EP2308597A2 - Micro-fluidic structure and method for measuring and/or positioning a liquid volume - Google Patents

Micro-fluidic structure and method for measuring and/or positioning a liquid volume Download PDF

Info

Publication number
EP2308597A2
EP2308597A2 EP20100186100 EP10186100A EP2308597A2 EP 2308597 A2 EP2308597 A2 EP 2308597A2 EP 20100186100 EP20100186100 EP 20100186100 EP 10186100 A EP10186100 A EP 10186100A EP 2308597 A2 EP2308597 A2 EP 2308597A2
Authority
EP
European Patent Office
Prior art keywords
liquid
abmesskanal
valve
gas
abmesskanals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20100186100
Other languages
German (de)
French (fr)
Other versions
EP2308597A3 (en
EP2308597B1 (en
Inventor
Rainer Gransee
Tina Röser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Institut fuer Mikrotechnik Mainz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Mikrotechnik Mainz GmbH filed Critical Institut fuer Mikrotechnik Mainz GmbH
Publication of EP2308597A2 publication Critical patent/EP2308597A2/en
Publication of EP2308597A3 publication Critical patent/EP2308597A3/en
Application granted granted Critical
Publication of EP2308597B1 publication Critical patent/EP2308597B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0622Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0644Valves, specific forms thereof with moving parts rotary valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0694Valves, specific forms thereof vents used to stop and induce flow, backpressure valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems

Definitions

  • the invention relates to a Abmesskanal for use in a microfluidic system, a microfluidic structure in a substrate, in particular in a lab-on-chip system, with a plurality of fluid lines including a Abmesskanals and connected to the fluid lines valve for selectively connecting and / or disconnecting the fluid lines.
  • the invention further relates to a method for measuring and / or positioning a volume of a liquid in a microfluidic system, in particular in a lab-on-chip system.
  • the measuring and positioning or distribution of liquids in a microfluidic chip is known to be done with the help of so-called Abmessschleifen in combination with one or more rotary valves and fluidic light barriers. Since virtually no more than two such Abmessschleifen can be connected via a valve, it requires the dimensioning and positioning of more than two liquids of several separate valve assemblies. The space required increases as a result, as well as the number of valve components and the optical components for the realization of the light barriers. Overall, this increases the cost of the system. Furthermore, through the combination of Abmessschleifen and rotary valves increased dead volumes and fluid losses are accepted.
  • the object of the present invention is to reduce the above disadvantages and to provide a cost-effective and efficient method for measuring and / or positioning a volume of a liquid in a microfluidic To provide system or a cost microfluidic structure for this purpose.
  • the inventive Abmesskanal for use in a microfluidic system in particular in a lab-on-chip system, has a first end, on which a first liquid-impermeable and gas-permeable wall portion is provided, which provides a gas connection, and a second end to which the Abmesskanal is connectable to at least one fluid line and to which a separation means is arranged, wherein in the Abmesskanal between the wall portion and the separating means a defined volume is included on.
  • the Abmesskanal which may for example be formed as a groove in a microfluidic chip and completed with a cover foil is limited by one or more the channel cross-section defining walls.
  • wall portion in the sense of this document is meant a limited, contiguous portion of one or more of these walls.
  • the channel is further limited by its two ends, which, however, do not require frontal walls, but initially only indicate positions and define the length or the volume of the Abmesskanals. The first end is thus the position of the first wall section along the Abmesskanals, the second end of the separation means.
  • the measuring takes place in the Abmesskanal (even without active optical monitoring) alone by filling the Abmesskanals up to the first wall section with a liquid and separating the volume of liquid trapped in the Abmesskanal between the wall portion and the separating means of a pending on the side of its second end in front of the separating means excess liquid residue.
  • the Abmesskanal is preferably closed or closed at a first end.
  • the following is also spoken of a dead channel.
  • This shape has the advantage, in particular in conjunction with the fact that the first liquid-impermeable and gas-permeable wall section is arranged at the closed or closable end of the Abmesskanals, that a small dead space and a very precise positioning of the metered liquid plug is ensured.
  • the separation means is advantageously designed as a second liquid-impermeable and gas-permeable wall section which provides a gas connection.
  • the separation or measuring takes place in the Abmesskanal (without active optical monitoring) alone by applying a pressure difference between an opening into the Abmesskanal filling opening and the gas connection over the first liquid-impermeable and gas-permeable wall section. Since pressure control for moving and positioning the so-called liquid plugs is necessary anyway in most microfluidic systems, the invention thus requires a smaller amount of equipment for measuring in comparison with measuring devices according to the prior art.
  • the separation means is advantageously designed as a valve alternatively.
  • the valve is again preferably at the same time separating means for measuring the volume of liquid and control valve for selectively connecting and / or separating the Abmesskanals with a desired fluid line (inlet or outlet). Also in this embodiment, the Abmesskanal comes without additional Fluid control or fluid control components.
  • Valve controls of different types are basically known in microfluidics. It will be an example of the writings US 2005/0056321 A1 or DE 102 28 767 A1 directed.
  • liquid-impermeable and gas-permeable wall sections are preferably designed in the form of a membrane and / or have a capillary structure passing through the channel wall, which presents an increased resistance to the passage of a liquid. It is crucial in both cases that the liquid through the wall section - if any - only by applying an increased limit differential pressure .DELTA.P G between the internal pressure P i in the Abmesskanal and the external pressure P a in the gas connection, starting from a for filling, emptying, or in general to overcome the normal differential pressure ⁇ P N used to convey the liquid.
  • a membrane as a liquid-impermeable and gas-permeable wall section, this preferably consists of a non-wettable material, preferably a polymer membrane and particularly preferably polytetrafluoroethylene.
  • a non-wettable material preferably a polymer membrane and particularly preferably polytetrafluoroethylene.
  • Such liquid-impermeable and gas-permeable membranes in a microfluidic system are known, for example, from the document US 2005/0266582 A1 known.
  • the gas connection is formed according to a preferred embodiment of the invention by an exhaust port beyond the liquid-impermeable and gas-permeable wall portion to the environment.
  • This construction is simple, as no pump connection is needed on the side of the gas connection.
  • the liquid transport in the metering channel is controlled on the inlet or outlet side, wherein the filling in this embodiment at the inlet requires an overpressure and the emptying at the outlet requires a negative pressure.
  • the microfluidic structure according to the invention in a substrate, in particular in a lab-on-chip system has a plurality of fluid conduits for receiving and / or conducting a fluid flow and a valve connected to the fluid conduits for selectively connecting and / or disconnecting the fluid conduits.
  • One of the fluid conduits is in the form of a metering channel as described above which is connected on the side of its second end via the valve to at least one other fluid conduit and closed or closable on the side of its first end.
  • "On the side of the first and second ends”, respectively, implies that the closure or valve forms the respective end of the metering channel, that is to say functionally associated with it, and that they lie at a distance from the ends outside the fluid channel.
  • a closure forming the first end which coincides with the first wall portion, allows filling and emptying with minimal fluid loss through dead spaces.
  • the filling, measuring and emptying can be realized in a simple manner.
  • the valve for selectively connecting and / or separating the fluid lines forms the separating means. It is also possible for a plurality of valves, and in particular more than two, of the metering channels according to the invention to be connected to one valve.
  • the gas connection and / or the at least one other fluid line is preferably connectable to a pump device which is set up to generate a pressure difference between the gas connection and the at least one other fluid line for supplying and / or discharging a fluid into the measurement channel.
  • a pump device which is set up to generate a pressure difference between the gas connection and the at least one other fluid line for supplying and / or discharging a fluid into the measurement channel.
  • the chip with the microfluidic structure according to the invention can be inserted into a so-called operator device, which provides a fluidic connection to the microfluidic chip via interfaces.
  • a pressure measuring device communicating with a fluid line in the microfluidic structure is provided, the signal of which can advantageously be used to control the pumping device according to one of the methods described below.
  • two or more of the above-described Abmesskanäle be arranged one behind the other, wherein the second end of a first Abmesskanals forms the first end of a second Abmesskanals.
  • step b) After filling in step b) is filled depending on the available amount of liquid, the entire Abmesskanal or only a part thereof. However, if the metering channel is in any case filled via the separating means, separation c) ensures that only exactly that between the first wall section and the defined, remaining liquid volume remains for further use.
  • step c If, as stated above, after the filling in step b), the metering channel is filled beyond the second wall section closer to the valve, it is ensured by the removal in step c ") that only the precisely defined liquid volume remaining between the wall sections in the metering channel remains remains for further use.
  • This variant represents the simpler case of a transverse filling, ie running in the direction of the channel.
  • the case is simpler insofar as the measuring has already taken place in one step.
  • the prerequisite is that the liquid is sucked through the inlet opening by a lower pressure at the gas connections than the pressure prevailing in the rest of the system.
  • the valve then serves to connect the metering channel to an outlet channel for emptying.
  • the second end of a first measuring channel forms the first end of a second measuring channel
  • the steps a) to c) or the step d) repeated.
  • the first filling of the Abmesskanals according to step b) takes place up to the first closer to the valve second wall portion which forms the starting point and the first wall portion during the second filling. Accordingly, the first removal takes place the excess liquid according to step d) of the first second wall portion and the second removal from a valve closer to the separation means.
  • the term "initially second” or “initially closer” refers to the wall section / separating means closer to the valve in the first filling / removal, and the indication “lying closer again” refers to the wall section / separating means closer to the valve in the second filling / removal.
  • supply line first derivative and second derivative is functional to understand and, so to speak, the same physical fluid line may be designated.
  • the filling is preferably carried out by continuously pumping the liquid into the metering channel by means of a pumping device.
  • Continuous pumping is one of two alternative pumping principles in addition to constant pressure pumping.
  • the pressure in the system is preferably monitored by means of a pressure measuring device communicating with the supply line or the metering channel.
  • the pressure at which the pumping device is switched off is higher than the system normal pressure P i and less than the limit differential pressure ⁇ P G between an increased internal pressure P ' i in the metering channel and the external pressure P a in the gas port the liquid breaks through the liquid-impermeable and gas-permeable wall section.
  • FIG. 1 the Abmesskanal 10 according to the invention is shown in a section through a microfluidic chip 12.
  • the microfluidic chip 12 typically has a substrate 14, in which the Abmesskanal 10 and any other fluid lines and / or other functional structures from its top 16 and / or its bottom 17 (this case is not shown here) are incorporated.
  • substrates with the fluid lines are produced by injection molding. Alternatively, they can also be milled into the surface of the substrate 14 or embossed in the injection-compression molding process.
  • the Abmesskanal 10 and the other, not shown here, fluid lines are closed to the environment by means of a cover film 18 on the top 16 (or bottom).
  • the cover sheet 18 is provided with two openings 20 and 22, of which an opening 20 opens flush with an end face 24 of the Abmesskanals 10 in the same. Due to the measuring surface 10 unilaterally limiting end face 24 of the Abmesskanal 10 for the liquid is a dead channel, but not for a gas which, as described below, can flow out of the channel 10 through the openings 20 and 22.
  • the liquid of Abmesskanal thus has only one access opening 25 through which it is fluidly connected or connected to the connected fluid lines. Nevertheless, it can be completely filled without dead spaces due to the flush with the opening 20 end surface 24.
  • the opening 20 Above the opening 20 is a liquid-impermeable and gas-permeable first wall section and above the opening 22 is a liquid-impermeable and gas-permeable second wall section.
  • the first wall portion and the second wall portion are each in the form of a membrane 26 and 28 is formed. Due to their gas permeability, these membranes provide a gas connection 27 or 29 for the metering channel 10.
  • For the supply or supply of gas is on the outside of the membranes 26 and 28 each have a gas line 30 and 32 flanged or mounted by the operator device.
  • the arrangement of the membranes as well as the gas lines is shown here only schematically simplified.
  • the membranes are preferably embedded in a membrane seat formed in the substrate and held, for example, by means of a pressing ring.
  • the pressing ring is preferably captively (ultrasonically) welded to the substrate and forms with the substrate a flush surface, which provides a sealing surface for the connection of a gas line.
  • This pressure increase can be detected by a suitable pressure measuring device (not shown) which is connected to a fluid line communicating with the metering channel 10. The corresponding signal is then supplied to a pump control, which shuts off the pump, to the increased internal pressure P ' i not so far increase so that the pressure difference between P ' i and P a exceeds the limit differential pressure .DELTA.P G , at which the liquid would escape through the membrane.
  • the liquid column is in front of the metering channel 10 beyond the second opening 22.
  • the measuring is now carried out in a second step by the second gas port 29 closer to the access opening 25 is acted upon by a higher external pressure P a than the internal pressure P i .
  • the resulting pressure difference causes the liquid present in front of the opening 22 in the direction of the access opening 25 to be pushed or sucked out of the channel in the opposite direction, so that only the volume V of liquid V between the two openings determined by the length of the measuring channel 10 remains 20 and 22 remains.
  • the second wall section thus forms the separating means.
  • This precisely metered volume of liquid can then be discharged from the metering channel 10 for further use by applying the gas port 27, which is further away from the opening 25, to a higher external pressure P a than the internal pressure P i .
  • FIG. 2 an exemplary microfluidic structure with a plurality of fluid lines on a microfluidic chip 100 is shown schematically simplified in plan view.
  • the plurality of fluid lines are: a supply line 102, a first, Abmesskanal 104, a merge channel or second, separate Abmesskanal 106, a meandering mixing section 108, a third Abmesskanal 110, which actually consists of two directly adjacent Abmesskanälen, and a discharge 112.
  • a rotary valve 114 is provided which selectively connects or disconnects the fluid lines.
  • the supply line 102 opens in the center of the rotary valve 114 and can via a first valve port 116 are selectively connected to each of the fluid lines 104, 106, 108, 112 directly.
  • the first metering channel 104 has at its end remote from the rotary valve 114 a liquid-impermeable and gas-permeable first wall section 118.
  • the first wall section 118 is formed by a membrane which fits into a membrane seat 120.
  • the merge passage 106 has two liquid-impermeable and gas-permeable first and second wall sections 122 and 124 spaced one behind the other, of which the first wall section 124 is at the opposite end of the rotary valve 114, and thus the second wall section 122 is approximately midway in the merge passage 106 and thus closer are arranged to the rotary valve 114. Between the two wall sections 122 and 124 opens a transverse filling opening 126 in the Georgia Events- or second Abmesskanal 106th
  • the mixing channel 108 is folded meander-shaped, so that two immediately consecutively introduced fluids due to the long distance and the multiple direction reversal at the output 128 of the meander arrived mixed.
  • the third Abmesskanal 110 connects, which has a total of three liquid-impermeable and gas-permeable wall sections 130, 132 and 134.
  • the wall portion 130 is the valve 114 nearest, the wall portion 134 of the valve 114 farmost wall portion.
  • the second Abmesskanal 106 between the distal first wall portion 124 and the closer second wall portion 122 through the filling opening 126 (for example by means of a syringe or by dropping a drop on the filling opening) with a liquid A (shown as a black bar) filled by a pressure difference is applied between the liquid flowing through the filling opening 126 on the one hand and the two gas ports on the wall portions 124 and 122 on the other hand.
  • the pressure difference causes the filling of the merge passage 106 to stop as soon as the fluid covers both wall sections 122 and 124.
  • the filling opening 126 can be closed, for example by means of an adhesive film or a plug.
  • the supply line 102 is connected to the first metering channel 104 and the metering channel 104 is subsequently filled with a liquid B (shown as a black bar) by applying a pressure difference between the supply line 102 and the first wall section 118 of the first metering channel.
  • a liquid B shown as a black bar
  • the gas connection can be switched to ambient pressure via the first wall section 118 and the supply line 102 can be operated with overpressure. If the wall section 118 is reached by the liquid B, a pressure rise can be registered with a pressure measuring device, not shown, which is for example in fluid communication with the supply line 102. A corresponding signal can then be supplied to the pressure source or pumping device or a valve and these automatically cause the fluid flow to be switched off or diverted.
  • the rotary valve 114 is adjusted so that the first Abmesskanal 104 is connected to the input of the second Abmesskanals 106. At the same time the supply line 102 of the first Abmesskanal 104 separated.
  • the valve 114 thus acts simultaneously as a release agent in the context of the invention.
  • a pressure difference between the wall portion 118 of the first Abmesskanals 104 and the valve 114 closer wall portion 122 of the second Abmesskanals 106 moves the previously located in the Abmesskanal 104, measured liquid B up to the wall portion 122 in the second Abmesskanal 106 inside.
  • a fourth step according to FIG. 6 the rotary valve 114 is further rotated by one step, so that it connects the second metering channel 106 with the meandering mixing channel 108.
  • a pressure difference between the rotary valve 114 further lying wall portion 124 of the second Abmesskanals 106 and at least the valve 114 distalmost wall portion 134 of the third Abmesskanals 110 are both liquids A and B initially successively through the meandering mixing channel 108 promoted, mixed therein and then in the third Abmesskanal 110 advanced to its distance from the mixing channel wall portion 134, see.
  • FIG. 7
  • the mixed liquid AB is then measured by the excess excess liquid located in front of the second wall section 130 closest to the valve 114 by applying a pressure difference between the gas connection over the second wall section 130 and the gas connection above the wall section 124 of the second dimensioning channel 106 remote from the valve derived the second Abmesskanal 106.
  • the second Abmesskanal 106 is used in the used state as a waste channel or waste.
  • the liquid AB located between the second wall portion 130 closest to the valve 114 and the nearest, middle (first) wall portion 132 is transported for further use inside or outside the microfluidic chip in the direction of the discharge line 112 by a pressure difference is applied between the gas port of the wall portion 132 and the internal pressure of the drain 112.
  • FIGS. 2 to 10 The basis of the FIGS. 2 to 10 For example, it is incumbent on the skilled person to generate the respectively necessary for the liquid transport pressure difference either by suction or pressure described sequence and the design of the microfluidic structure. It becomes apparent from the overall view of the present specification that it is not necessary to focus solely on the embodiment described in detail, but rather the underlying and in the patent claims specified method, the Abmesskanal and the microfluidic structure are relevant to the scope of protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The channel (10) has an end, and a gas and liquid permeable wall section arranged at the end of the channel, where the wall section provides a gas conduit (27). The channel is connected with a fluid pipeline at another end of the channel. A separating unit e.g. rotary valve, is arranged at the latter end, and a defined liquid volume is enclosed between the wall section and the separating unit in the channel. The gas and liquid permeable wall section is designed in the form of a membrane (26). The channel is closed or closeable on the former end. Independent claims are also included for the following: (1) a microfluidic structure in a substrate, comprising a measurement channel (2) a method for measuring and/or positioning volume of liquid in a microfluidic system.

Description

Die Erfindung betrifft einen Abmesskanal zur Verwendung in einem mikrofluidischen System, eine mikrofluidische Struktur in einem Substrat, insbesondere in einem Lab-on-Chip-System, mit mehreren Fluidleitungen einschließlich eines Abmesskanals und einem mit den Fluidleitungen verbundenen Ventil zum wahlweisen Verbinden und/oder Trennen der Fluidleitungen. Die Erfindung betrifft ferner ein Verfahren zum Abmessen und/oder Positionieren eines Volumens einer Flüssigkeit in einem mikrofluidischen System, insbesondere in einem Lab-on-Chip-System.The invention relates to a Abmesskanal for use in a microfluidic system, a microfluidic structure in a substrate, in particular in a lab-on-chip system, with a plurality of fluid lines including a Abmesskanals and connected to the fluid lines valve for selectively connecting and / or disconnecting the fluid lines. The invention further relates to a method for measuring and / or positioning a volume of a liquid in a microfluidic system, in particular in a lab-on-chip system.

Das Abmessen und Positionieren bzw. Verteilen von Flüssigkeiten in einem Mikrofluidikchip erfolgt bekanntermaßen mit Hilfe von sogenannten Abmessschleifen in Kombination mit einem oder mehreren Drehventilen und fluidischen Lichtschranken. Da praktisch nicht mehr als zwei solcher Abmessschleifen über ein Ventil verbunden werden können, bedarf es zur Abmessung und Positionierung von mehr als zwei Flüssigkeiten mehrerer getrennter Ventilanordnungen. Der Platzbedarf steigt in Folge dessen ebenso wie die Anzahl von Ventilkomponenten und der optischen Komponenten zur Realisierung der Lichtschranken. Insgesamt erhöht dies die Kosten des Systems. Ferner werden durch die Kombination von Abmessschleifen und Drehventilen erhöhte Totvolumina und Flüssigkeitsverluste in Kauf genommen.The measuring and positioning or distribution of liquids in a microfluidic chip is known to be done with the help of so-called Abmessschleifen in combination with one or more rotary valves and fluidic light barriers. Since virtually no more than two such Abmessschleifen can be connected via a valve, it requires the dimensioning and positioning of more than two liquids of several separate valve assemblies. The space required increases as a result, as well as the number of valve components and the optical components for the realization of the light barriers. Overall, this increases the cost of the system. Furthermore, through the combination of Abmessschleifen and rotary valves increased dead volumes and fluid losses are accepted.

Aufgabe der vorliegenden Erfindung ist es, die vorstehenden Nachteile zu reduzieren und ein kostengünstiges und effizientes Verfahren zum Abmessen und/oder Positionieren eines Volumens einer Flüssigkeit in einem mikrofluidischen System bzw. eine kostengünstige mikrofluidische Struktur zu diesem Zweck bereitzustellen.The object of the present invention is to reduce the above disadvantages and to provide a cost-effective and efficient method for measuring and / or positioning a volume of a liquid in a microfluidic To provide system or a cost microfluidic structure for this purpose.

Die Aufgabe wird gelöst durch einen Abmesskanal mit den Merkmalen des Patentanspruches 1, eine mikrofluidische Struktur mit den Merkmalen des Patentanspruches 5 und ein Verfahren mit den Merkmalen der Patentansprüche 8 oder 9. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.The object is achieved by a Abmesskanal with the features of claim 1, a microfluidic structure with the features of claim 5 and a method having the features of claims 8 or 9. Advantageous further developments are the subject of the dependent claims.

Der erfindungsgemäße Abmesskanal zur Verwendung in einem mikrofluidischen System, insbesondere in einem Lab-On-Chip-System, weist ein erstes Ende, an dem ein erster flüssigkeitsundurchlässiger und gasdurchlässiger Wandabschnitt angeordnet ist, der einen Gasanschluss bereitstellt, und ein zweites Ende, an dem der Abmesskanal mit wenigstens einer Fluidleitung verbindbar ist und an dem ein Abtrennmittel angeordnet ist, wobei in dem Abmesskanal zwischen dem Wandabschnitt und dem Abtrennmittel ein definiertes Volumen eingeschlossen ist, auf.The inventive Abmesskanal for use in a microfluidic system, in particular in a lab-on-chip system, has a first end, on which a first liquid-impermeable and gas-permeable wall portion is provided, which provides a gas connection, and a second end to which the Abmesskanal is connectable to at least one fluid line and to which a separation means is arranged, wherein in the Abmesskanal between the wall portion and the separating means a defined volume is included on.

Der Abmesskanal, der beispielsweise als Nut in einem mikrofluidischen Chip ausgebildet und mit einer Deckelfolie abgeschlossen sein kann, wird durch eine oder mehrere den Kanalquerschnitt definierende Wände begrenzt. Unter "Wandabschnitt" im Sinne dieser Schrift wird ein begrenzter, zusammenhängender Abschnitt einer oder mehrerer dieser Wände verstanden. Der Kanal wird ferner durch seine beiden Enden begrenzt, die jedoch keine stirnseitigen Wände voraussetzen, sondern zunächst lediglich Positionen angeben und die Länge bzw. das Volumen des Abmesskanals definieren. Das erste Ende ist also die Position des ersten Wandabschnittes entlang des Abmesskanals, das zweite Endes die des Abtrennmittels.The Abmesskanal, which may for example be formed as a groove in a microfluidic chip and completed with a cover foil is limited by one or more the channel cross-section defining walls. By "wall portion" in the sense of this document is meant a limited, contiguous portion of one or more of these walls. The channel is further limited by its two ends, which, however, do not require frontal walls, but initially only indicate positions and define the length or the volume of the Abmesskanals. The first end is thus the position of the first wall section along the Abmesskanals, the second end of the separation means.

Das Abmessen erfolgt in dem Abmesskanal (auch ohne aktive optische Überwachung) alleine durch Befüllen des Abmesskanals bis zu dem ersten Wandabschnitt mit einer Flüssigkeit und Abtrennen des in dem Abmesskanal zwischen dem Wandabschnitt und dem Abtrennmittel eingeschlossenen Flüssigkeitsvolumens von einem auf der Seite seines zweiten Endes vor dem Abtrennmittel anstehenden überschüssigen Flüssigkeitsrest.The measuring takes place in the Abmesskanal (even without active optical monitoring) alone by filling the Abmesskanals up to the first wall section with a liquid and separating the volume of liquid trapped in the Abmesskanal between the wall portion and the separating means of a pending on the side of its second end in front of the separating means excess liquid residue.

Der Abmesskanal ist bevorzugt an einem ersten Ende geschlossen oder verschließbar. In diesem Fall wird nachfolgend auch von einem Totkanal gesprochen. Diese Gestalt hat insbesondere in Verbindung damit, dass der erste flüssigkeitsundurchlässige und gasdurchlässige Wandabschnitt an dem geschlossenen oder verschließbaren Ende des Abmesskanals angeordnet ist, den Vorteil, dass ein geringer Totraum und eine sehr präzise Positionierung des abgemessenen Flüssigkeitsplugs gewährleistet wird.The Abmesskanal is preferably closed or closed at a first end. In this case, the following is also spoken of a dead channel. This shape has the advantage, in particular in conjunction with the fact that the first liquid-impermeable and gas-permeable wall section is arranged at the closed or closable end of the Abmesskanals, that a small dead space and a very precise positioning of the metered liquid plug is ensured.

Das Abtrennmittel ist vorteilhafter Weise als ein zweiter flüssigkeitsundurchlässiger und gasdurchlässiger Wandabschnitt ausgebildet, der einen Gasanschluss bereitstellt. Das Abtrennen bzw. Abmessen erfolgt in dem Abmesskanal (ohne aktive optische Überwachung) alleine durch Anlegen einer Druckdifferenz zwischen einer in den Abmesskanal mündenden Einfüllöffnung und dem Gasanschluss über dem ersten flüssigkeitsundurchlässigen und gasdurchlässigen Wandabschnitt. Da eine Drucksteuerung zur Bewegung und Positionierung der sogenannten Flüssigkeitsplugs ohnehin bei den meisten mikrofluidischen Systemen notwendig ist, benötigt die Erfindung im Vergleich mit Abmesseinrichtungen nach dem Stand der Technik also einen geringeren apparativen Aufwand zum Abmessen.The separation means is advantageously designed as a second liquid-impermeable and gas-permeable wall section which provides a gas connection. The separation or measuring takes place in the Abmesskanal (without active optical monitoring) alone by applying a pressure difference between an opening into the Abmesskanal filling opening and the gas connection over the first liquid-impermeable and gas-permeable wall section. Since pressure control for moving and positioning the so-called liquid plugs is necessary anyway in most microfluidic systems, the invention thus requires a smaller amount of equipment for measuring in comparison with measuring devices according to the prior art.

Das Abtrennmittel ist vorteilhafter Weise alternativ als ein Ventil ausgebildet. Das Ventil ist wiederum bevorzugt gleichzeitig Abtrennmittel zum Abmessen des Flüssigkeitsvolumens und Steuerventil zum wahlweisen Verbinden und/oder Trennen des Abmesskanals mit einer gewünschten Fluidleitung (Zu- oder Ableitung). Auch in dieser Ausgestaltung kommt der Abmesskanal ohne zusätzliche Fluidsteuerungs- oder Fluidkontrollbauteile aus. Ventilsteuerungen unterschiedlicher Art sind in der Mikrofluidik grundsätzlich bekannt. Es wird beispielhaft auf die Schriften US 2005/0056321 A1 oder DE 102 28 767 A1 verwiesen.The separation means is advantageously designed as a valve alternatively. The valve is again preferably at the same time separating means for measuring the volume of liquid and control valve for selectively connecting and / or separating the Abmesskanals with a desired fluid line (inlet or outlet). Also in this embodiment, the Abmesskanal comes without additional Fluid control or fluid control components. Valve controls of different types are basically known in microfluidics. It will be an example of the writings US 2005/0056321 A1 or DE 102 28 767 A1 directed.

Einer oder beide flüssigkeitsundurchlässige und gasdurchlässige Wandabschnitte sind vorzugsweise in Form einer Membran ausgebildet und/oder weisen eine die Kanalwand durchsetzende Kapillarstruktur auf, die dem Durchtritt einer Flüssigkeit einen erhöhten Widerstand entgegensetzt. Entscheidend ist in beiden Fällen, dass die Flüssigkeit durch den Wandabschnitt - sofern überhaupt - nur unter Aufbringen eines erhöhten Grenzdifferenzdruckes ΔPG zwischen dem Innendruck Pi in dem Abmesskanal und dem Außendruck Pa im Gasanschluss, ausgehend von einem zum Befüllen, Entleeren, oder allgemein zum Fördern der Flüssigkeit verwendeten Normaldifferenzdruck ΔPN zu überwinden im Stande ist.One or both of the liquid-impermeable and gas-permeable wall sections are preferably designed in the form of a membrane and / or have a capillary structure passing through the channel wall, which presents an increased resistance to the passage of a liquid. It is crucial in both cases that the liquid through the wall section - if any - only by applying an increased limit differential pressure .DELTA.P G between the internal pressure P i in the Abmesskanal and the external pressure P a in the gas connection, starting from a for filling, emptying, or in general to overcome the normal differential pressure ΔP N used to convey the liquid.

Im Falle einer Membran als flüssigkeitsundurchlässiger und gasdurchlässiger Wandabschnitt besteht diese bevorzugt aus einem nicht-benetzbaren Material, vorzugsweise einer Polymermembran und besonders bevorzugt Polytetraflourethylen. Derartige flüssigkeitsundurchlässige und gasdurchlässige Membranen in einem mikrofluidischen System sind beispielsweise aus der Schrift US 2005/0266582 A1 bekannt.In the case of a membrane as a liquid-impermeable and gas-permeable wall section, this preferably consists of a non-wettable material, preferably a polymer membrane and particularly preferably polytetrafluoroethylene. Such liquid-impermeable and gas-permeable membranes in a microfluidic system are known, for example, from the document US 2005/0266582 A1 known.

Der Gasanschluss wird gemäß einer bevorzugten Ausgestaltung der Erfindung durch eine Abluftöffnung jenseits des flüssigkeitsundurchlässigen und gasdurchlässigen Wandabschnittes zur Umgebung gebildet. Diese Konstruktion ist einfach, da kein Pumpenanschluss auf der Seite des Gasanschlusses benötigt wird. Der Flüssigkeitstransport im Abmesskanal wird einlass- bzw. auslassseitig gesteuert, wobei das Befüllen bei dieser Ausgestaltung am Einlass einen Überdruck und das Entleeren am Auslass einen Unterdruck erfordert.The gas connection is formed according to a preferred embodiment of the invention by an exhaust port beyond the liquid-impermeable and gas-permeable wall portion to the environment. This construction is simple, as no pump connection is needed on the side of the gas connection. The liquid transport in the metering channel is controlled on the inlet or outlet side, wherein the filling in this embodiment at the inlet requires an overpressure and the emptying at the outlet requires a negative pressure.

Die erfindungsgemäße mikrofluidische Struktur in einem Substrat, insbesondere in einem Lab-on-Chip-System, weist mehrere Fluidleitungen zum Aufnehmen und/oder Leiten eines Fluidstromes und ein mit den Fluidleitungen verbundenes Ventil zum wahlweisen Verbinden und/oder Trennen der Fluidleitungen auf. Eine der Fluidleitungen ist in Form eines wie vorstehend beschriebenen Abmesskanals ausgebildet, der auf der Seite seines zweiten Endes über das Ventil mit mindestens einer anderen Fluidleitung verbunden und auf der Seite seines ersten Endes geschlossen oder verschließbar ist. "Auf der Seite des ersten bzw. zweiten Endes" schließt ein, dass der Verschluss bzw. das Ventil das jeweilige Ende des Abmesskanals bilden, also funktional dazugehören und dass sie beabstandet von den Enden außerhalb des Fluidkanals liegen. Insbesondere ein das erste Ende bildender Verschluss, der mit dem ersten Wandabschnitt zusammenfällt, erlaubt ein Befüllen und Entleeren mit minimalem Flüssigkeitsverlust durch Toträume.The microfluidic structure according to the invention in a substrate, in particular in a lab-on-chip system, has a plurality of fluid conduits for receiving and / or conducting a fluid flow and a valve connected to the fluid conduits for selectively connecting and / or disconnecting the fluid conduits. One of the fluid conduits is in the form of a metering channel as described above which is connected on the side of its second end via the valve to at least one other fluid conduit and closed or closable on the side of its first end. "On the side of the first and second ends", respectively, implies that the closure or valve forms the respective end of the metering channel, that is to say functionally associated with it, and that they lie at a distance from the ends outside the fluid channel. In particular, a closure forming the first end, which coincides with the first wall portion, allows filling and emptying with minimal fluid loss through dead spaces.

In Verbindung mit einer Ventilanordnung lassen sich das Befüllen, Abmessen und Entleeren auf einfache Weise realisieren. Insbesondere bildet das Ventil zum wahlweisen Verbinden und/oder Trennen der Fluidleitungen das Abtrennmittel. Auch können an ein Ventil mehrere und insbesondere mehr als zwei der erfindungsgemäßen Abmesskanäle anschließen.In conjunction with a valve arrangement, the filling, measuring and emptying can be realized in a simple manner. In particular, the valve for selectively connecting and / or separating the fluid lines forms the separating means. It is also possible for a plurality of valves, and in particular more than two, of the metering channels according to the invention to be connected to one valve.

Der Gasanschluss und/oder die wenigstens eine andere Fluidleitung ist vorzugsweise an eine Pumpvorrichtung anschließbar, die eingerichtet ist, eine Druckdifferenz zwischen dem Gasanschluss und der wenigstens einen anderen Fluidleitung zum Zu- und/oder Abführen eines Fluids in den Abmesskanal zu erzeugen. Der Chip mit der erfindungsgemäßen mikrofluidischen Struktur kann zum Zweck des Anschließens in ein sogenanntes Betreibergerät eingelegt werden, welches über Schnittstellen eine fluidische Verbindung zum mikrofluidischen Chip zur Verfügung stellt.The gas connection and / or the at least one other fluid line is preferably connectable to a pump device which is set up to generate a pressure difference between the gas connection and the at least one other fluid line for supplying and / or discharging a fluid into the measurement channel. For the purpose of connection, the chip with the microfluidic structure according to the invention can be inserted into a so-called operator device, which provides a fluidic connection to the microfluidic chip via interfaces.

Vorteilhaft ist es ferner, wenn eine mit einer Fluidleitung in der mikrofluidischen Struktur kommunizierende Druckmesseinrichtung vorgesehen ist, deren Signal vorteilhaft zur Steuerung der Pumpvorrichtung gemäß einem der nachfolgend beschriebenen Verfahren eingesetzt werden kann.It is furthermore advantageous if a pressure measuring device communicating with a fluid line in the microfluidic structure is provided, the signal of which can advantageously be used to control the pumping device according to one of the methods described below.

Vorteilhafter Weise können zwei oder mehr der vorstehend beschriebenen Abmesskanäle hintereinander angeordnet werden, wobei des zweite Ende eines ersten Abmesskanals das erste Ende eines zweiten Abmesskanals bildet.Advantageously, two or more of the above-described Abmesskanäle be arranged one behind the other, wherein the second end of a first Abmesskanals forms the first end of a second Abmesskanals.

Das erfindungsgemäße Verfahren zum Abmessen und/oder Positionieren eines Volumens einer Flüssigkeit in einem solchen mikrofluidischen System sieht gemäß einem Aspekt der Erfindung die folgenden Schritte vor:

  1. a) Verbinden des Abmesskanals über das Ventil mit einer Zuleitung,
  2. b) Befüllen des Abmesskanals bis zu dem ersten Wandabschnitt mit einer Flüssigkeit aus der Zuleitung, indem eine Druckdifferenz zwischen der Zuleitung und dem Gasanschluss angelegt wird,
  3. c) Abtrennen des in dem Abmesskanal zwischen dem Wandabschnitt und dem Abtrennmittel eingeschlossenen Flüssigkeitsvolumens von einem auf der Seite seines zweiten Endes vor dem Abtrennmittel anstehenden überschüssigen Flüssigkeitsrest.
The inventive method for measuring and / or positioning a volume of a liquid in such a microfluidic system according to one aspect of the invention comprises the following steps:
  1. a) connecting the Abmesskanals via the valve with a supply line,
  2. b) filling the Abmesskanals up to the first wall portion with a liquid from the supply line by a pressure difference between the supply line and the gas port is applied,
  3. c) separating the liquid volume enclosed in the metering channel between the wall section and the separating means from an excess liquid residue which is present on the side of its second end in front of the separating means.

Die Unterscheidung der Begriffe Zuleitung und Ableitung ist funktional zu verstehen, gleichwohl kann damit dieselbe körperliche Fluidleitung bezeichnet sein.The distinction between the terms supply and discharge is to be understood functionally, nevertheless, the same physical fluid line can be designated.

Nach dem Befüllen in Schritt b) ist je nach verfügbarer Flüssigkeitsmenge der gesamte Abmesskanal oder auch nur ein Teil davon befüllt. Ist der Abmesskanal jedenfalls aber über das Abtrennmittel hinaus befüllt, wird durch das Abtrennen c) sichergestellt, dass nur noch genau das zwischen dem ersten Wandabschnitt und dem Abtrennmittel verbleibende, definierte Flüssigkeitsvolumen zur weiteren Verwendung zurück bleibt.After filling in step b) is filled depending on the available amount of liquid, the entire Abmesskanal or only a part thereof. However, if the metering channel is in any case filled via the separating means, separation c) ensures that only exactly that between the first wall section and the defined, remaining liquid volume remains for further use.

Ist das Abtrennmittel als ein zweiter flüssigkeitsundurchlässiger und gasdurchlässiger Wandabschnitt ausgebildet, der einen Gasanschluss bereitstellt, umfasst Schritt c) vorzugsweise:

  • c') Verbinden des Abmesskanals über das Ventil mit einer ersten Ableitung,
  • c") Abtransportieren der zwischen dem Ventil und dem zweiten Wandabschnitt befindlichen überschüssigen Flüssigkeit durch die erste Ableitung, indem eine Druckdifferenz zwischen dem Gasanschluss des zweiten Wandabschnittes und der ersten Ableitung angelegt wird.
If the separation means is formed as a second liquid-impermeable and gas-permeable wall section which provides a gas connection, step c) preferably comprises:
  • c ') connecting the Abmesskanals via the valve with a first derivative,
  • c ") removing the excess liquid located between the valve and the second wall portion through the first drain by applying a pressure difference between the gas port of the second wall portion and the first drain.

Ist wie vorstehend vorausgesetzt nach dem Befüllen in Schritt b) der Abmesskanal über den dem Ventil näherliegenden zweiten Wandabschnitt hinaus befüllt, wird durch das Abtransportieren in Schritt c") sichergestellt, dass nur noch das genau das zwischen den Wandabschnitten in dem Abmesskanal verbleibende, definierte Flüssigkeitsvolumen zur weiteren Verwendung zurück bleibt.If, as stated above, after the filling in step b), the metering channel is filled beyond the second wall section closer to the valve, it is ensured by the removal in step c ") that only the precisely defined liquid volume remaining between the wall sections in the metering channel remains remains for further use.

Ist das Abtrennmittel als Ventil zum wahlweisen Verbinden und/oder Trennen der Fluidleitungen ausgebildet, umfasst Schritt c) vorzugsweise:

  • c"') Trennen des Abmesskanals von der Zuleitung durch Schließen des Ventils.
If the separation means is designed as a valve for selectively connecting and / or separating the fluid lines, step c) preferably comprises:
  • c '') Separating the Abmesskanals from the supply line by closing the valve.

Gemäß einem zweiten Aspekt der Erfindung sieht das Verfahren in einem mikrofluidischen System mit einem auf der Seite seines ersten Endes geschlossenen oder verschließbaren und auf der Seite seines zweiten Endes über ein Ventil mit wenigstens einer Fluidleitung verbindbaren Abmesskanal, der an seinem ersten Ende einen ersten und an seinem zweiten Ende einen zweiten flüssigkeitsundurchlässigen und gasdurchlässigen Wandabschnitt aufweist, welche Wandabschnitte jeweils einen Gasanschluss bereitstellen und zwischen denen in dem Abmesskanal ein definiertes Volumen eingeschlossen ist, folgenden Schritt vor:

  • d) Befüllen des Abmesskanals über eine zwischen den Wandabschnitten in den Abmesskanal mündenden Einfüllöffnung mit einer Flüssigkeit, indem eine Druckdifferenz zwischen der Einfüllöffnung einerseits und den beiden Gasanschlüssen andererseits angelegt wird, und anschließendes Verschließen der Einfüllöffnung.
According to a second aspect of the invention, the method provides in a microfluidic system with a closed or closable on the side of its first end and on the side of its second end over Valve connectable with at least one fluid conduit Abmesskanal having at its first end a first and at its second end a second liquid-impermeable and gas-permeable wall portion, which wall portions each provide a gas port and between which in the Abmesskanal a defined volume is included, the following step:
  • d) filling the Abmesskanals via an opening between the wall sections in the Abmesskanal filling opening with a liquid by a pressure difference between the filling opening on the one hand and the two gas connections on the other hand is applied, and then closing the filling opening.

Diese Variante stellt den einfacheren Fall einer transversalen, also in Kanalrichtung verlaufende Befüllung dar. Der Fall ist insofern einfacher, als das Abmessen bereits in einem Schritt erfolgt ist. Voraussetzung ist, dass die Flüssigkeit durch einen niedrigeren Druck an den Gasanschlüssen über die Einlassöffnung eingesaugt wird, als der in dem übrigen System vorherrschende Druck. Das Ventil dient einem Anschließenden Verbinden des Abmesskanals mit einem Auslasskanal zum Entleeren.This variant represents the simpler case of a transverse filling, ie running in the direction of the channel. The case is simpler insofar as the measuring has already taken place in one step. The prerequisite is that the liquid is sucked through the inlet opening by a lower pressure at the gas connections than the pressure prevailing in the rest of the system. The valve then serves to connect the metering channel to an outlet channel for emptying.

Bevorzugt werden in einem mikrofluidischen System mit wenigstens zwei hintereinander angeordnete Abmesskanälen, wobei des zweite Ende eines ersten Abmesskanals das erste Ende eines zweiten Abmesskanals bildet, nach Schritt c) gemäß dem ersten Aspekt des erfindungsgemäßen Verfahrens bzw. nach Schritt d) gemäß dem zweiten Aspekt des erfindungsgemäßen Verfahrens die Schritte a) bis c) oder der Schritt d) wiederholt. Das erste Befüllen des Abmesskanals gemäß Schritt b) erfolgt bis zu dem dem Ventil zunächst näher liegenden zweiten Wandabschnitt der den Ausgangspunkt und ersten Wandabschnitt beim zweiten Befüllen bildet. Entsprechend erfolgt das erste Abtransportieren der überschüssigen Flüssigkeit gemäß Schritt d) von dem zunächst zweiten Wandabschnitt an und das zweite Abtransportieren ab einem dem Ventil nochmals näher liegenden Abtrennmittel. Die Angabe "zunächst zweiten" oder "zunächst näherliegend" bezieht sich auf den im ersten Befüllen/Abtransportieren dem Ventil näherliegenden Wandabschnitt/Abtrennmittel und die Angabe "nochmals näherliegend" bezieht sich auf den im zweiten Befüllen/Abtransportieren dem Ventil näherliegenden Wandabschnitt/Abtrennmittel. Durch das zweimalige Befüllen eines solchen Abmesskanals mit wenigstens drei flüssigkeitsundurchlässigen und gasdurchlässigen Wandabschnitten werden zwei Flüssigkeiten unmittelbar hintereinander in einem einzigen Abmesskanal abgemessen und können durch Druckbeaufschlagung des gewünschten Gasanschlusses wahlweise sequentiell oder zusammen aus dem Abmesskanal abgeführt werden. In letzterem Fall können Sie anschließend beispielsweise einer Mischstrecke zugeführt werden, um eine Mischung in einem präzisen Verhältnis der Ausgangssubstanzen zu erzeugen.Preferably, in a microfluidic system with at least two measuring channels arranged one behind the other, the second end of a first measuring channel forms the first end of a second measuring channel, after step c) according to the first aspect of the method according to the invention or after step d) according to the second aspect of FIG process according to the invention, the steps a) to c) or the step d) repeated. The first filling of the Abmesskanals according to step b) takes place up to the first closer to the valve second wall portion which forms the starting point and the first wall portion during the second filling. Accordingly, the first removal takes place the excess liquid according to step d) of the first second wall portion and the second removal from a valve closer to the separation means. The term "initially second" or "initially closer" refers to the wall section / separating means closer to the valve in the first filling / removal, and the indication "lying closer again" refers to the wall section / separating means closer to the valve in the second filling / removal. By filling twice such a Abmesskanals with at least three liquid-impermeable and gas-permeable wall sections two liquids are measured immediately after each other in a single Abmesskanal and can be removed by pressurizing the desired gas port either sequentially or together from the Abmesskanal. In the latter case, they can then be fed to a mixing section, for example, in order to produce a mixture in a precise ratio of the starting substances.

Vorteilhaft ist es wenn nach Schritt c) bzw. nach Schritt d) jeweils die folgenden Schritte ausgeführt werden:

  • e) Verbinden des Abmesskanals über das Ventil mit einer zweiten Ableitung,
  • f) Abtransportieren der zwischen dem dem Ventil näher liegenden Wandabschnitt und dem dem Ventil ferner liegenden Wandabschnitt eingeschlossenen Flüssigkeit durch die zweite Ableitung, indem eine Druckdifferenz zwischen dem Gasanschluss des dem Ventil ferner liegenden Wandabschnittes und der zweiten Ableitung angelegt wird.
It is advantageous if, following step c) or after step d), the following steps are carried out in each case:
  • e) connecting the Abmesskanals via the valve with a second derivative,
  • f) removing the fluid trapped between the valve-proximal wall portion and the valve-distal wall portion through the second drain by applying a pressure differential between the gas port of the valve-distal wall portion and the second drain.

Auch hier gilt, dass die Unterscheidung der Begriffe Zuleitung, erste Ableitung und zweite Ableitung funktional zu verstehen ist und gleichsam damit dieselbe körperliche Fluidleitung bezeichnet sein kann.Again, it is true that the distinction of the terms supply line, first derivative and second derivative is functional to understand and, so to speak, the same physical fluid line may be designated.

Bevorzugt erfolgt das Befüllen durch kontinuierliches Pumpen der Flüssigkeit in den Abmesskanal mittels einer Pumpeinrichtung. Das kontinuierliche Pumpen stellt neben dem Pumpen mit gleichbleibendem Druck eines von zwei alternativen Förderprinzipien dar.The filling is preferably carried out by continuously pumping the liquid into the metering channel by means of a pumping device. Continuous pumping is one of two alternative pumping principles in addition to constant pressure pumping.

Beim kontinuierlichen Pumpen wird vorzugsweise mittels einer mit der Zuleitung oder dem Abmesskanal kommunizierenden Druckmesseinrichtung der Druck in dem System überwacht.In continuous pumping, the pressure in the system is preferably monitored by means of a pressure measuring device communicating with the supply line or the metering channel.

Dies wird dann vorteilhafter Weise dazu genutzt, die Pumpeinrichtung abzustellen, wenn ein signifikanter Druckanstieg in der Zuleitung oder dem Abmesskanal festgestellt wird. Ein solcher Druckanstieg wird immer dann festzustellen sein, wenn die Flüssigkeit beim Einfüllen einen Wandabschnitt erreicht, an dessen Gasanschluss ein geringerer Außendruck Pa anliegt als der Innendruck Pi im übrigen System im Normalfall (Systemnormaldruck).This is then advantageously used to stop the pumping device when a significant increase in pressure in the supply line or the Abmesskanal is detected. Such an increase in pressure will always be noted when the liquid reaches a wall portion during filling, at the gas connection a lower external pressure P a is applied as the internal pressure P i in the rest of the system in the normal case (system normal pressure).

Insbesondere vorteilhaft ist es dann, wenn der Druck, bei dem die Pumpeinrichtung abgestellt wird, höher als der Systemnormaldruck Pi und geringer als der Grenzdifferenzdruck ΔPG zwischen einem erhöhten Innendruck P'i in dem Abmesskanal und dem Außendruck Pa im Gasanschluss ist, bei dem die Flüssigkeit durch den flüssigkeitsundurchlässige und gasdurchlässige Wandabschnitt durchbricht.It is particularly advantageous if the pressure at which the pumping device is switched off is higher than the system normal pressure P i and less than the limit differential pressure ΔP G between an increased internal pressure P ' i in the metering channel and the external pressure P a in the gas port the liquid breaks through the liquid-impermeable and gas-permeable wall section.

Weitere Aufgaben, Merkmale und Vorteile der Erfindung werden nachfolgend anhand von Ausführungsbeispielen mit Hilfe der Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Schnittdarstellung des prinzipiellen Aufbaus des erfin- dungsgemäßen Abmesskanals;
Figur 2
eine mikrofluidische Struktur in einem Lab-on-Chip-System mit mehreren erfindungsgemäßen Abmesskanälen;
Figur 3
die mikrofluidische Struktur gemäß Figur 2 nach einem ersten Schritt einer Sequenz von fluidischen Steuerungen;
Figur 4
die mikrofluidische Struktur gemäß Figur 2 nach einem zweiten Schritt einer Sequenz von fluidischen Steuerungen;
Figur 5
die mikrofluidische Struktur gemäß Figur 2 nach einem dritten Schritt einer Sequenz von fluidischen Steuerungen;
Figur 6
die mikrofluidische Struktur gemäß Figur 2 nach einem vierten Schritt einer Sequenz von fluidischen Steuerungen;
Figur 7
die mikrofluidische Struktur gemäß Figur 2 nach einem fünften Schritt einer Sequenz von fluidischen Steuerungen;
Figur 8
die mikrofluidische Struktur gemäß Figur 2 nach einem sechsten Schritt einer Sequenz von fluidischen Steuerungen;
Figur 9
die mikrofluidische Struktur gemäß Figur 2 nach einem siebten Schritt einer Sequenz von fluidischen Steuerungen und
Figur 10
die mikrofluidische Struktur gemäß Figur 2 nach einem achten Schritt einer Sequenz von fluidischen Steuerungen.
Other objects, features and advantages of the invention will be explained in more detail by means of embodiments with the aid of the drawings. Show it:
FIG. 1
a sectional view of the basic structure of the inventive Abmesskanals;
FIG. 2
a microfluidic structure in a lab-on-chip system with several Abmesskanälen invention;
FIG. 3
the microfluidic structure according to FIG. 2 after a first step of a sequence of fluidic controls;
FIG. 4
the microfluidic structure according to FIG. 2 after a second step of a sequence of fluidic controls;
FIG. 5
the microfluidic structure according to FIG. 2 after a third step of a sequence of fluidic controls;
FIG. 6
the microfluidic structure according to FIG. 2 after a fourth step of a sequence of fluidic controls;
FIG. 7
the microfluidic structure according to FIG. 2 after a fifth step of a sequence of fluidic controls;
FIG. 8
the microfluidic structure according to FIG. 2 after a sixth step of a sequence of fluidic controls;
FIG. 9
the microfluidic structure according to FIG. 2 after a seventh step of a sequence of fluidic controls and
FIG. 10
the microfluidic structure according to FIG. 2 after an eighth step of a sequence of fluidic controls.

In Figur 1 ist der erfindungsgemäße Abmesskanal 10 in einem Schnitt durch einen mikrofluidischen Chip 12 gezeigt. Der mikrofluidischen Chip 12 weist typischerweise ein Substrat 14 auf, in das der Abmesskanal 10 und etwaige weitere Fluidleitungen und/oder andere funktionale Strukturen von seiner Oberseite 16 und/oder von seiner Unterseite 17 (dieser Fall ist vorliegend nicht dargestellt) eingearbeitet sind. In der Regel werden Substrate mit die Fluidleitungen im Spritzgussverfahren hergestellt. Alternativ können diese auch in die Oberfläche des Substrats 14 eingefräst oder im Spritzprägeverfahren eingeprägt werden. Der Abmesskanal 10 sowie die sonstigen, hier nicht gezeigten Fluidleitungen werden gegenüber der Umgebung mittels einer Deckelfolie 18 auf der Oberseite 16 (bzw. Unterseite) verschlossen.In FIG. 1 the Abmesskanal 10 according to the invention is shown in a section through a microfluidic chip 12. The microfluidic chip 12 typically has a substrate 14, in which the Abmesskanal 10 and any other fluid lines and / or other functional structures from its top 16 and / or its bottom 17 (this case is not shown here) are incorporated. As a rule, substrates with the fluid lines are produced by injection molding. Alternatively, they can also be milled into the surface of the substrate 14 or embossed in the injection-compression molding process. The Abmesskanal 10 and the other, not shown here, fluid lines are closed to the environment by means of a cover film 18 on the top 16 (or bottom).

Im vorliegenden Fall ist die Deckelfolie 18 mit zwei Öffnungen 20 und 22 versehen, von denen eine Öffnung 20 bündig an einer Endfläche 24 des Abmesskanals 10 in denselben mündet. Aufgrund der den Abmesskanal 10 einseitig begrenzenden Endfläche 24 ist der Abmesskanal 10 für die Flüssigkeit ein Totkanal, nicht jedoch für ein Gas, das, wie nachfolgend beschreiben, durch die Öffnungen 20 und 22 aus dem Kanal 10 ausströmen kann. Für die Flüssigkeit hat der Abmesskanal also nur eine Zugangsöffnung 25, über die er mit angeschlossenen Fluidleitungen fluidisch verbindbar oder verbunden ist. Dennoch kann er aufgrund der mit der Öffnung 20 bündigen Endfläche 24 ohne Toträume vollständig befüllt werden.In the present case, the cover sheet 18 is provided with two openings 20 and 22, of which an opening 20 opens flush with an end face 24 of the Abmesskanals 10 in the same. Due to the measuring surface 10 unilaterally limiting end face 24 of the Abmesskanal 10 for the liquid is a dead channel, but not for a gas which, as described below, can flow out of the channel 10 through the openings 20 and 22. For the liquid of Abmesskanal thus has only one access opening 25 through which it is fluidly connected or connected to the connected fluid lines. Nevertheless, it can be completely filled without dead spaces due to the flush with the opening 20 end surface 24.

Oberhalb der Öffnung 20 befindet sich ein flüssigkeitsundurchlässiger und gasdurchlässiger erster Wandabschnitt und oberhalb der Öffnung 22 ein flüssigkeitsundurchlässiger und gasdurchlässiger zweiter Wandabschnitt. Der erste Wandabschnitt und der zweite Wandabschnitt sind jeweils in Form einer Membran 26 bzw. 28 ausgebildet ist. Diese Membranen stellen aufgrund ihrer Gasdurchlässigkeit einen Gasanschluss 27 bzw. 29 für den Abmesskanal 10 bereit. Zur Ab- bzw. Zuleitung von Gas ist auf der Außenseite der Membranen 26 und 28 jeweils eine Gasleitung 30 bzw. 32 angeflanscht bzw. vom Betreibergerät aufgesetzt. Die Anordnung der Membranen wie auch die der Gasleitungen ist hier nur schematisch vereinfacht dargestellt. Tatsächlich werden die Membranen bevorzugt in einen in das Substrat eingeformten Membransitz eingelassen und beispielsweise mittels eines Andrückrings gehalten. Der Andrückring ist vorzugsweise mit dem Substrat unverlierbar (ultraschall-)verschweißt und bildet mit dem Substrat eine bündige Oberfläche, die ein Dichtfläche für den Anschluss einer Gasleitung bereitstellt.Above the opening 20 is a liquid-impermeable and gas-permeable first wall section and above the opening 22 is a liquid-impermeable and gas-permeable second wall section. The first wall portion and the second wall portion are each in the form of a membrane 26 and 28 is formed. Due to their gas permeability, these membranes provide a gas connection 27 or 29 for the metering channel 10. For the supply or supply of gas is on the outside of the membranes 26 and 28 each have a gas line 30 and 32 flanged or mounted by the operator device. The arrangement of the membranes as well as the gas lines is shown here only schematically simplified. In fact, the membranes are preferably embedded in a membrane seat formed in the substrate and held, for example, by means of a pressing ring. The pressing ring is preferably captively (ultrasonically) welded to the substrate and forms with the substrate a flush surface, which provides a sealing surface for the connection of a gas line.

Zwischen den Wandabschnitten 26 und 28 schließt der Abmesskanal 10 ein definiertes Volumen V ein.Between the wall sections 26 and 28 of the Abmesskanal 10 includes a defined volume V.

Im Folgenden wird die Funktion des Abmesskanals anhand des Ausführungsbeispiels in Figur 1 erläutert. Zum Befüllen des Abmesskanals 10 mit einer Flüssigkeit durch dessen Zugangsöffnung 25 wird zunächst eine Druckdifferenz ΔPN zwischen dem Zuleitungsdruck Druck Pi im Innern des Abmesskanals 10 und dem Außendruck Pa in der Öffnung 20 des am bezüglich der Zugangsöffnung 25 fernstliegenden ersten Gasanschlusses 27 beaufschlagt. Der relative Überdruck ΔPN zwischen der Einlassseite und der Gasauslassseite bewegt einen in der Fluidleitung befindlichen Flüssigkeitsplug 34 bis in die Öffnung 20 vor der Membran 26. Sobald der Flüssigkeitsplug 34 die der Öffnung 25 fern liegende Membran 26 erreicht, steigt der Druck im Inneren des Abmesskanals 10, konstante Volumenförderung vorausgesetzt. Dieser Druckanstieg kann durch eine geeignete Druckmesseinrichtung (nicht dargestellt), die mit einer mit dem Abmesskanal 10 kommunizierenden Fluidleitung verbunden ist, detektiert werden. Das entsprechende Signal wird dann einer Pumpensteuerung zugeführt, die die Pumpe abschaltet, um den erhöhten Innendruck P'i nicht soweit ansteigen zu lassen, dass die Druckdifferenz zwischen P'i und Pa den Grenzdifferenzdruck ΔPG überschreitet, bei dem die Flüssigkeit durch die Membran austreten würde.In the following, the function of the Abmesskanals based on the embodiment in FIG. 1 explained. To fill the Abmesskanals 10 with a liquid through the access opening 25, a pressure difference .DELTA.P N between the supply line pressure P i inside the Abmesskanals 10 and the external pressure P a in the opening 20 of the most remote with respect to the access opening 25 first gas port 27 is first acted upon. The relative pressure ΔP N between the inlet side and the gas outlet side moves a liquid plug 34 in the fluid line into the opening 20 in front of the membrane 26. As soon as the liquid plug 34 reaches the membrane 26 remote from the opening 25, the pressure in the interior of the measuring channel increases 10, constant volume delivery provided. This pressure increase can be detected by a suitable pressure measuring device (not shown) which is connected to a fluid line communicating with the metering channel 10. The corresponding signal is then supplied to a pump control, which shuts off the pump, to the increased internal pressure P ' i not so far increase so that the pressure difference between P ' i and P a exceeds the limit differential pressure .DELTA.P G , at which the liquid would escape through the membrane.

Davon ausgehend, dass der zugeführte Flüssigkeitsplug 34 ein größeres Volumen einnimmt, als das durch den Abmesskanal 10 bestimmte Volumen V, steht die Flüssigkeitssäule über die zweite Öffnung 22 hinaus vor dem Abmesskanal 10 an. Das Abmessen erfolgt nun in einem zweiten Schritt, indem der der Zugangsöffnung 25 näher liegende zweite Gasanschluss 29 mit einem höheren Außendruck Pa als der Innendruck Pi beaufschlagt wird. Die so entstehende Druckdifferenz bewirkt, dass die vor der Öffnung 22 in Richtung der Zugangsöffnung 25 anstehende Flüssigkeit in umgekehrter Richtung aus dem Kanal herausgedrückt oder gesogen wird, so dass nur noch das durch die Länge des Abmesskanals 10 bestimmte Volumen V an Flüssigkeit zwischen den beiden Öffnungen 20 und 22 verbleibt. Der zweite Wandabschnitt bildet also das Abtrennmittel. Dieses genau abgemessene Flüssigkeitsvolumen kann anschließend durch Beaufschlagung des der Öffnung 25 ferner liegenden Gasanschlusses 27 mit einem höheren Außendruck Pa als der Innendruck Pi aus dem Abmesskanal 10 zur weiteren Verwendung abgeleitet werden.Assuming that the supplied liquid plug 34 occupies a greater volume than the volume V determined by the metering channel 10, the liquid column is in front of the metering channel 10 beyond the second opening 22. The measuring is now carried out in a second step by the second gas port 29 closer to the access opening 25 is acted upon by a higher external pressure P a than the internal pressure P i . The resulting pressure difference causes the liquid present in front of the opening 22 in the direction of the access opening 25 to be pushed or sucked out of the channel in the opposite direction, so that only the volume V of liquid V between the two openings determined by the length of the measuring channel 10 remains 20 and 22 remains. The second wall section thus forms the separating means. This precisely metered volume of liquid can then be discharged from the metering channel 10 for further use by applying the gas port 27, which is further away from the opening 25, to a higher external pressure P a than the internal pressure P i .

In Figur 2 ist eine beispielhafte mikrofluidische Struktur mit mehreren Fluidleitungen auf einen Mikrofluidikchip 100 schematisch vereinfacht in der Draufsicht dargestellt. Die mehreren Fluidleitungen sind: eine Zuleitung 102, ein erster, Abmesskanal 104, ein Zusammenführungskanal oder zweiter, separater Abmesskanal 106, eine mäanderförmige Mischstrecke 108, einen dritter Abmesskanal 110, der eigentlich aus zwei unmittelbar aneinander angrenzenden Abmesskanälen besteht, sowie eine Ableitung 112. Ferner ist auf den mikrofluidischen Chip 100 ein Drehventil 114 vorgesehen, das die Fluidleitungen wahlweise miteinander verbindet bzw. voneinander trennt. Beispielsweise mündet die Zuleitung 102 im Zentrum des Drehventils 114 und kann über einen ersten Ventilkanal 116 wahlweise mit jeder der Fluidleitungen 104, 106, 108, 112 unmittelbar verbunden werden.In FIG. 2 an exemplary microfluidic structure with a plurality of fluid lines on a microfluidic chip 100 is shown schematically simplified in plan view. The plurality of fluid lines are: a supply line 102, a first, Abmesskanal 104, a merge channel or second, separate Abmesskanal 106, a meandering mixing section 108, a third Abmesskanal 110, which actually consists of two directly adjacent Abmesskanälen, and a discharge 112. Further On the microfluidic chip 100, a rotary valve 114 is provided which selectively connects or disconnects the fluid lines. For example, the supply line 102 opens in the center of the rotary valve 114 and can via a first valve port 116 are selectively connected to each of the fluid lines 104, 106, 108, 112 directly.

Der erste Abmesskanal 104 weist an seinem dem Drehventil 114 fernen Ende einen flüssigkeitsundurchlässigen und gasdurchlässigen ersten Wandabschnitt 118 auf. Der erste Wandabschnitt 118 wird durch eine Membran gebildet, die in einem Membransitz 120 Platz findet.The first metering channel 104 has at its end remote from the rotary valve 114 a liquid-impermeable and gas-permeable first wall section 118. The first wall section 118 is formed by a membrane which fits into a membrane seat 120.

Der Zusammenführungskanal 106 weist zwei hintereinander beabstandet angeordnete flüssigkeitsundurchlässige und gasdurchlässige erste und zweite Wandabschnitte 122 und 124 auf, von denen der erste Wandabschnitt 124 an dem Drehventil 114 gegenüberliegenden Ende und somit fernerliegend und der zweite Wandabschnitt 122 in etwa mittig in dem Zusammenführungskanal 106 und somit näherliegend zu dem Drehventil 114 angeordnet sind. Zwischen den beiden Wandabschnitten 122 und 124 mündet eine transversale Einfüllöffnung 126 in den Zusammenführungs- bzw. zweiten Abmesskanal 106.The merge passage 106 has two liquid-impermeable and gas-permeable first and second wall sections 122 and 124 spaced one behind the other, of which the first wall section 124 is at the opposite end of the rotary valve 114, and thus the second wall section 122 is approximately midway in the merge passage 106 and thus closer are arranged to the rotary valve 114. Between the two wall sections 122 and 124 opens a transverse filling opening 126 in the Zusammenführungs- or second Abmesskanal 106th

Der Mischkanal 108 ist mäanderförmig gefaltet, so dass zwei unmittelbar aufeinander folgend eingeleitete Fluide aufgrund der langen Strecke und der mehrfachen Richtungsumkehr am Ausgang 128 des Mäanders vermischt angelangen.The mixing channel 108 is folded meander-shaped, so that two immediately consecutively introduced fluids due to the long distance and the multiple direction reversal at the output 128 of the meander arrived mixed.

Unmittelbar an den Ausgang 128 schließt sich der dritte Abmesskanal 110 an, welcher insgesamt drei flüssigkeitsundurchlässige und gasdurchlässige Wandabschnitte 130, 132 und 134 aufweist. Der Wandabschnitt 130 ist der dem Ventil 114 nächstliegende, der Wandabschnitt 134 der dem Ventil 114 fernstliegende Wandabschnitt.Immediately to the output 128, the third Abmesskanal 110 connects, which has a total of three liquid-impermeable and gas-permeable wall sections 130, 132 and 134. The wall portion 130 is the valve 114 nearest, the wall portion 134 of the valve 114 farmost wall portion.

Im Folgenden wird ein beispielhafter Ablauf von Fluidsteuerung durch die mikrofluidische Struktur aus Figur 2 anhand der Figuren 3 bis 10 erfäutert.The following is an example flow of fluid control through the microfluidic structure FIG. 2 based on FIGS. 3 to 10 erfäutert.

In einem ersten Schritt gemäß Figur 3 wird der zweite Abmesskanal 106 zwischen dem fernliegenden ersten Wandabschnitt 124 und dem näherliegenden zweiten Wandabschnitt 122 durch die Einfüllöffnung 126 (beispielsweise mittels einer Spritze oder durch Aufgabe eines Tropfens auf die Einfüllöffnung) mit einer Flüssigkeit A (als schwarzer Balken dargestellt) befüllt, indem eine Druckdifferenz zwischen der durch die Einfüllöffnung 126 einströmenden Flüssigkeit einerseits und den beiden Gasanschlüssen über den Wandabschnitten 124 und 122 andererseits angelegt wird. Die Druckdifferenz sorgt dafür, dass das Befüllen des Zusammenführungskanals 106 stoppt, sobald die Flüssigkeit beide Wandabschnitte 122 und 124 bedeckt. Anschließend kann die Einfüllöffnung 126 beispielsweise mittels einer Klebefolie oder eines Stopfens verschlossen werden.In a first step according to FIG. 3 the second Abmesskanal 106 between the distal first wall portion 124 and the closer second wall portion 122 through the filling opening 126 (for example by means of a syringe or by dropping a drop on the filling opening) with a liquid A (shown as a black bar) filled by a pressure difference is applied between the liquid flowing through the filling opening 126 on the one hand and the two gas ports on the wall portions 124 and 122 on the other hand. The pressure difference causes the filling of the merge passage 106 to stop as soon as the fluid covers both wall sections 122 and 124. Subsequently, the filling opening 126 can be closed, for example by means of an adhesive film or a plug.

In einem zweiten Schritt gemäß Figur 4 wird durch Einstellung des Drehventils 114 die Zuleitung 102 mit dem ersten Abmesskanal 104 verbunden und der Abmesskanal 104 anschließend durch Anlegen einer Druckdifferenz zwischen der Zuleitung 102 und dem ersten Wandabschnitt 118 des ersten Abmesskanals mit einer Flüssigkeit B (als schwarzer Balken dargestellt) befüllt. Beispielsweise kann der Gasanschluss über den ersten Wandabschnitt 118 auf Umgebungsdruck geschaltet und die Zuleitung 102 mit Überdruck betrieben werden. Wird der Wandabschnitt 118 von der Flüssigkeit B erreicht, so kann mit einer nicht dargestellten Druckmesseinrichtung, die beispielsweise in fluidischer Verbindung mit der Zuleitung 102 steht, ein Druckanstieg registriert werden. Ein entsprechendes Signal kann dann der Druckquelle bzw. Pumpeinrichtung oder einem Ventil zugeführt werden und diese automatisch zum Abschalten bzw. Ableiten des Fluidstromes veranlassen.In a second step according to FIG. 4 By adjusting the rotary valve 114, the supply line 102 is connected to the first metering channel 104 and the metering channel 104 is subsequently filled with a liquid B (shown as a black bar) by applying a pressure difference between the supply line 102 and the first wall section 118 of the first metering channel. For example, the gas connection can be switched to ambient pressure via the first wall section 118 and the supply line 102 can be operated with overpressure. If the wall section 118 is reached by the liquid B, a pressure rise can be registered with a pressure measuring device, not shown, which is for example in fluid communication with the supply line 102. A corresponding signal can then be supplied to the pressure source or pumping device or a valve and these automatically cause the fluid flow to be switched off or diverted.

In einem dritten Schritt der Sequenz gemäß Figur 5 wird das Drehventil 114 so eingestellt, dass der erste Abmesskanal 104 mit dem Eingang des zweiten Abmesskanals 106 verbunden wird. Dabei wird zugleich die Zuleitung 102 von dem ersten Abmesskanal 104 getrennt. Das Ventil 114 wirkt also gleichzeitig als Abtrennmittel im Sinne der Erfindung. Eine Druckdifferenz zwischen dem Wandabschnitt 118 des erste Abmesskanals 104 und dem dem Ventil 114 näherliegenden Wandabschnitt 122 des zweiten Abmesskanals 106 verschiebt die zuvor in den Abmesskanal 104 befindliche, abgemessen Flüssigkeit B bis zu dem Wandabschnitt 122 in den zweiten Abmesskanal 106 hinein.In a third step of the sequence according to FIG. 5 the rotary valve 114 is adjusted so that the first Abmesskanal 104 is connected to the input of the second Abmesskanals 106. At the same time the supply line 102 of the first Abmesskanal 104 separated. The valve 114 thus acts simultaneously as a release agent in the context of the invention. A pressure difference between the wall portion 118 of the first Abmesskanals 104 and the valve 114 closer wall portion 122 of the second Abmesskanals 106 moves the previously located in the Abmesskanal 104, measured liquid B up to the wall portion 122 in the second Abmesskanal 106 inside.

In einem vierten Schritt gemäß Figur 6 wird das Drehventil 114 um einen Schritt weitergedreht, so dass es den zweiten Abmesskanal 106 mit dem mäanderförmigen Mischkanal 108 verbindet. Eine Druckdifferenz zwischen dem dem Drehventil 114 ferner liegenden Wandabschnitt 124 des zweiten Abmesskanals 106 und zumindest dem dem Ventil 114 fernstliegenden Wandabschnitt 134 des dritten Abmesskanals 110 werden beide Flüssigkeiten A und B zunächst hintereinander durch den mäanderförmigen Mischkanal 108 gefördert, darin vermischt und anschließend in dem dritten Abmesskanal 110 bis zu dessen dem Mischkanal fernliegenden Wandabschnitt 134 vorgeschoben, vergl. Figur 7.In a fourth step according to FIG. 6 the rotary valve 114 is further rotated by one step, so that it connects the second metering channel 106 with the meandering mixing channel 108. A pressure difference between the rotary valve 114 further lying wall portion 124 of the second Abmesskanals 106 and at least the valve 114 distalmost wall portion 134 of the third Abmesskanals 110 are both liquids A and B initially successively through the meandering mixing channel 108 promoted, mixed therein and then in the third Abmesskanal 110 advanced to its distance from the mixing channel wall portion 134, see. FIG. 7 ,

Die gemischte Flüssigkeit AB wird sodann abgemessen, indem der überschüssige, vor dem dem Ventil 114 nächstliegenden zweiten Wandabschnitt 130 befindliche Flüssigkeitsüberschuss durch Anlegen einer Druckdifferenz zwischen dem Gasanschluss über dem zweiten Wandabschnitt 130 und dem Gasanschluss über dem dem Ventil fernliegenden Wandabschnitt 124 des zweiten Abmesskanals 106 in den zweiten Abmesskanal 106 abgeleitet. Der zweite Abmesskanal 106 dient im gebrauchten Zustand als Abfallkanal oder Waste.The mixed liquid AB is then measured by the excess excess liquid located in front of the second wall section 130 closest to the valve 114 by applying a pressure difference between the gas connection over the second wall section 130 and the gas connection above the wall section 124 of the second dimensioning channel 106 remote from the valve derived the second Abmesskanal 106. The second Abmesskanal 106 is used in the used state as a waste channel or waste.

In einem nächsten Schritt gemäß Figur 9 wird die zwischen dem dem Ventil 114 nächstliegenden (zweiten) Wandabschnitt 130 und dem nächst ferner liegenden, mittleren (ersten) Wandabschnitt 132 befindliche und genau abgemessene Flüssigkeit AB zur weiteren Verwendung innerhalb oder außerhalb des Mikrofluidikchip in Richtung der Ableitung 112 transportiert, indem eine Druckdifferenz zwischen dem Gasanschluss des Wandabschnittes 132 und dem Innendruck der Ableitung 112 angelegt wird.In a next step according to FIG. 9 the liquid AB located between the second wall portion 130 closest to the valve 114 and the nearest, middle (first) wall portion 132 is transported for further use inside or outside the microfluidic chip in the direction of the discharge line 112 by a pressure difference is applied between the gas port of the wall portion 132 and the internal pressure of the drain 112.

Zuletzt wird auf demselben Weg der zuvor zwischen dem mittleren (und jetzt zweiten) Wandabschnitt 132 und dem dem Ventil 114 fernstliegenden (jetzt ersten) Wandabschnitt 134 befindliche und genau abgemessene Flüssigkeitsplug auf demselben Weg in die Ableitung 112 transportiert, indem nunmehr eine Druckdifferenz zwischen dem Gasanschluss über den fernstliegenden Wandabschnitt 134 und den Innendruck in der Ableitung 112 angelegt wird.Finally, in the same way, the liquid plug previously located between the middle (and now the second) wall section 132 and the valve 114 (now first) wall section 134 and accurately metered is transported in the same way into the drain 112, now with a pressure difference between the gas connection is applied over the farthest wall portion 134 and the internal pressure in the drain 112.

Die anhand der Figuren 2 bis 10 beschriebene Sequenz sowie die Ausgestaltung der mikrofluidischen Struktur stellt lediglich eine von zahllosen Anwendungsmöglichkeiten des erfindungsgemäßen Abmessprinzips dar. Beispielsweise obliegt es dem Fachmann die für den Flüssigkeitstransport jeweils notwendige Druckdifferenz wahlweise durch Saugen oder Drücken zu erzeugen. Es wird aus der Gesamtschau der vorliegenden Schrift offensichtlich, dass nicht allein auf die detailliert beschriebene Ausgestaltung abzustellen ist, sondern vielmehr das zugrundeliegende und in den Patentansprüchen näher bezeichneten Verfahren, der Abmesskanal und die mikrofluidische Struktur für den Schutzumfang maßgeblich sind.The basis of the FIGS. 2 to 10 For example, it is incumbent on the skilled person to generate the respectively necessary for the liquid transport pressure difference either by suction or pressure described sequence and the design of the microfluidic structure. It becomes apparent from the overall view of the present specification that it is not necessary to focus solely on the embodiment described in detail, but rather the underlying and in the patent claims specified method, the Abmesskanal and the microfluidic structure are relevant to the scope of protection.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
AbmesskanalAbmesskanal
1212
mikrofluidischer Chipmicrofluidic chip
1414
Substratsubstratum
1616
Oberseitetop
1717
Unterseitebottom
1818
Deckelfoliecover film
2020
Öffnungenopenings
2222
Öffnungenopenings
2424
Endflächeend face
2525
Zugangsöffnungaccess opening
2626
Membranmembrane
2727
Gasanschlussgas connection
2828
Membranmembrane
2929
Gasanschlussgas connection
3030
Gasleitunggas pipe
3232
Gasleitunggas pipe
3434
Flüssigkeitsplugliquid plug
100100
Mikrofluidikchipmicrofluidic
102102
Zuleitungsupply
104104
erster Abmesskanalfirst measuring channel
106106
zweiter Abmesskanal, Zusammenführungskanalsecond measuring channel, merge channel
108108
Mischstrecke, MischkanalMixing section, mixing channel
110110
dritter Abmesskanalthird measuring channel
112112
Ableitungderivation
114114
Drehventilrotary valve
116116
Ventilkanalvalve channel
118118
Wandabschnittwall section
120120
Membransitzdiaphragm seat
122122
Wandabschnittwall section
124124
Wandabschnittwall section
126126
Einfüllöffnungfill opening
128128
Ausgang des MäandersExit of the meander
130130
Wandabschnittwall section
132132
Wandabschnittwall section
134134
Wandabschnittwall section
Pi P i
Innendruck, SystemnormaldruckInternal pressure, system normal pressure
P'i P'i
erhöhter Innendruckincreased internal pressure
Pa P a
Außendruckexternal pressure
ΔPN ΔP N
NormaldifferenzdruckNormal differential pressure
ΔPG ΔP G
GrenzdifferenzdruckCross differential pressure

Claims (15)

Abmesskanal (10, 104, 106, 110) zur Verwendung in einem mikrofluidischen System, insbesondere in einem Lab-On-Chip-System, mit einem ersten Ende, an dem ein erster flüssigkeitsundurchlässiger und gasdurchlässiger Wandabschnitt (26, 118, 124, 132, 134) angeordnet ist, der einen Gasanschluss (27) bereitstellt, und einem zweiten Ende, an dem der Abmesskanal mit wenigstens einer Fluidleitung verbindbar ist und an dem ein Abtrennmittel angeordnet ist, wobei in dem Abmesskanal (10, 104, 106, 110) zwischen dem Wandabschnitt (26, 118, 124, 132, 134) und dem Abtrennmittel ein definiertes Volumen eingeschlossen ist.A metering channel (10, 104, 106, 110) for use in a microfluidic system, in particular in a lab-on-chip system, having a first end to which a first liquid-impermeable and gas-permeable wall section (26, 118, 124, 132, 134), which provides a gas connection (27), and a second end, at which the Abmesskanal is connectable to at least one fluid line and on which a separation means is arranged, wherein in the Abmesskanal (10, 104, 106, 110) between the wall portion (26, 118, 124, 132, 134) and the separating means a defined volume is included. Abmesskanal (10, 104, 106, 110) nach Anspruch 1,
dadurch gekennzeichnet, dass der Abmesskanal (10, 104, 106, 110) an seinem ersten Ende geschlossen oder verschließbar ist.
Abmesskanal (10, 104, 106, 110) according to claim 1,
characterized in that the Abmesskanal (10, 104, 106, 110) is closed or closable at its first end.
Abmesskanal (10, 108, 110) nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass das Abtrennmittel als ein zweiter flüssigkeitsundurchlässiger und gasdurchlässiger Wandabschnitt (28, 122, 130, 132) ausgebildet ist, der einen Gasanschluss (29) bereitstellt.
Abmesskanal (10, 108, 110) according to any one of claims 1 or 2,
characterized in that the separation means is formed as a second liquid impermeable and gas permeable wall portion (28, 122, 130, 132) providing a gas port (29).
Abmesskanal (10, 104, 106, 110) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass der flüssigkeitsundurchlässige und gasdurchlässige Wandabschnitt (26, 28, 118, 122, 124, 130, 132, 134) in Form einer Membran ausgebildet ist.
Abmesskanal (10, 104, 106, 110) according to any one of the preceding claims,
characterized in that the liquid-impermeable and gas-permeable wall portion (26, 28, 118, 122, 124, 130, 132, 134) is formed in the form of a membrane.
Mikrofluidische Struktur in einem Substrat, insbesondere in einem Lab-On-Chip-System, mit mehreren Fluidleitungen zum Aufnehmen und/oder Leiten eines Fluidstromes und einem mit den Fluidleitungen verbundenen Ventil (114) zum wahlweisen Verbinden und/oder Trennen der Fluidleitungen,
dadurch gekennzeichnet, dass wenigstens eine Fluidleitung in Form eines Abmesskanals (10, 104, 106, 110) nach einem der Ansprüche 1 bis 8 ausgebildet ist, der auf der Seite seines zweiten Endes über das Ventil (114) mit wenigstens einer anderen Fluidleitung verbunden und auf der Seite seines ersten Endes geschlossen oder verschließbar ist.
Microfluidic structure in a substrate, in particular in a lab-on-chip system, with a plurality of fluid conduits for receiving and / or passing a fluid stream and one connected to the fluid conduits Valve (114) for selectively connecting and / or disconnecting the fluid lines,
characterized in that at least one fluid conduit in the form of a Abmesskanals (10, 104, 106, 110) is formed according to one of claims 1 to 8, which connected on the side of its second end via the valve (114) with at least one other fluid conduit and closed or lockable on the side of its first end.
Mikrofluidische Struktur nach Anspruch 5,
dadurch gekennzeichnet, dass das Ventil (114) zum wahlweisen Verbinden und/oder Trennen der Fluidleitungen das Abtrennmittel bildet.
Microfluidic structure according to claim 5,
characterized in that the valve (114) for selectively connecting and / or disconnecting the fluid lines forms the separation means.
Mikrofluidische Struktur nach einem der Ansprüche 5 oder 6,
gekennzeichnet durch eine mit einer Fluidleitung in der mikrofluidischen Struktur kommunizierende Druckmesseinrichtung.
Microfluidic structure according to one of claims 5 or 6,
characterized by a communicating with a fluid line in the microfluidic structure pressure measuring device.
Verfahren zum Abmessen und/oder Positionieren eines Volumens einer Flüssigkeit in einem mikrofluidischen System, insbesondere in einem Lab-On-Chip-System, mit einem auf der Seite seines ersten Endes geschlossenen oder verschließbaren und auf der Seite seines zweiten Endes über ein Ventil (114) mit wenigstens einer Fluidleitung verbindbaren Abmesskanal (10, 104, 106, 110), der an seinem ersten Ende einen ersten flüssigkeitsundurchlässigen und gasdurchlässigen Wandabschnitt (26, 118, 124, 132, 134), der einen Gasanschluss (27) bereitstellt, und an seinem zweiten Ende ein Abtrennmittel aufweist, wobei zwischen dem Wandabschnitt (26, 118, 124, 132, 134) und dem Abtrennmittel ein definiertes Volumen eingeschlossen ist, mit den Schritten: a) Verbinden des Abmesskanals (10, 104, 106, 110) über das Ventil (114) mit einer Zuleitung, b) Befüllen des Abmesskanals (10, 104, 106, 110) bis zu dem ersten Wandabschnitt (26, 118, 124, 132, 134) mit einer Flüssigkeit aus der Zuleitung, indem eine Druckdifferenz zwischen der Zuleitung und dem Gasanschluss (27) angelegt wird c) Abtrennen des in dem Abmesskanal zwischen dem Wandabschnitt (26, 118, 124, 132, 134) und dem Abtrennmittel eingeschlossenen Flüssigkeitsvolumens von einem auf der Seite seines zweiten Endes vor dem Abtrennmittel anstehenden überschüssigen Flüssigkeitrest. Method for measuring and / or positioning a volume of a liquid in a microfluidic system, in particular in a lab-on-chip system, with a valve that is closed or closable on the side of its first end and on the side of its second end via a valve (114 ) with at least one fluid conduit connectable Abmesskanal (10, 104, 106, 110) having at its first end a first liquid-impermeable and gas-permeable wall portion (26, 118, 124, 132, 134) which provides a gas port (27), and at has a separating means at its second end, wherein a defined volume is enclosed between the wall section (26, 118, 124, 132, 134) and the separating means, comprising the steps of: a) connecting the Abmesskanals (10, 104, 106, 110) via the valve (114) with a supply line, b) filling the Abmesskanals (10, 104, 106, 110) up to the first wall portion (26, 118, 124, 132, 134) with a liquid from the supply line by a pressure difference between the supply line and the gas port (27) applied becomes c) separating the liquid volume enclosed in the metering channel between the wall section (26, 118, 124, 132, 134) and the separating means from an excess liquid residue present on the side of its second end in front of the separating means. Verfahren nach Anspruch 8,
dadurch gekennzeichnet, dass das Abtrennmittel als ein zweiter flüssigkeitsundurchlässiger und gasdurchlässiger Wandabschnitt (28, 122, 130, 132) ausgebildet ist, der einen Gasanschluss (29) bereitstellt, wobei Schritt c) umfasst: c') Verbinden des Abmesskanals (10, 106, 110) über das Ventil (114) mit einer ersten Ableitung, c") Abtransportieren der zwischen dem Ventil (114) und dem zweiten Wandabschnitt (28, 122, 130, 132) befindlichen überschüssigen Flüssigkeit durch die erste Ableitung, indem eine Druckdifferenz zwischen dem Gasanschluss (29) des zweiten Wandabschnittes (28, 122, 130, 132) und der ersten Ableitung angelegt wird.
Method according to claim 8,
characterized in that the separation means is formed as a second liquid impermeable and gas permeable wall portion (28, 122, 130, 132) providing a gas port (29), wherein step c) comprises: c ') connecting the Abmesskanals (10, 106, 110) via the valve (114) with a first derivative, c ") removing the excess liquid located between the valve (114) and the second wall section (28, 122, 130, 132) through the first drain by setting a pressure difference between the gas port (29) of the second wall section (28, 122, 130 , 132) and the first derivative.
Verfahren nach Anspruch 8,
dadurch gekennzeichnet, dass Ventil (114) zum wahlweisen Verbinden und/oder Trennen der Fluidleitungen das Abtrennmittel bildet, wobei Schritt c) umfasst: c"') Trennen des Abmesskanals (104) von der Zuleitung durch Schließen des Ventils (114).
Method according to claim 8,
characterized in that valve (114) for selectively connecting and / or disconnecting the fluid conduits forms the separation means, wherein step c) comprises: c '') separating the Abmesskanals (104) from the supply line by closing the valve (114).
Verfahren zum Abmessen und/oder Positionieren eines Volumens einer Flüssigkeit in einem mikrofluidischen System, insbesondere in einem Lab-On-Chip-System, mit einem auf der Seite seines ersten Endes geschlossenen oder verschließbaren und auf der Seite seines zweiten Endes über ein Ventil (114) mit wenigstens einer Fluidleitung verbindbaren Abmesskanal (106), der an seinem ersten Ende einen ersten und an seinem zweiten Ende einen zweiten flüssigkeitsundurchlässigen und gasdurchlässigen Wandabschnitt (122, 124) aufweist, welche Wandabschnitte jeweils einen Gasanschluss bereitstellen und zwischen denen in dem Abmesskanal (106) ein definiertes Volumen eingeschlossen ist, mit dem Sch ritt: d) Befüllen des Abmesskanals (106) über eine zwischen den Wandabschnitten (122, 124) in den Abmesskanal (106) mündenden Einfüllöffnung (126) mit einer Flüssigkeit, indem eine Druckdifferenz zwischen der Einfüllöffnung (126) einerseits und den beiden Gasanschlüssen andererseits angelegt wird, und anschließendes Verschließen der Einfüllöffnung (126). Method for measuring and / or positioning a volume of a liquid in a microfluidic system, in particular in a lab-on-chip system, with a valve that is closed or closable on the side of its first end and on the side of its second end via a valve (114 ) with at least one fluid line connectable Abmesskanal (106) having at its first end a first and at its second end a second liquid impermeable and gas permeable wall portion (122, 124), which wall portions each provide a gas connection and between which in the Abmesskanal (106 ) a defined volume is included, with the step: d) filling the Abmesskanals (106) via a between the wall sections (122, 124) into the Abmesskanal (106) emptying the filling opening (126) with a liquid by a pressure difference between the filling opening (126) on the one hand and the two gas connections on the other hand is applied , and then closing the filling opening (126). Verfahren nach einem der Ansprüche 8 bis11,
dadurch gekennzeichnet, dass nach Schritt c) bzw. nach Schritt d) die folgenden Schritte ausgeführt werden: e) Verbinden des Abmesskanals (10, 106, 110) über das Ventil (114) mit einer zweiten Ableitung, f) Abtransportieren der zwischen dem Abtrennmittel und dem ersten Wandabschnitt (26, 118, 124, 132, 134) eingeschlossenen Flüssigkeit durch die zweite Ableitung, indem eine Druckdifferenz zwischen dem Gasanschluss (27) des ersten Wandabschnitt (26, 118, 124, 132, 134) und der zweiten Ableitung angelegt wird.
Method according to one of claims 8 to 11,
characterized in that after step c) or after step d), the following steps are carried out: e) connecting the Abmesskanals (10, 106, 110) via the valve (114) with a second derivative, f) transporting the liquid trapped between the separation means and the first wall section (26, 118, 124, 132, 134) through the second discharge by a pressure difference between the gas connection (27) of the first wall section (26, 118, 124, 132, 134) and the second derivative is applied.
Verfahren nach einem der Ansprüche 8 bis 12,
dadurch gekennzeichnet, dass das Befüllen durch kontinuierliches Pumpen der Flüssigkeit in den Abmesskanal (10, 104, 106, 110) mittels einer Pumpeinrichtung erfolgt.
Method according to one of claims 8 to 12,
characterized in that the filling takes place by continuous pumping of the liquid in the Abmesskanal (10, 104, 106, 110) by means of a pumping device.
Verfahren nach Anspruch 13,
dadurch gekennzeichnet, dass mittels einer mit der Zuleitung oder dem Abmesskanal (10, 104, 106, 110) kommunizierenden Druckmesseinrichtung der Druck in dem System überwacht wird.
Method according to claim 13,
characterized in that by means of a communicating with the supply line or the Abmesskanal (10, 104, 106, 110) pressure measuring device, the pressure in the system is monitored.
Verfahren nach Anspruch 14,
dadurch gekennzeichnet, dass die Pumpeinrichtung abgestellt wird, wenn ein signifikanter Druckanstieg in der Zuleitung oder dem Abmesskanal (10, 104, 106, 110) festgestellt wird.
Method according to claim 14,
characterized in that the pumping device is turned off when a significant increase in pressure in the supply line or the Abmesskanal (10, 104, 106, 110) is detected.
EP10186100.3A 2009-10-06 2010-10-01 Micro-fluidic structure and method for measuring and/or positioning a liquid volume Active EP2308597B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910045404 DE102009045404B4 (en) 2009-10-06 2009-10-06 Discharge channel and microfluidic structure and method for measuring and / or positioning a volume of a liquid

Publications (3)

Publication Number Publication Date
EP2308597A2 true EP2308597A2 (en) 2011-04-13
EP2308597A3 EP2308597A3 (en) 2014-07-09
EP2308597B1 EP2308597B1 (en) 2016-12-07

Family

ID=43446596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10186100.3A Active EP2308597B1 (en) 2009-10-06 2010-10-01 Micro-fluidic structure and method for measuring and/or positioning a liquid volume

Country Status (3)

Country Link
US (1) US8443835B2 (en)
EP (1) EP2308597B1 (en)
DE (1) DE102009045404B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2842628A1 (en) * 2013-08-09 2015-03-04 Sharp Kabushiki Kaisha Integrated microfluidic device for serial fluidic operations, and method of performing serial fluidic operations
WO2022058267A1 (en) * 2020-09-18 2022-03-24 Robert Bosch Gmbh Microfluidic device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039453B (en) * 2011-10-24 2015-12-09 彭兴跃 A kind of microfluidic circuit chip
US10082505B2 (en) 2012-10-08 2018-09-25 General Electric Company Centripetal microfluidic platform for LAL-reactive substances testing
DE102014105437A1 (en) 2014-04-16 2015-10-22 Amodia Bioservice Gmbh Microfluidic module and cassette for immunological and molecular diagnostics in an automated analyzer
US20210008550A1 (en) * 2019-07-09 2021-01-14 Kryptos Biotechnologies, Inc. Microfluidic reaction vessel array with patterned films
CN111617812B (en) * 2019-10-17 2021-12-03 北京京东方健康科技有限公司 Microfluidic substrate, fluid driving method thereof and microfluidic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228767A1 (en) 2001-07-17 2003-02-06 Agilent Technologies Inc Micro device and method for component separation in a fluid
US20050056321A1 (en) 2003-09-16 2005-03-17 Rehm Jason E. Composite polymer microfluidic control device
US20050266582A1 (en) 2002-12-16 2005-12-01 Modlin Douglas N Microfluidic system with integrated permeable membrane

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US266582A (en) * 1882-10-24 William demuth
US56321A (en) * 1866-07-10 Improved shoe for stamping machinery
US6899137B2 (en) * 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6536477B1 (en) * 2000-10-12 2003-03-25 Nanostream, Inc. Fluidic couplers and modular microfluidic systems
US6805841B2 (en) * 2001-05-09 2004-10-19 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Liquid pumping system
US6880576B2 (en) * 2001-06-07 2005-04-19 Nanostream, Inc. Microfluidic devices for methods development
US7077152B2 (en) * 2001-07-07 2006-07-18 Nanostream, Inc. Microfluidic metering systems and methods
US7244961B2 (en) * 2002-08-02 2007-07-17 Silicon Valley Scientific Integrated system with modular microfluidic components
US7955864B2 (en) * 2005-08-22 2011-06-07 Life Technologies Corporation Device and method for making discrete volumes of a first fluid in contact with a second fluid, which are immiscible with each other
WO2007060523A1 (en) * 2005-11-22 2007-05-31 Mycrolab P/L Microfluidic structures
CA2657317C (en) * 2006-07-10 2012-10-02 Convergent Bioscience Ltd. Method and apparatus for precise selection and extraction of a focused component in isoelectric focusing performed in micro-channels
EP2055384A1 (en) * 2007-10-31 2009-05-06 Leukocare AG Device for identifying constituents in a fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228767A1 (en) 2001-07-17 2003-02-06 Agilent Technologies Inc Micro device and method for component separation in a fluid
US20050266582A1 (en) 2002-12-16 2005-12-01 Modlin Douglas N Microfluidic system with integrated permeable membrane
US20050056321A1 (en) 2003-09-16 2005-03-17 Rehm Jason E. Composite polymer microfluidic control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2842628A1 (en) * 2013-08-09 2015-03-04 Sharp Kabushiki Kaisha Integrated microfluidic device for serial fluidic operations, and method of performing serial fluidic operations
US9440233B2 (en) 2013-08-09 2016-09-13 Shark Kabushiki Kaisha Microfluidic device for serial fluidic operations
US9808802B2 (en) 2013-08-09 2017-11-07 Sharp Life Science (Eu) Limited Microfluidic device for serial fluidic operations
WO2022058267A1 (en) * 2020-09-18 2022-03-24 Robert Bosch Gmbh Microfluidic device

Also Published As

Publication number Publication date
EP2308597A3 (en) 2014-07-09
DE102009045404B4 (en) 2012-04-19
EP2308597B1 (en) 2016-12-07
US20110079094A1 (en) 2011-04-07
DE102009045404A1 (en) 2011-04-07
US8443835B2 (en) 2013-05-21

Similar Documents

Publication Publication Date Title
EP2308597B1 (en) Micro-fluidic structure and method for measuring and/or positioning a liquid volume
DE10302721A1 (en) Microfluidic arrangement for dosing liquids
EP3126094B1 (en) Water-abrasive-suspension cutting system
EP2619567B1 (en) Device for field flow fractionation
DE1128185B (en) Device for taking samples from liquids
DE102011078770A1 (en) Microfluidic device, microfluidic system and method of transporting fluids
DE102007045330A1 (en) Coating powder conveying method, coating powder conveying device and electrostatic powder spray coating device
AT517359B1 (en) Device with intermittently provided liquid plastic component
WO2010102961A1 (en) Pump having a filter arrangement
EP2992324B1 (en) Sample dispenser for an analytical device
EP2729251B1 (en) Microfluid structure with cavities
EP2754495A2 (en) Microfluidic channel system with bubble capture device and method for the removal of gas bubbles
DE69937729T2 (en) VALVE FOR DISTRIBUTING THE FLOW
EP2486313B1 (en) Microfluidic structure and method for positioning a fluid volume in a microfluidic system
DE102009045403B4 (en) Device for separating gas and liquid and uses thereof
DE102007032951B4 (en) Apparatus and method for supplying a liquid flow from at least two liquid sections into a measuring cell
EP4132722A1 (en) Coating agent pump, coating installation and associated operating method
DE202020102595U1 (en) Fluid system
AT514205B1 (en) Method for damping pressure pulsations
DE102015106678B4 (en) Metering device and method for operating a metering device
EP3464165B1 (en) System and method for dispensing liquid from a tanker
EP4032564A1 (en) Ophthalmologic cassette, ophthalmological bracket and system of ophthalmologic cassette and bracket
DE102021201040A1 (en) Ophthalmic cassette, ophthalmic console and ophthalmic cassette and console system
DE102015204235A1 (en) Fluidic structure with holding section and method for uniting two fluid volumes
EP1556647A1 (en) Method and device for the removal of liquid samples from pressurised containers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101001

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/00 20060101AFI20140602BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160422

INTG Intention to grant announced

Effective date: 20160429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 851262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012835

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010012835

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012835

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

26N No opposition filed

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 851262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 14

Ref country code: DE

Payment date: 20231018

Year of fee payment: 14

Ref country code: CH

Payment date: 20231102

Year of fee payment: 14