EP2300365A2 - Method for modifying expanded graphite and use of the modified expanded graphite - Google Patents

Method for modifying expanded graphite and use of the modified expanded graphite

Info

Publication number
EP2300365A2
EP2300365A2 EP09776887A EP09776887A EP2300365A2 EP 2300365 A2 EP2300365 A2 EP 2300365A2 EP 09776887 A EP09776887 A EP 09776887A EP 09776887 A EP09776887 A EP 09776887A EP 2300365 A2 EP2300365 A2 EP 2300365A2
Authority
EP
European Patent Office
Prior art keywords
expanded graphite
process gas
plasma
modified
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09776887A
Other languages
German (de)
French (fr)
Inventor
Reinhard Mach
Heinz-Eberhard Maneck
Asmus Meyer-Plath
Franz Oleszak
Martin Christ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAM BUNDESANSTALT FUER MATERIALFORSCHUNG UND -PRUE
Original Assignee
SGL Carbon SE
Bundesanstalt fuer Materialforschung und Pruefung BAM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE, Bundesanstalt fuer Materialforschung und Pruefung BAM filed Critical SGL Carbon SE
Publication of EP2300365A2 publication Critical patent/EP2300365A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • B01D2255/702Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers

Definitions

  • the invention relates to a method for producing surface-modified expanded graphite and to uses of this surface-modified expanded graphite.
  • Expanded graphites are generally well wetted with nonpolar media such as oil (US 005282975A), but not with polar media such as water.
  • polar media such as water.
  • responsible for the poor wettability of expanded graphite with polar media is the absence of polar chemical surface groups.
  • DE-C-66804 discloses the production of expanded graphitic particles having a worm-like structuring by the thermal decomposition of a graphite particle.
  • the oxygen groups generated in an acid intercalation under oxidative conditions are largely destroyed by the thermal treatment leading to expansion.
  • the functional groups can be obtained by lowering the expansion temperature in the production of expanded graphite from graphite salt. However, the degree of expansion is reduced, which is undesirable for many applications.
  • the process according to the invention produces functional surface groups on expanded graphite with a plasma chemical vapor phase process. It has surprisingly been found that even a few atomic percent of plasma-generated functional groups on expanded graphite are sufficient to significantly alter the interaction of the expanded graphite with polar media.
  • An advantage of the method according to the invention is that the type and the surface density of plasma-chemically generated functional surface groups on expanded graphites can be varied within a very wide range. Not only oxygen functionalities but also numerous other functional groups, e.g. nitrogen-containing, halogen-containing or phosphorus-containing groups are generated. This can lead to the improvement of the infiltrability of expanded graphites with different, preferably polar, media. Oxygen-functional groups generated in a plasma-mixed manner have a high long-term stability.
  • expanded graphite can be used for numerous applications.
  • the surface of the expanded graphite is modified in a suitably selected process by means of a process gas in the presence of a plasma by the incorporation of chemical groups.
  • the plasma-chemically generated surface groups change the chemical and physisorptive properties of the surface of the expanded graphite.
  • the plasma serves as a source of high-energy species, such as rotatory, vibratory and / or electronically excited molecules or radicals, electronically excited atoms or ions of the surrounding gas atmosphere, as well as electrons and photons. Unless this species is sufficiently Enthalpy, they activate chemical bonds of the graphite, so that it can lead to bond breaks and the formation of reaction products with species of the process gas, which allows the formation of chemical groups on the surface of the expanded graphite. Their chemical composition influences the wettability of the plasma-chemically modified expanded graphite.
  • the transfer of energy from an energy source to the atoms or molecules of a suitably selected process gas and the graphite surface may be by ions, electrons, electrons or electromagnetic fields including radiation.
  • the excitation of a gas to a plasma in a very large pressure range in particular from 0.1 to 500,000 Pa, preferably in the low pressure range of 1 to 100 Pa or in the high pressure range of 50,000 to 150,000 Pa, and in the normal pressure range by a DC gas discharge or AC gas discharge, a high-energy electromagnetic radiation field, such as, for example, generates a microwave source or a laser, or, alternatively, an electron or ion source can be realized.
  • the plasma can be operated continuously or discontinuously.
  • the neutral gas component can, depending on the type of excitation of the plasma, cold, i. in the range below about 700 K, as in the case of a low temperature plasma, or hot, i. in the range above about 700 K, as in the case of a thermal plasma.
  • Expanded graphite produced by thermal expansion having an initial oxygen content of 1.2% oxygen atoms per carbon atom (O / C) of the graphite surface, was sintered at 25 Pa in a microwave-fed oxygen plasma at 300 W for 100 s, 150 s, 200 s and 250 s, respectively Performance treated.
  • Tablets having a density of 0.12 g / ml and 0.06 g / ml were prepared by compaction from the expanded graphite modified from Example 1 and from the starting material by compaction. These were placed on a water surface for 5 minutes. Subsequently, the weight gain was determined and compared. The result shown in FIG. 2 shows a correlation between the weight increase of the pellets caused by a water absorption and the oxygen content on the surface of the expanded graphite.
  • Tablets having a density of 0.08 g / ml were produced by compaction from the expanded graphite modified in Example 3 and from the starting material by compaction. These were placed on the surface of the liquid monomer (2-hydroxyethyl) methacrylate for 5 minutes. Subsequently, the weight gain was determined and compared. The monomer uptake of the modified material tablet was 50% greater than that of the starting material tablet. Higher monomer absorption results in organic composites with lower residual porosity.
  • Tablets having a density of 0.08 g / ml were produced by compression from the expanded graphite modified in Example 3 and from the starting material by compression. These were stored for 16 hours in a steam atmosphere, as they are at Room temperature in a partially filled with water, closed container sets. Subsequently, the weight gain of the tablets was determined and compared. It was found that the tablets of modified expanded graphite compared to the tablets from the starting material showed a by a factor of 2.5 increased weight gain by water vapor sorption.

Abstract

The invention relates to a method for modifying expanded graphite, wherein the surface thereof is brought into contact with a plasma-activated process gas in such a way that the gas forms with the carbon atoms of the graphite stable reaction products in the form of chemical groups covalently bound to the graphite so that the chemical and physisorptive properties of the expanded graphite are modified.

Description

Verfahren zur Modifizierung von expandiertem Graphit und Verwendung des modifizierten expandierten Process for modifying expanded graphite and using the modified expanded
Graphitsgraphite
Die Erfindung betrifft ein Verfahren zur Erzeugung von oberflächenmodifiziertem expandierten Graphit sowie Verwendungen dieses oberflächenmodifizierten expandierten Graphits .The invention relates to a method for producing surface-modified expanded graphite and to uses of this surface-modified expanded graphite.
Expandierte Graphite sind im Allgemeinen gut mit unpolaren Medien wie beispielsweise Öl benetzbar (US 005282975A) , mit polaren Medien, wie beispielsweise Wasser, hingegen nicht. Verantwortlich für die schlechte Benetzbarkeit von expandiertem Graphit mit polaren Medien ist die Abwesenheit polarer chemischer Oberflächengruppen .Expanded graphites are generally well wetted with nonpolar media such as oil (US 005282975A), but not with polar media such as water. Responsible for the poor wettability of expanded graphite with polar media is the absence of polar chemical surface groups.
Durch DE-C-66804 ist die Herstellung geblähter, eine wurmförmige Strukturierung aufweisender Graphitparti- kel durch die thermische Zersetzung einer Graphitein- lagerungsverbindung bekannt, wie sie beispielsweise durch Einwirkung konzentrierter Schwefelsäure oder eines Gemischs aus Salpetersäure und Schwefelsäure auf Naturgraphitpartikel erhalten wird. Die bei einer unter oxidativen Bedingungen erfolgenden Säureinter- kalation erzeugten Sauerstoffgruppen werden durch die zur Expansion führende thermische Behandlung zum großen Teil zerstört. Die funktionellen Gruppen können erhalten werden, indem die Expansionstemperatur bei der Herstellung von expandiertem Graphit aus Graphitsalz abgesenkt wird. Dabei wird jedoch der Expansionsgrad vermindert, was für viele Anwendungen nicht wünschenswert ist.DE-C-66804 discloses the production of expanded graphitic particles having a worm-like structuring by the thermal decomposition of a graphite particle. Storage compound known, for example, as obtained by the action of concentrated sulfuric acid or a mixture of nitric acid and sulfuric acid on natural graphite particles. The oxygen groups generated in an acid intercalation under oxidative conditions are largely destroyed by the thermal treatment leading to expansion. The functional groups can be obtained by lowering the expansion temperature in the production of expanded graphite from graphite salt. However, the degree of expansion is reduced, which is undesirable for many applications.
Andere bekannte Verfahren zur Erzeugung von Sauerstofffunktionen auf Graphit sind die thermischen Oxi- dationsverfahren, die in vielen Fällen jedoch nicht zu langzeitstabilen Sauerstofffunktionen führen.Other known processes for producing oxygen functions on graphite are the thermal oxidation processes, which in many cases do not lead to long-term stable oxygen functions.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Erzeugung funktioneller Oberflächengruppen auf expandiertem Graphit anzugeben, das geeignet ist, benetzungsfordernde Oberflächenfunktio- nalisierungen zu erzeugen.It is therefore the object of the present invention to provide a process for producing functional surface groups on expanded graphite which is suitable for generating wetting-requiring surface functionalizations.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen dieses Verfahrens sowie Verwendungen dieses Materials ergeben sich aus den Unteransprüchen.This object is achieved by a method having the features of claim 1. Advantageous developments of this method and uses of this material will become apparent from the dependent claims.
Das erfindungsgemäße Verfahren erzeugt funktionelle Oberflächengruppen auf expandiertem Graphit mit einem plasmachemischen Gasphasenprozess . Es wurde überraschend gefunden, dass bereits wenige Atomprozent plasmaerzeugter funktioneller Gruppen auf expandiertem Graphit ausreichend sind, um die Wechselwirkung des expandierten Graphits mit polaren Medien signifikant zu verändern.The process according to the invention produces functional surface groups on expanded graphite with a plasma chemical vapor phase process. It has surprisingly been found that even a few atomic percent of plasma-generated functional groups on expanded graphite are sufficient to significantly alter the interaction of the expanded graphite with polar media.
Ein Vorteil des erfindungsgemäßen Verfahrens ist, dass die Art und die Oberflächendichte plasmachemisch erzeugter funktioneller Oberflächengruppen auf expan- dierten Graphiten in einem sehr weiten Bereich variiert werden kann. Es können nicht allein Sauerstoff - funktionalitäten sondern auch zahlreiche andere funktionelle Gruppen, wie z.B. stickstoffhaltige, halogenhaltige oder phosphorhaltige Gruppen, erzeugt wer- den. Dies kann zur Verbesserung der Infiltrierbarkeit expandierter Graphite mit verschiedenen, vorzugsweise polaren Medien führen. Plasmachemisch erzeugte sauerstofffunktioneile Gruppen weisen eine hohe Langzeit - Stabilität auf.An advantage of the method according to the invention is that the type and the surface density of plasma-chemically generated functional surface groups on expanded graphites can be varied within a very wide range. Not only oxygen functionalities but also numerous other functional groups, e.g. nitrogen-containing, halogen-containing or phosphorus-containing groups are generated. This can lead to the improvement of the infiltrability of expanded graphites with different, preferably polar, media. Oxygen-functional groups generated in a plasma-mixed manner have a high long-term stability.
Dadurch wird expandierter Graphit für zahlreiche Anwendungen einsetzbar.As a result, expanded graphite can be used for numerous applications.
Bei dem vorliegenden Verfahren wird die Oberfläche des expandierten Graphits in einem geeignet gewählten Prozess mit Hilfe eines Prozessgases in Gegenwart eines Plasmas durch den Einbau chemischer Gruppen modifiziert. Die plasmachemisch erzeugten Oberflächengruppen verändern die chemischen und physisorptiven Eigenschaften der Oberfläche des expandierten Graphits. Das Plasma dient dabei als Quelle von hochenergetischen Spezies, wie z.B. rotatorisch, vibrato- risch und/oder elektronisch angeregten Molekülen oder Radikalen, elektronisch angeregten Atomen oder Ionen der umgebenden Gasatmosphäre sowie Elektronen und Photonen. Sofern diese Spezies über hinreichend Enthalpie verfügen, aktivieren sie chemische Bindungen des Graphits, so dass es zu Bindungsbrüchen und der Bildung von Reaktionsprodukten mit Spezies des Prozessgases kommen kann, die die Bildung chemischer Gruppen auf der Oberfläche des expandierten Graphits ermöglicht. Deren chemische Zusammensetzung beein- flusst die Benetzbarkeit des plasmachemisch modifizierten expandierten Graphits.In the present method, the surface of the expanded graphite is modified in a suitably selected process by means of a process gas in the presence of a plasma by the incorporation of chemical groups. The plasma-chemically generated surface groups change the chemical and physisorptive properties of the surface of the expanded graphite. The plasma serves as a source of high-energy species, such as rotatory, vibratory and / or electronically excited molecules or radicals, electronically excited atoms or ions of the surrounding gas atmosphere, as well as electrons and photons. Unless this species is sufficiently Enthalpy, they activate chemical bonds of the graphite, so that it can lead to bond breaks and the formation of reaction products with species of the process gas, which allows the formation of chemical groups on the surface of the expanded graphite. Their chemical composition influences the wettability of the plasma-chemically modified expanded graphite.
Die Energieübertragung von einer Energiequelle auf die Atome oder Moleküle eines geeignet gewählten Prozessgases und die Graphitoberfläche kann durch Ionen, Elektronen, elektrische oder elektromagnetische Felder einschließlich Strahlung erfolgen. Technisch kann die Anregung eines Gases zu einem Plasma in einem sehr großen Druckbereich, insbesondere von 0,1 bis 500000 Pa, vorzugsweise im Niederdruckbereich von 1 bis 100 Pa oder im Hochdruckbereich von 50000 bis 150000 Pa, sowie im Normaldruckbereich durch eine Gleichstrom-Gasentladung oder Wechselstrom-Gasentladung, ein energiereiches elektromagnetisches Strahlungsfeld, wie es beispielsweise eine Mikrowellenquelle oder ein Laser erzeugt, oder, alternativ, eine Elektronen- oder Ionenquelle realisiert werden. Dabei kann das Plasma kontinuierlich oder diskontinuierlich betrieben werden. Die Neutralgaskomponente kann, je nach Anregungsart des Plasmas, kalt, d.h. im Bereich unterhalb von etwa 700 K, wie im Falle eines Niedertemperaturplasmas, oder heiß, d.h. im Bereich ober- halb von etwa 700 K, wie im Falle eines thermischen Plasmas, sein.The transfer of energy from an energy source to the atoms or molecules of a suitably selected process gas and the graphite surface may be by ions, electrons, electrons or electromagnetic fields including radiation. Technically, the excitation of a gas to a plasma in a very large pressure range, in particular from 0.1 to 500,000 Pa, preferably in the low pressure range of 1 to 100 Pa or in the high pressure range of 50,000 to 150,000 Pa, and in the normal pressure range by a DC gas discharge or AC gas discharge, a high-energy electromagnetic radiation field, such as, for example, generates a microwave source or a laser, or, alternatively, an electron or ion source can be realized. In this case, the plasma can be operated continuously or discontinuously. The neutral gas component can, depending on the type of excitation of the plasma, cold, i. in the range below about 700 K, as in the case of a low temperature plasma, or hot, i. in the range above about 700 K, as in the case of a thermal plasma.
Im Folgenden wird die Erfindung anhand von mehreren Beispielen in Verbindung mit den beigefügten Fign. 1 bis 3 erläutert. Beispiel 1In the following, the invention will be described by way of several examples in conjunction with the attached FIGS. 1 to 3 explained. example 1
Durch thermische Expansion hergestellter expandierter Graphit mit einem Ausgangs-Sauerstoffgehalt von 1,2 % Sauerstoffatomen pro Kohlenstoffatome (O/C) der Graphitoberfläche wurde bei 25 Pa in einem mikrowellengespeisten Sauerstoffplasma jeweils für 100 s, 150 s, 200 s und 250 s mit 300 W Leistung behandelt. Das modifizierte Material wies gemäß röntgenphotoelektro- nenspektroskopischer Analyse (XPS) folgenden Einbau von Sauerstoffgruppen in die Graphitoberfläche auf: 0/C = 4,5 % nach 100 s, O/C = 5,6 % nach 150 s, O/C = 6,6 % nach 200 s bzw. O/C = 8,2 % nach 250 s, siehe auch Fig. 1.Expanded graphite produced by thermal expansion, having an initial oxygen content of 1.2% oxygen atoms per carbon atom (O / C) of the graphite surface, was sintered at 25 Pa in a microwave-fed oxygen plasma at 300 W for 100 s, 150 s, 200 s and 250 s, respectively Performance treated. According to the X-ray photoelectron spectroscopic analysis (XPS), the modified material had the following incorporation of oxygen groups into the graphite surface: 0 / C = 4.5% after 100 s, O / C = 5.6% after 150 s, O / C = 6 , 6% after 200 s and O / C = 8.2% after 250 s, see also FIG. 1.
Beispiel 2Example 2
Aus dem in Beispiel 1 modifizierten expandierten Graphit sowie aus dem Ausgangsmaterial wurden durch Ver- dichten Tabletten mit einer Dichte von 0,12 g/ml und 0,06 g/ml gefertigt. Diese wurden für 5 Minuten auf eine Wasseroberfläche gelegt. Anschließend wurde die Gewichtzunähme bestimmt und verglichen. Das in Fig. 2 dargestellt Ergebnis zeigt eine Korrelation zwischen der durch eine Wasseraufnahme verursachten Gewichtszunahme der Presslinge und dem Sauerstoffgehalt auf der Oberfläche des expandierten Graphits.Tablets having a density of 0.12 g / ml and 0.06 g / ml were prepared by compaction from the expanded graphite modified from Example 1 and from the starting material by compaction. These were placed on a water surface for 5 minutes. Subsequently, the weight gain was determined and compared. The result shown in FIG. 2 shows a correlation between the weight increase of the pellets caused by a water absorption and the oxygen content on the surface of the expanded graphite.
Beispiel 3Example 3
Durch thermische Expansion hergestellter expandierter Graphit mit einem Ausgangs-Sauerstoffgehalt von 1,2 % Sauerstoffatomen pro Kohlenstoffatome der Graphitoberfläche wurde bei 25 Pa in einem radiowellenge- speisten Sauerstoffplasma während 900 s mit 600 WExpanded graphite produced by thermal expansion, with an initial oxygen content of 1.2% oxygen atoms per carbon atom of the graphite surface, was oxidized at 25 Pa in a radiowave-fed oxygen plasma for 900 s at 600 W
Leistung behandelt. Das Plasma führte gemäß röntgen- photoelektronenspektroskopischer Analyse (XPS) zum Einbau von im Mittel 6 Sauerstoffatoraen pro 100 Kohlenstoffatomen der Graphitoberfläche. Aus dem modifizierten expandierten Graphit sowie aus dem Ausgangs - material wurden durch Verdichten jeweils Tabletten mit einer Dichte von 0,08 g/ml gefertigt. Diese wurden für 5 Minuten auf die Oberfläche verschiedener Testflüssigkeiten gelegt. Anschließend wurde die Gewichtzunahme bestimmt und verglichen. Die in Fig. 3 dargestellten Ergebnisse zeigen für die Tabletten aus modifiziertem expandiertem Graphit aufgrund von Flüssigkeitsaufnahme eine deutlich erhöhte Gewichtszunahme, die mit dem polaren Anteil der Oberflächenenergie der Flüssigkeit zunimmt.Performance treated. The plasma led according to X-ray Photoelectron spectroscopic analysis (XPS) for the incorporation of an average of 6 oxygenatoras per 100 carbon atoms of the graphite surface. From the modified expanded graphite as well as from the starting material, tablets with a density of 0.08 g / ml were produced by compaction. These were placed on the surface of various test liquids for 5 minutes. Subsequently, the weight gain was determined and compared. The results shown in Figure 3 show a significantly increased weight gain for the modified expanded graphite tablets due to fluid uptake, which increases with the polar portion of the surface energy of the fluid.
Beispiel 4Example 4
Aus dem in Beispiel 3 modifizierten expandierten Graphit sowie aus dem Ausgangsmaterial wurden durch Ver- dichten jeweils Tabletten mit einer Dichte von 0,08 g/ml gefertigt. Diese wurden für 5 Minuten auf die Oberfläche des flüssigen Monomers (2-Hydroxyethyl) me- thacrylat gelegt. Anschließend wurde die Gewichtzunahme bestimmt und verglichen. Die Monmeraufnähme der Tablette aus modifiziertem Material lag 50% über der der Tablette aus dem Ausgangsmaterial . Eine höhere Monomeraufnähme führt zu organischen Komposit- werkstoffen mit geringerer Restporosität.Tablets having a density of 0.08 g / ml were produced by compaction from the expanded graphite modified in Example 3 and from the starting material by compaction. These were placed on the surface of the liquid monomer (2-hydroxyethyl) methacrylate for 5 minutes. Subsequently, the weight gain was determined and compared. The monomer uptake of the modified material tablet was 50% greater than that of the starting material tablet. Higher monomer absorption results in organic composites with lower residual porosity.
Beispiel 5Example 5
Aus dem in Beispiel 3 modifizierten expandierten Graphit sowie aus dem Ausgangsmaterial wurden durch Verdichten jeweils Tabletten mit einer Dichte von 0,08 g/ml gefertigt. Diese wurden für 16 Stunden in einer Wasserdampfatmosphäre gelagert, wie sie sich bei Raumtemperatur in einem teilweise mit Wasser gefüllten, geschlossenen Behälter einstellt. Anschließend wurde die Gewichtzunahme der Tabletten bestimmt und verglichen. Dabei wurde gefunden, dass die Tabletten aus modifiziertem expandiertem Graphit gegenüber den Tabletten aus dem Ausgangsmaterial eine um den Faktor 2,5 erhöhte Gewichtszunahme durch Wasserdampfsorption zeigten. Tablets having a density of 0.08 g / ml were produced by compression from the expanded graphite modified in Example 3 and from the starting material by compression. These were stored for 16 hours in a steam atmosphere, as they are at Room temperature in a partially filled with water, closed container sets. Subsequently, the weight gain of the tablets was determined and compared. It was found that the tablets of modified expanded graphite compared to the tablets from the starting material showed a by a factor of 2.5 increased weight gain by water vapor sorption.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von oberflächenmodifiziertem expandierten Graphit, d a d u r c h g e k e n n z e i c h n e t , dass der expandierte Graphit mit einem plasmaak- tivierten Prozessgas in Kontakt gebracht wird, wodurch die Oberfläche des expandierten Graphits durch den Einbau von chemischen Gruppen hinsichtlich seiner chemischen und physisorptiven Eigenschaften modifiziert wird. 1. A method of making surface modified expanded graphite, wherein the expanded graphite is contacted with a plasma activated process gas whereby the surface of the expanded graphite is modified by the incorporation of chemical groups with respect to its chemical and physisorptive properties.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgas ein oxidierendes Gas verwendet wird.2. The method according to claim 1, characterized in that an oxidizing gas is used as the process gas.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgas ein reduzierendes Gas verwendet wird.3. The method according to claim 1, characterized in that a reducing gas is used as the process gas.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgas ein halogenhaltiges Gas verwendet wird.4. The method according to claim 1, characterized in that a halogen-containing gas is used as the process gas.
5. Verfahren nach Anspruch 1, dadurch gekennzeich- net, dass als Prozessgas Gase ausgewählt aus der5. The method according to claim 1, characterized marked, that as the process gas gases selected from the
Gruppe der Stickstoff-, Silizium-, Phosphor- und/oder schwefelhaltigen Gasen verwendet werden.Group of nitrogen, silicon, phosphorus and / or sulfur-containing gases are used.
6. Verfahren nach Anspruch 1, dadurch gekennzeich- net, dass als Prozessgas ein Edel- und/oder I- nertgas verwendet wird. 6. The method according to claim 1, characterized marked, that is used as the process gas, a noble and / or I nertgas.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgas eine Mischung der aus mindestens zwei der Ansprüche 2 bis 6 genannten Prozessgase verwendet wird.7. The method according to claim 1, characterized in that a mixture of at least two of the claims 2 to 6 process gases is used as the process gas.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die eingebauten chemischen Gruppen polare und/oder reaktive Oberflächengruppen sind.8. The method according to any one of claims 1 to 7, characterized in that the incorporated chemical groups are polar and / or reactive surface groups.
9. Verfahren nach einem der Ansprüche 1 bis 8, da- durch gekennzeichnet, dass das Prozessgas durch ein elektrostatisches Feld plasmaaktiviert wird.9. The method according to any one of claims 1 to 8, character- ized in that the process gas is plasma activated by an electrostatic field.
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Prozessgas durch ein elektromagnetisches Wechselfeld plasmaakti- viert wird.10. The method according to any one of claims 1 to 8, characterized in that the process gas is plasma activated by an electromagnetic alternating field.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Plasma mit elektromagnetischen Anregungsfrequenzen im Niederfrequenzbereich bis 10 kHz erzeugt wird. 11. The method according to claim 10, characterized in that the plasma is generated with electromagnetic excitation frequencies in the low frequency range up to 10 kHz.
12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Plasma mit elektromagnetischen Anregungsfrequenzen im Radiofrequenzbereich zwischen 10 kHz und 300 MHz erzeugt wird.12. The method according to claim 10, characterized in that the plasma is generated with electromagnetic excitation frequencies in the radio frequency range between 10 kHz and 300 MHz.
13. Verfahren nach Anspruch 10, dadurch gekennzeich- net, dass das Plasma mit elektromagnetischen Anregungsfrequenzen im Mikrowellenbereich zwischen 300 MHz und 300 GHz e4rzeugt wird.13. Method according to claim 10, characterized in that the plasma is generated with electromagnetic excitation frequencies in the microwave range between 300 MHz and 300 GHz.
14. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Plasma mit elektromagnetischen An- regungsfrequenzen im Bereich oberhalb von 300 GHz, vorzugsweise durch Laserstrahlung, erzeugt wird .14. The method according to claim 10, characterized in that the plasma with electromagnetic excitation frequencies in the range above 300 GHz, preferably by laser radiation is generated.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Prozessgas durch einen Elektronen- oder durch einen Ionenstrahl plasmaaktiviert wird.15. The method according to any one of claims 1 to 14, characterized in that the process gas is plasma activated by an electron beam or by an ion beam.
16. Verwendung des nach einem der Ansprüche 1 bis 15 hergestellten, oberflächenmodifizierten expandierten Graphits als Filtermaterial.16. Use of the surface-modified expanded graphite produced according to any one of claims 1 to 15 as a filter material.
17. Verwendung des nach einem der Ansprüche 1 bis 15 hergestellten, oberflächenmodifizierten expandierten Graphits als Katalysatorträger.17. Use of the surface-modified expanded graphite prepared according to any one of claims 1 to 15 as a catalyst support.
18. Verwendung des nach einem der Ansprüche 1 bis 15 hergestellten, oberflächenmodifizierten expan- dierten Graphits für Physi- oder Chemisorptions- vorgänge .18. Use of the surface-modified expanded graphite prepared according to one of claims 1 to 15 for physical or chemisorption processes.
19. Verwendung des nach einem der Ansprüche 1 bis 15 hergestellten, oberflächenmodifizierten expandierten Graphits in Kompositwerkstoffen, bei de- nen das Material in einen organischen Werkstoff eingebracht wurde .19. Use of the surface-modified expanded graphite prepared according to one of claims 1 to 15 in composite materials, in which the material was introduced into an organic material.
20. Verwendung des nach einem der Ansprüche 1 bis 15 hergestellten, oberflächenmodifizierten expandierten Graphits in Kompositwerkstoffen, bei de- nen das Material in einen anorganischen Werkstoff eingebracht wurde. 20. Use of the surface-modified expanded graphite prepared according to one of claims 1 to 15 in composite materials in which the material has been introduced into an inorganic material.
EP09776887A 2008-07-11 2009-06-25 Method for modifying expanded graphite and use of the modified expanded graphite Withdrawn EP2300365A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008033280A DE102008033280A1 (en) 2008-07-11 2008-07-11 Process for modifying expanded graphite and using the modified expanded graphite
PCT/EP2009/004708 WO2010003571A2 (en) 2008-07-11 2009-06-25 Method for modifying expanded graphite and use of the modified expanded graphite

Publications (1)

Publication Number Publication Date
EP2300365A2 true EP2300365A2 (en) 2011-03-30

Family

ID=41202301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09776887A Withdrawn EP2300365A2 (en) 2008-07-11 2009-06-25 Method for modifying expanded graphite and use of the modified expanded graphite

Country Status (3)

Country Link
EP (1) EP2300365A2 (en)
DE (1) DE102008033280A1 (en)
WO (1) WO2010003571A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397094A (en) * 2016-10-27 2017-02-15 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) Method for modifying catalyst carriers by plasmas at low temperatures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510311B1 (en) * 2010-08-27 2013-02-15 Sunpor Kunststoff Gmbh FLAME-PROTECTED, HEAT-DAMPING POLYMERISATES AND METHOD FOR THE PRODUCTION THEREOF
CN108031233A (en) * 2017-12-13 2018-05-15 滁州兄弟科技有限公司 A kind of preparation method of nitrogen oxides waste gas disposal composite adsorbing material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138990A1 (en) * 2007-05-16 2008-11-20 Sgl Carbon Ag Method for producing a latent heat storage material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE66804C (en) Dr. phil. W. luzi in Leipzig, Hospitalstr. 18 Process for processing graphite
JPH01122911A (en) * 1987-11-07 1989-05-16 Nippon Steel Corp Production of graphite material having hardened surface
SU1657473A1 (en) * 1988-07-11 1991-06-23 Институт элементоорганических соединений им.А.Н.Несмеянова Method of producing thermally expanded graphite
US5282975A (en) 1989-12-25 1994-02-01 Technion Research And Development Foundation Ltd. Removal of oil from water
FR2715082B1 (en) * 1994-01-19 1996-02-23 Elf Aquitaine Process for producing an active composite and active composite produced from this process.
DE4432865A1 (en) * 1994-09-15 1996-03-21 Plasmachem Produktions Und Han Highly oriented pyro:graphite
CA2286212A1 (en) * 1998-02-06 1999-08-12 Nisshinbo Industries Inc. Fuel cell separator and process for producing the same
RU2184086C1 (en) * 2001-04-02 2002-06-27 Петрик Виктор Иванович Method of removing crude oil, petroleum products and/or chemical pollutant from liquid and/or gas, and/or from surface
JP4422439B2 (en) * 2003-06-30 2010-02-24 Tdk株式会社 Carbon material for electrode and manufacturing method thereof, battery electrode and manufacturing method thereof, and battery and manufacturing method thereof
CN100490970C (en) * 2005-10-24 2009-05-27 南开大学 Expanded graphite supporting NiB amorphous alloy catalyst, its preparation method and application
US7985722B2 (en) 2006-07-27 2011-07-26 Aurora Advanced Beauty Labs Rhamnolipid-based formulations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138990A1 (en) * 2007-05-16 2008-11-20 Sgl Carbon Ag Method for producing a latent heat storage material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010003571A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397094A (en) * 2016-10-27 2017-02-15 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) Method for modifying catalyst carriers by plasmas at low temperatures

Also Published As

Publication number Publication date
DE102008033280A1 (en) 2010-01-14
WO2010003571A2 (en) 2010-01-14
WO2010003571A3 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
DE102007053652A1 (en) Expanded graphite and process for its preparation
EP0655516B1 (en) Method of coating or surface treatment of solid particles by use of plasma and fluidized bed
DE2741427C2 (en) Process for the production of improved calcium carbonate particles and their use as a filler
EP1095907B1 (en) Process for the plasma-catalytic preparation of ammonia
DE102009049379A1 (en) Composite materials with graphene layers and their preparation and use
KR20090124051A (en) Continuous method and apparatus of functionalizing carbon nanotube
EP1901995A2 (en) Carbon nanoparticles, production and use thereof
EP2297386A2 (en) A highly efficient gas phase method for modification and functionalization of carbon nanofibres with nitric acid vapour
WO2010040335A2 (en) Adsorber element and method for producing an adsorber element
EP2300365A2 (en) Method for modifying expanded graphite and use of the modified expanded graphite
EP1051266A1 (en) Polar polymeric coating
EP1652816A1 (en) Method for producing oxidised graphite
DE102012024329B4 (en) Process for producing reduced graphene oxide and reduced graphene oxide produced therewith and use thereof
DE102006015591B3 (en) Organic material with a catalytically coated surface and process for its production
DE102005038554A1 (en) Process for the preparation of spherical activated carbon
DE102011000662A1 (en) Process for the preparation of graphene nanolayers
DE2304731A1 (en) METHOD FOR MANUFACTURING SINTER CARBIDES AND THE PRODUCTS OBTAINED THEREOF
EP3248939A1 (en) Organofunctional silica particle, method for preparing same and their use
EP2387456B1 (en) Method for modifying the surface of particles and device suitable for the same
DE102015116546A1 (en) Photocatalytic filter for decomposition of mixed gas and manufacturing process therefor
DE2528374C3 (en) Process for the regeneration of used polytetrafluoroethylene
DE102008056968A1 (en) Method for depositing a nanocomposite layer on a substrate by means of chemical vapor deposition
EP2366730B1 (en) Method for chemical modification of the polymer surface of a particulate solid
WO2023102584A1 (en) Process for producing nanoflakes from g-c3n4/metal composite material
WO2022112377A1 (en) Plurality of particles having coating and method for the production thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110110

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120402

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAM BUNDESANSTALT FUER MATERIALFORSCHUNG UND -PRUE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20140313