EP2313300A1 - Verfahren und vorrichtung zum betrieb eines hybridantriebs eines fahrzeuges - Google Patents

Verfahren und vorrichtung zum betrieb eines hybridantriebs eines fahrzeuges

Info

Publication number
EP2313300A1
EP2313300A1 EP09780572A EP09780572A EP2313300A1 EP 2313300 A1 EP2313300 A1 EP 2313300A1 EP 09780572 A EP09780572 A EP 09780572A EP 09780572 A EP09780572 A EP 09780572A EP 2313300 A1 EP2313300 A1 EP 2313300A1
Authority
EP
European Patent Office
Prior art keywords
electric motor
power reserve
energy
power
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09780572A
Other languages
English (en)
French (fr)
Inventor
Jens-Werner Falkenstein
Manfred Hellmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2313300A1 publication Critical patent/EP2313300A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/32Driving direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/20Direction indicator values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to a method for operating a hybrid drive of a vehicle, which is driven by an internal combustion engine and an electric motor, wherein the electric motor energy from one, a
  • Power reserve having energy reserve is supplied, and during a hybrid drive, the performance of the internal combustion engine is complemented by the performance of the electric motor and an apparatus for performing the method.
  • Vehicles with a hybrid drive structure have an internal combustion engine and a second drive unit an electric motor.
  • the drive torque can be applied during the driving operation of the hybrid vehicle of both drive units. If more propulsion torque is required than the internal combustion engine can supply, additional electrical energy for the electric motor from an energy store is provided for propulsion. (Boost operation).
  • Energy content of the energy storage a longer boost operation can be maintained or the available energy content of the energy storage can be distributed to several boost operations.
  • the power which is taken from the energy storage in the boost mode limited, although the energy storage still has a power reserve from which the energy storage could provide a higher performance.
  • the removal of this power reserve leads to a heavy load on the energy storage and thus to reduce the life of the energy storage.
  • the inventive method for starting a hybrid vehicle with the features of claim 1 has the advantage that in certain dangerous situations, the power reserve of the energy storage of the electric motor is used to leave a dangerous area quickly.
  • This danger zone can be, for example, an overtaking maneuver with suddenly occurring oncoming traffic or a crossing area which must be left immediately due to cross traffic.
  • a dangerous situation In order to release the power reserve of the energy store, a dangerous situation must first be identified.
  • the dangerous situation is detected by an evaluation of the operation of an accelerator pedal. This is the way the operation of the accelerator pedal by analyzed the driver. It is particularly easy to detect a dangerous situation when the accelerator pedal is fully depressed (kickdown of the accelerator pedal), which the driver usually only does in a critical situation.
  • the gradient of the accelerator pedal angle is evaluated in addition to the position of the accelerator pedal. A rapid change of the gradient allows the assumption that the driver wants to avoid a dangerous situation quickly.
  • the power reserve of the energy storage is released as long as the steering wheel falls below a predetermined angle. When cornering, this boost function is therefore prevented in order to prevent drifting of the vehicle in the curve and to avoid a possible risk of accidents.
  • the power reserve of the energy storage is released when a vehicle dynamics system, in particular the electronic stabilization program (ESP) is active. When deactivating the electronic stabilization program, the release of the power reserve is prohibited for safety reasons, since it may possibly lead to unstable driving situations such as ice or snow in the danger-boost functionality according to the invention, which can be compensated again only with the electronic stability program.
  • ESP electronic stabilization program
  • the power reserve of the energy storage is released at an engaged forward gear. With a reverse gear engaged, the danger-boosting functionality is prevented.
  • the driver is informed after each release of the power reserve that the service life of the energy store is reduced.
  • the time delay of the release of the power reserve of the energy store can be canceled in a development of the invention if the Driver assistance system detects the dangerous situation.
  • Driver assistance systems such as ACC systems, detect dangerous situations independently of the driver.
  • the driver assistance system can detect an oncoming vehicle in the course of their own vehicle and react to it, even before the driver can. In the future, such driver assistance systems can detect and prevent dangers early on the basis of communication between the vehicles.
  • Vehicle to be able to remove quickly from the critical area means are available which allow the energy from the energy storage to the electric motor from the power reserve of the energy storage when detecting a dangerous situation.
  • Figure 1 Schematic representation of a vehicle with hybrid drive
  • Figure 2 Representation of the release of the power reserve as a function of the position of the accelerator pedal
  • Figure 1 shows a schematic diagram of a vehicle with a hybrid drive.
  • the hybrid drive is the first of an internal combustion engine 1
  • the internal combustion engine 1 is connected via the drive train 3 to the transmission 4, which in turn leads via the differential 5 to the wheel axle 6 for driving the wheel 7.
  • the electric motor 2 is connected via its own drive train 8 to the transmission 4 and thus contributes to the drive of the wheels 7 and to the total torque of the vehicle.
  • the electric motor 2 has its own electric motor control unit 9, which is connected to a hybrid CAN bus 10, via which all the control units communicate with each other, which have an influence on the hybrid-specific driving operation of the vehicle.
  • These include, among others, the battery management system 11 of the high-voltage battery 12 and a transmission control unit 20.
  • the high-voltage battery 12 is connected to the electric motor 2 and supplies it with electrical energy.
  • a vehicle control unit 13 communicates via the hybrid CAN bus 10 with the electric motor control unit 9 connected thereto, the battery management system 11 and the transmission control unit 20. Moreover, it is not available via the CAN bus 14 with an ACC control unit 15, an ESP control unit 22 and others connected control units of the vehicle safety and driver assistance systems of the vehicle connected. Via a gateway 16, the CAN bus 14 is connected to a gateway CAN bus 17, via which the individual bus systems of the vehicle communicate with each other.
  • the engine control unit 18 of the internal combustion engine 1 is connected to the vehicle control unit 13 via the gateway CAN bus 17 and the CAN bus 14.
  • the vehicle control unit 13 is connected to an accelerator pedal sensor 19 and a vehicle speed sensor 21, from which the vehicle control unit 13 receives information about the current operating parameters for vehicle operation.
  • the torque relevant to the output is applied by both the engine 1 and the electric motor 2. If the vehicle is in a dangerous situation, this torque is insufficient, so that it becomes necessary to release the power reserve of the high-voltage battery 12 for the electric motor 2, which will be explained in more detail below.
  • the vehicle control unit 13 evaluates the data supplied by the accelerator pedal sensor 19, which the driver of the hybrid vehicle adjusts via the accelerator pedal.
  • FIG. 2 a shows the accelerator pedal angle ⁇ F p over time, as detected by the accelerator pedal sensor 19. If the accelerator pedal is fully depressed, the accelerator pedal at point A has reached its maximum accelerator pedal position. The vehicle control unit 13 recognizes that the vehicle is in a special danger situation. As additional information, the gradient of the change in angle over time d ⁇ / dt can be evaluated to determine the dangerous situation. If this gradient is very large, this is also an indication that the vehicle is in a critical situation. Such critical situations can occur during overtaking or at intersections.
  • the power reserve of the high-voltage battery 12 of the hybrid vehicle is released by the vehicle control unit 13 outputting a signal to the battery management system 11 via the hybrid CAN bus 10.
  • FIG. 2b shows the released power reserve P R for the danger boost over time.
  • the provision of electrical energy from the power reserve of the high-voltage battery 12 is to be understood as a danger boost, but what is only used in dangerous situations.
  • the battery management system 11 receives the information that the power reserve P R is to be released.
  • the power reserve P R is not fully released, but gradually released over time.
  • the ACC control unit 15 If the dangerous situation which the driver has indicated by actuation of the accelerator pedal is confirmed by the ACC control unit 15, which recognizes, for example, that an oncoming vehicle is on the lane of the hybrid vehicle, the maximum power reserve P R is released as quickly as possible (curve C) ,
  • the information of the ACC control unit 15 is forwarded to the vehicle control unit 13, which outputs a signal containing this information to the battery management system 1 1.
  • the vehicle control unit 13 receives from the transmission control unit 20 the information that the vehicle is traveling in a gear which is greater than the first gear, as shown in curve D, the power reserve P R becomes slower released with the same speed as the power reserve P R is released when the vehicle speed sensor 21 reports a driving speed of greater than 30 h / km to the vehicle control unit 13.
  • the power reserve P R is released only gradually, since it would be possible to abuse it by launching a cavalier which is to be prevented.
  • the release of the power reserve P R is delayed even further here than when driving with the second or a higher gear (curve E).
  • the release of the power reserve P R is inhibited.
  • the release of the power reserve P R is also prevented when the electronic stability program ESP is deactivated, which is reported to the vehicle control unit 13 by the ESP control unit 22.
  • the power reserve P R is de-energized, as shown in curve E. This is necessary to protect the high-voltage battery 12. But it also represents no further disadvantage for the further driving, since the possibility that a vehicle in the short term several times one after another gets into a dangerous situation, is not given so often. Therefore, the engine torque released for the electric motor 2 is reduced after each danger boost.
  • the vehicle control unit 13 controls a display 23, which signals to the driver that the danger boost has led to a reduction in the service life of the high-voltage battery 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb eines Hybridantrieb eines Fahrzeuges, welches mit einem Verbrennungsmotor (1) und einem Elektromotor (2) angetrieben wird, wobei dem Elektromotor (2) Energie aus einem, eine Leistungsreserve (PR) aufweisenden Energiespeicher (12) zugeführt wird und während eines Hybridantriebes die Leistung des Verbrennungsmotors (1) durch die Leistung des Elektromotors (2) ergänzt wird. Bei einem Verfahren, bei welchen das Fahrzeug möglichst schnell aus einer Gefahrensituation herausgebracht werden soll, erfolgt beim Erkennen einer Gefahrensituation die Energiezufuhr aus dem Energiespeicher (12) zum Elektromotor (2) aus der Leistungsreserve (PR) des Energiespeichers (12).

Description

Titel
Verfahren und Vorrichtung zum Betrieb eines Hybridantriebs eines Fahrzeuges
Stand der Technik
Die Erfindung betrifft ein Verfahren zum Betrieb eines Hybridantriebs eines Fahrzeuges, welches mit einem Verbrennungsmotor und einem Elektromotor angetrieben wird, wobei dem Elektromotor Energie aus einem, eine
Leistungsreserve aufweisenden Energiespeicher zugeführt wird, und während eines Hybridantriebes die Leistung des Verbrennungsmotors durch die Leistung des Elektromotors ergänzt wird sowie eine Vorrichtung zur Durchführung des Verfahrens.
Fahrzeuge mit einer hybriden Antriebsstruktur weisen einen Verbrennungsmotor und als zweites Antriebsaggregat einen Elektromotor auf. So kann das Antriebsmoment während des Fahrbetriebes des Hybridfahrzeuges von beiden Antriebsaggregaten aufgebracht werden. Wird mehr Vortriebsmoment gefordert, als der Verbrennungsmotor liefern kann, so wird zusätzlich elektrische Energie für den Elektromotor aus einem Energiespeicher zum Vortrieb zur Verfügung gestellt. (Boostbetrieb).
Aus der WO 2007/107463 A1 ist ein Verfahren zum Betrieb eines Hybridantriebs für ein Fahrzeug bekannt, bei welchem eine
Leistungssteigerung durch ein Ergänzen der verbrennungsmotorischen Leistung durch elektromotorische Leistung erfolgt. Da die Energiemenge des dem Elektromotor zugeordneten elektrischen Energiespeichers begrenzt ist, kann die Leistungssteigerung über die verbrennungsmotorische Leistung hinaus nur temporär erfolgen. Die temporäre Leistungssteigerung erfolgt nur bis zum Erreichen einer Grenzgeschwindigkeit, wodurch mittels des verfügbaren
Energieinhaltes des Energiespeichers ein längerer Boostbetrieb aufrechterhalten werden kann oder der verfügbare Energieinhalt des Energiespeichers auf mehrere Boostvorgänge verteilt werden kann.
Zur Erhaltung der Leistungsfähigkeit des Energiespeichers wird die Leistung, welche dem Energiespeicher im Boostbetrieb entnommen wird, begrenzt, obwohl der Energiespeicher noch eine Leistungsreserve aufweist, aus welcher der Energiespeicher eine höhere Leistung liefern könnte. Allerdings führt der Entzug dieser Leistungsreserve zu einer starken Belastung des Energiespeichers und damit zur Reduzierung der Lebensdauer des Energiespeichers.
Offenbarung der Erfindung
Vorteile der Erfindung
Das erfindungsgemäße Verfahren zum Anfahren eines Hybridfahrzeuges mit den Merkmalen des Anspruchs 1 weist den Vorteil auf, dass in bestimmten Gefahrensituationen die Leistungsreserve des Energiespeichers des Elektromotors genutzt wird, um einen Gefahrenbereich zügig verlassen zu können. Dieser Gefahrenbereich kann beispielsweise ein Überholvorgang mit plötzlich aufkommenden Gegenverkehr oder ein Kreuzungsbereich sein, der auf Grund von Querverkehr sofort verlassen werden muss.
Um die Leistungsreserve des Energiespeichers freizugeben, muss zunächst eine Gefahrensituation identifiziert werden. Vorteilhafterweise wird die Gefahrensituation durch eine Auswertung der Betätigung eines Fahrpedals erkannt. Dazu wird die Art und Weise der Betätigung des Fahrpedals durch den Fahrer analysiert. Besonders einfach lässt sich eine Gefahrensituation erkennen, wenn das Fahrpedal voll durchgetreten wird (Kickdown des Fahrpedals), was der Fahrer für gewöhnlich nur in einer kritischen Situation tut.
Die so erkannte Gefahrensituation führt zur Freigabe der Leistungsreserve des elektrischen Energiespeichers.
In einer anderen Ausgestaltung wird neben der Stellung des Fahrpedals auch der Gradient des Fahrpedalwinkels ausgewertet. Eine schnelle Veränderung des Gradienten lässt die Annahme zu, dass der Fahrer schnell einer gefährlichen Situation ausweichen will.
Die Freigabe der Leistungsreserve des Energiespeichers für den so genannten „Gefahrenboost" erfolgt nicht spontan, auch wenn eine Gefahrensituation über das Fahrpedal identifiziert wurde. Die Leistungsreserve wird in einer weiteren Ausgestaltung der Erfindung in einem vorgegebenen Zeitraum ansteigend freigegeben. Der vorgegebene Zeitraum ist dabei geschwindigkeits- und/oder gangstufenabhängig. Damit wird ein Missbrauch dieser Funktionalität durch einen so genannten „Kavalierstart" unterbunden, da die Leistungsreserve erst ab dem zweiten Gang oder oberhalb einer Mindestgeschwindigkeit zügig freigegeben wird. Bei einer niedrigen Geschwindigkeit oder im ersten Gang wird die Freigabe verzögert und/oder mit einem niedrigen Gradienten freigegeben.
In einer Weiterbildung wird die Leistungsreserve des Energiespeichers freigegeben, solange der Lenkradeinschlag einen vorgegebenen Winkel unterschreitet. In Kurvenfahrten wird diese Boostfunktion daher unterbunden, um ein Driften des Fahrzeuges in der Kurve zu verhindern und eine mögliche Unfallgefahr zu vermeiden. Darüber hinaus wird die Leistungsreserve des Energiespeichers freigegeben, wenn ein Fahrzeugdynamiksystem, insbesondere das elektronische Stabilisierungsprogramm (ESP) aktiv ist. Bei einer Deaktivierung des elektronischen Stabilisierungsprogramms wird die Freigabe der Leistungsreserve aus Sicherheitsgründen untersagt, da es bei der erfindungsgemäßen Gefahrenboost-Funktionalität evtl. zu instabilen Fahrsituationen z.B auf Eis oder Schnee kommen kann, welche nur mit dem elektronischen Stabilitätsprogramm wieder ausgeglichen werden können.
In einer Ausgestaltung wird die Leistungsreserve des Energiespeichers bei einem eingelegten Vorwärtsgang freigegeben. Bei einem eingelegten Rückwärtsgang wird die Gefahrenboost-Funktionalität unterbunden.
Nach jeder erfolgten Freigabe der Leistungsreserve wird das Motormoment des Elektromotors reduziert. Dies hat den Vorteil, dass der Energiespeicher wieder aufgeladen werden kann. Darüber hinaus wird aber auch ein Missbrauch der Gefahrenboost-Funktionalität ohne zwingend vorliegende Gefahrensituation unterbunden. Erst mit Beginn eines neuen Fahrzyklus oder nach Ablauf einer bestimmten Zeit kann die Leistungsreserve im vollen Umfang wieder angefordert werden. Die Reduktion der Leistungsreserve wird dem Fahrer angezeigt, so dass dieser jederzeit darüber informiert ist, wann ihm die Gefahrenboost-Funktionalität zur Verfügung steht.
Da das erfindungsgemäße Verfahren die Lebensdauer des Energiespeichers beeinflusst, wird dem Fahrer nach jeder Freigabe der Leistungsreserve angezeigt, dass eine Reduzierung der Lebensdauer des Energiespeichers erfolgt.
Verfügt das Fahrzeug über ein Fahrerassistenzsystem, so kann in einer Weiterbildung der Erfindung die zeitliche Verzögerung der Freigabe der Leistungsreserve des Energiespeichers aufgehoben werden, wenn das Fahrerassistenzsystem die Gefahrensituation erkennt. Fahrerassistenzsysteme, wie beispielsweise ACC-Systeme, erkennen unabhängig vom Fahrer Gefahrensituationen. So kann das Fahrerassistenzsystem ein entgegenkommendes Fahrzeug im Kurs des eigenen Fahrzeuges feststellen und darauf reagieren, noch bevor der Fahrer es kann. Zukünftig können solche Fahrerassistenzsysteme auf der Grundlage einer Kommunikation der Fahrzeuge untereinander frühzeitig Gefahren erkennen und ihnen vorbeugen.
In einer anderen Weiterbildung der Erfindung weist eine Vorrichtung zum
Betrieb eines Hybridantriebs eines Fahrzeuges einen Verbrennungsmotor und einen Elektromotor auf, wobei dem Elektromotor Energie aus einem, eine Leistungsreserve aufweisenden Energiespeicher zugeführt wird und während eines Hybridantriebes die Leistung des Verbrennungsmotors durch die Leistung des Elektromotors ergänzt wird. Um in Gefahrensituationen das
Fahrzeug schnell aus dem kritischen Bereich entfernen zu können, sind Mittel vorhanden, welche beim Erkennen einer Gefahrensituation die Energiezufuhr aus dem Energiespeicher zum Elektromotor aus der Leistungsreserve des Energiespeichers ermöglichen.
Kurze Beschreibung der Zeichnung
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigt:
Figur 1 : Prinzipdarstellung eines Fahrzeuges mit Hybridantrieb
Figur 2: Darstellung der Freigabe der Leistungsreserve in Abhängigkeit von der Position des Fahrpedals Ausführungsformen der Erfindung
Figur 1 zeigt eine Prinzipdarstellung für ein Fahrzeug mit einem Hybridantrieb. Der Hybridantrieb wird von einem Verbrennungsmotor 1 als erste
Antriebseinheit und einem Elektromotor 2 als zweite Antriebseinheit gebildet.
Der Verbrennungsmotor 1 ist über den Antriebsstrang 3 mit dem Getriebe 4 verbunden, welches wiederum über das Differential 5 auf die Radachse 6 zum Antrieb des Rades 7 führt.
Der Elektromotor 2 ist über einen eigenen Antriebsstrang 8 mit dem Getriebe 4 verbunden und trägt damit zum Antrieb der Räder 7 und zum Gesamtdrehmoment des Fahrzeuges bei. Darüber hinaus verfügt der Elektromotor 2 über ein eigenes Elektromotorsteuergerät 9, welches an einen Hybrid CAN-Bus 10 angeschlossen ist, über welchen alle die Steuergeräte miteinander kommunizieren, die Einfluss auf den hybridspezifischen Fahrbetrieb des Fahrzeuges haben. Dazu gehören unter anderem das Batteriemanagementsystem 11 der Hochvoltbatterie 12 und ein Getriebesteuergerät 20. Die Hochvoltbatterie 12 ist mit dem Elektromotor 2 verbunden und versorgt diesen mit elektrischer Energie.
Ein Fahrzeugsteuergerät 13 kommuniziert über den Hybrid CAN Bus 10 mit dem daran angeschlossenen Elektromotorsteuergerät 9, dem Batteriemanagementsystem 11 und dem Getriebesteuergerät 20. Darüber hinaus ist es über den CAN Bus 14 u.a. mit einem ACC-Steuergerät 15, einem ESP-Steuergerät 22 und anderen nicht weiter dargestellten Steuergeräten der Fahrzeugsicherheits- und Fahrerassistenzsysteme des Fahrzeuges verbunden. Über ein Gateway 16 steht der CAN Bus 14 mit einem Gateway CAN Bus 17 in Verbindung, über welchen die einzelnen Bussysteme des Fahrzeuges miteinander kommunizieren.
Das Motorsteuergerät 18 des Verbrennungsmotors 1 ist über den Gateway- CAN Bus 17 und den CAN Bus 14 mit dem Fahrzeugsteuergerät 13 verbunden.
Das Fahrzeugsteuergerät 13 ist mit einem Fahrpedalgeber 19 und einem Fahrzeuggeschwindigkeitsgeber 21 verbunden, von welchem das Fahrzeugsteuergerät 13 Informationen über die aktuellen Betriebsparameter für den Fahrzeugbetrieb erhält.
Bei der vorliegenden Anordnung wird das für den Abtrieb relevante Drehmoment sowohl vom Verbrennungsmotor 1 als auch vom Elektromotor 2 aufgebracht. Befindet sich das Fahrzeug in einer Gefahrensituation reicht dieses Drehmoment nicht aus, so dass es notwendig wird, die Leistungsreserve der Hochvoltbatterie 12 für den Elektromotor 2 freizugeben, was im Folgenden näher erläutert werden soll.
Das Fahrzeugsteuergerät 13 wertet die von dem Fahrpedalgeber 19 gelieferten Daten aus, die der Fahrer des Hybridfahrzeuges über das Fahrpedal einstellt.
In Figur 2a ist der Fahrpedalwinkel θFp über der Zeit dargestellt, wie er vom Fahrpedalgeber 19 erfasst wird. Ist das Fahrpedal voll durchgetreten, hat das Fahrpedal im Punkt A seine maximale Fahrpedalstellung erreicht. Das Fahrzeugsteuergerät 13 erkennt daran, dass sich das Fahrzeug in einer besonderen Gefahrensituation befindet. Als Zusatzinformation kann zur Feststellung der Gefahrensituation der Gradient der Winkeländerung über der Zeit dθ/dt ausgewertet werden. Ist dieser Gradient sehr groß, ist auch das ein Hinweis darauf, dass sich das Fahrzeug in einer kritischen Situation befindet. Solche kritischen Situationen können bei Überholvorgängen oder an Kreuzungen auftreten.
Hat das Fahrzeugsteuergerät 13 eine solche Gefahrensituation detektiert, wird die Leistungsreserve der Hochvoltbatterie 12 des Hybridfahrzeuges freigegeben, indem das Fahrzeugsteuergerät 13 über den Hybrid CAN Bus 10 eine Signal an das Batteriemanagementsystem 11 ausgibt.
In Figur 2b ist die freigegebene Leistungsreserve PRfür den Gefahrenboost über der Zeit dargestellt. Als Gefahrenboost soll im Weiteren die Bereitstellung von elektrischer Energie aus der Leistungsreserve der Hochvoltbatterie 12 verstanden werden, worauf aber nur in Gefahrensituationen zurückgegriffen wird.
Im Punkt B der Figur 2b, welcher mit Punkt A der Figur 2a korreliert, erhält das Batteriemanagementsystem 11 die Information, dass die Leistungsreserve PR freizugeben ist. Die Leistungsreserve PR wird dabei nicht vollständig, sondern allmählich über die Zeit freigegeben.
Wird die Gefahrensituation, die der Fahrer durch Betätigung des Fahrpedals angezeigt hat, durch das ACC-Steuergerät 15 bestätigt, welches beispielsweise erkennt, dass sich ein entgegenkommendes Fahrzeug auf der Fahrspur des Hybridfahrzeuges befindet, wird die maximale Leistungsreserve PR schnellstmöglich freigegeben (Kurve C). Hier wird die Information des ACC- Steuergerätes 15 an das Fahrzeugsteuergerät 13 weitergeleitet, welches ein diese Information enthaltenes Signal an das Batteriemanagementsystem 1 1 ausgibt.
Erhält das Fahrzeugsteuergerät 13 von dem Getriebesteuergerät 20 die Information, dass das Fahrzeug in einem Gang fährt, welcher größer ist als der 1. Gang, wird wie in Kurve D dargestellt, die Leistungsreserve PR langsamer freigegeben, als bei Bestätigung der Gefahrensituation durch das ACC- Steuergerät 15. Mit derselben Schnelligkeit wird die Leistungsreserve PR freigegeben, wenn der Fahrzeuggeschwindigkeitsgeber 21 eine Fahrgeschwindigkeit von größer 30 h/km an das Fahrzeugsteuergerät 13 meldet.
Fährt das Hybridfahrzeug im ersten Gang oder mit einer Geschwindigkeit unter 30 h/km, wird die Leistungsreserve PR nur allmählich freigegeben, da hier ein Missbrauch durch einen Kavaliersstart möglich wäre, welcher unterbunden werden soll. Die Freigabe der Leistungsreserve PR ist hier noch weiter verzögert, als bei der Fahrt mit dem zweiten oder einem höherem Gang (Kurve E).
Detektiert das Fahrzeugsteuergerät 13 über das Getriebesteuergerät 20, dass der Rückwärtsgang eingelegt ist, wird die Freigabe der Leistungsreserve PR unterbunden. Die Freigabe der Leistungsreserve PR wird ebenfalls unterbunden, wenn das elektronische Stabilitätsprogramm ESP deaktiviert ist, was dem Fahrzeugsteuergerät 13 von dem ESP-Steuergerät 22 gemeldet wird.
Nach jedem Gefahrenboost erfolgt ein Abregein der Leistungsreserve PR, wie es in Kurve E dargestellt ist. Dies ist notwendig, um die Hochvoltbatterie 12 zu schonen. Es stellt aber auch keinen weiteren Nachteil für den weiteren Fahrbetrieb dar, da die Möglichkeit, dass ein Fahrzeug kurzfristig mehrmals nacheinander in eine Gefahrensituation gerät, nicht so häufig gegeben ist. Daher wird das für den Elektromotor 2 freigegebene Motormoment nach jedem Gefahrenboost reduziert. Nach einem Gefahrenboost steuert das Fahrzeugsteuergerät 13 eine Anzeige 23 an, welche dem Fahrer signalisiert, dass der Gefahrenboost zu einer Reduzierung der Lebensdauer der Hochvoltbatterie 12 geführt hat.

Claims

Ansprüche
1. Verfahren zum Betrieb eines Hybridantriebs eines Fahrzeuges, welches mit einem Verbrennungsmotor (1 ) und einem Elektromotor (2) angetrieben wird, wobei dem Elektromotor (2) Energie aus einem, eine Leistungsreserve (PR) aufweisenden Energiespeicher (12) zugeführt wird und während eines Hybridantriebes die Leistung des Verbrennungsmotors (1 ) durch die Leistung des Elektromotors (2) ergänzt wird, dadurch gekennzeichnet, dass beim Erkennen einer
Gefahrensituation die Energiezufuhr aus dem Energiespeicher (12) zum Elektromotor (2) aus der Leistungsreserve (PR) des Energiespeichers (12) erfolgt.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Gefahrensituation durch eine Auswertung der Betätigung eines Fahrpedals (19) erkannt wird.
3. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass die Stellung des Fahrpedals (19) und/oder der Gradient des Fahrpedalwinkels (θFp) ausgewertet werden.
4. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Leistungsreserve (PR) des Energiespeichers (12) in einem vorgegebenen Zeitraum ansteigend freigegeben wird.
5. Verfahren nach Anspruch 4 dadurch gekennzeichnet, dass der vorgegebene Zeitraum geschwindigkeits- und/oder gangstufenabhängig ist.
6. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Leistungsreserve (PR) des Energiespeichers (12) freigegeben wird, solange der Lenkradeinschlag einen vorgegebenen Winkel unterschreitet.
7. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Leistungsreserve (PR) des Energiespeichers (12) freigegeben wird, wenn ein Fahrzeugdynamiksystem, insbesondere das elektronische Stabilisierungsprogramm aktiv ist.
8. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Leistungsreserve (PR) des Energiespeichers (12) bei einem eingelegten Vorwärtsgang freigegeben wird.
9. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass nach jeder erfolgter Freigabe der Leistungsreserve (PR) das Motormoment des Elektromotors (2) reduziert wird.
10. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass nach jeder Freigabe der Leistungsreserve (PR) dem Fahrer angezeigt wird, dass eine Reduzierung der Lebensdauer des Energiespeichers (12) erfolgt.
11. Verfahren nach Anspruch 1 und 4 dadurch gekennzeichnet, dass die zeitliche Verzögerung der Freigabe der Leistungsreserve (PR) des Energiespeichers (12) aufgehoben wird, wenn ein Fahrerassistenzsystem (15) die Gefahrensituation erkennt.
12. Vorrichtung zum Betrieb eines Hybridantriebs eines Fahrzeuges, welches mit einem Verbrennungsmotor (1 ) und einem Elektromotor (2) angetrieben wird, wobei dem Elektromotor (2) Energie aus einem, eine Leistungsreserve (PR) aufweisenden Energiespeicher (12) zugeführt wird, wobei während eines Hybridantriebes die Leistung des Verbrennungsmotors (1 ) durch die Leistung des Elektromotors (2) ergänzt wird, dadurch gekennzeichnet, dass Mittel ( 11 , 13, 19) vorhanden sind, welche beim Erkennen einer Gefahrensituation die Energiezufuhr aus dem Energiespeicher (12) zum Elektromotor (2) aus der Leistungsreserve (PR) des Energiespeichers (12) ermöglichen.
EP09780572A 2008-07-15 2009-07-14 Verfahren und vorrichtung zum betrieb eines hybridantriebs eines fahrzeuges Withdrawn EP2313300A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008040400A DE102008040400A1 (de) 2008-07-15 2008-07-15 Verfahren und Vorrichtung zum Betrieb eines Hybridantriebs eines Fahrzeuges
PCT/EP2009/058997 WO2010007065A1 (de) 2008-07-15 2009-07-14 Verfahren und vorrichtung zum betrieb eines hybridantriebs eines fahrzeuges

Publications (1)

Publication Number Publication Date
EP2313300A1 true EP2313300A1 (de) 2011-04-27

Family

ID=41262231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09780572A Withdrawn EP2313300A1 (de) 2008-07-15 2009-07-14 Verfahren und vorrichtung zum betrieb eines hybridantriebs eines fahrzeuges

Country Status (4)

Country Link
US (1) US20110202215A1 (de)
EP (1) EP2313300A1 (de)
DE (1) DE102008040400A1 (de)
WO (1) WO2010007065A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008002691A1 (de) * 2008-06-26 2009-12-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb
DE102008044016A1 (de) * 2008-11-24 2010-05-27 Robert Bosch Gmbh Verfahren zum Erfassen eines sich einstellenden Drehmomentes für einen Hybridantrieb
JP5527259B2 (ja) * 2011-03-07 2014-06-18 三菱自動車工業株式会社 出力トルク制御装置
DE102012206518A1 (de) * 2012-04-20 2013-10-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Steuern einer elektrischen Maschine eines elektrischen Antriebsstrangs
DE102014201765A1 (de) * 2014-01-31 2015-08-06 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs eines Hybridfahrzeuges
DE102017202343A1 (de) * 2017-02-14 2018-08-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines Energieversorgungssystems zum Bereitstellen von elektrischer Energie in einem Hybridfahrzeug
EP4079557A1 (de) * 2021-04-23 2022-10-26 Volvo Truck Corporation Verfahren zur verbesserung der verfügbarkeit eines energiespeichers oder -systems eines fahrzeugs

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3280392B2 (ja) * 1991-04-01 2002-05-13 アイシン・エィ・ダブリュ株式会社 電動車両の駆動力制御装置
DE19617548B4 (de) * 1996-05-02 2008-06-12 Adam Opel Ag Elektromotorisch antreibbares Kraftfahrzeug
US5941328A (en) * 1997-11-21 1999-08-24 Lockheed Martin Corporation Electric vehicle with variable efficiency regenerative braking depending upon battery charge state
JP3613216B2 (ja) * 2001-09-18 2005-01-26 日産自動車株式会社 ハイブリッド車両の制御装置
ITMI20050652A1 (it) * 2005-04-15 2006-10-16 Altra S P A Dispositivo per l'incremento temporaneo dell'accelerazione di un motore termico e metodo per l'esercizio di detto dispositivo
JP4631761B2 (ja) * 2005-08-08 2011-02-16 トヨタ自動車株式会社 パワートレイン用の電池寿命予知装置及び電池寿命警告装置
WO2007018321A1 (ja) * 2005-12-26 2007-02-15 Toyota Jidosha Kabushiki Kaisha 車両の制御装置、車両および車両の制御方法
DE102006012860A1 (de) 2006-03-21 2007-09-27 Robert Bosch Gmbh Verfahren zum Betrieb eines Hybridantriebs für ein Fahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010007065A1 *

Also Published As

Publication number Publication date
WO2010007065A1 (de) 2010-01-21
US20110202215A1 (en) 2011-08-18
DE102008040400A1 (de) 2010-01-21

Similar Documents

Publication Publication Date Title
EP2560834B1 (de) Vorrichtung zum betreiben einer antriebseinheit eines kraftfahrzeugs
DE102013208965B4 (de) Steuerungsvorrichtung für ein Kraftfahrzeug mit einer elektronischen Steuereinheit, durch die das Antriebsmoment einer Antriebseinheit bedarfsweise auf mindestens zwei Achsen variabel verteilbar ist
WO2010007065A1 (de) Verfahren und vorrichtung zum betrieb eines hybridantriebs eines fahrzeuges
DE102013223428A1 (de) Verfahren und Fahrerassistenzeinrichtung zur Unterstützung von Spurwechseln bzw. Überholmanövern eines Kraftfahrzeugs
WO2011131321A1 (de) Antriebsvorrichtung für ein allradgetriebenes fahrzeug und verfahren zur verteilung des antriebsmoments auf einen vorderachsantrieb und einen hinterachsantrieb
DE102011108446B4 (de) Verfahren und Vorrichtung zur Rekuperation für ein Fahrzeug
EP2103845B1 (de) Verfahren zur Schaltsteuerung eines automatisierten Stufenschaltgetriebes
EP2646305A1 (de) Verfahren zum betreiben eines fahrzeugs und fahrerassistenzeinrichtung
DE102013219085A1 (de) Verfahren und Steuervorrichtung zum Betrieb eines straßengekoppelten Hybridfahrzeuges
DE102008042228A1 (de) Verfahren zur Einstellung einer motorischen Antriebseinrichtung in einem Kraftfahrzeug
DE102014206491A1 (de) Verfahren und Vorrichtung zum Verhindern einer ungewollten Beschleunigung eines Kraftfahrzeugs
DE102010054620A1 (de) Verfahren zur Bestimmung von Bremsmomenten eines Fahrzeugs mit Traktionsbatterie
DE19914428C1 (de) Antriebsanordnung für ein Kraftfahrzeug
EP2069161B1 (de) Verfahren und bordnetz zur vorausschauenden erhöhung der bordnetzspannung
DE102010010557A1 (de) Vorrichtung und Verfahren zum Betrieb eines Fahrerassistenzsystems für ein Fahrzeug
EP2094533B1 (de) Verfahren und bordnetz eines kraftfahrzeugs mit vorausschauender temporärer erhöhung der leerlaufdrehzahl des verbrennungsmotors
EP1826082B1 (de) Radschlupfregelsystem und Verfahren zum Regeln von Bewegungen von Rädern eines Fahrzeugs
DE102011081709A1 (de) Verfahren zum sicheren Betreiben eines Kraftfahrzeugs mit einem Antriebsaggregat
DE102005040791A1 (de) Verfahren und Vorrichtung zum Signalisieren eines Betriebszustandes eines Systems eines Kraftfahrzeugs
DE102007028277A1 (de) Kraftfahrzeug mit einer zuschaltbaren Antriebsachse
EP2033836A2 (de) Flurförderzeug mit einem Fahrmodus und einem Bremsmodus
DE102010033558A1 (de) Vorrichtung und Verfahren zur Stabilisierung eines Anhängers
DE102021127837B3 (de) Verfahren zum Verbessern des Leistungspotentials eines Antriebsstrangs
EP3674160B1 (de) Verfahren zum betreiben eines antriebsstrangs eines kraftfahrzeugs sowie antriebsstrang für ein kraftfahrzeug
DE102017200566B4 (de) Verfahren zum Abschalten eines Verbrauchers eines Fahrzeug-Fahrwerkssystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160202