EP2300835A1 - Messsonde - Google Patents

Messsonde

Info

Publication number
EP2300835A1
EP2300835A1 EP09776813A EP09776813A EP2300835A1 EP 2300835 A1 EP2300835 A1 EP 2300835A1 EP 09776813 A EP09776813 A EP 09776813A EP 09776813 A EP09776813 A EP 09776813A EP 2300835 A1 EP2300835 A1 EP 2300835A1
Authority
EP
European Patent Office
Prior art keywords
signal
coupling structure
probe
measuring probe
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP09776813A
Other languages
English (en)
French (fr)
Inventor
Thomas Zelder
Bernd Geck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosenberger Hochfrequenztechnik GmbH and Co KG
Original Assignee
Rosenberger Hochfrequenztechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosenberger Hochfrequenztechnik GmbH and Co KG filed Critical Rosenberger Hochfrequenztechnik GmbH and Co KG
Publication of EP2300835A1 publication Critical patent/EP2300835A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/07Non contact-making probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • G01R31/002Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing where the device under test is an electronic circuit

Definitions

  • the present invention relates to a measuring probe, in particular for a contactless vector network analysis system, comprising a housing and at least one coupling structure arranged on the housing, which is designed for coupling out an HF signal from a signal line, according to the preamble of claim 1.
  • EMC electromagnetic compatibility
  • H. Whiteside, RWP King "The loop antenna as a probe”
  • IEEE Transaction on Antenna and Propagation Vol. No. 3, pp. 291-297, May 1964
  • M. Kanda "An electromagnetic near-field sensor for simultaneous electric and magnetic-field measurements”
  • IEEE Transaction on Electromagnetic Compatibility Vol. 26, No. 3, pp. 102-110, August 1984, or MEG Upton, AC Marvin, " Improvements to an electromagnetic near-field sensor for simultaneous electric and magnetic field measurements, "IEEE Transaction on Electromagnetic Compatibility, Vol. 35, No. 1, pp. 96-98, February 1993.
  • a directional coupler is a four-port, which usually consists of two interconnected lines has the task of separating the waves flowing back and forth on a pipe.
  • a possible coupling structure for separating the traveling and returning waves is the loop-directional coupler, which PP Lombardini, RF Schwartz, PJ Kelly, "Criteria for the design of loop-type Directional couplers for the L band" IEEE Transaction on Microwave Theory and Techniques, Vol 4, No. 4, pp. 234-239, October 1956 and B. Mower, "An L-band loop-type coupler” IEEE Transactions on Microwave Theory and Techniques, Vol. 9, No. 4, pp. 362-363, July 1961 describe.
  • One Loop-wise coupler consists of a conductor loop which is positioned over or in a waveguide. In this case, any waveguide such as hollow lines, planar strip lines or coaxial cables can be used.
  • Schleifenrichtkopplers The application of a Schleifenrichtkopplers is varied. For example, F. De Groote et al. in 2005 (loc. cit.) and Yhland et al. 2006 (loc. Cit.) A loop-wise coupler as a component in a contactless measuring system.
  • the probes are in electromagnetic
  • Coupling structures are either the current and / or the voltage of a
  • Signal line which is connected directly to the test object determined.
  • the waves traveling back and forth on the signal line are also measured, with directional couplers, in particular loop-wise couplers, being used as coupling structures for separating the two waves.
  • directional couplers in particular loop-wise couplers, being used as coupling structures for separating the two waves.
  • conventional calibration methods such as TRL (G.F.
  • At least one measuring probe for example a conductor loop or two capacitive probes, is required for each test port of an unknown test object (DUT).
  • DUT unknown test object
  • contactless conductor loops made of coaxial semi-rigid leads are used (see F. De Groote, J. Verspecht, C. Tsironis, D. Barataud and J.-P.
  • contactless vector network analysis has the potential to characterize components without contact, no contactless scatter parameter measurement has been performed by RF and microwave components embedded within a circuit. So far, the positions of the contactless probes have not been changed during and after the calibration, which is necessary, however, when measuring within a circuit.
  • a pseudo-contactless measurement were described in T. Zelder, B. Geck, M. Wollitzer, I. Rolfes, and H. EuI, "Contactless network analysis system for the calibrated measurement of the scattering parameters of planar two-port devices ", Proceedings of the 37th European Microwave Conference, Kunststoff, Germany, pp. 246-249, October 2007.
  • a pseudo-contactless measurement means that printed coupling structures are used instead of completely contactless probes.
  • two contactless loop probes are connected to two measuring points each of a vectorial network analyzer.
  • the probes are positioned bilaterally in the near field of the DUT's leads to characterize a DUT (Devide Under Test) embedded between multiple devices.
  • DUT Demo Under Test
  • Scattering parameters measure the return waves of the DUT in two different states.
  • a network analyzer has a toggle switch so that the signal can be put into the circuit once from the left or right. Be for both
  • Switch position I see Fig. 3
  • he has a very high input resistance
  • Switch 54 as usual in the contactless vector network analysis, instead of interconnected as shown in Fig. 3 with the planar line 16 at the positions 36 and 46, then results only for the switch position I evaluable results.
  • the invention has for its object to provide a probe of o.g. To improve the type of measurement accuracy and application spectrum.
  • At least one signal probe for coupling an electrical signal is arranged in the signal line.
  • the signal probe is expediently designed as a contactless conductor loop or as a measuring tip electrically and mechanically contacting the signal line, wherein the measuring tip is arranged and configured such that the coupling structure is located at least in the near field of the signal line or electrically and mechanically contacts the signal line when the measuring tip Signal line electrically and mechanically contacted.
  • the contactless signal probe is designed as a purely inductive, purely capacitive or combined inductive and capacitive probe.
  • the coupling structure is designed as a contactless conductor loop or as a measuring tip electrically and mechanically contacting the signal line.
  • the contactless coupling structure is designed as a purely inductive, purely capacitive or combined inductive and capacitive probe.
  • a ground contact of the coupling structure and the signal probe are electrically connected together.
  • the coupling structure is impedance-controlled, a high directivity and a high input impedance is achieved and less sheath waves are generated, whereby the probe also analytically better describable and the cutoff frequency is higher than in non-impedance-controlled probes.
  • an electrical signal amplifier is arranged in an input path of the signal probe and / or in an output path of the coupling structure.
  • the signal probe and / or the coupling structure is / is subjected to a DC voltage.
  • the housing is made of a metallic material, an absorber material and / or a plastic.
  • the housing is sheathed with an absorber material.
  • a device for determining a distance of the coupling structure from the signal conductor is additionally provided.
  • the device for determining the distance comprises an optical, electrical, mechanical and / or electromechanical distance sensor.
  • a device for determining a position of the probe in space is additionally provided.
  • the device for determining a position of the measuring probe in space is an image sensor.
  • the measuring probe additionally has at least one positioning device for positioning it in space, so that the measuring probe can be displaced in at least one spatial direction.
  • the positioning device has, for example, at least one positioning motor, in particular a stepping motor, and is preferably arranged on the housing.
  • the measuring probe for the coupling structure and the signal probe each have a separate positioning device.
  • FIG. 1 shows a schematic representation of a preferred embodiment of a measuring probe according to the invention in a measuring setup
  • Fig. 2 is a plan view of the preferred embodiment of FIG. 1 and Fig. 3 is a schematic representation of a measurement setup with a vectorial network analyzer (VNA).
  • VNA vectorial network analyzer
  • FIGS. 1 and 2 preferred embodiment of a probe according to the invention comprises a housing 10, a coupling structure 12 in the form of a contactless loop or loop probe and a signal probe 14 in the form of a signal line 16 electrically and mechanically contacting probe tip.
  • the coupling structure 12 is formed with a first port 18 and a second port 20, which form an output path, such that it decouples an electrical signal from the signal line 16.
  • the signal probe 14 is formed with an input 22 such that it couples an electrical signal into the signal line 16.
  • the signal probe 14 is arranged and configured in such a way that the coupling structure 12 is in the near field of the signal line 16, ie decouples a signal without contact from the signal line 16 when the signal probe 14 electrically and mechanically contacts the signal line 16, as shown in FIG.
  • the signal line 16 is part of an electrical or electronic circuit on a printed circuit board 30, which comprises an electrical or electronic, embedded component under test (DUT) as well as further electrical or electronic components 26, 28.
  • the signal line 16 is formed, for example, as a stripline.
  • the electronic circuit additionally comprises electronic components 32 and 34, which are designed, for example, as amplifiers, which can only be operated in the forward direction and have a very high intrinsic resistance in the other direction.
  • the components 26, 28, 32 and 34 as well as the DUT 24 are essentially two-ported into the signal line 16 are looped.
  • 36 denotes a first position, 38 a second position, 40 a third position, 42 a fourth position, 44 a fifth position and 46 a sixth position on the printed circuit board 30.
  • Reference levels are designated 48.
  • the VNA 50 comprises a signal source 52, a switch 54, with a switch position I and a switch position II, a first measuring port 56, a second measuring port 58, a third measuring port 60 and a fourth measuring port 62.
  • Denoted at 64 is a complex device resistance Z 9 .
  • the signal source 52 is connected via the switch 54 to an input 22 of one of the signal probes 14.
  • the measuring ports 56, 58, 60 and 62 are connected to the outputs 18 and 20.
  • the signal of the signal source 52 is coupled depending on the position of the switch 54 on different sides of the DUT 24 in the signal line 16 through the signal probes 14.
  • the measuring probe By means of the measuring probe according to the invention, it is possible not to conduct the power of the signal coupled into the signal line 16 across all the components 26, 28, 32, 34 to the DUT 24, but to feed it directly in front of the DUT 24 by means of the signal probes 12. After or downstream of the supply of power, the coupling structures 12 are then positioned in each case.
  • the contactless coupling structure 12 and the contact-type signal probe are combined to form one unit, preferably in a housing.
  • Another advantage of a combined probe is that an optimized combination requires significantly less space for positioning. As a rule, the distance between two measuring objects, such as the components 24, 26, 28, 32, 34 of the electronic circuit, is very limited. Another advantage is that a DC voltage supply via bias to possibly present in the probe amplifiers is possible.
  • FIG. 2 shows by way of example how the structure of a planar microstrip circuit to be examined on the circuit board 30 is modified for the use of the combined measuring probe according to the invention.
  • a contact surface with a via 66 to ground is provided.
  • the shape of the feeding signal probe 14 corresponds, for example, to that of a conventional on-wafer probe connected to the non-contact probe 12 via the housing.
  • the combination measuring probe comprises at least one coupling structure 12, which partially decouples an electromagnetic wave running on an external line 16, and at least one signal probe 14, which has the task of transmitting power to the external line 16.
  • coupling structure 12 and signal probe 14 may both be contactless or contact-based or of a combination of contactless and contact-type.
  • at least one coupling structure 12 is combined with at least one signaling measuring tip 14 to form a measuring probe unit.
  • the mass of the two types of probe (coupling structure 12 and signal probe 14) is suitably electrically connected to each other.
  • the two types of probes have a common housing and a common holder.
  • the combination measuring probe according to the invention is particularly suitable for use in a contactless vector network analysis system, as shown in FIG. Other applications are also possible.
  • the geometry of the contact probe 14 corresponds to the geometry of a conventional on-wafer probe.
  • the measuring tip 14 has at least one contact plate with which an electrical contact with a (planar) waveguide 16 to which the DUT 24 is electrically connected is made.
  • the contact plates (e) are optionally connected via an inner waveguide (within the housing 10 of the measuring probe) to an outer transition (for example an SMA plug).
  • the outer transition serves to connect the measuring tip 14 to a generator 52.
  • the measuring tip 14 and the coupling structure are each impedance-controlled, i. the input reflection attenuation is maximized.
  • inductive probes for example, inductive probes, capacitive probes and combinations of purely inductive and purely capacitive probes are used as the coupling structure 12 or signal probe 14.
  • the contactless coupling structure 12 is designed, for example, as a loop probe.
  • the combination measuring probe according to the invention becomes an active measuring probe.
  • an active measuring probe it may be useful to connect the measuring tip 14 and the coupling structure 12 to a direct current source (bias) in order to provide a DC voltage superimposed on the HF test signal to the amplifiers for setting the operating point.
  • bias direct current source
  • the housing of the combination measuring probe according to the invention can be made of any materials.
  • a metal housing is provided, which is sheathed with an absorber material.
  • a plastic housing or an absorber housing is provided.
  • the combination measuring probe according to the invention has, for example, sensors for automatic positioning or for detecting a three-dimensional position.
  • At least one waveguide is preferably connected to the coupling structure 12, wherein the end of the waveguide forms a transition. If two waveguides are connected, one usually speaks of a probe loop. It is also possible for more than one or two waveguides to be connected to the coupling structure 12.
  • the coupling structure 12 may also comprise individual probes (for example, capacitive probes).
  • the combination measuring probe according to the invention has in a preferred development a three-dimensional adjustment, so that, for example, the distance of the contactless coupling structure 12 to the waveguide 16 to which the DUT 24 is connected, can be adjusted.
  • the relative position of the coupling structure 12 to the measuring tip 14 is changed with a three-dimensional adjustment (for example, X-Y-Z linear stage).
  • the adjustment is designed, for example, mechanically or electrically controllable.
  • the adjustment process can be automated so that the best coupling position is always selected.
  • the position device is for example integrated in the housing 16 or connected via a holder with the combination measuring probe.
  • the position device is manually operated and / or motorized, for example. It is active or passive.
  • the position device preferably contains a control line for control.
  • the combination measuring probe according to the invention has, for example, two separate position devices which make it possible for the contact-type signal probe 14 and the contactless coupling structure 12 to be positioned independently of one another or for the position to be set independently of one another.
  • the coupling structure (12) can also comprise a plurality of individual capacitive, inductive and / or inductively and capacitively coupling probes.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

Bei einer Messsonde, insbesondere für ein kontaktloses Vektornetzwerkanalysesystem, mit einem Gehäuse (10) und wenigstens einer am Gehäuse (10) angeordneten Koppelstruktur (12), welche zum Auskoppeln eines HF-Signals aus einer Signalleitung (16) ausgebildet ist, wurde die Anordnung derart getroffen, dass an dem Gehäuse (10) zusätzlich wenigstens eine Signalsonde (14) zum Einkoppeln eines elektrischen Signals in die Signalleitung (16) angeordnet ist.

Description

Messsonde
Die vorliegende Erfindung betrifft eine Messsonde, insbesondere für ein kontaktloses Vektornetzwerkanalysesystem, mit einem Gehäuse und wenigstens einer am Gehäuse angeordneten Koppelstruktur, welche zum Auskoppeln eines HF-Signals aus einer Signalleitung ausgebildet ist, gemäß dem Oberbegriff des Anspruchs 1.
Die Verwendung von kontaktlosen Schleifen-Messsonden zum Detektieren von Störemissionen ist speziell in dem Bereich der elektromagnetischen Verträglichkeit (EMV) beispielsweise aus H. Whiteside, R. W. P. King," The loop antenna as a probe," IEEE Transaction on Antenna and Propagation, Band 12, Nr. 3, S. 291-297, Mai 1964; M. Kanda, "An electromagnetic near-field sensor for simultaneous electric and magnetic-field measurements," IEEE Transaction on Electromagnetic Compatibility, Band 26, Nr. 3, S. 102-110, August 1984 oder M. E. G. Upton, A. C. Marvin, "Improvements to an electromagnetic near-field sensor for simultaneous electric and magnetic field measurements," IEEE Transaction on Electromagnetic compatibility, Band 35, Nr. 1 , S. 96-98, Februar 1993 bekannt.
Weiterhin ist es beispielsweise aus K. W. Wagner, "Induktionswirkung von Wanderwellen in Nachbarleitungen," Elektrotechnische Zeitschrift, Band 35, S. 639- 643; 677-680; 705-708, 1914; P. P. Lombardini, R. F. Schwartz, P. J. Kelly, "Criteria for the design of loop-type directional couplers for the L band," IEEE Transaction on Microwave Theory and Techniques, Band 4, Nr. 4, S. 234-239, Oktober 1956; B. Mäher," An L-band loop-type coupler, "IEEE Transactions on Microwave Theory and Techniques", Band 9, Nr. 4, S. 362-363, Juli 1961 ; F. De Groote, J. Verspecht, C. Tsironis, D. Barataud and J.-P. Teyssier, "An improved coupling method for time domain load-pull measurements" European Microwave Conference, Band 1 , S. 4ff, Oktober 2005 oder K. Yhland, J. Stenarson, "Noncontacting measurement of power in microstrip circuits," in 65th ARFTG, S. 201-205, Juni 2006, bekannt, Schleifensonden bei der Realisierung von Richtkopplern zu verwenden. Ein Richtkoppler ist ein Viertor, welcher in der Regel aus zwei miteinander verkoppelten Leitungen besteht. Der Richtkoppler hat die Aufgabe, die auf einer Leitung hin- und rücklaufenden Wellen zu trennen.
Statt Schleifensonden werden in der EMV-Technik und für die Charakterisierung von elektrischen Bauteilen auch rein induktive oder kapazitive Sonden verwendet, wie beispielsweise aus T. Zelder, H. EuI, "Contactless network analysis with improved dynamic ränge using diversity calibration," Proceedings of the 36th European Microwave Conference, Manchester, UK, S. 478-481 , September 2006; T. Zelder, H. Rabe, H. EuI, "Contactless electromagnetic measuring System using conventional calibration algorithms to determine scattering parameters," Advances in Radio Science - Kleinheubacher Berichte 2006, Band 5, 2007; T. Zelder, I. Rolfes, H. EuI, "Contactless vector network analysis using diversity calibration with capacitive and inductive coupled probes," Advances in Radio Science - Kleinheubacher Berichte 2006, Band 5, 2007 oder J. Stenarson, K. Yhland, C. Wingqvist, "An in-circuit noncontacting measurement method for S-parameters and power in planar circuits," IEEE Transactions on Microwave Theory and Techniques, Band 49, Nr. 12, S. 2567- 2572, Dezember 2001 , bekannt.
Eine mögliche Koppelstruktur zur Trennung der hin- und rücklaufenden Wellen ist der Schleifenrichtkoppler, welchen P. P. Lombardini, R. F. Schwartz, P. J. Kelly, "Criteria for the design of loop-type directional couplers for the L band" IEEE Transaction on Microwave Theory and Techniques, Band 4, Nr. 4, S. 234-239, Oktober 1956 und B. Mäher, "An L-band loop-type coupler" IEEE Transactions on Microwave Theory and Techniques, Band 9, Nr. 4, S. 362-363, Juli 1961 beschreiben. Ein Schleifenrichtkoppler besteht aus einer Leiterschleife, welche über oder in einem Wellenleiter positioniert wird. Dabei können beliebige Wellenleiter wie Hohlleitungen, planare Streifenleitungen oder Koaxialleitungen verwendet werden. Die Anwendung eines Schleifenrichtkopplers ist vielfältig. Zum Beispiel verwendeten F. De Groote et al. im Jahr 2005 (a.a.O.) und Yhland et al. 2006 (a.a.O.) einen Schleifenrichtkoppler als Komponente in einem kontaktlosen Messsystem.
Die Bestimmung von Streuparametern von innerhalb einer komplexen Schaltung eingebetteten elektrischen Bauteilen ist mittels der kontaktlosen Vektornetzwerkanalyse möglich. Dies ist beispielsweise beschrieben in T. Zelder, B. Geck, M. Wollitzer, I. Rolfes, and H. EuI, "Contactless network analysis System for the calibrated measurement of the scattering parameters of planar two-port devices" Proceedings of the 37th European Microwave Conference, München, Deutschland, S. 246-249, Oktober 2007. Im Vergleich zum herkömmlichen kontaktbehafteten Netzwerkanalyseverfahren werden die internen Richtkoppler eines Netzwerkanalysators durch kontaktlose Nahfeldmesssonden ersetzt, die direkt mit den vektoriellen Messstellen des Analysators verbunden sind.
Zur Bestimmung der Streuparameter eines Testobjektes (DUT) mit einem kontaktlosen, meist vektoriellen Messsystem werden induktive und/oder kapazitive
Koppelstrukturen verwendet. Die Messsonden werden im elektromagnetischen
Nahfeld über den Signalleitungen des Messobjektes positioniert. Mittels dieser
Koppelstrukturen werden entweder der Strom und/oder die Spannung einer
Signalleitung, welche direkt mit dem Testobjekt verbunden ist, bestimmt. Alternativ werden auch die hin- und rücklaufenden Wellen auf der Signalleitung gemessen, wobei dann Richtkoppler, insbesondere Schleifenrichtkoppler, als Koppelstrukturen zur Trennung der beiden Wellen verwendet werden. Um die Streuparameter zu messen, werden herkömmliche Kalibrierverfahren, wie beispielsweise TRL (G. F.
Engen and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Transaction on Microwave Theory and Techniques, Band 12, S. 987-993, Dezember 1979), wie bei der kontaktbehafteten Netzwerkanalyse verwendet. Bei der kontaktlosen Vektornetzwerkanalyse wird für jedes Messtor eines unbekannten Testobjektes (DUT) mindestens eine Messsonde, beispielsweise eine Leiterschleife oder zwei kapazitive Sonden, benötigt. Beispielsweise werden kontaktlose Leiterschleifen, die aus koaxialen Semi-Rigid-Leitungen hergestellt sind, verwendet (vgl. F. De Groote, J. Verspecht, C. Tsironis, D. Barataud and J.-P. Teyssier, "An improved coupling method for time domain load-pull measurements", European Microwave Conference, Band. 1 , S. 4 ff, Oktober 2005 und K. Yhland, J. Stenarson, "Noncontacting measurement of power in microstrip circuits", in 65th ARFTG, S. 201-205, Juni, 2006. Alternativ werden ausschließlich kapazitive Sonden in den kontaktlosen Messsystemen eingesetzt (vgl. T. Zelder, H. EuI, "Contactless network analysis with improved dynamic ränge using diversity calibration", Proceedings of the 36th European Microwave Conference, Manchester, UK, S. 478- 481 , September 2006 und T. Zelder, H. Rabe, H. EuI, "Contactless electromagnetic measuring System using conventional calibration algorithms to determine scattering Parameters", Advances in Radio Science - Kleinheubacher Berichte 2006, Band 5, 2007. Die Messsysteme in T. Zelder, I. Rolfes, H. EuI, "Contactless vector network analysis using diversity calibration with capacitive and inductive coupled probes", Advances in Radio Science - Kleinheubacher Berichte 2006, Band 5, 2007 und J. Stenarson, K. Yhland, C. Wingqvist, "An in-circuit noncontacting measurement method for S-parameters and power in planar circuits", IEEE Transactions on Microwave Theory and Techniques, Band 49, Nr. 12, S. 2567-2572, Dezember, 2001 , wurden mit einer Kombination aus kapazitiven und induktiven Sonden realisiert. Die Besonderheit der Sonden in T. Zelder et al. (a.a.O.) ist, dass sie zusammen mit der Signalleitung auf demselben Substrat hergestellt sind.
Obwohl die kontaktlose Vektornetzwerkanalyse das Potenzial hat, kontaktlos Bauteile zu charakterisieren, wurde bislang keine kontaktlose Streuparametermessung von innerhalb einer Schaltung eingebetteten HF- und Mikrowellenkomponenten durchgeführt. Bisher wurden die Positionen der kontaktlosen Sonden während und nach der Kalibrierung nicht verändert, welches jedoch notwendig ist, wenn innerhalb einer Schaltung gemessen werden soll. Unter der Verwendung einer pseudo-kontaktlosen Messung, wurden in T. Zelder, B. Geck, M. Wollitzer, I. Rolfes, and H. EuI, "Contactless network analysis System for the calibrated measurement of the scattering parameters of planar two-port devices", Proceedings of the 37th European Microwave Conference, München, Deutschland, S. 246-249, Oktober 2007 unbekannte, eingebettete Zweitore charakterisiert. Eine pseudo-kontaktlose Messung bedeutet dabei, dass statt vollständig kontaktlosen Sonden gedruckte Koppelstrukturen verwendet werden.
Für die kontaktlose Bestimmung komplexwertiger Streuparameter eines Zweitores sind zwei kontaktlose Schleifensonden mit jeweils zwei Messstellen eines vektoriellen Netzwerkanalysators verbunden. Die Sonden sind zur Charakterisierung eines zwischen mehreren Bauelementen eingebettetes DUTs (Devide Under Test) beidseitig im Nahfeld der Zuleitungen des DUTs positioniert. Zur Bestimmung der
Streuparameter werden die hin- und rücklaufenden Wellen des DUTs in zwei verschiedenen Zuständen gemessen. Um zwei verschiedene Zustände zu erzeugen, besitzt ein Netzwerkanalysator einen Umschalter, so dass das Signal einmal von links oder von rechts in die Schaltung gegeben werden kann. Werden für beide
Schalterstellungen die hin- und rücklaufenden Wellen gemessen, dann können daraus die vollständigen Zweitor-Streuparameter eines eingebetteten DUTs bestimmt werden. Jedoch existieren bei der kontaktlosen Bestimmung der
Streuparameter Fälle, bei denen eine Bestimmung der vollständigen Streuparameter nicht möglich ist. Zwei Fälle werden im Folgenden erläutert.
Fall 1 : Ist beispielsweise das letzte Zweitor (34 in Fig. 3 zwischen 44 und 46) in der Schaltung, in der das DUT eingebettet ist, ein Verstärker der nur in Vorwärtsrichtung
(Schalterstellung I, vgl. Fig. 3) betrieben werden kann (in der anderen Richtung besitzt er einen sehr hohen Eingangswiderstand) und sind die beiden Ausgänge des
Schalters 54, wie bisher bei der kontaktlosen Vektometzwerkanalyse üblich ist, statt wie in Fig. 3 mit der planaren Leitung 16 an den Positionen 36 bzw. 46 miteinander verbunden, dann ergeben sich nur für die Schalterstellung I auswertbare Ergebnisse.
Für die Schalterstellung Il wird nahezu die gesamte Leistung durch den verkehrt betriebenen Verstärker zum Generator zurück reflektiert und das Messsignal an den Messstellen der kontaktlosen Schleifensonden verschwindet im Rauschen.
Fall 2: Ist die Dämpfung der Zweitore in der Schaltung links und rechts vom DUT zu hoch, dann ist der Dynamikbereich für eine genaue Messung zu gering.
Der Erfindung liegt die Aufgabe zugrunde, eine Messsonde der o.g. Art hinsichtlich der Messgenauigkeit und des Anwendungsspektrums zu verbessern.
Diese Aufgabe wird erfindungsgemäß durch eine Messsonde der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben.
Bei einer Messsonde der o.g. Art ist es erfindungsgemäß vorgesehen, dass an dem Gehäuse zusätzlich wenigstens eine Signalsonde zum Einkoppeln eines elektrischen Signals in die Signalleitung angeordnet ist.
Dies hat den Vorteil, dass das über ein DUT geführte Signal für die Durchführung von Messungen nicht über alle Bauelemente der Schaltung, in welches das DUT eingebettet ist, hinweg zum DUT geleitet werden muss, sondern statt dessen das Signal direkt vor bzw. nach dem DUT mit einer Messspitze (Probe) eingespeist wird. Hierdurch können DUTs unabhängig von den weiteren, in der Schaltung vorhandenen Bauteilen vollständig hinsichtlich ihrer Streuparameter vermessen werden.
Zweckmäßigerweise ist die Signalsonde als kontaktlose Leiterschleife oder als eine die Signalleitung elektrisch und mechanisch kontaktierende Messspitze ausgebildet, wobei die Messspitze derart angeordnet und ausgebildet ist, dass sich die Koppelstruktur wenigstens im Nahfeld der Signalleitung befindet oder die Signalleitung elektrisch und mechanisch kontaktiert, wenn die Messspitze die Signalleitung elektrisch und mechanisch kontaktiert. Zweckmäßigerweise ist die kontaktlose Signalsonde als rein induktive, rein kapazitive oder kombiniert induktive und kapazitive Sonde ausgebildet.
In einer bevorzugten Ausführungsform ist die Koppelstruktur als kontaktlose Leiterschleife oder als die Signalleitung elektrisch und mechanisch kontaktierende Messspitze ausgebildet.
Zweckmäßigerweise ist die kontaktlose Koppelstruktur als rein induktive, rein kapazitive oder kombiniert induktive und kapazitive Sonde ausgebildet.
Zweckmäßigerweise sind ein Massekontakt der Koppelstruktur und der Signalsonde elektrisch miteinander verbunden.
Dadurch, dass die Koppelstruktur impedanzkontrolliert ist, wird eine hohe Richtdämpfung sowie eine hohe Eingangsimpedanz erzielt und werden weniger Mantelwellen erzeugt, wobei die Messsonde dadurch auch analytisch besser beschreibbar und die Grenzfrequenz höher ist als bei nicht impedanzkontrollierten Messsonden.
Zur Verbesserung der Signalqualität ist in einem Eingangspfad der Signalsonde und/oder in einem Ausgangspfad der Koppelstruktur ein elektrischer Signalverstärker angeordnet.
Zum Einstellen eines Arbeitspunktes des Verstärkers sind/ist die Signalsonde und/oder die Koppelstruktur mit einer Gleichspannung beaufschlagt.
In einer bevorzugten Ausführungsform ist das Gehäuse aus einem metallischen Werkstoff, einem Absorberwerkstoff und/oder aus einem Kunststoff hergestellt.
Zweckmäßigerweise ist das Gehäuse mit einem Absorberwerkstoff ummantelt. Zum abstandskontrollierten Anordnen der Messsonde nahe bzw. in elektrischem und mechanischem Kontakt mit dem Signalleiter ist zusätzlich eine Vorrichtung zum Bestimmen eines Abstandes der Koppelstruktur von dem Signalleiter vorgesehen.
Beispielsweise umfasst die Vorrichtung zum Bestimmen des Abstandes einen optischen, elektrischen, mechanischen und/oder elektromechanischen Abstandssensor.
Zum kontrollierten, dreidimensionalen Anordnen der Messsonde nahe oder in mechanischem und elektrischem Kontakt mit dem Signalleiter ist zusätzlich eine Vorrichtung zum Bestimmen einer Position der Messsonde im Raum vorgesehen.
Beispielsweise ist die Vorrichtung zum Bestimmen einer Position der Messsonde im Raum ein Bildsensor.
In einer bevorzugten Ausführungsform weist die Messsonde zusätzlich wenigstens eine Positioniervorrichtung zum Positionieren derselben im Raum auf, so dass die Messsonde in wenigstens einer Raumrichtung verschiebbar ist. Die Positioniervorrichtung weist beispielsweise wenigstens einen Stellmotor, insbesondere Schrittmotor, auf und ist bevorzugt am Gehäuse angeordnet.
Zum unabhängigen Positionieren der Koppelstruktur und der Signalsonde weist die Messsonde für die Koppelstruktur und die Signalsonde jeweils eine separate Positioniervorrichtung auf.
Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in:
Fig. 1 eine schematische Darstellung einer bevorzugten Ausführungsform einer erfindungsgemäßen Messsonde in einem Messaufbau,
Fig. 2 eine Draufsicht der bevorzugten Ausführungsform gemäß Fig. 1 und Fig. 3 eine schematische Darstellung eines Messaufbaus mit einem vektoriellen Netzwerkanalysator (VNA).
Die in Fig. 1 und 2 dargestellte, bevorzugte Ausführungsform einer erfindungsgemäßen Messsonde umfasst ein Gehäuse 10, eine Koppelstruktur 12 in Form einer kontaktlosen Messschleife bzw. Schleifensonde und eine Signalsonde 14 in Form einer eine Signalleitung 16 elektrisch und mechanisch kontaktierenden Messspitze. Die Koppelstruktur 12 ist mit einem ersten Tor 18 und einem zweiten Tor 20, die einen Ausgangspfad ausbilden, derart ausgebildet, dass diese ein elektrisches Signal aus der Signalleitung 16 auskoppelt. Die Signalsonde 14 ist mit einem Eingang 22 derart ausgebildet, dass diese in die Signalleitung 16 ein elektrisches Signal einkoppelt. Die Signalsonde 14 ist derart angeordnet und ausgebildet, dass sich die Koppelstruktur 12 im Nahfeld der Signalleitung 16 befindet, also kontaktlos ein Signal aus der Signalleitung 16 auskoppelt, wenn die Signalsonde 14 die Signalleitung 16 elektrisch und mechanisch kontaktiert, wie in Fig. 1 dargestellt.
Die Signalleitung 16 ist Teil einer elektrischen bzw. elektronischen Schaltung auf einer Leiterplatte 30, die ein zu testendes elektrisches bzw. elektronisches, eingebettetes Bauteil 24 (DUT - Device Under Test) sowie weitere elektrische bzw. elektronische Bauteile 26, 28 umfasst. Die Signalleitung 16 ist beispielsweise als Streifenleitung ausgebildet.
In Fig. 3 sind funktionsgleiche Teile mit gleichen Bezugszeichen wie in Fig. 1 bezeichnet, so dass zu deren Erläuterung auf die obige Beschreibung der Fig. 1 verwiesen wird. Auf der Schaltungsplatine 30 umfasst die elektronische Schaltung zusätzlich elektronische Bauteile 32 und 34, die beispielsweise als Verstärker ausgebildet sind, die nur in Vorwärtsrichtung betrieben werden können und in der anderen Richtung einen sehr hohen Eigenwiderstand aufweisen. Die Bauteile 26, 28, 32 und 34 sowie das DUT 24 sind im Wesentlichen Zweitore, die in die Signalleitung 16 eingeschleift sind. Weiterhin bezeichnet 36 eine erste Position, 38 eine zweite Position, 40 eine dritte Position, 42 eine vierte Position, 44 eine fünfte Position und 46 eine sechste Position auf der Leiterplatte 30. Mit 48 sind Referenzebenen bezeichnet. In Fig. 3 ist eine Messanordnung mit zwei erfindungsgemäßen Messsonden und einem vektoriellen Netzwerkanalysator 50 (VNA) dargestellt. Der VNA 50 umfasst eine Signalquelle 52, einen Schalter 54, mit einer Schalterstellung I und einer Schalterstellung II, ein erstes Messtor 56, ein zweites Messtor 58, ein drittes Messtor 60 und ein viertes Messtor 62. Mit 64 ist ein komplexer Gerätewiderstand Z9 bezeichnet. Die Signalquelle 52 ist über den Schalter 54 mit jeweils einem Eingang 22 von einer der Signalsonden 14 verbunden. Die Messtore 56, 58, 60 und 62 sind mit den Ausgängen 18 und 20 verbunden. Das Signal der Signalquelle 52 wird je nach Stellung des Schalters 54 auf verschiedenen Seiten des DUT 24 in die Signalleitung 16 durch die Signalsonden 14 eingekoppelt.
Durch die erfindungsgemäße Messsonde ist es möglich, die Leistung des in die Signalleitung 16 eingekoppelten Signals nicht über alle Bauelemente 26, 28, 32, 34 hinweg zum DUT 24 zur leiten, sondern direkt vor dem DUT 24 mittels der Signalsonden 12 einzuspeisen. Nach bzw. stromab der Einspeisung der Leistung sind dann jeweils die Koppelstrukturen 12 positioniert. Erfindungsgemäß sind die kontaktlose Koppelstruktur 12 und die kontaktbehaftete Signalsonde zu einer Einheit, vorzugsweise in einem Gehäuse, kombiniert. Ein weiterer Vorteil einer kombinierten Messsonde liegt darin, dass eine optimierte Kombination deutlich weniger Platz für die Positionierung benötigt. In der Regel ist der Abstand zwischen zwei Messobjekten, wie den Bauteilen 24, 26, 28, 32, 34 der elektronischen Schaltung, stark begrenzt. Ein anderer Vorteil ist, dass eine Gleichspannungszuführung über Bias zu ggf. in der Messsonde vorhandenen Verstärkern möglich ist. Durch die Verwendung von Verstärkern lässt sich das Signal-zu-Rauschverhältnis verbessern. Durch die Anwendung der erfindungsgemäßen Messsonde mit Signalisierungsmessspitze 14 verbleiben die Enden der zu untersuchenden planaren Schaltung offen, wie aus Fig. 3 ersichtlich. Bei der Anwendung eines 7-Term- Kalibrierverfahrens beeinflusst die Rückwirkung der offenen Enden das Messergebnis nicht. In Fig. 2 ist beispielhaft dargestellt, wie der Aufbau einer zu untersuchenden planaren Mikrostreifenschaltung auf der Schaltungsplatine 30 für den Einsatz der erfindungsgemäßen, kombinierten Messsonde verändert wird. Für die Signalisierung ist in der in Fig. 2 beispielhaften Ausführung neben der planaren Mikrostreifenleitung 16 eine Kontaktfläche mit einem Via 66 gegen Masse vorgesehen. Falls in einer anderen Ausführung die Messobjekte mit Koplanarleitungen verbunden sind, müssen keine zusätzlichen Kontaktflächen in der Schaltung vorgesehen sein. Dann entspricht die Form der speisenden Signalsonde 14 beispielsweise der einer herkömmlichen On-Wafer-Messspitze, welche mit der kontaktlosen Sonde 12 über das Gehäuse verbunden ist.
Die erfindungsgemäße Kombinationsmesssonde umfasst mindestens eine Koppelstruktur 12, die eine auf einer externen Leitung 16 laufende, elektromagnetische Welle teilweise auskoppelt, und mindestens eine Signalsonde 14 die die Aufgabe hat, Leistung auf die externe Leitung 16 zu übertragen. Dabei können Koppelstruktur 12 und Signalsonde 14 beide kontaktlos oder kontaktbehaftet oder aus einer Kombination aus kontaktlos und kontaktbehaftet sein. Mit anderen Worten ist mindestens eine Koppelstruktur 12 mit mindestens einer Signalisierungsmessspitze 14 zu einer Messsondeneinheit kombiniert. Die Masse der beiden Sondentypen (Koppelstruktur 12 und Signalsonde 14) ist zweckmäßigerweise miteinander elektrisch verbunden. Vorzugsweise besitzen die beiden Sondentypen ein gemeinsames Gehäuse und eine gemeinsame Halterung.
Die erfindungsgemäße Kombinationsmesssonde ist für den Einsatz in einem kontaktlosen Vektornetzwerkanalysesystem besonders geeignet, wie in Fig. 3 dargestellt. Andere Einsatzgebiete sind jedoch auch möglich.
In einer beispielhaften Ausführungsform entspricht die Geometrie der kontaktbehafteten Messspitze 14 der Geometrie einer herkömmlichen On-Wafer-
Probe. Wichtig ist für diese Ausführungsform, dass die Messspitze 14 über mindestens ein Kontaktblech verfügt, mit der ein elektrischer Kontakt mit einem (planaren) Wellenleiter 16, an dem das DUT 24 elektrisch angeschlossen ist, hergestellt wird. Die Kontaktblech(e) sind optional über einen inneren Wellenleiter (innerhalb des Gehäuses 10 der Messsonde) mit einem äußeren Übergang (beispielsweise einem SMA-Stecker) verbunden. Der äußere Übergang dient zur Verbindung der Messspitze 14 mit einem Generator 52.
Die Messspitze 14 und die Koppelstruktur sind beispielsweise jeweils impedanzkontrolliert ausgeführt, d.h. die Eingangsreflexionsdämpfung ist maximiert.
Als Koppelstruktur 12 bzw. Signalsonde 14 werden beispielsweise induktive Sonden, kapazitive Sonden und Kombinationen aus rein induktiven und rein kapazitiven Sonden verwendet. Die kontaktlose Koppelstruktur 12 ist beispielsweise als eine Schleifensonde ausgeführt.
Im Eingangspfad 22 der Messspitze 14 und/oder in den Ausgangspfaden 18, 20 der Koppelstruktur 12 sind in einer bevorzugten Weiterbildung der Erfindung Verstärker zur Verbesserung der Signalqualität vorgesehen. Damit wird die erfindungsgemäße Kombinationsmesssonde zur aktiven Messsonde. Bei einer aktiven Messsonde ist es ggf. sinnvoll, die Messspitze 14 und die Koppelstruktur 12 mit einer Gleichstromquelle (Bias) zu verbinden, um eine dem HF-Testsignal überlagerte Gleichspannung den Verstärkern zur Einstellung des Arbeitspunktes zur Verfügung zu stellen.
Das Gehäuse der erfindungsgemäßen Kombinationsmesssonde kann aus beliebigen Materialien ausgeführt sein. Beispielsweise ist ein Metallgehäuse vorgesehen, welches mit einem Absorbermaterial ummantelt ist. Alternativ ist ein Kunststoffgehäuse oder ein Absorbergehäuse vorgesehen.
Die erfindungsgemäßen Kombinationsmesssonde weist beispielsweise Sensoren zur automatischen Positionierung oder zur Detektierung einer dreidimensionalen Position auf. An der Koppelstruktur 12 ist bevorzugt mindestens ein Wellenleiter angeschlossen, wobei das Ende des Wellenleiters einen Übergang ausbildet. Falls zwei Wellenleiter angeschlossen sind, spricht man in der Regel von einer Sondenschleife. Es können auch mehr als ein bzw. zwei Wellenleiter an die Koppelstruktur 12 angeschlossen sein. Die Koppelstruktur 12 kann auch einzelnen Sonden (beispielsweise kapazitiven Sonden) umfassen.
Die erfindungsgemäße Kombinationsmesssonde besitzt in einer bevorzugten Weiterbildung eine dreidimensionale Verstellmöglichkeit, so dass beispielsweise der Abstand der kontaktlosen Koppelstruktur 12 zu dem Wellenleiter 16, an dem das DUT 24 angeschlossen ist, eingestellt werden kann. Beispielsweise wird mit einer dreidimensionalen Verstellmöglichkeit (beispielsweise X-Y-Z-Lineartisch) die relative Position der Koppelstruktur 12 zur Messspitze 14 verändert. Dabei ist die Verstellmöglichkeit beispielsweise mechanisch oder elektrisch steuerbar ausgebildet. Der Verstellprozess kann automatisiert sein, so dass stets die beste Koppelposition ausgewählt wird.
Eine andere bevorzugte Weiterbildung der Erfindung betrifft die Kombination der Kombinationsmesssonde mit einer Positionseinrichtung, so dass die Kombinationsmesssonde in allen Dimensionen oder nur in einer oder zwei etc. verschoben werden kann. Die Positionseinrichtung ist beispielsweise in dem Gehäuse 16 integriert oder über eine Halterung mit der Kombinationsmesssonde verbunden. Die Positionseinrichtung ist beispielsweise manuell bedienbar und/oder motorisiert. Sie ist also aktiv oder passiv. Die Positionseinrichtung enthält bevorzugt zur Steuerung eine Steuerleitung.
Die erfindungsgemäße Kombinationsmesssonde besitz beispielsweise zwei getrennte Positionseinrichtungen, die es ermöglichen, dass die kontaktbehaftete Signalsonde 14 und die kontaktlose Koppelstruktur 12 unabhängig von einander positionierbar sind bzw. die Position unabhängig voneinander einstellbar ist. Die Koppelstruktur (12) kann auch mehrere einzelne kapazitive, induktive und/oder induktiv und kapazitiv koppelnde Sonden umfassen.

Claims

Patentansprüche:
1. Messsonde, insbesondere für ein kontaktloses Vektornetzwerkanalysesystem, mit einem Gehäuse (10) und wenigstens einer am Gehäuse (10) angeordneten Koppelstruktur (12), welche zum Auskoppeln eines HF-Signals aus einer Signalleitung (16) ausgebildet ist, d a d u r c h g e k e n n z e i c h n e t , dass an dem Gehäuse (10) zusätzlich wenigstens eine Signalsonde (14) zum Einkoppeln eines elektrischen Signals in die Signalleitung (16) angeordnet ist.
2. Messsonde nach Anspruch 1 , dadurch gekennzeichnet, dass die Signalsonde (14) als eine die Signalleitung (16) elektrisch und mechanisch kontaktierende Messspitze ausgebildet ist, wobei die Messspitze (14) derart angeordnet und ausgebildet ist, dass sich die Koppelstruktur (12) wenigs- tens im Nahfeld der Signalleitung (16) befindet oder die Signalleitung (16) elektrisch und mechanisch kontaktiert, wenn die Messspitze (14) die Signalleitung (16) elektrisch und mechanisch kontaktiert.
3. Messsonde nach Anspruch 1 , dadurch gekennzeichnet, dass die Signal- sonde (14) als kontaktlose Leiterschleife oder Schleifensonde ausgebildet ist.
4. Messsonde nach Anspruch 3, dadurch gekennzeichnet, dass die kontaktlose Signalsonde (14) als rein induktive, rein kapazitive oder kombiniert in- duktive und kapazitive Sonde ausgebildet ist.
5. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Koppelstruktur (12) als die Signalleitung (16) elektrisch und mechanisch kontaktierende Messspitze ausgebildet ist.
6. Messsonde nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Koppelstruktur (12) als kontaktlose Leiterschleife oder Schleifensonde ausgebildet ist.
7. Messsonde nach Anspruch 6, dadurch gekennzeichnet, dass die kontaktlose Koppelstruktur (12) als rein induktive, rein kapazitive oder kombiniert induktive und kapazitive Sonde ausgebildet ist.
8. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass ein Massekontakt der Koppelstruktur (12) und der Signalsonde (14) elektrisch miteinander verbunden sind.
9. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Koppelstruktur (12) und die Signalsonde (14) jeweils impedanzkontrolliert ausgeführt sind, wobei die Impedanzen der Signalpfade zwischen der Signalsonde (14) und einem Eingang (22) der Signalsonde (14) und die Impedanzen der Signalsonde (14) und des Eingangs (22) der Signalsonde (14) bzw. die Impedanzen zwischen der Koppelstruktur (12) und dem ersten Tor (18) der Koppelstruktur (12) sowie dem zweiten Tor (20) der Koppelstruktur (12) und die Impedanzen der Koppelstruktur (12), des ersten Tores (18) der Koppelstruktur (12) und des zweiten Tores (20) der Koppelstruktur (12) aufeinander derart abgestimmt sind, dass sich eine hohe Eingangsreflexionsdämpfung ergibt.
10. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem Eingangspfad (22) der Signalsonde (14) ein elektrischer Signalverstärker angeordnet ist.
11. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass in wenigstens einem Ausgangspfad (18, 20) der Koppelstruktur (12) ein elektrischer Signalverstärker angeordnet ist.
12. Messsonde nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass die Signalsonde (14) und/oder die Koppelstruktur (12) mit einer Gleichspannung beaufschlagt sind/ist.
13. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (10) aus einem metallischen Werkstoff, einem Absorberwerkstoff und/oder aus einem Kunststoff hergestellt ist.
14. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (10) mit einem Absorberwerkstoff ummantelt ist.
15. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass zusätzlich eine Vorrichtung zum Bestimmen eines Abstandes der Koppelstruktur (12) von dem Signalleiter (16) vorgesehen ist.
16. Messsonde nach Anspruch 15, dadurch gekennzeichnet, dass die Vor- richtung zum Bestimmen des Abstandes einen optischen, elektrischen, mechanischen und/oder elektromechanischen Abstandssensor umfasst.
17. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich eine Vorrichtung zum Bestimmen einer Position der Messsonde im Raum vorgesehen ist.
18. Messsonde nach Anspruch 17, dadurch gekennzeichnet, dass die Vorrichtung zum Bestimmen einer Position der Messsonde im Raum ein Bildsensor ist.
19. Messsonde nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messsonde zusätzlich wenigstens eine Positioniervorrichtung zum Positionieren derselben im Raum aufweist.
20. Messsonde nach Anspruch 19, dadurch gekennzeichnet, dass die Positioniervorrichtung wenigstens einen Stellmotor, insbesondere einen Schrittmotor, aufweist.
21. Messsonde nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass die Messsonde für die Koppelstruktur (12) und die Signalsonde (14) jeweils eine separate Positioniervorrichtung aufweist.
22. Messsonde nach wenigstens einem der Ansprüche 19 bis 21 , dadurch ge- kennzeichnet, dass die Positioniervorrichtung am Gehäuse (10) angeordnet ist.
EP09776813A 2008-07-15 2009-06-23 Messsonde Ceased EP2300835A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202008009469U DE202008009469U1 (de) 2008-07-15 2008-07-15 Messsonde
PCT/EP2009/004527 WO2010006683A1 (de) 2008-07-15 2009-06-23 Messsonde

Publications (1)

Publication Number Publication Date
EP2300835A1 true EP2300835A1 (de) 2011-03-30

Family

ID=39744708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09776813A Ceased EP2300835A1 (de) 2008-07-15 2009-06-23 Messsonde

Country Status (8)

Country Link
US (1) US8760184B2 (de)
EP (1) EP2300835A1 (de)
JP (1) JP5826628B2 (de)
CN (1) CN102099693B (de)
CA (1) CA2725636C (de)
DE (1) DE202008009469U1 (de)
HK (1) HK1157017A1 (de)
WO (1) WO2010006683A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008013687U1 (de) * 2008-10-15 2009-01-02 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Messanordnung mit Kalibriersubstrat und elektronischer Schaltung
DE202008013982U1 (de) * 2008-10-20 2009-01-08 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Messsystem zum Bestimmen von Streuparametern
CN102736007A (zh) * 2011-04-07 2012-10-17 旺矽科技股份有限公司 高频耦合信号调整方法及其测试装置
CN106062568B (zh) * 2014-03-07 2020-02-07 是德科技股份有限公司 双向电光探测器
US10230202B2 (en) 2014-11-04 2019-03-12 X-Microwave, Llc Modular building block system for RF and microwave design of components and systems from concept to production
US11268983B2 (en) 2017-06-30 2022-03-08 Intel Corporation Chevron interconnect for very fine pitch probing
US10775414B2 (en) * 2017-09-29 2020-09-15 Intel Corporation Low-profile gimbal platform for high-resolution in situ co-planarity adjustment
EP3495808B1 (de) 2017-12-05 2024-07-10 Airbus Helicopters Sonde zur eingriffsfreien erfassung von fehlstellen in einem testobjekt
EP3495809A1 (de) 2017-12-05 2019-06-12 Airbus Helicopters Verfahren zur nichtintrusiven detektion von imperfektionen in einem testobjekt
US11061068B2 (en) 2017-12-05 2021-07-13 Intel Corporation Multi-member test probe structure
US11204555B2 (en) 2017-12-28 2021-12-21 Intel Corporation Method and apparatus to develop lithographically defined high aspect ratio interconnects
US11543454B2 (en) 2018-09-25 2023-01-03 Intel Corporation Double-beam test probe
US11125779B2 (en) * 2018-11-15 2021-09-21 Rohde & Schwarz Gmbh & Co. Kg Probe with radio frequency power detector, test system and test method
CN110045269A (zh) * 2019-05-09 2019-07-23 肇庆学院 一种芯片测试装置及方法
JP7443017B2 (ja) * 2019-10-17 2024-03-05 株式会社日本マイクロニクス 検査プローブ、検査プローブの製造方法および検査装置
EP4170332A1 (de) 2021-10-20 2023-04-26 Airbus Helicopters Vorrichtung und verfahren zur nichtintrusiven detektion von fehlstellen in einem testobjekt

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853613A (en) * 1987-10-27 1989-08-01 Martin Marietta Corporation Calibration method for apparatus evaluating microwave/millimeter wave circuits
JPH0864643A (ja) * 1994-08-19 1996-03-08 Sanyo Electric Co Ltd 高周波集積回路装置および高周波測定システム
US5508630A (en) * 1994-09-09 1996-04-16 Board Of Regents, University Of Texas Systems Probe having a power detector for use with microwave or millimeter wave device
US6239752B1 (en) * 1995-02-28 2001-05-29 Stmicroelectronics, Inc. Semiconductor chip package that is also an antenna
JP3344682B2 (ja) * 1995-04-05 2002-11-11 日本電信電話株式会社 電磁妨害波侵入経路の特定方法及び電磁妨害波探索装置
JP2001124809A (ja) * 1999-10-26 2001-05-11 Advantest Corp 負荷容量付き水晶振動子の測定方法
JP3758439B2 (ja) * 1999-12-20 2006-03-22 日本精工株式会社 曲面を有する被検査体の欠陥を曲面に沿って非接触で検出する方法
JP2001242207A (ja) * 2000-02-25 2001-09-07 Anritsu Corp 高周波デバイス測定プログラムを記録した記憶媒体並びに高周波デバイス測定装置及び方法
US7006046B2 (en) * 2001-02-15 2006-02-28 Integral Technologies, Inc. Low cost electronic probe devices manufactured from conductive loaded resin-based materials
US20030115008A1 (en) * 2001-12-18 2003-06-19 Yutaka Doi Test fixture with adjustable pitch for network measurement
JP3613269B2 (ja) 2002-08-28 2005-01-26 日本電気株式会社 ノイズイミュニティ評価装置及びノイズイミュニティ評価方法
US6724205B1 (en) * 2002-11-13 2004-04-20 Cascade Microtech, Inc. Probe for combined signals
TW583409B (en) * 2002-12-25 2004-04-11 Advanced Semiconductor Eng Impedance standard substrate and correction method for vector network analyzer
JP2004325123A (ja) * 2003-04-22 2004-11-18 Matsushita Electric Ind Co Ltd プローブカードおよび検査方法
JP4150296B2 (ja) * 2003-06-18 2008-09-17 日本電産リード株式会社 基板検査装置
JP2005207868A (ja) * 2004-01-22 2005-08-04 Yamaha Corp 半導体装置の試験装置
EP1615335B1 (de) * 2004-07-08 2007-10-31 Alcatel Lucent Kopplungsanordnung für RF Differenzsignal-Übertragung
US7088109B2 (en) * 2004-09-30 2006-08-08 Agilent Technologies, Inc. Method and apparatus for measuring a digital device
US7548069B2 (en) * 2005-06-10 2009-06-16 Maury Microwave, Inc. Signal measurement systems and methods
US7362106B2 (en) * 2005-06-29 2008-04-22 Agilent Technologies, Inc. Methods and apparatus for non-contact testing and diagnosing of open connections on non-probed nodes
US7606592B2 (en) * 2005-09-19 2009-10-20 Becker Charles D Waveguide-based wireless distribution system and method of operation
JP2007101330A (ja) * 2005-10-04 2007-04-19 Nec Corp 磁界センサ
US7195404B1 (en) * 2006-03-03 2007-03-27 Avago Technologies General Ip (Singapore) Pte. Ltd. Fiber optic transceiver module with electromagnetic interference absorbing material and method for making the module
US7235982B1 (en) * 2006-03-31 2007-06-26 Agilent Technologies, Inc. Re-calculating S-parameter error terms after modification of a calibrated port
DE102006030630B3 (de) * 2006-07-03 2007-10-25 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg HF-Messvorrichtung, Verfahren zu deren Kalibrierung sowie Verfahren zum Bestimmen von Streuparametern mit dieser HF-Messvorrichtung
DE202007010784U1 (de) * 2007-08-03 2007-10-04 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Kontaktloses Messsystem
US7705681B2 (en) * 2008-04-17 2010-04-27 Infineon Technologies Ag Apparatus for coupling at least one of a plurality of amplified input signals to an output terminal using a directional coupler

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2010006683A1 *

Also Published As

Publication number Publication date
CN102099693A (zh) 2011-06-15
US8760184B2 (en) 2014-06-24
CN102099693B (zh) 2014-07-02
JP2011528107A (ja) 2011-11-10
HK1157017A1 (en) 2012-06-22
JP5826628B2 (ja) 2015-12-02
DE202008009469U1 (de) 2008-09-11
US20110163773A1 (en) 2011-07-07
CA2725636A1 (en) 2010-01-21
CA2725636C (en) 2016-01-19
WO2010006683A1 (de) 2010-01-21

Similar Documents

Publication Publication Date Title
EP2300835A1 (de) Messsonde
EP2174151B1 (de) Kontaktloses messsystem
EP2035843B1 (de) Verfahren zur kalibrierung sowie verfahren zum bestimmen von streuparametern mit einer hf-messvorrichtung
WO2010015315A1 (de) Kontaktlose schleifensonde
DE10232398A1 (de) Verfahren und Vorrichtung zur Inspektion von Leiterplatten
DE3235114A1 (de) Muenzpruefgeraet
DE202008013687U1 (de) Messanordnung mit Kalibriersubstrat und elektronischer Schaltung
WO2010046017A1 (de) Messsystem zum bestimmen von streuparametern
EP3254094B1 (de) Inhomogene übertragungsleitung zur positionsaufgelösten permittivitätsbestimmung eines messobjektes
EP0419725A1 (de) Messplatz für Mikrowellenbauelemente
DE102005041089B3 (de) Vorrichtung zum Erfassen von Wirbelströmen in einem elektrisch leitfähigen Prüfgegenstand
EP2347272B1 (de) Ermittlung von eigenschaften einer elektrischen vorrichtung
DE202015102364U1 (de) Detektoranordnung und System zum Analysieren des Hochfrequenz-Verhaltens einer Prüfkarte
DE102010009923A1 (de) Wirbelstromsonde, insbesondere Wirbelstromsonde in Transmissionsanordnung
WO2023280582A1 (de) Prüfvorrichtung und -verfahren für hochfrequenzanwendungen
Zelder et al. Contactless vector network analysis using diversity calibration with capacitive and inductive coupled probes
DE202010002527U1 (de) Messanordnung zur Messung elektronischer Bauelemente mit Kontaktanordnung und Kalibriersubstrat
DE102019202824A1 (de) Messsystem zur Überwachung der Inhaltsstoffe, physikalischer Parameter und/oder Homogenität von durch einen Kanal gefördertem Blut
DE10151824A1 (de) Verfahren zur Ermittlung der elektromagnetischen Störaussendung einer Elektronikbaugruppe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170925

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20201109