EP2300719A1 - Shaft arrangement for fast-rotating shafts - Google Patents

Shaft arrangement for fast-rotating shafts

Info

Publication number
EP2300719A1
EP2300719A1 EP09769135A EP09769135A EP2300719A1 EP 2300719 A1 EP2300719 A1 EP 2300719A1 EP 09769135 A EP09769135 A EP 09769135A EP 09769135 A EP09769135 A EP 09769135A EP 2300719 A1 EP2300719 A1 EP 2300719A1
Authority
EP
European Patent Office
Prior art keywords
shaft
connecting element
journals
bearings
fast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09769135A
Other languages
German (de)
French (fr)
Inventor
Rainer Hölzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Oerlikon Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Leybold Vacuum GmbH filed Critical Oerlikon Leybold Vacuum GmbH
Publication of EP2300719A1 publication Critical patent/EP2300719A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • F04D29/054Arrangements for joining or assembling shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/54Radial bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/60Shafts
    • F05B2240/61Shafts hollow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Definitions

  • the invention relates to a Weüenan angel for sch ⁇ ellwindende waves, in particular waves for vacuum pumps, such as turbomolecular pumps.
  • bearings can be used as bearing. These usually have an inner ring and an outer ring, between which the rolling bodies if necessary, are arranged in a cage.
  • the rolling element bearings are attached to the shaft after assembly of arranged on the shaft between the two bearings components, wherein the inner ring is fixed on the shaft. If the shaft is a turbomolecular pump for a while, for example a rotor of the pump, a rotor of a drive motor etc. is arranged between the two bearings.
  • the bending natural frequency is related to the rigidity of the shaft, the mass of the shaft and the mass of the components connected to the shaft. Since the bending natural frequency should be as large as possible, it is desirable that the rigidity of the wave is as large as possible.
  • the rigidity of the shaft can be achieved in particular by increasing the diameter. The two goals to be taken into account in the construction and design of a fast-rotating shaft of a very high natural bending frequency and the smallest possible Dn factor are thus opposite goals.
  • bearings without inner ring.
  • the running surfaces for the rolling elements are formed directly by the surface of the shaft. Since the treads must have a very smooth surface with very low surface roughness, a fine machining of the shaft surface to form the treads immediately before mounting the bearings is required. However, the very fine abrasion produced during machining can settle on or penetrate the components already mounted on the shaft. Especially with high-precision components, such as rotors of turbomolecular pumps, this can lead to damage to the pump during operation.
  • the object of the invention is to provide a shaft arrangement for fast-rotating parts, in particular rotor shafts of a turbomolecular pump, with which an improvement in the bending natural frequency and / or the Dn factor is possible.
  • the smallest possible Dn factor should be achieved with the greatest possible bending natural frequency
  • the shaft is separated into at least two parts or shaft journals.
  • Each journal is provided with a rolling bearing. This makes it possible to provide bearings without Inne ⁇ ring. This is achieved by separating the shaft in at least two shaft journals in that prior to assembly, the running surfaces for the rolling elements can be made on the surface of the shaft journals. The processing of the sensitive surfaces of the treads is thus carried out before assembly, each shaft journal can now be mounted on one side of the roller bearing and from the other side, if necessary, to be arranged on the shaft journal components. The components to be assembled thus need not be pushed over the bearing surface on the shaft, which would lead to damage to the bearing surface.
  • the inventive separation of the fast-rotating while in at least two shaft journals it is thus possible to provide bearings without inner ring, since editing the treads after assembly is no longer required. Since bearings without an inner ring have a smaller average diameter at the same shaft diameter, the D-n factor can be reduced by the measure according to the invention. Likewise, with a constant D-n factor, the diameter of the shaft journal can be increased so that the bending natural frequency increases.
  • the inventive separation of the shaft in at least two pivot pins is advantageous in fast-rotating shafts. This is particularly advantageous in fast-rotating shafts on which high-precision components are mounted and thus a machining of the shaft surface after assembly of the components is no longer possible - This is also advantageous if on the shaft magnetic components, such as motor rotor, are mounted, as these Machining chips was put on. Particularly preferred is the use of the invention in Weueenanordnu ⁇ gen for rotor helms of turbomolecular pumps.
  • the two shaft journals are not connected to each other directly but via a connecting element.
  • a connecting element This has the particular advantage that a separate assembly of components on the connecting element can be performed independently of the mounting of the bearings.
  • the connecting element can be firmly connected to the two shaft journals. This is done for example by gluing, welding, friction welding or via a press fit.
  • the provision of a connecting element also has the advantage that in the assembled state components can be mounted on both sides of the rolling bearing.
  • a rotor of a turbomolecular pump can be arranged on the part of the shaft journal which is arranged outside the rolling bearing, and a motor rotor can be arranged inside the rolling bearing connected to the connecting element.
  • the rotor is mounted on the corresponding shaft journal from the outside and the rolling bearing from the inside, so that the rotor does not have to be pushed over the running surface for the rolling elements.
  • the connecting element connected to the shaft journal in particular plugged.
  • the connecting element is hollow.
  • it is a hollow cylinder, which is preferably attached to the two shaft journals. It is thus possible to combine solid shaft journals with a hollow connecting element. In this way, despite the advantageous provision of solid shaft journal, the weight of the entire shaft can be significantly reduced. A reduction in mass leads Here, too, to increase the Biegeeigertfrequenz, Further, it is possible when providing a hollow connecting element to arrange within the connecting element components, such as a motor rotor.
  • the rolling bearings used may be, for example, deep groove ball bearings or shoulder bearings. Since a precise axial guidance and thus an exact axial bearing clearance is often important, it is advantageous to provide stops on the shaft journal and / or the connecting element in order to ensure an exact assembly of the components. Precise axial guidance is particularly important in rotor shafts for turbomolecular pumps as well, since the position of the rotor connected to the shaft must be very precise with respect to the stator in order to prevent the rotor from starting in the stator.
  • the FIGURE shows a schematic sectional view of a preferred embodiment of a fast rotating shaft, which is in particular a rotor shaft of a turbomolecular pump.
  • two shaft journals 10 are provided.
  • the two shaft journals 10 are each surrounded by a rolling bearing 12.
  • the two roller bearings 12 each have an outer ring 14 and supported by a cage 16 rolling elements 18, which is in the illustrated embodiment, balls.
  • a surface 20 of the shaft journal 10 is in the area of rolling bearings machined and forms a trained in the illustrated embodiment as a groove running surface 22 for the rolling elements 18.
  • the two shaft journals are in the illustrated domesticsbeispie! not directly but via a connecting element 24 connected to each other.
  • the connecting element 24 is formed as a hollow cylinder, so that in a space 26 of the hollow connecting element 24, a component, such as a motor rotor, can be arranged.
  • the hollow connecting element has an inner diameter which corresponds to the outer diameter of the shaft journals 10, so that the shaft journals can be inserted into the connection element 24 for connection to the latter.
  • stops can be provided. These may be provided on the inside of the hollow kausseiements or on the surface 20 of the shaft journals.
  • the rolling bearings 12 are first mounted on the shaft journal 10. Possibly. can be attached to the bearings 12 related to the outer ends of the shaft 10 other components from the outside. Furthermore, the components to be connected to the connecting element 24 can be preassembled. Subsequently, a connection of the two shaft journals 10 takes place with the connecting element 24 by insertion and firm connection, this can be done by gluing, friction welding, by providing a press fit, etc ..

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A shaft arrangement for fast-rotating shafts, such as are used as rotor shafts for turbomolecular pumps in particular, comprises two separate shaft journals (10) that are connected together. A roller bearing (12) is disposed at each of the two shaft journals (10). By separating the shaft into at least two parts, or two shaft journals, it is possible to provide running surfaces (22) for rolling elements (18) of the roller bearings (12) directly on a surface (20) of the shaft journals.

Description

Wellenanordnunq für schnelldrehende Wellen Shaft assembly for fast rotating shafts
Die Erfindung betrifft eine Weüenanordnung für schπelldrehende Wellen, insbesondere Wellen für Vakuumpumpen, wie Turbomolekularpumpen.The invention relates to a Weüenanordnung for schπelldrehende waves, in particular waves for vacuum pumps, such as turbomolecular pumps.
Weilen, wie insbesondere auch mechanisch gelagerte Wellen von Turbomoiekularpumpen, werden üblicherweise über zwei Lagerstellen gelagert. Hierbei können ais Lager Wälzlager verwendet werden. Diese weisen üblicherweise einen Innenring und einen Außenring auf, zwischen dem die Wälzkörper ggf, in einem Käfig angeordnet sind. Die Wälzkörperlager werden nach der Montage von auf der Welle zwischen den beiden Lagern angeordneten Bauteilen auf die Welle aufgesteckt, wobei der Innenring auf der Welle fixiert wird. Handelt es sich bei der Welle um eine Weile einer Turbomolekularpumpe, ist zwischen den beiden Lagern beispielsweise ein Rotor der Pumpe, ein Läufer eines Antriebsmotors etc. angeordnet. Bei schnelldrehenden Wellen, wie sie beispielsweise für Turbomoiekularpumpen konstruiert werden, besteht eine hinsichtlich der Wälzlager kritische Drehzahl, die vom mittleren Durchmesser der Wälzlager abhängig ist. Vereinfacht ausgedruckt ist dieser kritische Drehzahlbereϊch geringer, je größer der Durchmesser des Wälzlagers ist. Hieraus ergibt sich ein D-n-Faktor, wobei D der mittlere Durchmesser des Wälzlagers und n die Drehzahl ist. Bei der Konstruktion schnelidrehender Wellen ist es erstrebenswert, dass der D-n- Faktor möglichst klein ist. Andererseits muss bei der Auslegung und Konstruktion schneildrehender Wellen die Biegeeigenfrequenz berücksichtigt werden, die möglichst groß sein soll. Die Biegeeigenfrequenz hängt insbesondere mit der Steifigkeit der Welle, der Masse der Welle sowie der Masse der mit der Weile verbundenen Bauteile zusammen. Da die Biegeeigenfrequenz möglichst groß sein soll, ist es erstrebenswert, dass auch die Steifigkeit der Welle möglichst groß ist. Die Steifigkeit der Welle kann insbesondere durch die Vergrößerung des Durchmessers erzielt werden. Die beiden bei der Konstruktion und Auslegung einer schnellrotierenden Welle zu berücksichtigenden Ziele einer mögiichst hohen Biegeeigenfrequenz und einem möglichst kleinen D-n-Faktor sind somit einander entgegengesetzte Ziele.Bending, in particular mechanically supported waves of turbomolecular pumps, are usually supported by two bearing points. In this case, bearings can be used as bearing. These usually have an inner ring and an outer ring, between which the rolling bodies if necessary, are arranged in a cage. The rolling element bearings are attached to the shaft after assembly of arranged on the shaft between the two bearings components, wherein the inner ring is fixed on the shaft. If the shaft is a turbomolecular pump for a while, for example a rotor of the pump, a rotor of a drive motor etc. is arranged between the two bearings. In the case of fast-rotating shafts, such as those designed, for example, for turbomolecular pumps, there is a critical speed with regard to the rolling bearings, which depends on the average diameter of the rolling bearings. Expressed in simplified terms, this critical Drehzahlbereϊch is smaller, the larger the diameter of the bearing. This results in a Dn factor, where D is the mean diameter of the bearing and n is the speed. When constructing fast-rotating waves, it is desirable that the Dn factor is as small as possible. On the other hand, in the design and Construction of snow-turning waves the bending natural frequency are taken into account, which should be as large as possible. In particular, the bending natural frequency is related to the rigidity of the shaft, the mass of the shaft and the mass of the components connected to the shaft. Since the bending natural frequency should be as large as possible, it is desirable that the rigidity of the wave is as large as possible. The rigidity of the shaft can be achieved in particular by increasing the diameter. The two goals to be taken into account in the construction and design of a fast-rotating shaft of a very high natural bending frequency and the smallest possible Dn factor are thus opposite goals.
Zur Verringerung des mittleren Lagerdurchmessers D wäre es grundsätzlich möglich, Lager ohne Iπnenring zu verwenden. Bei derartigen Lagern sind die Laufflächen für die Wälzkörper unmittelbar durch die Oberfläche der Welle ausgebildet. Da die Laufflächen eine äußerst glatte Oberfläche mit sehr geringer Rauhtiefe aufweisen müssen, ist eine Feinbearbeitung der Wellenoberfläche zur Ausbildung der Laufflächen unmittelbar vor der Montage der Lager erforderlich. Der bei der Bearbeitung entstehende, sehr feine Abrieb kann sich jedoch an den bereits auf der Welle montierten Bauteilen absetzen bzw. in diese eindringen. Insbesondere bei hochpräzisen Bauteilen, wie Rotoren von Turbomolekularpumpen, kann dies zu Beschädigungen der Pumpe im Betrieb fuhren. Ist beispielsweise auf der Welle ein Motorläufer eines Antriebs montiert, wurde ein Magnet des Motorläufers die feine Metallspäne anziehen, wobei ein Reinigen des Motorläufers von den Spänen nicht bzw. nur mit erheblichem Aufwand möglich wäre. Das Verwenden von Wälzlagern ohne Innenring ist daher bei schnellrotierenden Wellen, insbesondere, wenn auf der Welle hochpräzise, empfindliche Bauteile wie bei Turbomolekularpumpen montiert sind, nicht möglich,To reduce the average bearing diameter D, it would be possible in principle to use bearings without inner ring. In such bearings, the running surfaces for the rolling elements are formed directly by the surface of the shaft. Since the treads must have a very smooth surface with very low surface roughness, a fine machining of the shaft surface to form the treads immediately before mounting the bearings is required. However, the very fine abrasion produced during machining can settle on or penetrate the components already mounted on the shaft. Especially with high-precision components, such as rotors of turbomolecular pumps, this can lead to damage to the pump during operation. For example, if a motor rotor of a drive mounted on the shaft, a magnet of the motor rotor was tighten the fine metal chips, with a cleaning of the motor rotor of the chips would not or only with considerable effort would be possible. The use of rolling bearings without an inner ring is therefore not possible with fast rotating shafts, in particular when highly precise, sensitive components are mounted on the shaft, as in turbomolecular pumps.
Aufgabe der Erfindung ist es, eine Wellenanordnung für schnelldrehende Weilen, insbesondere Rotorwellen einer Turbomoiekularpumpe, zu schaffen, mit der eine Verbesserung der Biegeeigenfrequenz und/ oder des D-n-Faktors möglich ist. Insbesondere soll bei einer möglichst großen Biegeeigenfrequenz ein möglichst kleiner D-n-Faktor erzielt werden,The object of the invention is to provide a shaft arrangement for fast-rotating parts, in particular rotor shafts of a turbomolecular pump, with which an improvement in the bending natural frequency and / or the Dn factor is possible. In particular, the smallest possible Dn factor should be achieved with the greatest possible bending natural frequency,
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.The object is achieved according to the invention by the features of claim 1.
Bei der erfindungsgemäßen Wellenanordnung erfolgt ein Trennen der Welle in mindestens zwei Teile bzw. Wellenzapfen. Je Wellenzapfen ist ein Wälzlager vorgesehen. Hierdurch ist es möglich, Wälzlager ohne Inneπring vorzusehen. Dies ist durch das Trennen der Welle in mindestens zwei Wellenzapfen dadurch erreicht, dass vor der Montage die Laufflächen für die Wälzkörper an der Oberfläche der Wellenzapfen hergestellt werden kann. Die Bearbeitung der empfindlichen Oberflächen der Laufflächen erfolgt somit vor der Montage, Je Wellenzapfen kann nunmehr von der einen Seite das Wälzlager und von der anderen Seite die ggf. auf dem Wellenzapfen anzuordnenden Bauteile montiert werden. Die zu montierenden Bauteile müssen somit nicht über die Lagerfläche auf die Welle aufgeschoben werden, was zu einer Beschädigung der Lagerfläche führen würde. Durch das erfindungsgemäße Trennen der schnelldrehenden Weile in mindestens zwei Wellenzapfen ist es somit möglich, Wälzlager ohne Innenring vorzusehen, da ein Bearbeiten der Laufflächen nach der Montage nicht mehr erforderlich ist. Da bei gleichem Wellendurchmesser Lager ohne Innenring einen geringeren mittleren Durchmesser aufweisen, kann durch die erfindungsgemäße Maßnahme der D-n-Faktor verringert werden. Ebenso kann bei gleichbleibendem D-n-Faktor der Durchmesser der Wellenzapfen vergrößert werden, so dass die Biegeeigenfrequenz steigt.In the shaft arrangement according to the invention, the shaft is separated into at least two parts or shaft journals. Each journal is provided with a rolling bearing. This makes it possible to provide bearings without Inneπring. This is achieved by separating the shaft in at least two shaft journals in that prior to assembly, the running surfaces for the rolling elements can be made on the surface of the shaft journals. The processing of the sensitive surfaces of the treads is thus carried out before assembly, each shaft journal can now be mounted on one side of the roller bearing and from the other side, if necessary, to be arranged on the shaft journal components. The components to be assembled thus need not be pushed over the bearing surface on the shaft, which would lead to damage to the bearing surface. The inventive separation of the fast-rotating while in at least two shaft journals, it is thus possible to provide bearings without inner ring, since editing the treads after assembly is no longer required. Since bearings without an inner ring have a smaller average diameter at the same shaft diameter, the D-n factor can be reduced by the measure according to the invention. Likewise, with a constant D-n factor, the diameter of the shaft journal can be increased so that the bending natural frequency increases.
Die erfindungsgemäße Trennung der Welle in mindestens zwei Weilenzapfen ist bei schnelldrehenden Wellen vorteilhaft. Dies ist insbesondere bei schnelldrehenden Wellen vorteilhaft, auf denen hochpräzise Bauteile montiert werden und somit eine Bearbeitung der Wellenoberfläche nach der Montage der Bauteile nicht mehr möglich ist- Vorteilhaft ist dies auch, wenn auf der Welle magnetische Bauteile, wie Motorläufer, montiert werden, da diese Bearbeitungsspäne anziehen wurde. Besonders bevorzugt ist die Verwendung der Erfindung bei Weüenanordnuπgen für Rotorwelien von Turbomolekularpumpen.The inventive separation of the shaft in at least two pivot pins is advantageous in fast-rotating shafts. This is particularly advantageous in fast-rotating shafts on which high-precision components are mounted and thus a machining of the shaft surface after assembly of the components is no longer possible - This is also advantageous if on the shaft magnetic components, such as motor rotor, are mounted, as these Machining chips was put on. Particularly preferred is the use of the invention in Weueenanordnuπgen for rotor helms of turbomolecular pumps.
Bei einer besonders bevorzugten Ausfύhrungsform sind die beiden Wellenzapfen nicht unmittelbar sondern über ein Verbindungselement miteinander verbunden. Dies hat insbesondere den Vorteil, dass eine gesonderte Montage von Bauteilen auf dem Verbindungselement unabhängig von der Montage der Wälzlager durchgeführt werden kann. Nach erfolgter Montage der Lager auf den beiden Wellenzapfen und der Bauteile auf dem Verbindungselement kann das Verbindungselement mit den beiden Wellenzapfen fest verbunden werden. Dies erfolgt beispielsweise durch Verkleben, Verschweißen, Reibschweißen oder über einen Presssitz. Das Vorsehen eines Verbindungselements hat ferner den Vorteil, dass in montiertem Zustand auf beiden Seiten der Wälzlager Bauteile montiert sein können. So kann beispielsweise auf dem außerhalb des Wälzlagers angeordneten Teil des Wellenzapfens ein Rotor einer Turbomolekularpumpe und innerhalb des Wälzlagers verbunden mit dem Verbindungselement ein Motorläufer angeordnet sein. Hierfür wird auf dem entsprechenden Wellenzapfen von außen der Rotor und von innen das Wälzlager montiert, so das der Rotor nicht über die Lauffläche für die Wälzkörper geschoben werden muss. Nach erfolgter Montage des Lagers kann sodann ebenfalls von innen das Verbindungselement mit dem Wellenzapfen verbunden, insbesondere aufgesteckt werden.In a particularly preferred embodiment, the two shaft journals are not connected to each other directly but via a connecting element. This has the particular advantage that a separate assembly of components on the connecting element can be performed independently of the mounting of the bearings. After mounting the bearings on the two shaft journals and the components on the connecting element, the connecting element can be firmly connected to the two shaft journals. This is done for example by gluing, welding, friction welding or via a press fit. The provision of a connecting element also has the advantage that in the assembled state components can be mounted on both sides of the rolling bearing. Thus, for example, a rotor of a turbomolecular pump can be arranged on the part of the shaft journal which is arranged outside the rolling bearing, and a motor rotor can be arranged inside the rolling bearing connected to the connecting element. For this purpose, the rotor is mounted on the corresponding shaft journal from the outside and the rolling bearing from the inside, so that the rotor does not have to be pushed over the running surface for the rolling elements. After the assembly of the bearing can then also from the inside, the connecting element connected to the shaft journal, in particular plugged.
Bei einer weiteren besonders bevorzugten Ausführungsform der Erfindung ist das Verbindungselement hohl ausgebildet. Insbesondere handelt es sich um einen Hohlzylinder, der vorzugsweise auf die beiden Wellenzapfen aufgesteckt wird. Es ist somit möglich, massiv ausgebildete Wellenzapfen mit einem hohl ausgebildeten Verbindungselement zu kombinieren, Hierdurch kann trotz des vorteilhaften Vorsehens von massiven Wellenzapfen das Gewicht der gesamten Welle deutlich reduziert werden. Eine Reduzierung der Masse führt hierbei ebenfalls zur Erhöhung der Biegeeigertfrequenz, Ferner ist es beim Vorsehen eines hohlen Verbindungselements möglich, innerhalb des Verbindungselements Bauteile, wie beispielsweise einen Motorläufer, anzuordnen.In a further particularly preferred embodiment of the invention, the connecting element is hollow. In particular, it is a hollow cylinder, which is preferably attached to the two shaft journals. It is thus possible to combine solid shaft journals with a hollow connecting element. In this way, despite the advantageous provision of solid shaft journal, the weight of the entire shaft can be significantly reduced. A reduction in mass leads Here, too, to increase the Biegeeigertfrequenz, Further, it is possible when providing a hollow connecting element to arrange within the connecting element components, such as a motor rotor.
Bei den verwendeten Wälzlagern kann es sich beispielsweise um Rillenkugellager oder Schulterlager handeln. Da häufig eine genaue axiale Führung und somit ein exakter axialer Lagerabstand wichtig ist, ist es vorteilhaft, an den Wellenzapfen und/ oder dem Verbindungselement Anschläge vorzusehen, um eine exakte Montage der Bauteile zu gewährleisten. Eine exakte axiale Führung ist insbesondere auch bei Rotorwellen für Turbomolekularpumpen wichtig, da die Lage des mit der Welle verbundenen Rotors hinsichtlich des Stators sehr präzise sein muss, um ein Anlaufen des Rotors in dem Stator zu verhindern.The rolling bearings used may be, for example, deep groove ball bearings or shoulder bearings. Since a precise axial guidance and thus an exact axial bearing clearance is often important, it is advantageous to provide stops on the shaft journal and / or the connecting element in order to ensure an exact assembly of the components. Precise axial guidance is particularly important in rotor shafts for turbomolecular pumps as well, since the position of the rotor connected to the shaft must be very precise with respect to the stator in order to prevent the rotor from starting in the stator.
Die Lauffläche der Lager weist beispielsweise bei der Verwendung von Rillenkugellagern eine geringe Rauhigkeit von insbesondere weniger als Ra=0,06 μm.The running surface of the bearings, for example, when using deep groove ball bearings, has a low roughness, in particular less than Ra = 0.06 μm.
Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung näher erläutert.The invention will be explained in more detail with reference to a preferred embodiment with reference to the accompanying drawings.
Die Fig. zeigt eine schematische Schnittansicht einer bevorzugten Ausführungsform einer schnellrotierenden Welle, bei der es sich insbesondere um eine Rotorwelle einer Turbomolekularpumpe handelt.The FIGURE shows a schematic sectional view of a preferred embodiment of a fast rotating shaft, which is in particular a rotor shaft of a turbomolecular pump.
In dem dargestellten bevorzugten Ausführungsbeispiel einer Wellenanordnung sind zwei Wellenzapfen 10 vorgesehen. Die beiden Wellenzapfen 10 sind jeweils von einem Wälzlager 12 umgeben. Die beiden Wälzlager 12 weisen jeweils einen Außenring 14 und von einem Käfig 16 getragene Wälzkörper 18 auf, bei denen es sich im dargestellten Ausführungsbeispiel um Kugeln handelt. Eine Oberfläche 20 der Wellenzapfen 10 ist im Bereich der Wälzlager bearbeitet und bildet eine, im dargestellten Ausfuhrungsbeispiel als Rille ausgebildete Lauffläche 22 für die Wälzkörper 18 aus.In the illustrated preferred embodiment of a shaft assembly, two shaft journals 10 are provided. The two shaft journals 10 are each surrounded by a rolling bearing 12. The two roller bearings 12 each have an outer ring 14 and supported by a cage 16 rolling elements 18, which is in the illustrated embodiment, balls. A surface 20 of the shaft journal 10 is in the area of rolling bearings machined and forms a trained in the illustrated embodiment as a groove running surface 22 for the rolling elements 18.
Die beiden Wellenzapfen sind im dargestellten Ausführungsbeispie! nicht unmittelbar sondern über ein Verbindungselement 24 miteinander verbunden. Im dargestellten Ausführungsbeispie! ist das Verbindungselement 24 als Hohlzylinder ausgebildet, so dass in einem Innenraum 26 des hohlen Verbindungselements 24 ein Bauteil, wie ein Motorläufer, angeordnet werden kann. Das hohle Verbindungselement weist einen Innendurchmesser auf, der dem Außendurchmesser der Wellenzapfen 10 entspricht, so dass die Wellenzapfen zur Verbindung mit dem Verbindungselement 24 in dieses eingesteckt werden können. Um einen definierten axialen Abstand der beiden Lager 12 zu gewährleisten können Anschläge vorgesehen sein. Diese können an der Innenseite des hohlen Verbindungseiements oder an der Oberfläche 20 der Wellenzapfen vorgesehen sein.The two shaft journals are in the illustrated Ausführungsbeispie! not directly but via a connecting element 24 connected to each other. In the illustrated Ausführungsbeispie! the connecting element 24 is formed as a hollow cylinder, so that in a space 26 of the hollow connecting element 24, a component, such as a motor rotor, can be arranged. The hollow connecting element has an inner diameter which corresponds to the outer diameter of the shaft journals 10, so that the shaft journals can be inserted into the connection element 24 for connection to the latter. In order to ensure a defined axial distance of the two bearings 12 stops can be provided. These may be provided on the inside of the hollow Verbindungsseiements or on the surface 20 of the shaft journals.
Zur Montage werden die Wälzlager 12 zunächst auf den Wellenzapfen 10 montiert. Ggf. können auf den auf die Lager 12 bezogenen äußeren Enden der Wellenzapfen 10 weitere Bauteile von außen aufgesteckt werden. Des Weiteren können die mit dem Verbindungselement 24 zu verbindenden Bauteile vormontiert werden. Anschließend erfolgt ein Verbinden der beiden Wellenzapfen 10 mit dem Verbindungselement 24 durch Einstecken und festes Verbinden, Dies kann durch Einkleben, Reibschweißen, durch Vorsehen einer Presspasse etc, erfolgen. For mounting, the rolling bearings 12 are first mounted on the shaft journal 10. Possibly. can be attached to the bearings 12 related to the outer ends of the shaft 10 other components from the outside. Furthermore, the components to be connected to the connecting element 24 can be preassembled. Subsequently, a connection of the two shaft journals 10 takes place with the connecting element 24 by insertion and firm connection, this can be done by gluing, friction welding, by providing a press fit, etc ..

Claims

1 —Patentansprüche 1 patent claims
1. Welienanordnung für schnelldrehende Weilen, insbesondere Rotorweilen von Turbornolekuiarpumpen, mit1. Welienanordnung for fast-moving parts, in particular rotors of turbomolecular pumps, with
einer zwei gesonderte, miteinander verbundene Wellenzapfen (10) aufweisenden Welle (10, 24), unda two separate, interconnected shaft journal (10) having shaft (10, 24), and
einem Wälzlager (12) je Weilenzapfen (10),a roller bearing (12) per journals (10),
wobei die inneren Laufflächen (22) für Wälzkörper (18) der Wälzlager (10) durch Oberflächen (20) der Wälzzapfen (10) ausgebildet sind.wherein the inner raceways (22) for rolling elements (18) of the roller bearings (10) are formed by surfaces (20) of the Wälzapfen (10).
2. Wellenanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Weilenzapfen (10) über ein Verbindungselement (24) miteinander verbunden sein.2. Shaft arrangement according to claim 1, characterized in that the pivot pins (10) via a connecting element (24) to be interconnected.
3. Wellenanordnung nach Anspruch 2, dadurch gekennzeichnet, dass das Verbindungselement (24) hohl ist, insbesondere als Hohlzylinder ausgebildet ist.3. shaft assembly according to claim 2, characterized in that the connecting element (24) is hollow, in particular designed as a hollow cylinder.
4. Weilenanordnung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das Verbindungselement (24) mit einem Antriebselement, insbesondere einem Motorläufer, verbunden ist, der vorzugsweise innerhalb des hohien Verbindungselements (24) angeordnet ist.4. Weileranordnung according to claim 2 or 3, characterized in that the connecting element (24) is connected to a drive element, in particular a motor rotor, which is preferably arranged within the hohien connecting element (24).
5. Wellenanordnung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das Verbindungseiement (24) insbesondere nach erfolgter Montage fest mit den beiden Wellenzapfen (10) verbunden ist5. Shaft arrangement according to one of claims 2 to 4, characterized in that the Verbindungseiement (24) in particular after the assembly is firmly connected to the two shaft journals (10)
6. Weüenanordnung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die beiden Weilenzapfen (10) und/ oder das Verbindungselement (24) zur Festlegung des axialen Lagerabstands einen Anschlag aufweisen,6. Weüenanordnung according to one of claims 2 to 5, characterized in that the two journals (10) and / or the Connecting element (24) for fixing the axial bearing distance have a stop,
7. Wellenanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Wälzlager (12) Rillenkugellager sind.7. Shaft arrangement according to one of claims 1 to 6, characterized in that the rolling bearing (12) are deep groove ball bearings.
8. Wellenaπordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Laufflächen (22) eine geringe Rauhigkeit von insbesondere weniger als Ra = 0,06 μm.8. Wellenaπordnung according to one of claims 1 to 7, characterized in that the running surfaces (22) has a low roughness of in particular less than Ra = 0.06 microns.
9. Wellenanordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mit mindestens einem der Wellenzapfen (10) und/ oder dem VerbindungseSement (24) ein Rotorelement einer Vakuumpumpe, insbesondere einer Turbomolekularpumpe, verbunden ist. 9. Shaft arrangement according to one of claims 1 to 8, characterized in that at least one of the shaft journals (10) and / or the VerbindungseSement (24), a rotor element of a vacuum pump, in particular a turbomolecular pump is connected.
EP09769135A 2008-06-27 2009-06-15 Shaft arrangement for fast-rotating shafts Withdrawn EP2300719A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008030583A DE102008030583A1 (en) 2008-06-27 2008-06-27 Shaft assembly for fast rotating shafts
PCT/EP2009/057343 WO2009156286A1 (en) 2008-06-27 2009-06-15 Shaft arrangement for fast-rotating shafts

Publications (1)

Publication Number Publication Date
EP2300719A1 true EP2300719A1 (en) 2011-03-30

Family

ID=40940510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09769135A Withdrawn EP2300719A1 (en) 2008-06-27 2009-06-15 Shaft arrangement for fast-rotating shafts

Country Status (5)

Country Link
EP (1) EP2300719A1 (en)
JP (1) JP2011525589A (en)
CN (1) CN102066762A (en)
DE (1) DE102008030583A1 (en)
WO (1) WO2009156286A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200774A1 (en) * 2012-01-20 2013-07-25 Aktiebolaget Skf Rolling bearing unit e.g. rolling element in wind power plant, has component which is provided in region of immediate surroundings to generate magnetic field that causes attraction of iron with force that is greater than weight of iron
BR112016002592B1 (en) 2013-08-06 2022-06-14 Volvo Truck Corporation HYBRID POWER SYSTEM IN A VEHICLE, METHOD FOR OPERATING A HYBRID POWER SYSTEM IN A VEHICLE, AND VEHICLE COMPRISING HYBRID POWER SYSTEM
GB2539901A (en) * 2015-06-29 2017-01-04 Gm Global Tech Operations Llc A shaft assembly for an internal combustion engine
FR3041830B1 (en) * 2015-09-24 2019-04-26 Aktiebolaget Skf ELECTROMECHANICAL VERIN
CN106678058A (en) * 2017-02-22 2017-05-17 上海优耐特斯压缩机有限公司 Superspeed rotor structure of high-speed motor direct-driven turbine machine
CN107299907A (en) * 2017-06-26 2017-10-27 袁芳革 High pressure difference blower device
DE102017212817A1 (en) * 2017-07-26 2019-01-31 Robert Bosch Gmbh Shaft, centrifugal compressor and method of manufacturing a centrifugal compressor
CN111923081A (en) * 2020-09-22 2020-11-13 佛山市鼎吉包装技术有限公司 Double-cylinder push-pull driving device for driving clamping jaw at tail end of mechanical arm to rotate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994213A (en) * 1960-04-06 1961-08-01 Nylo Flex Products Company Flexible coupling
BE789908A (en) * 1972-02-29 1973-02-01 Federal Mogul Corp BEARING FOR HIGH SPEEDS EQUIPPED WITH A SEALING DEVICE SENSITIVE TO AIR PRESSURE
DE2853742A1 (en) * 1978-12-13 1980-10-02 Leybold Heraeus Gmbh & Co Kg Turbo-molecular vacuum pump with two=part rotor spindle - has solid lubricant ejected from spindle interior towards top and bottom bearings
DE3039196A1 (en) * 1980-10-17 1982-05-13 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR ASSEMBLING A SINGLE-FLOW TURBOMOLECULAR VACUUM PUMP AND ASSEMBLED TURBOMOLECULAR VACUUM PUMP BY THIS METHOD
DE3101596C2 (en) * 1981-01-20 1983-01-05 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Method for assembling a bearing for a shaft held on a housing
IN171161B (en) * 1987-05-08 1992-08-08 Rieter Ag Maschf
DE3865229D1 (en) * 1987-05-08 1991-11-07 Rieter Ag Maschf ROTATIONAL BEARING FOR HIGH SPEED.
DE69224905T2 (en) * 1992-10-06 1998-09-17 Minebea K K Double row ball bearing
IT1285864B1 (en) * 1996-05-09 1998-06-24 Varian Spa REVOLVING SUPPORT GROUP FOR VACUUM PUMP ROTATOR.
GB0229352D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement and method of operating same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009156286A1 *

Also Published As

Publication number Publication date
CN102066762A (en) 2011-05-18
DE102008030583A1 (en) 2009-12-31
JP2011525589A (en) 2011-09-22
WO2009156286A1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
WO2009156286A1 (en) Shaft arrangement for fast-rotating shafts
DE102005007297B4 (en) Fluid dynamic air bearing system for pivotal mounting of an engine
DE10060638B4 (en) wheel bearing unit
DE102007025202A1 (en) Storage facility
EP3762624B1 (en) Turbocharger with a hydrodynamic slide bearing, or bearing arrangement with a hydrodynamic slide bearing
DE102019125397A1 (en) Transmission and motor vehicle with transmission
DE102015009167A1 (en) Conical fluid dynamic bearing system
EP1354135B1 (en) Miniature precision bearings for minisystems or microsystems and method for assembling such systems
DE102019115487A1 (en) Hydrodynamic side plate for the stator of torque converters
DE102011016888A1 (en) Fluid-dynamic bearing system of hard disk drive assembly, comprises sealing gap that is limited by seal faces of bearing portions and rotor component, and groove formed in transition region between bearing gap and sealing gap
DE102018130706A1 (en) Exhaust gas turbocharger with a hydrodynamic plain bearing or hydrodynamic plain bearing
DE102012202365A1 (en) Mounting arrangement for pressing rolling bearing inner ring on conical bearing seat surface of shaft, has push plate engaged with inner ring, and bonnet wing nut whose ball screw thread shoots share same axis of rotation with wing nut
DE102009043590A1 (en) Fluid dynamic bearing system of low height and spindle motor with such a storage system
EP2891764B1 (en) Displacement pump and method for supporting a displacer of a displacement pump relative to a housing
DE10247668A1 (en) Vacuum pump, for braking force intensification systems in motor vehicles comprises a rotor which is made of a plastic material hardenable by heat
DE102018119719A1 (en) Fluid dynamic storage system
DE212018000250U1 (en) Rotor for an electric machine
DE102009022997B4 (en) Spindle motor with fluid dynamic bearing system and fixed shaft
DE202004003695U1 (en) Hydrodynamic bearing system for pivotal mounting of a spindle motor
WO2014023519A1 (en) Vacuum pump
DE102021104649A1 (en) Steering actuator for rear axle steering and method of assembling a steering actuator
EP2705265B1 (en) Bearing ring for a radial rolling bearing, in particular for a cylindrical roller bearing or needle bearing
DE102019106426A1 (en) Motor shaft bearing for an electric motor
WO2020064272A1 (en) Rotor tube for an electric machine of a vehicle
DE102015013919B4 (en) Fluid dynamic bearing system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105