EP2242931B1 - Structure d'écoulement pour turbocompresseur - Google Patents

Structure d'écoulement pour turbocompresseur Download PDF

Info

Publication number
EP2242931B1
EP2242931B1 EP09711862.4A EP09711862A EP2242931B1 EP 2242931 B1 EP2242931 B1 EP 2242931B1 EP 09711862 A EP09711862 A EP 09711862A EP 2242931 B1 EP2242931 B1 EP 2242931B1
Authority
EP
European Patent Office
Prior art keywords
chambers
annular chamber
circulation structure
axial direction
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09711862.4A
Other languages
German (de)
English (en)
Other versions
EP2242931A1 (fr
Inventor
Giovanni Brignole
Carsten Zscherp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP2242931A1 publication Critical patent/EP2242931A1/fr
Application granted granted Critical
Publication of EP2242931B1 publication Critical patent/EP2242931B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the invention relates to a circulation structure for a turbocompressor according to the preamble of claim 1.
  • a circulation structure is for example from US 6,290,458 known.
  • the invention relates to a turbocompressor and an aircraft engine and a stationary gas turbine.
  • Circulation structures or recirculation structures for turbocompressors are known in the form of so-called “Casing Treatments” and “Hub Treatments.”
  • the "Casing Treatments” and “Hub Treatments” circulation structures have the primary task, the aerodynamically stable operating range of the compressor by optimizing the surge margin An optimized surge margin allows for higher compressor pressures and thus a higher compressor load.
  • the faults responsible for a local stall and ultimately compressor surge occur on the housing-side ends of the blades of one or more compressor stages or on the hub-side radially inner ends of the compressor Since the aerodynamic load in the compressor is highest in these areas, circulation structures stabilize the flow in the area of the blade ends
  • the housing-side ends of the blades are referred to as "Casing Treatments”.
  • Rotor-side circulation structures in the area of the hub-side ends of the guide vanes are referred to as "hub treatments”.
  • the DE 29 24 336 A1 describes a blade tip shroud structure for a gas turbine engine compression stage that includes a circumferentially extending recess in the wall of a housing that surrounds the tips of the blades, with axially tapered grooves and circumferentially extending grooves forming surface discontinuities at the bottom of the recess.
  • a plurality of first recesses are provided in the direction of a fluid pressure gradient on an inner flow surface and second recesses are provided in the circumferential direction for communicating the first recesses in the circumferential direction.
  • the present invention based on the problem to provide a novel circulation structure for a turbocompressor.
  • a plurality of axially permeable chambers are positioned, wherein a radial recess is formed to the main flow channel in the region of the axially permeable chambers.
  • the circulation structure according to the invention therefore combines axially permeable chambers, which have no peripheral connection, with at least one annular chamber, which can be flowed through in the circumferential direction, wherein the or each annular chamber is positioned in the main flow direction downstream of the axially permeable chamber without circumferential connection.
  • a forming recirculation flow uses high-loss fluid to influence the inflow of rotor-side assemblies, the geometric properties of the axially permeable chambers without circumferential connection produce a counter-rotation. Further Strömungsversperrungs whatsoever be relocated in the annular chambers with peripheral connection.
  • the circulation structure according to the invention ensures very low losses due to its simplicity. Loss-producing, three-dimensional flow phenomena can be effectively inhibited. This can have positive effects on the operating stability of the turbocompressor at partial load and full load with an overall positive change in the efficiency, especially at full load, coupled.
  • the simplicity of the circulation structure is associated with low production costs.
  • the invention relates to a circulation structure for a turbocompressor, in particular for a compressor of a gas turbine, which can be designed as a "casing treatment” or as a "stroke treatment.”
  • a circulation structure for a turbocompressor in particular for a compressor of a gas turbine, which can be designed as a "casing treatment” or as a "stroke treatment.”
  • the invention will be described below with reference to FIG Fig. 1 to 19 described on a trained as a "Casing Treatment” circulation structure, which is introduced into a stator-side housing which defines a main flow channel of the turbo compressor radially outward and connects to free blade ends of blades of a rotor-side blade ring.
  • circulation structure according to the invention can also be used analogously as a "stroke treatment", wherein the same is then introduced into a rotor-side hub which radially inwardly delimits the main flow channel of the turbocompressor and adjoins free blade ends of stator vanes of a stator vane ring.
  • Fig. 1 to 4 show different views of a "Casing Treatment" trained, housing-side circulation structure 20, which in stator-side housing 21 of a compressor of a gas turbine is introduced, according to an example that facilitates the understanding of the invention.
  • the housing 21 defines radially outwardly a main flow channel 22, wherein in the main flow channel 22 rotor-side blades 23 of a blade ring 24 rotate. Radially inside the main flow channel 22 is bounded by a hub 25 of the rotor.
  • the circulation structure 20 includes a circumferentially permeable annular chamber 26 disposed concentric with an axis of the compressor in the region of free blade ends of the blades 23 of the blade ring 24.
  • the annular chamber 26 adjoins radially to the main flow channel 22.
  • the annular chamber 26 allows a flow in the circumferential direction and therefore has a peripheral connection.
  • the annular chamber 26 is formed as a circumferential groove, wherein 26 may be positioned to guide the flow within the annular chamber.
  • the annular chamber 26 extends in the axial direction completely in the region of the free blade ends of the blades 23 of the blade ring 24.
  • the axial extent of the annular chamber 26 is in accordance with Fig. 2 characterized by the parameter b.
  • the radial extent of the annular chamber 26 is characterized by the parameter t.
  • An edge of the annular chamber 26 positioned upstream as viewed in the main flow direction is according to FIG Fig. 4 by ek and a downstream positioned edge of the annular chamber 26 indicated by ak.
  • a plurality of axially permeable chambers 27 are positioned.
  • the chambers 27 which can be flowed through in the axial direction are in the form of slots or axial grooves and are not connected to one another in the circumferential direction; the chambers 27 which can be flowed through in the axial direction therefore have no peripheral connection.
  • An upstream edge of the chambers 27 positioned in the main flow direction of the main flow passage 22 is shown in FIG Fig. 4 labeled vk
  • a downstream edge of the chambers 27 seen in the main flow direction of the main flow passage 22 is in FIG Fig. 4 marked with hk.
  • a suction-side edge of the chambers 27 is in Fig. 4 with sk and a pressure-sided edge marked dk, where 3 and 4 a suction side 28 and a pressure side 29 of a blade 23 of the blade ring 24 show.
  • the chambers 27, which can be flowed through in the axial direction, are positioned in sections in the region of the free blade ends of the rotor blades 24 of the rotor blade ring 24 viewed in the axial direction. So shows Fig. 2 with the parameter o, the portion of the axially permeable chambers 27, which extends in the region of the free blade ends of the blades 23 and thus overlaps the blade ring 24.
  • the parameter v shows the portion of the axially permeable chambers 27, which extends completely upstream of the blade ring 24.
  • Fig. 2 illustrates with the parameter h, the radial extent or depth of the traversable in the axial direction brackets 27.
  • a subsequent to the upstream edge vk contour of the chambers 27 is according to Fig. 2 slanted by the angle ⁇ relative to the radially outer contour of the main flow channel 22.
  • a contour of the chambers 27 adjoining the downstream edge hk is inclined at an angle ⁇ with respect to the radially outer contouring of the main flow channel 22. Furthermore, according to Fig. 3 the axially permeable chambers 27 are inclined relative to the radial direction by the angle ⁇ . Viewed in the circumferential direction, the chambers 27, which can be flowed through in the axial direction, have the width c, wherein immediately adjacent chambers 27 have the spacing s in the circumferential direction.
  • Connections or mouth openings 30 of the chambers 27 which can be flowed through in the axial direction into the main flow channel 22 are axially spaced or axially separated from a connection or mouth opening 31 of the annular chamber 26, according to FIG Fig. 2 the axial distance between these mouth openings 30 and 31 is characterized by the parameter a.
  • edges ak and ek of the annular chamber 26 as well as the edges vk, hk, dk and sk of the chambers 27 which can be flowed through in the axial direction and thus the entry surfaces thereof can be described by any curves or splines.
  • Edge surfaces of the annular chamber 26 adjoining these edges and of the chambers 27 which can be flowed through in the axial direction can be defined by generic Nurbs surfaces.
  • the geometry of each individual chamber 27 may differ from the other chambers 27. This applies in particular to the inclination angle ⁇ of the chambers 27, the circumferential distance s of the chambers 27 and the circumferential width c of the chambers 27.
  • Fig. 1 to 4 are at the edges ak and ek of the annular chamber 26 and at the edges vk, hk, dk and sk of the chambers 27 adjacent edge surfaces or outer surfaces generated by rotation of continuously differentiable curves.
  • edge surfaces or outer surfaces of a Polyline in Fig. 6 from a straight line and circle segments and in Fig. 7 generated by simple geometric shapes, such as an ellipse and a rectangle.
  • FIG. 8 shows an embodiment of the invention with a contouring of the housing 21 to form a radial recess to the main flow channel 22 in the region of the axially permeable chambers 27th
  • the parameters ⁇ , ⁇ , h, t and b can assume any value.
  • the parameters o, v and a can assume an arbitrary value, the parameters o and v having to assume a value of greater than zero, in particular in order to ensure an overlap of the axially flow-through chambers 27 with the free blade ends of the rotor blades 24 of the rotor blade ring 24.
  • a pre-stretching of the chambers 27 which can be flowed through in the axial direction can thereby be realized upstream of an inlet edge of the reed blades 23.
  • the parameter a must assume a value greater than zero.
  • Fig. 1 to 4 extend the edges sk and dk of the axially permeable chambers 27 straight in the axial direction of the turbocompressor.
  • Fig. 9 to 15 a different contouring of the suction-side edges sk and the pressure-side edges dk of the chambers 27 which can be flowed through in the axial direction.
  • edges sk and dk of the axially permeable chambers 27 are inclined relative to the axial direction.
  • the edges sk and dk of the axially permeable chambers 27 are bent in the circumferential direction, wherein Fig. 15 the edges sk and dk of the chambers 27 in the region of the downstream edge hk extend approximately tangentially to the suction side and pressure side of the rotor blades 23.
  • Fig. 16 shows an embodiment of the invention with two annular chambers 26, both seen in the main flow direction of the flow channel 22, are positioned downstream of the axially permeable chambers 27.
  • Fig. 17 shows an embodiment of the invention in which the axially permeable chambers 27 are connected to the downstream thereof positioned annular chamber 26 via discrete connections 33. These discrete connections 33 can be actively closed and opened via corresponding control elements so as to set an active regulation of a flow passage between the annular chamber 26 and the chambers 27 which can be flowed through in the axial direction.
  • Fig. 18 shows an embodiment of the invention in which the downstream edge ak of the annular chamber 26 discrete projections 34 so as to increase the axial extent of the mouth opening 31 of the annular chamber 26 in sections.
  • Fig. 19 shows Fig. 19 a contouring of an edge surface or lateral surface nw of the annular chamber 26 with discrete radial projections 35 which reduce the radial extent t of the annular chamber 26 in sections.
  • the invention can also be used when the turbocompressor has a tandem rotor with two directly successive blade rings and / or two directly successive guide blade rings.
  • the circulation structure according to the invention is used in turbocompressors, in particular compressors of a gas turbine designed as an aircraft engine or a stationary gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (13)

  1. Structure d'écoulement pour un turbocompresseur, notamment pour un compresseur d'une turbine à gaz comprenant au moins une chambre annulaire (26) pouvant être traversée par le fluide dans une direction circonférentielle, qui est disposée de manière concentrique par rapport un axe du turbocompresseur dans la zone des extrémités libres des aubes d'une couronne d'aubes (24) et qui est radialement adjacente un canal d'écoulement principal (22), vu de la direction d'un écoulement principal du canal d'écoulement principal (22), plusieurs chambres (27) pouvant être traversées par le fluide dans une direction axiale étant positionnées en amont de la ou de chaque chambre annulaire (26), caractérisé en ce qu'une échancrure radiale vers le canal d'écoulement principal (22) est façonnée dans la section de la chambre (27) pouvant être traversée par le fluide en direction axiale.
  2. Structure d'écoulement selon la revendication 1, caractérisée en ce que les chambres (27) positionnées en amont de la ou de chaque chambre annulaire (26) sont façonnées en tant qu'interstice ou rainures axiales qui ne sont pas reliées entre elles en direction circonférentielle,
  3. Structure d'écoulement selon la revendication 1 ou 2, caractérisée en ce que la ou chaque chambre annulaire (26) est façonnée en tant que rainure circonférentielle, des éléments de conduite étant préférablement positionnés dans au moins une chambre annulaire.
  4. Structure d'écoulement selon l'une des revendications 1 à 3, caractérisée en ce que les connexions ou embouchures (30) des chambres (27) pouvant être traversées par le fluide en direction axiale dans le canal d'écoulement principal (22) sont écartées axialement et ainsi séparées par une connexion ou une embouchure (31) de la ou de chaque chambre annulaire (26) dans le canal d'écoulement principal.
  5. Structure d'écoulement selon l'une des revendications 1 à 4, caractérisée en ce que les chambres (27) pouvant être traversées par le fluide en direction axiale sont séparées de sorte à ce qu'aucune connexion n'existe entre les chambres (27) pouvant être traversées par le fluide en direction axiale et la chambre annulaire (26) positionnée en aval des chambres (27).
  6. Structure d'écoulement selon l'une des revendications 1 à 4, caractérisée en ce que les chambres (27) pouvant être traversées par le fluide en direction axiale sont connectées à la chambre annulaire (26) positionnée en aval des chambres (27) par l'intermédiaire de connexions discrètes (33).
  7. Structure d'écoulement selon l'une des revendications 6, caractérisée en ce que les connexions discrètes (33) peuvent être fermées et ouvertes activement via les éléments de commande.
  8. Structure d'écoulement selon l'une des revendications 1 à 7, caractérisée en ce que les chambres (27) pouvant être traversées par le fluide en direction axiale, vues en direction axiale, s'étendent par sections dans la zone des extrémités libres des aubes d'une couronne d'aubes (24).
  9. Structure d'écoulement selon l'une des revendications 1 à 8, caractérisée en ce que les chambres (27) pouvant être traversées par le fluide en direction axiale, vues en direction d'écoulement principal du canal d'écoulement principal (22), sont avancées en amont des bords d'entrée des aubes de la couronne d'aubes (24).
  10. Structure d'écoulement selon l'une des revendications 1 à 9, caractérisée en ce que les chambres (27) pouvant être traversées par le fluide en direction axiale, vues en direction d'écoulement principal du canal d'écoulement principal (22), sont avancées en amont des bords d'entrée des aubes de la couronne d'aubes (24).
  11. Turbocompresseur doté d'au moins une structure d'écoulement selon une ou plusieurs des revendications 1 à 10.
  12. Réacteur d'avion doté d'un turbocompresseur selon la revendication 11.
  13. Turbine à gaz stationnaire dotée d'un turbocompresseur selon la revendication 11.
EP09711862.4A 2008-02-21 2009-02-19 Structure d'écoulement pour turbocompresseur Active EP2242931B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008010283A DE102008010283A1 (de) 2008-02-21 2008-02-21 Zirkulationsstruktur für einen Turboverdichter
PCT/DE2009/000230 WO2009103278A1 (fr) 2008-02-21 2009-02-19 Structure d'écoulement pour turbocompresseur

Publications (2)

Publication Number Publication Date
EP2242931A1 EP2242931A1 (fr) 2010-10-27
EP2242931B1 true EP2242931B1 (fr) 2016-11-02

Family

ID=40673507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09711862.4A Active EP2242931B1 (fr) 2008-02-21 2009-02-19 Structure d'écoulement pour turbocompresseur

Country Status (6)

Country Link
US (1) US8915699B2 (fr)
EP (1) EP2242931B1 (fr)
CN (1) CN101946094A (fr)
CA (1) CA2716417A1 (fr)
DE (1) DE102008010283A1 (fr)
WO (1) WO2009103278A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929349B1 (fr) * 2008-03-28 2010-04-16 Snecma Carter pour roue a aubes mobiles de turbomachine
US8678740B2 (en) * 2011-02-07 2014-03-25 United Technologies Corporation Turbomachine flow path having circumferentially varying outer periphery
FR2989742B1 (fr) * 2012-04-19 2014-05-09 Snecma Carter de compresseur a cavites a forme amont optimisee
CN102817873B (zh) * 2012-08-10 2015-07-15 势加透博(北京)科技有限公司 航空发动机压气机的梯状间隙结构
US10240471B2 (en) * 2013-03-12 2019-03-26 United Technologies Corporation Serrated outer surface for vortex initiation within the compressor stage of a gas turbine
EP2818724B1 (fr) 2013-06-27 2020-09-23 MTU Aero Engines GmbH Turbomachine et procédé
JP6111912B2 (ja) * 2013-07-10 2017-04-12 ダイキン工業株式会社 ターボ圧縮機及びターボ冷凍機
DE102013216392A1 (de) 2013-08-19 2015-02-19 MTU Aero Engines AG Vorrichtung und Verfahren zur Regelung der Temperatur eines Bauteils einer Strömungsmaschine
EP2927503B1 (fr) * 2014-04-03 2023-05-17 MTU Aero Engines AG Compresseur de turbine à gaz, moteur d'avion et méthode de dimensionnement
CN105298923B (zh) * 2014-06-17 2018-01-02 中国科学院工程热物理研究所 压气机前缝后槽式机匣处理扩稳装置
US20160153465A1 (en) * 2014-12-01 2016-06-02 General Electric Company Axial compressor endwall treatment for controlling leakage flow therein
WO2016093811A1 (fr) * 2014-12-10 2016-06-16 General Electric Company Traitement de paroi d'extrémité de compresseur ayant un profil incurvé
US10047620B2 (en) 2014-12-16 2018-08-14 General Electric Company Circumferentially varying axial compressor endwall treatment for controlling leakage flow therein
US9926806B2 (en) 2015-01-16 2018-03-27 United Technologies Corporation Turbomachine flow path having circumferentially varying outer periphery
US10294862B2 (en) 2015-11-23 2019-05-21 Rolls-Royce Corporation Turbine engine flow path
CA2955646A1 (fr) 2016-01-19 2017-07-19 Pratt & Whitney Canada Corp. Boitier d'aube de rotor de turbine a gaz
EP3375984A1 (fr) 2017-03-17 2018-09-19 MTU Aero Engines GmbH Dispositif de circulation pour une turbomachine, procédé de fabrication d'un dispositif de circulation et turbomachine
DE102018116062A1 (de) 2018-07-03 2020-01-09 Rolls-Royce Deutschland Ltd & Co Kg Strukturbaugruppe für einen Verdichter einer Strömungsmaschine
US10914318B2 (en) * 2019-01-10 2021-02-09 General Electric Company Engine casing treatment for reducing circumferentially variable distortion
JP2021124069A (ja) * 2020-02-06 2021-08-30 三菱重工業株式会社 コンプレッサハウジング、該コンプレッサハウジングを備えるコンプレッサ、および該コンプレッサを備えるターボチャージャ
DE102020203966A1 (de) 2020-03-26 2021-09-30 MTU Aero Engines AG Verdichter für eine Gasturbine und Gasturbine
FR3109959B1 (fr) * 2020-05-06 2022-04-22 Safran Helicopter Engines Compresseur de turbomachine comportant une paroi fixe pourvue d’un traitement de forme
CN113107903B (zh) * 2021-05-06 2022-11-29 西北工业大学 一种对转压气机可周向偏转的自循环机匣处理装置
US20230151825A1 (en) * 2021-11-17 2023-05-18 Pratt & Whitney Canada Corp. Compressor shroud with swept grooves
CN114857086A (zh) * 2022-04-20 2022-08-05 新奥能源动力科技(上海)有限公司 一种轴流压气机及燃气轮机
US11970985B1 (en) 2023-08-16 2024-04-30 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with pivoting vanes for a fan of a gas turbine engine
US11965528B1 (en) 2023-08-16 2024-04-23 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with circumferential movable closure for a fan of a gas turbine engine
US12018621B1 (en) 2023-08-16 2024-06-25 Rolls-Royce North American Technologies Inc. Adjustable depth tip treatment with rotatable ring with pockets for a fan of a gas turbine engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1329480A (en) * 1918-08-01 1920-02-03 Earl H Sherbondy Turbo-compressor mounting
US4239452A (en) * 1978-06-26 1980-12-16 United Technologies Corporation Blade tip shroud for a compression stage of a gas turbine engine
US5984625A (en) * 1996-10-15 1999-11-16 California Institute Of Technology Actuator bandwidth and rate limit reduction for control of compressor rotating stall
US6231301B1 (en) * 1998-12-10 2001-05-15 United Technologies Corporation Casing treatment for a fluid compressor
US6527509B2 (en) * 1999-04-26 2003-03-04 Hitachi, Ltd. Turbo machines
US6290458B1 (en) * 1999-09-20 2001-09-18 Hitachi, Ltd. Turbo machines
CN1190597C (zh) * 2000-03-20 2005-02-23 株式会社日立制作所 涡轮式泵送装置
US6585479B2 (en) * 2001-08-14 2003-07-01 United Technologies Corporation Casing treatment for compressors
DE50306028D1 (de) * 2002-02-28 2007-02-01 Mtu Aero Engines Gmbh Rezirkulationsstruktur für turboverdichter
DE10330084B4 (de) 2002-08-23 2010-06-10 Mtu Aero Engines Gmbh Rezirkulationsstruktur für Turboverdichter
CN100406683C (zh) * 2002-08-23 2008-07-30 Mtu飞机发动机有限公司 用于涡轮压缩机的再循环结构
GB2418956B (en) * 2003-11-25 2006-07-05 Rolls Royce Plc A compressor having casing treatment slots
DE102004055439A1 (de) * 2004-11-17 2006-05-24 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit dynamischer Strömungsbeeinflussung
GB0600532D0 (en) * 2006-01-12 2006-02-22 Rolls Royce Plc A blade and rotor arrangement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2716417A1 (fr) 2009-08-27
WO2009103278A1 (fr) 2009-08-27
CN101946094A (zh) 2011-01-12
US20100329852A1 (en) 2010-12-30
US8915699B2 (en) 2014-12-23
DE102008010283A1 (de) 2009-08-27
EP2242931A1 (fr) 2010-10-27

Similar Documents

Publication Publication Date Title
EP2242931B1 (fr) Structure d'écoulement pour turbocompresseur
EP1530670B1 (fr) Structure de recirculation d'un turbocompresseur
EP1478828B1 (fr) Structure de recirculation de turbocompresseurs
EP2696029B1 (fr) Grille d'aube avec définition de contour de la paroi latérale et turbomachine
EP2993357B1 (fr) Étage de compresseur radial
EP2096260A2 (fr) Turbomachine comprenant des ensembles rotor ayant un faible angle de déviation du fluide en sortie
DE10330084B4 (de) Rezirkulationsstruktur für Turboverdichter
EP1614863A1 (fr) Structure de fluide d'un turbocompresseur
CH710476B1 (de) Verdichter mit einer Axialverdichterendwandeinrichtung zur Steuerung der Leckageströmung in dieser.
EP2725194A1 (fr) Aube de rotor d'une turbine à gaz
EP1621733A2 (fr) Dispositif d'écoulement pour turbine à gaz
EP1723339A1 (fr) Compresseur d'une turbine a gaz ainsi que turbine a gaz
EP3682092B1 (fr) Turbine à gaz d'échappement avec diffuseur
DE102007050916A1 (de) Verfahren und Vorrichtung zum Zusammenbau von Gasturbinen-Triebwerken
EP2597257B1 (fr) Aubage
EP3388626B1 (fr) Contournage d'une plate-forme de grille d'aube
EP1865148B1 (fr) Machine de traitement des écoulements dotée de rotors de distribution d'énergie supérieure spécifique
EP2514975A2 (fr) Turbomachine
DE102014203604A1 (de) Schaufelreihengruppe
EP3309359A1 (fr) Ensemble d'aubes mobiles pour un moteur à turbine à gaz
EP3650709A1 (fr) Dispositif diffuseur à aubes pour un compresseur radial
EP1531233B1 (fr) Turbine à gaz comprenant des aubes statoriques ayant différentes courbures radiales
DE102014226341A1 (de) Verdichter, Abgasturbolader und Brennkraftmaschine
EP3109407A1 (fr) Dispositif de stator pour une turbomachine comprenant un dispositif de carter et plusieurs aubes directrices
EP2631429B1 (fr) Aubage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZSCHERP, CARSTEN

Inventor name: BRIGNOLE, GIOVANNI

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111111

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160822

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZSCHERP, CARSTEN

Inventor name: BRIGNOLE, GIOVANNI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 842139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013301

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013301

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170202

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20170803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170219

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170219

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 842139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 16

Ref country code: GB

Payment date: 20240222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240222

Year of fee payment: 16