzugsweise Seltenerd-Magnete eingesetzt. Bei geringeren Anforderungen an die Leistungsdichte der Maschine können stattdessen auch Ferrit-Magnete als Permanentmagnete verwendet werden. Hinsichtlich der Polzahl der Maschine sind Alternativen möglich, bei einer elektrisch zweipoligen Erregung insbesondere auch die Bestückung mit wahlweise vier oder acht Permanentmagneten zwischen elektrisch erregten Polen, wodurch sich die Gesamtpolzahl der Maschine entsprechend ändert .
Der in Figur 2 dargestellte Rotorblechschnitt weist zwei glockenförmige Nuten 40 auf, welche zum Nutgrund 44 hin überproportional erweitert sind bis auf eine Breite B, welche größer ist als der Durchmesser d der Rotorwelle 27, beziehungsweise einer Öffnung 45 für den Durchtritt der Rotorwelle. Die größte Breite B der Nuten 40 orientiert sich am Rotordurchmesser D und beträgt maximal 40% des
Rotordurchmessers. Diese Gestaltung der Nuten macht es leicht möglich, die Erregerwicklung in zwei Teilspulen aufzuteilen, welche mit minimierter Wickelkopflänge und entsprechend reduziertem elektrischem Widerstand in den Wickelköpfen 50, 51 symmetrisch und gleichmäßig verteilt beidseitig der Rotorwelle 27 angeordnet werden können. Als Mindestabstand a zweier Erregernuten 40 im Rotorkern 26 hat sich hierbei ein Bereich zwischen 20% und 45% des Rotordurchmessers D als vorteilhaft erwiesen. Bei einer derartigen Bemessung des Rotoreisens an dieser Engstelle ist ein ausreichender Querschnitt für den Magnetfluss gesichert.
Die Nuten 40 des Rotors 20 sind weiterhin so gestaltet, dass der Nutgrund 44 beidseitig zur Nutmitte hin ansteigt, vorzugsweise mit einer kreisförmigen Krümmung, sodass der Nutgrund 44 konzentrisch zur Durchtrittsöffnung 46 für die Rotorwelle 27 verläuft. Der Radius R des Nutgrundes soll hierbei im Bereich zwischen dem Doppelten und dem Vierfachen Radius d/2 der Rotorwelle 27 liegen, um auch im Rotorkern 26 einen gleich bleibenden und ausreichenden magnetischen Querschnitt zu gewährleisten.
Die glockenförmige Gestalt der Nuten 40 ist weiterhin dadurch gekennzeichnet, dass die seitlichen Nutwände 39 zur Nutmitte hin gekrümmt sind, so dass auch in diesem Bereich für den Magnetfluss zu den unmittelbar seitlich der Nuten liegenden, elektrisch erregten Polen 32 und 34 ein ausreichender Eisenquerschnitt zur Verfügung steht. Eine weitere Kenngröße in diesem Bereich des Rotoreisens ist dabei der Kantenabstand b seitlich der Erregernuten 40 vom benachbarten Rand der dort angeordneten Permanentmagnete 24 und 25. Zur Sicherstellung eines ausreichenden Querschnitts zwischen den Ecken der Permanentmagnete 24, 25 und den benachbarten Nuträndern soll dort der seitliche Abstand b zwischen 25% und 100% der Polteilung τ der elektrisch oder permanentmagnetisch erregten Rotorpole liegen.
Figur 3 zeigt eine perspektivische Darstellung einer erfindungsgemäßen Synchronmaschine bei abgenommenem
Lagerdeckel 13.2. Die Maschine besitzt eine elektrisch zweipolige Grunderregung, wobei die Erregerwicklung 29 in zwei, im Wesentlichen gleiche Teilspulen 29a und 29b aufgeteilt ist, welche die Rotorwelle 27 beidseitig umgreifen und symmetrisch zu dieser angeordnet sind. Das Blechpaket 17 des Rotors 20 entspricht dabei dem in Figur 2 gezeigten Blechschnitt mit glockenförmigen Nuten, von welchen nur die Nutöffnungen 45 zu erkennen sind. Die Wickelköpfe der beiden Teilspulen 29a und 29b der
Erregerwicklung übergreifen eine Grundplatte 63 des Lüfters 30. Die Erregerwicklung 29 füllt hierbei die Nuten 40 vollständig aus und ist derart gestaltet, dass das Verhältnis der Kupfermasse mN in den Erregernuten 40 zur Kupfermasse mw der Wickelköpfe 0,4 bis 2,5, vorzugsweise 0,5 bis 1 beträgt. Das Massenverhältnis der Wicklungsteile in den Nuten, beziehungsweise in den Wickelköpfen entspricht den jeweiligen Drahtlängen und stellt in dem angegebenen Verhältnis einen vorteilhaften Kompromiss hinsichtlich der Gestaltung der Erregerwicklung 29 und der Statorwicklung 18 dar, wobei das angegebene Verhältnis der Kupfermasse in den Nuten, beziehungsweise in den Wickelköpfen beim Stator größer ist als beim Rotor. Vom Stator 16 ist in Figur 3 nur der Wickelkopf der Statorwicklung 18 sowie sein Blechpaket 17 zu erkennen, welches entsprechend der Darstellung in
Figur 1 in dem Lagerschild 13.1 des zweiteiligen Gehäuses 13 sitzt. Die beschriebene und dargestellte Form des hybriderregten Rotors 20 der erfindungsgemäßen Maschine bildet dabei einen vorteilhaften Kompromiss hinsichtlich der Anforderungen an Festigkeit, Flussführung,
Fertigungsverfahren und kurzer WickelkopfVerbindungen.
Figur 4 zeigt in perspektivischer Darstellung einen Teil des Blechpaketes 21 des Rotors 20 mit einer Nut 40, wie sie insbesondere anhand der Figur 2 zuvor bereits ausführlich beschrieben ist. Für gleiche Teile sind dabei gleiche Bezugszeichen verwendet. Die Erregerwicklung 29 ist in Figur 4 nur als Schraffur dargestellt. Sie ist gegen die Lamellen des
Rotorblechpaketes 21 isoliert mittels einer Folie 38, welche vorzugsweise aus Isolierpapier besteht. Die Isolierfolie 38 stützt sich im Bereich der Nutöffnungen 45 an den Innenseiten 33,35 der Pole 32,34 ab und ist dort in Schlitzen 36 arretiert, welche als Hinterschnitte in den Polen 32,34 ausgebildet sind und in Verlängerung der seitlichen Nutwände 39 verlaufen. Diese Art der Arretierung der Nutisolation in hinterschnittartigen Schlitzen 36 ist grundsätzlich auch für andere Nutformen als für die dargestellte glockenförmige Nut verwendbar. Bei dieser Nutform ist jedoch der Vorteil der vorgeschlagenen Arretierung der Nutisolation besonders ausgeprägt, da die Isolierfolie aufgrund der Nutform dazu neigt, im Bereich der Nutöffnung zum Nutinneren hin auszuweichen, wodurch das Einbringen der Erregerwicklung 29 gestört werden könnte.
Weiterhin können im Bereich der Nutöffnungen 45 Nutkeile 37 eingeschoben werden, welche die Isolation der Wicklung an den Innenseiten 33,35 der Pole 32,34 verbessern, die Isolierfolie 38 in ihrer Position arretieren und die Erregerwicklung 29 gegen hohe Fliehkräfte abstützen.

Claims

Ansprüche
1. Elektrische Maschine, insbesondere Generator zur Speisung des Bordnetzes eines Kraftfahrzeuges, mit einem geblechten Stator (16) mit einer mehrphasigen Statorwicklung (18) und mit einem geblechten Rotor (20) mit einer Erregerwicklung (29), welche in Nuten (40) am Rotorumfang angeordnet ist und, vorzugsweise gemeinsam mit am Rotorumfang angeordneten Permanentmagneten (24,25), die Erregung der Maschine liefert, dadurch gekennzeichnet, dass die Rotornuten (40) zum Nutgrund (44) hin überproportional erweitert sind.
2. Elektrische Maschine nach Anspruch 1, dadurch gekennzeichnet, dass der Nutgrund (44) beidseitig zur Nutmitte hin ansteigt.
3. Elektrische Maschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Nutgrund (44) zur Nutöffnung (45) hin gekrümmt ist.
4. Elektrische Maschine nach einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass der Nutgrund (44) kreisförmig gekrümmt und konzentrisch zur Durchtrittsöffnung (46) der Rotorwelle (27) ausgebildet ist.
5. Elektrische Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die seitlichen Nutwände (39) zur Nutmitte hin gekrümmt sind.
6. Elektrische Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Eisenquerschnitt des Rotors (20) entlang der seitlichen Nutwände (39) im Wesentlichen der jeweiligen Größe des Magnetflusses angepasst ist.
7. Elektrische Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nuten (40) im Wesentlichen glockenförmig gestaltet sind.
8. Elektrische Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rotor (20) elektrisch zweipolig erregt ist und an seinem Umfang zwei Nuten (40) aufweist, in denen eine aus zwei im Wesentlichen symmetrisch zur Rotorwelle (27) angeordneten Teilspulen (29a, b) bestehende Rotorwicklung (29) liegt.
9. Elektrische Maschine nach Anspruch 8, dadurch gekennzeichnet, dass der Rotor (20) an seinem Umfang zusätzlich zu der elektrischen Erregung vier, sechs oder acht Permanentmagnete (24,25) aufweist.
10. Elektrische Maschine nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Nutbreite (B) am Grund (44) größer als der Durchmesser (d) der Rotorwelle (27) und kleiner als 40% des Rotordurchmessers (D) ist.
11. Elektrische Maschine nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der Mindestabstand (a) zweier Erregernuten (40) im Rotorkern (26) im Bereich zwischen 20% und 45% des Rotordurchmessers (D) liegt.
12. Elektrische Maschine nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass der Nutgrund (44) kreisförmig gekrümmt ist mit einem Radius (R) im Bereich zwischen dem doppelten und dem vierfachen Radius (d/2) der Rotorwelle (27) .
13. Elektrische Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der seitliche Abstand (b) einer Nut (40) vom benachbarten Rand eines Permanentmagneten (24,25) im Bereich zwischen 25% und 100% der Polteilung (τ) eines Rotorpoles (24, 25; 32 , 34 ) liegt.
14. Elektrische Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verhältnis der Kupfermasse (mN) in den Erregernuten (40) zur Kupfermasse
(mw) der Wickelköpfe (50,51) 0,4 bis 2,5, vorzugsweise 0,5 bis 1,0 beträgt.
15. Elektrische Maschine, insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in die Rotornuten (40) Isolierfolien (38) eingefügt sind, welche im Bereich der Nutöffnungen (45) an den Innenseiten (33,35) der Pole (32,34) arretiert sind.
16. Elektrische Maschine nach Anspruch 15, dadurch gekennzeichnet, dass die Isolierfolien (38) im Bereich der Nutöffnungen (45) in Schlitzen (36) an den Innenseiten (33,35) der Pole (32,34) arretiert sind.
17. Elektrische Maschine nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die Schlitze (36) für die Arretierung der Isolierfolien (38) als Hinterschnitte in den Polen
(32,34) seitlich der Nutöffnungen (45) ausgebildet sind.
18. Elektrische Maschine nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die Schlitze (36) für die Arretierung der Isolierfolien (38) in Verlängerung der seitlichen Nutwände (39) verlaufen.
19. Elektrische Maschine nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass die Isolierfolien (38) aus
Isolierpapier bestehen.
20. Elektrische Maschine nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, dass die Nuten (40) durch Nutkeile (37) verschlossen sind.
EP09781774A 2008-08-27 2009-08-13 Rotor einer elektrische maschine Withdrawn EP2319159A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008041606 2008-08-27
DE102009002739.4A DE102009002739B4 (de) 2008-08-27 2009-04-30 Elektrische Maschine
PCT/EP2009/060463 WO2010023106A2 (de) 2008-08-27 2009-08-13 Elektrische maschine

Publications (1)

Publication Number Publication Date
EP2319159A2 true EP2319159A2 (de) 2011-05-11

Family

ID=41606262

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09781774A Withdrawn EP2319159A2 (de) 2008-08-27 2009-08-13 Rotor einer elektrische maschine

Country Status (6)

Country Link
US (2) US8729766B2 (de)
EP (1) EP2319159A2 (de)
JP (1) JP5566386B2 (de)
CN (1) CN102132472B (de)
DE (1) DE102009002739B4 (de)
WO (1) WO2010023106A2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002739B4 (de) * 2008-08-27 2018-08-30 Seg Automotive Germany Gmbh Elektrische Maschine
JP5957417B2 (ja) * 2013-06-12 2016-07-27 株式会社豊田中央研究所 回転電機
CN103560637B (zh) * 2013-11-20 2016-05-25 中国人民解放军海军工程大学 一种高功率密度的混合励磁同步发电机
US10193427B2 (en) 2015-12-01 2019-01-29 General Electric Company Method of fabricating electric machine laminations using additive manufacturing
US11527944B2 (en) 2015-12-07 2022-12-13 General Electric Company Additive manufacturing for segmented electric machines
CH712192A1 (fr) * 2016-03-04 2017-09-15 Clean Cooling Systems Sa Procédé pour générer un champ magnétique et générateur de champ magnétique rotatif.
DE102016125558A1 (de) * 2016-12-23 2018-06-28 Scanlab Gmbh Galvanometerantrieb mit mehrschichtigen Permanentmagneten
US10749385B2 (en) 2017-05-18 2020-08-18 General Electric Company Dual magnetic phase material rings for AC electric machines
US10476333B1 (en) * 2018-05-03 2019-11-12 K-Technology Usa, Inc. Graphene power generating system using wasting energy from rotating shafts
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291540U (de) * 1985-11-26 1987-06-11
JP2002165392A (ja) * 2000-11-24 2002-06-07 Asmo Co Ltd 電動機の電機子構造

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147946A (en) 1977-05-31 1979-04-03 Sundstrand Corporation Rotor structure for an electric machine
US4499392A (en) * 1983-07-18 1985-02-12 Carol G. Heiser Homopolar alternator electromechanical power conversion machine
JPS617236U (ja) * 1984-06-14 1986-01-17 信濃電気株式会社 2極型回転突極機
JPS61129474A (ja) 1984-11-27 1986-06-17 Toshiba Corp 水車ケ−シング
JPH0623184Y2 (ja) 1985-02-01 1994-06-15 新ダイワ工業株式会社 回転界磁型自励発電機の初期励磁装置
US4857788A (en) * 1987-06-17 1989-08-15 Magnetek, Inc. Magnetic top wedge
US5003208A (en) 1988-08-31 1991-03-26 Mabuchi Motor Co. Ltd. Miniature motor having positive-coefficient thermistor
DE4018710A1 (de) * 1990-06-12 1991-12-19 Bosch Gmbh Robert Elektrische maschine, vorzugsweise drehstromgenerator fuer fahrzeuge
JPH0461900A (ja) 1990-06-29 1992-02-27 Hitachi Ltd ふとん乾燥ユニット
JPH0435672U (de) 1990-07-23 1992-03-25
US5663605A (en) 1995-05-03 1997-09-02 Ford Motor Company Rotating electrical machine with electromagnetic and permanent magnet excitation
US5811907A (en) 1995-10-25 1998-09-22 Sawafuji Electric Co., Ltd. Small generator
JPH09261900A (ja) 1996-03-19 1997-10-03 Fujitsu General Ltd 電動機
US5905322A (en) 1997-03-27 1999-05-18 Frank Hsieh Coil structure for adjusting the speed of ceiling fan motors
FR2774229B1 (fr) * 1998-01-26 2000-04-14 Valeo Equip Electr Moteur Machine electrique a double excitation, et notamment alternateur de vehicule automobile
FR2774228B1 (fr) * 1998-01-26 2000-04-14 Valeo Equip Electr Moteur Machine electrique a double excitation, et notamment alternateur de vehicule automobile
FR2780580B1 (fr) * 1998-06-25 2000-11-10 Valeo Equip Electr Moteur Machine tournante, tel qu'un alternateur pour vehicule automobile
JP2001204150A (ja) 2000-01-20 2001-07-27 Fujitsu General Ltd 電動機
JP4489002B2 (ja) * 2005-10-26 2010-06-23 三菱電機株式会社 ハイブリッド励磁回転電機、及びハイブリッド励磁回転電機を備えた車両
US7876014B2 (en) 2006-04-27 2011-01-25 Sun Tech Generator Co., Ltd. Permanent magnet rotor with increased magnetic flux
JP5040303B2 (ja) * 2006-12-28 2012-10-03 株式会社日立製作所 回転電機
DE102007025971B4 (de) 2007-06-04 2018-06-07 Seg Automotive Germany Gmbh Elektrische Maschine mit hybriderregtem Rotor
DE102009002739B4 (de) * 2008-08-27 2018-08-30 Seg Automotive Germany Gmbh Elektrische Maschine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291540U (de) * 1985-11-26 1987-06-11
JP2002165392A (ja) * 2000-11-24 2002-06-07 Asmo Co Ltd 電動機の電機子構造

Also Published As

Publication number Publication date
JP2012501159A (ja) 2012-01-12
US20110227442A1 (en) 2011-09-22
JP5566386B2 (ja) 2014-08-06
WO2010023106A3 (de) 2011-03-17
WO2010023106A2 (de) 2010-03-04
US20140184010A1 (en) 2014-07-03
DE102009002739A1 (de) 2010-03-04
CN102132472A (zh) 2011-07-20
CN102132472B (zh) 2016-11-16
US8729766B2 (en) 2014-05-20
US9601949B2 (en) 2017-03-21
DE102009002739B4 (de) 2018-08-30

Similar Documents

Publication Publication Date Title
DE102009002739B4 (de) Elektrische Maschine
DE3885101T2 (de) Statoreinheit für dynamoelektrische maschine.
DE3904516C1 (de)
DE112009002090T5 (de) Drehende eletrische Maschine
AT522711A1 (de) Stator für eine Axialflussmaschine
DE102011111352A1 (de) Elektromotor mit eisenloser Wicklung
WO2018095903A1 (de) Synchron-maschine mit magnetischer drehfelduntersetzung und flusskonzentration
DE60109110T2 (de) Läufer eines Drehfeld- Wechselstromgenerators
EP2319164B1 (de) Rotor für eine elektrische maschine mit reduziertem rastmoment
DE102008044276A1 (de) Hybriderregte elektrische Maschine mit polumschaltbarem Rotor
DE102012022152A1 (de) Elektrische Maschine und Rotor für eine elektrische Maschine
DE102021200683A1 (de) Rotor eines Elektromotors
DE2913844C2 (de) Nutisolierung für den Rotor einer elektrischen Maschine
WO2011151138A2 (de) Elektrische maschine mit reduzierter geräuschentwicklung
DE102017101913A1 (de) Elektromotor mit eingebettetem Dauermagnet
DE102020129142B4 (de) Läufer für eine rotierende elektrische Maschine
EP2319160B1 (de) Hybriderregte elektrische maschine
WO2011104265A2 (de) Elektrische maschine mit rotoreinrichtung und rotoreinrichtung mit optimiertem magnetfluss und verfahren zum betreiben der elektrischen maschine
WO2011036135A1 (de) Elektrische maschine mit einem rotor mit hybrider erregung
DE102008054389A1 (de) Elektrische Maschine mit einem Klauenpolrotor
EP1233497B1 (de) Permanentmagneterregte Gleichstrommaschine, insbesondere Gleichstrommotor
DE202016008461U1 (de) Stator eines Elektromotors und Elektromotor
EP3291412A1 (de) Elektromagnetischer pfad eines stators
DE112016005481T5 (de) Klauenrotor einer elektrischen Rotationsmaschine mit Klauen, die eine bogenförmige Fase haben
DE102016204667A1 (de) Elektrische Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110919

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SEG AUTOMOTIVE GERMANY GMBH

17Q First examination report despatched

Effective date: 20180511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190918