EP2240751A1 - Inductive torque sensor - Google Patents

Inductive torque sensor

Info

Publication number
EP2240751A1
EP2240751A1 EP09704941A EP09704941A EP2240751A1 EP 2240751 A1 EP2240751 A1 EP 2240751A1 EP 09704941 A EP09704941 A EP 09704941A EP 09704941 A EP09704941 A EP 09704941A EP 2240751 A1 EP2240751 A1 EP 2240751A1
Authority
EP
European Patent Office
Prior art keywords
receiver
receiver means
rotor
torque sensor
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09704941A
Other languages
German (de)
French (fr)
Inventor
Jörg Diekmann
Roman Schamne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hella GmbH and Co KGaA
Original Assignee
Hella KGaA Huek and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hella KGaA Huek and Co filed Critical Hella KGaA Huek and Co
Publication of EP2240751A1 publication Critical patent/EP2240751A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/221Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to steering wheels, e.g. for power assisted steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Definitions

  • the present invention relates to an inductive torque sensor comprising at least one exciter coil, at least one oscillator circuit coupled to the exciter coil and coupled during operation a periodic AC signal into the exciter coil, a stator PCB having a first receiver means and a second receiver means, each a plurality of periodically repeating receiver structures, at least two rotors rotatable relative to each other and relative to the stator circuit board and affecting the amount of inductive coupling between the exciter coil and the receiver means, and evaluation means adapted to evaluate the signals induced in the receiver means.
  • the previously used hydraulic power steering systems are successively replaced by electrically driven power steering systems.
  • suitable torque sensors are necessary, which can detect the steering torque.
  • the steering torque is usually determined by the rotation (torsion) of a certain portion of the steering column, in which a torsion element is arranged.
  • the torsion of two steering column sections is measured relative to each other, without the absolute angular position of the steering column relative to the vehicle must be determined.
  • inductive torque sensors which are suitable for determining the steering torque, measure the rotation within the steering column in general by means of sensor means, which are designed in two parts. Both parts rotate under the influence of a torsional moment relative to each other and rotate in total during the steering movement.
  • a movable contacting is required, which comprises a so-called clock spring.
  • clock spring For design reasons, it is desirable to be able to dispense with such a clock spring.
  • a torque sensor of the type mentioned is known for example from German Patent Application DE 199 41 464 A1.
  • two receiver coil sets with different angular periodicities which are in a non-integer relationship to one another, are arranged approximately in one plane.
  • a first rotor of the inductive torque sensor is disposed at one end of a torsion element and a second rotor is disposed at the opposite end of the torsion element.
  • the torque can be determined by subtracting the measured angles.
  • the application of the differential angle method in the sensor arrangement described in the above-mentioned document may be prone to error and thus adversely affect the measurement result, since the (approximately) arranged in a plane receiver means influence each other. The measurement results are therefore often associated with a large measurement error.
  • the present invention has for its object to provide an inductive torque sensor of the type mentioned, in which the achievable measurement accuracy can be increased in the subtraction of the measured angular sizes and the cost of determining the torque can be reduced.
  • the subclaims relate to advantageous developments of the invention.
  • An inventive inductive torque sensor is characterized according to claim 1 in that the number N of the receiver structures of the first receiver means and the number M of the receiver structures of the second receiver means are in an integer ratio to each other.
  • the receiver structures of the first and / or the second receiver means are formed as receiver coils, each comprising a periodically repeating loop structure.
  • the number N of the receiver structures of the first receiver means to the number M of the receiver structures of the second receiver means is in a ratio of 2: 1. It has surprisingly been found that with such a ratio, the achievable measurement accuracy is particularly high and the measurement errors are correspondingly small.
  • the first rotor has a number N 'of rotor segments.
  • the number N 'of the rotor segments of the first rotor corresponds to the number N of the receiver structures of the first receiver means.
  • the second rotor has a number M 'of rotor segments.
  • the number M 'of the rotor segments of the second rotor corresponds to the number M of the receiver structures of the second receiver means.
  • the receiver structures of the first receiver means may, for example, have an angular periodicity of 15 ° or 20 °.
  • the receiver structures of the second receiver means may have an angular periodicity of 30 ° or 40 °.
  • the rotor segments of the first rotor have an angular periodicity of 15 ° or 20 °.
  • the rotor segments of the second rotor have an angular periodicity of 30 ° or 40 °.
  • Fig. 1 is a schematic representation of an inductive torque sensor according to a preferred embodiment of the present invention.
  • An inductive torque sensor 1 which is constructed in accordance with a preferred embodiment of the present invention, comprises a stator circuit board 2 and a first rotor 3 and a second rotor 4, wherein the stator circuit board 2 between the two rotors 3, 4 is arranged.
  • the two rotors 3, 4 are rotatable relative to one another and relative to the stator circuit board 2.
  • the inductive torque sensor 1 has an exciter coil, not explicitly shown here, as well as an oscillator circuit likewise not explicitly shown, which generates a periodic alternating voltage signal during operation of the inductive torque sensor 1 and couples it into the exciter coil.
  • the inductive torque sensor 1 is provided for determining the steering torque of a steering column 5 of a motor vehicle.
  • the steering column 5 has a first steering column section 50 and a second steering column section 51, between which a torsion element 6 (torsion spring element) extends.
  • the steering torque is determined by the rotation (torsion) of the region of the steering column 5 in which the torsion element 6 is arranged. there the torsion of the two steering column sections 50, 51 is measured relative to each other, without the absolute angular position of the steering column 5 relative to the vehicle must be determined.
  • the first rotor 3 is disposed at a first end of the torsion element 6 and the second rotor 4 is disposed at a second end of the torsion element 6, which is opposite to the first end.
  • the stator circuit board 2 has at its two rotors 3, 4 facing sides in each case a receiver means 20, 21.
  • a first receiver means 20 associated with and facing the first rotor 3 has a number N of periodically repeating receiver structures.
  • a second receiver means 21 associated with and facing the second rotor 4 has a number M of periodically repeating receiver structures, the ratio of the number of receiver structures N of the first receiver means 20 to the number M of receiver structures of the second receiver means 21 being integer.
  • the number of receiver structures N of the first receiver means 20 may not be identical to the number M of receiver structures of the second receiver means 21.
  • the ratio N: M 2: 1.
  • the receiver structure of the first receiver means 20 has an angular periodicity of 15 °.
  • the receiver structure of the second receiver means 20 has an angular periodicity of 30 °.
  • the receiver structure of the first receiver means 20 may for example also have an angular periodicity of 20 °.
  • the two receiver means 20, 21 are preferably designed as receiver coils which each have a periodically repeating loop structure which forms the receiver structure of the respective receiver means 20, 21.
  • the two rotors 3, 4 serve as rotatable inductive coupling elements which, when rotated, influence the strength of the inductive coupling between the exciter coil and the receiver structures of the receiver means 20, 21 assigned to them.
  • the first rotor 3 has a number N 'of rotor segments with the same angular periodicity as its associated receiver structure of the first receiver means 20.
  • the second rotor 4 also has a number M 'of rotor segments with the same angular periodicity as the receiver structure of the second receiver means 21 assigned to it.
  • the rotor segments of the first rotor 3 have in this embodiment, an angular periodicity of 15 ° and the rotor segments of the second rotor 4 have an angular periodicity of 30 °.
  • the rotor segments of the first rotor 3 may, for example, also have an angular periodicity of 20 °, and the rotor segments of the second rotor 4 may have an angular periodicity of 40 °.
  • the torsion of the two steering column sections 50, 51 of the steering column 5 can be determined by a subtraction of the measured angles (differential angle method).
  • the angular positions of the two steering column sections 50, 51 in front of and behind the torsion element 6 are determined independently of each other.
  • the inductive torque sensor 1 has an evaluation circuit, likewise not explicitly shown here, for evaluating the signals induced in the receiver structures of the receiver means 20, 21 during the relative rotation of the two steering column sections 50, 51.
  • the steering torque which acts on the steering column 5 of the motor vehicle, can be detected reliably and with low measurement errors.
  • the steering torque can be converted by the arranged in the steering column 5 torsion bar 6 in differential angle. Due to the different rotation of the two rotors 3, 4 with corresponding steering movements, which are evaluated according to the differential angle method, it can be concluded that acting steering moments. Due to the integer ratio of the numbers N, M of the receiver structures of the two receiver means 20, 21 can be reduced in a particularly advantageous manner possible error influences not only when viewing the full circle (360 °), but even at much smaller angles of rotation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Steering Mechanism (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The present invention relates to an inductive torque sensor (1), particularly for a motor vehicle, comprising – at least one excitation coil, - at least one oscillator circuit, which is coupled to the excitation coil and during operation couples a periodic alternating current signal into the excitation coil, - a stator circuit board (2) having a first receiver means (20) and a second receiver means (21), which each comprise a number of periodically recurring receiver structures, - at least two rotors (3, 4), which can be rotated relative to each other and relative to the stator circuit board (2) and influence the strength of the inductive coupling between the excitation coil and the receiver means (20, 21), - evaluation means, which are suited for evaluating the signals induced in the receiver means (20, 21), wherein the number N of the receiver structures of the first receiver means (20) and the number M of the receiver structures of the second receiver means (21) have an integral correlation with each other.

Description

Induktiver Drehmomentsensor Inductive torque sensor
Beschreibungdescription
Die vorliegende Erfindung bezieht sich auf einen induktiven Drehmomentsensor, umfassend mindestens eine Erregerspule, mindestens eine Oszillatorschaltung, die mit der Erregerspule gekoppelt ist und während des Betriebs ein periodisches Wechselspannungssignal in die Erregerspule einkoppelt, eine Statorleiterplatte mit einem ersten Empfängermittel und einem zweiten Empfängermittel, die jeweils eine Anzahl sich periodisch wiederholender Empfängerstrukturen aufweisen, mindestens zwei Rotoren, die relativ zueinander und relativ zur Statorleiterplatte verdrehbar sind und die Stärke der induktiven Kopplung zwischen der Erregerspule und den Empfängermitteln beeinflussen, sowie Auswertemittel, die zur Auswertung der in den Empfängermitteln induzierten Signale geeignet sind.The present invention relates to an inductive torque sensor comprising at least one exciter coil, at least one oscillator circuit coupled to the exciter coil and coupled during operation a periodic AC signal into the exciter coil, a stator PCB having a first receiver means and a second receiver means, each a plurality of periodically repeating receiver structures, at least two rotors rotatable relative to each other and relative to the stator circuit board and affecting the amount of inductive coupling between the exciter coil and the receiver means, and evaluation means adapted to evaluate the signals induced in the receiver means.
In neuartigen Lenksystemen von Kraftfahrzeugen werden die bisher üblicherweise eingesetzten hydraulischen Servolenkungen sukzessive durch elektrisch angetriebene Servolenkungen ersetzt. Dafür sind geeignete Drehmomentsensoren notwendig, die das Lenkmoment erfassen können. Das Lenkmoment wird üblicherweise durch die Verdrehung (Torsion) eines bestimmten Abschnitts der Lenksäule bestimmt, in dem ein Torsionselement angeordnet ist. Dabei wird die Torsion zweier Lenksäulenabschnitte relativ zueinander gemessen, ohne dass die absolute Winkelposition der Lenksäule gegenüber dem Fahrzeug bestimmt werden muss.In novel steering systems of motor vehicles, the previously used hydraulic power steering systems are successively replaced by electrically driven power steering systems. For this purpose, suitable torque sensors are necessary, which can detect the steering torque. The steering torque is usually determined by the rotation (torsion) of a certain portion of the steering column, in which a torsion element is arranged. The torsion of two steering column sections is measured relative to each other, without the absolute angular position of the steering column relative to the vehicle must be determined.
Die aus dem Stand der Technik bekannten induktiven Drehmomentsensoren, die zur Bestimmung des Lenkmoments geeignet sind, messen die Verdrehung innerhalb der Lenksäule im allgemeinen mit Hilfe von Sensormitteln, die zweigeteilt ausgeführt sind. Beide Teile verdrehen sich unter dem Einfluss eines Torsionsmoments relativ zueinander und drehen sich insgesamt bei der Lenkbewegung mit. Zur Kontaktierung zumindest eines Teils des Sensormittels ist eine bewegliche Kontaktierung erforderlich, die eine so genannte Wickelfeder umfasst. Aus konstruktiven Gründen ist es wünschenswert, auf eine derartige Wickelfeder verzichten zu können. Aus dem Stand der Technik ist es bereits bekannt, die absolute Winkelposition beider Lenksäulenabschnitte gegenüber dem Fahrzeug zu messen und die für das Lenkmoment relevante Torsion aus der Differenz zweier Absolutwinkelpositionen zu bestimmen.The known from the prior art inductive torque sensors, which are suitable for determining the steering torque, measure the rotation within the steering column in general by means of sensor means, which are designed in two parts. Both parts rotate under the influence of a torsional moment relative to each other and rotate in total during the steering movement. For contacting at least part of the sensor means, a movable contacting is required, which comprises a so-called clock spring. For design reasons, it is desirable to be able to dispense with such a clock spring. From the prior art, it is already known to measure the absolute angular position of both steering column sections relative to the vehicle and to determine the torsion relevant to the steering torque from the difference between two absolute angular positions.
Ein Drehmomentsensor der eingangs genannten Art ist zum Beispiel aus der deutschen Patentanmeldung DE 199 41 464 A1 bekannt. Dabei sind zwei Empfängerspulensätze mit unterschiedlichen Winkelperiodizitäten, die in einem nichtganzzahligen Verhältnis zueinander stehen, näherungsweise in einer Ebene angeordnet. Ein erster Rotor des induktiven Drehmomentsensors ist an einem Ende eines Torsionselements angeordnet und ein zweiter Rotor ist am gegenüberliegenden Ende des Torsionselements angeordnet. Das Drehmoment kann durch eine Differenzbildung der gemessenen Winkel bestimmt werden. Es hat sich jedoch gezeigt, dass die Anwendung des Differenzwinkelverfahrens bei der in der vorstehend genannten Druckschrift beschriebenen Sensoranordnung unter Umständen fehlerträchtig sein kann und so das Messergebnis nachteilig beeinflussen kann, da sich die (näherungsweise) in einer Ebene angeordneten Empfängermittel gegenseitig beeinflussen. Die Messergebnisse sind daher häufig mit einem großen Messfehler behaftet.A torque sensor of the type mentioned is known for example from German Patent Application DE 199 41 464 A1. In this case, two receiver coil sets with different angular periodicities, which are in a non-integer relationship to one another, are arranged approximately in one plane. A first rotor of the inductive torque sensor is disposed at one end of a torsion element and a second rotor is disposed at the opposite end of the torsion element. The torque can be determined by subtracting the measured angles. However, it has been shown that the application of the differential angle method in the sensor arrangement described in the above-mentioned document may be prone to error and thus adversely affect the measurement result, since the (approximately) arranged in a plane receiver means influence each other. The measurement results are therefore often associated with a large measurement error.
Hier setzt die vorliegende Erfindung an.This is where the present invention begins.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen induktiven Drehmomentsensor der eingangs genannten Art zur Verfügung zu stellen, bei dem die erreichbare Messgenauigkeit bei der Differenzbildung der gemessenen Winkelgrößen erhöht werden kann und der Aufwand für die Bestimmung des Drehmoments verringert werden kann.The present invention has for its object to provide an inductive torque sensor of the type mentioned, in which the achievable measurement accuracy can be increased in the subtraction of the measured angular sizes and the cost of determining the torque can be reduced.
Diese Aufgabe wird durch einen induktiven Drehmomentsensor der eingangs genannten Art mit den Merkmalen des kennzeichnenden Teils des Anspruchs 1 gelöst. Die Unteransprüche betreffen vorteilhafte Weiterbildungen der Erfindung. Ein erfindungsgemäßer induktiver Drehmomentsensor zeichnet sich gemäß Anspruch 1 dadurch aus, dass die Anzahl N der Empfängerstrukturen des ersten Empfängermittels und die Anzahl M der Empfängerstrukturen des zweiten Empfängermittels zueinander in einem ganzzahligen Verhältnis stehen. Überraschend hat es sich gezeigt, dass die Messfehler bei den Differenzwinkelmessungen auf Grund des ganzzahligen Verhältnisses der Anzahl N der Empfängerstrukturen des ersten Empfängermittels zur Anzahl M der Empfängerstrukturen des zweiten Empfängermittels (lediglich gleich dürfen die Anzahlen der Empfängerstrukturen der beiden Empfängermittel nicht sein) verringert werden können. Dadurch können mögliche Fehlereinflüsse in besonders vorteilhafter Weise nicht nur über einen vollen Kreis (360°) sondern bereits bei viel kleineren Drehwinkeln minimiert werden. Vorzugsweise sind die Empfängerstrukturen des ersten und/oder des zweiten Empfängermittels als Empfängerspulen ausgebildet, die jeweils eine sich periodisch wiederholende Schleifenstruktur umfassen.This object is achieved by an inductive torque sensor of the type mentioned with the features of the characterizing part of claim 1. The subclaims relate to advantageous developments of the invention. An inventive inductive torque sensor is characterized according to claim 1 in that the number N of the receiver structures of the first receiver means and the number M of the receiver structures of the second receiver means are in an integer ratio to each other. Surprisingly, it has been shown that the measurement errors in the differential angle measurements due to the integer ratio of the number N of the receiver structures of the first receiver means to the number M of the receiver structures of the second receiver means (only equal to the numbers of receiver structures of the two receiver means may not be) can be reduced , As a result, possible errors can be minimized in a particularly advantageous manner not only over a full circle (360 °) but even at much smaller angles of rotation. Preferably, the receiver structures of the first and / or the second receiver means are formed as receiver coils, each comprising a periodically repeating loop structure.
In einer besonders bevorzugten Ausführungsform wird vorgeschlagen, dass die Anzahl N der Empfängerstrukturen des ersten Empfängermittels zur Anzahl M der Empfängerstrukturen des zweiten Empfängermittels in einem Verhältnis 2 : 1 steht. Es hat sich überraschend gezeigt, dass bei einem derartigen Verhältnis die erzielbare Messgenauigkeit besonders hoch ist und die Messfehler entsprechend klein sind.In a particularly preferred embodiment, it is proposed that the number N of the receiver structures of the first receiver means to the number M of the receiver structures of the second receiver means is in a ratio of 2: 1. It has surprisingly been found that with such a ratio, the achievable measurement accuracy is particularly high and the measurement errors are correspondingly small.
Es besteht in einer vorteilhaften Ausführungsform die Möglichkeit, dass der erste Rotor eine Anzahl N' von Rotorsegmenten aufweist. Die Anzahl N' der Rotorsegmente des ersten Rotors entspricht dabei der Anzahl N der Empfängerstrukturen des ersten Empfängermittels.In an advantageous embodiment, there is the possibility that the first rotor has a number N 'of rotor segments. The number N 'of the rotor segments of the first rotor corresponds to the number N of the receiver structures of the first receiver means.
Es besteht in einer vorteilhaften Ausführungsform darüber hinaus auch die Möglichkeit, dass der zweite Rotor eine Anzahl M' von Rotorsegmenten aufweist. Die Anzahl M' der Rotorsegmente des zweiten Rotors entspricht dabei der Anzahl M der Empfängerstrukturen des zweiten Empfängermittels. Die Empfängerstrukturen des ersten Empfängermittels können zum Beispiel eine Winkelperiodizität von 15° oder 20 ° aufweisen. Die Empfängerstrukturen des zweiten Empfängermittels können eine Winkelperiodizität von 30° oder 40° aufweisen.In an advantageous embodiment, there is also the possibility that the second rotor has a number M 'of rotor segments. The number M 'of the rotor segments of the second rotor corresponds to the number M of the receiver structures of the second receiver means. The receiver structures of the first receiver means may, for example, have an angular periodicity of 15 ° or 20 °. The receiver structures of the second receiver means may have an angular periodicity of 30 ° or 40 °.
Es besteht in einer vorteilhaften Ausführungsform weiterhin die Möglichkeit, dass die Rotorsegmente des ersten Rotors eine Winkelperiodizität von 15° oder 20° aufweisen. Darüber hinaus kann auch vorgesehen sein, dass die Rotorsegmente des zweiten Rotors eine Winkelperiodizität von 30° oder 40° aufweisen.In an advantageous embodiment, there is also the possibility that the rotor segments of the first rotor have an angular periodicity of 15 ° or 20 °. In addition, it can also be provided that the rotor segments of the second rotor have an angular periodicity of 30 ° or 40 °.
Anhand der beigefügten Zeichnung wird die Erfindung nachfolgend näher erläutert. Dabei zeigt:Reference to the accompanying drawings, the invention is explained in more detail below. Showing:
Fig. 1 eine schematische Darstellung eines induktiven Drehmomentsensors gemäß einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung.Fig. 1 is a schematic representation of an inductive torque sensor according to a preferred embodiment of the present invention.
Ein induktiver Drehmomentsensor 1 , der gemäß einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung aufgebaut ist, umfasst eine Statorleiterplatte 2 sowie einen ersten Rotor 3 und einen zweiten Rotor 4, wobei die Statorleiterplatte 2 zwischen den beiden Rotoren 3, 4 angeordnet ist. Die beiden Rotoren 3, 4 sind relativ zueinander und relativ zur Statorleiterplatte 2 verdrehbar. Darüber hinaus weist der induktive Drehmomentsensor 1 eine hier nicht explizit dargestellte Erregerspule sowie eine ebenfalls nicht explizit dargestellte Oszillatorschaltung auf, die während des Betriebs des induktiven Drehmomentsensors 1 ein periodisches Wechselspannungssignal erzeugt und in die Erregerspule einkoppelt.An inductive torque sensor 1, which is constructed in accordance with a preferred embodiment of the present invention, comprises a stator circuit board 2 and a first rotor 3 and a second rotor 4, wherein the stator circuit board 2 between the two rotors 3, 4 is arranged. The two rotors 3, 4 are rotatable relative to one another and relative to the stator circuit board 2. In addition, the inductive torque sensor 1 has an exciter coil, not explicitly shown here, as well as an oscillator circuit likewise not explicitly shown, which generates a periodic alternating voltage signal during operation of the inductive torque sensor 1 and couples it into the exciter coil.
In dem hier gezeigten Ausführungsbeispiel ist der induktive Drehmomentsensor 1 für eine Bestimmung des Lenkmoments einer Lenksäule 5 eines Kraftfahrzeugs vorgesehen. Die Lenksäule 5 weist einen ersten Lenksäulenabschnitt 50 und einen zweiten Lenksäulenabschnitt 51 auf, zwischen denen sich ein Torsionselement 6 (Drehfederelement) erstreckt. Das Lenkmoment wird durch die Verdrehung (Torsion) des Bereichs der Lenksäule 5 bestimmt, in dem das Torsionselement 6 angeordnet ist. Dabei wird die Torsion der beiden Lenksäulenabschnitte 50, 51 relativ zueinander gemessen, ohne dass die absolute Winkelposition der Lenksäule 5 gegenüber dem Fahrzeug bestimmt werden muss.In the exemplary embodiment shown here, the inductive torque sensor 1 is provided for determining the steering torque of a steering column 5 of a motor vehicle. The steering column 5 has a first steering column section 50 and a second steering column section 51, between which a torsion element 6 (torsion spring element) extends. The steering torque is determined by the rotation (torsion) of the region of the steering column 5 in which the torsion element 6 is arranged. there the torsion of the two steering column sections 50, 51 is measured relative to each other, without the absolute angular position of the steering column 5 relative to the vehicle must be determined.
Der erste Rotor 3 ist an einem ersten Ende des Torsionselements 6 angeordnet und der zweite Rotor 4 ist an einem zweiten Ende des Torsionselements 6 angeordnet, welches dem ersten Ende gegenüberliegt.The first rotor 3 is disposed at a first end of the torsion element 6 and the second rotor 4 is disposed at a second end of the torsion element 6, which is opposite to the first end.
Die Statorleiterplatte 2 weist an ihren den beiden Rotoren 3, 4 zugewandten Seiten jeweils ein Empfängermittel 20, 21 auf. Ein erstes Empfängermittel 20, das dem ersten Rotor 3 zugeordnet und diesem zugewandt ist, weist eine Anzahl N sich periodisch wiederholender Empfängerstrukturen auf. Ein zweites Empfängermittel 21 , das dem zweiten Rotor 4 zugeordnet und diesem zugewandt ist, weist eine Anzahl M sich periodisch wiederholender Empfängerstrukturen auf, wobei das Verhältnis der Anzahl der Empfängerstrukturen N des ersten Empfängermittels 20 zur Anzahl M der Empfängerstrukturen des zweiten Empfängermittels 21 ganzzahlig ist. Die Anzahl der Empfängerstrukturen N des ersten Empfängermittels 20 darf allerdings nicht mit der Anzahl M der Empfängerstrukturen des zweiten Empfängermittels 21 identisch sein. Vorzugsweise ist das Verhältnis N : M = 2 : 1. In diesem Ausführungsbeispiel weist die Empfängerstruktur des ersten Empfängermittels 20 eine Winkelperiodizität von 15° auf. Die Empfängerstruktur des zweiten Empfängermittels 20 weist eine Winkelperiodizität von 30° auf. Die Empfängerstruktur des ersten Empfängermittels 20 kann beispielsweise auch eine Winkelperiodizität von 20° aufweisen. Die Empfängerstruktur des zweiten Empfängermittels 20 weist dann bei einem Verhältnis N : M = 2 : 1 eine Winkelperiodizität von 40° auf. Die beiden Empfängermittel 20, 21 sind vorzugsweise als Empfängerspulen ausgeführt, die jeweils eine sich periodisch wiederholende Schleifenstruktur aufweisen, welche die Empfängerstruktur des jeweiligen Empfängermittels 20, 21 bildet.The stator circuit board 2 has at its two rotors 3, 4 facing sides in each case a receiver means 20, 21. A first receiver means 20 associated with and facing the first rotor 3 has a number N of periodically repeating receiver structures. A second receiver means 21 associated with and facing the second rotor 4 has a number M of periodically repeating receiver structures, the ratio of the number of receiver structures N of the first receiver means 20 to the number M of receiver structures of the second receiver means 21 being integer. However, the number of receiver structures N of the first receiver means 20 may not be identical to the number M of receiver structures of the second receiver means 21. Preferably, the ratio N: M = 2: 1. In this embodiment, the receiver structure of the first receiver means 20 has an angular periodicity of 15 °. The receiver structure of the second receiver means 20 has an angular periodicity of 30 °. The receiver structure of the first receiver means 20 may for example also have an angular periodicity of 20 °. The receiver structure of the second receiver means 20 then has an angular periodicity of 40 ° at a ratio N: M = 2: 1. The two receiver means 20, 21 are preferably designed as receiver coils which each have a periodically repeating loop structure which forms the receiver structure of the respective receiver means 20, 21.
Die beiden Rotoren 3, 4 dienen als drehbare induktive Koppelelemente, die bei ihrer Verdrehung die Stärke der induktiven Kopplung zwischen der Erregerspule und den Empfängerstrukturen der ihnen zugeordneten Empfängermittel 20, 21 beeinflussen. Der erste Rotor 3 weist eine Anzahl N' von Rotorsegmenten mit derselben Winkelpe- riodizität wie die ihm zugeordnete Empfängerstruktur des ersten Empfängermittels 20 auf. Entsprechend weist auch der zweite Rotor 4 eine Anzahl M' von Rotorsegmenten mit derselben Winkelperiodizität wie die ihm zugeordnete Empfängerstruktur des zweiten Empfängermittels 21 auf. Mit anderen Worten umfasst also der erste Rotor 3 insgesamt N' = N Rotorsegmente. Entsprechend weist auch der zweite Rotor 4 insgesamt M' = M Rotorsegmente auf. Die Rotorsegmente des ersten Rotors 3 weisen in diesem Ausführungsbeispiel eine Winkelperiodizität von 15° auf und die Rotorsegmente des zweiten Rotors 4 weisen eine Winkelperiodizität von 30° auf. Die Rotorsegmente des ersten Rotors 3 können zum Beispiel auch eine Winkelperiodizität von 20° aufweisen und die Rotorsegmente des zweiten Rotors 4 können eine Winkelperiodizität von 40° aufweisen.The two rotors 3, 4 serve as rotatable inductive coupling elements which, when rotated, influence the strength of the inductive coupling between the exciter coil and the receiver structures of the receiver means 20, 21 assigned to them. The first rotor 3 has a number N 'of rotor segments with the same angular periodicity as its associated receiver structure of the first receiver means 20. Correspondingly, the second rotor 4 also has a number M 'of rotor segments with the same angular periodicity as the receiver structure of the second receiver means 21 assigned to it. In other words, therefore, the first rotor 3 comprises a total of N '= N rotor segments. Accordingly, the second rotor 4 has a total of M '= M rotor segments. The rotor segments of the first rotor 3 have in this embodiment, an angular periodicity of 15 ° and the rotor segments of the second rotor 4 have an angular periodicity of 30 °. The rotor segments of the first rotor 3 may, for example, also have an angular periodicity of 20 °, and the rotor segments of the second rotor 4 may have an angular periodicity of 40 °.
Wie oben bereits erwähnt, kann die Torsion der beiden Lenksäulenabschnitte 50, 51 der Lenksäule 5 (und damit auch das Lenkmoment) durch eine Differenzbildung der gemessenen Winkel (Differenzwinkelverfahren) bestimmt werden. Die Winkelpositionen der beiden Lenksäulenabschnitte 50, 51 vor beziehungsweise hinter dem Torsionselement 6 werden dabei unabhängig voneinander bestimmt. Zu diesem Zweck weist der induktive Drehmomentsensor 1 eine hier ebenfalls nicht explizit dargestellte Auswerteschaltung zur Auswertung der in den Empfängerstrukturen der Empfängermittel 20, 21 während der Relativerdrehung der beiden Lenksäulenabschnitt 50, 51 induzierten Signale auf.As already mentioned above, the torsion of the two steering column sections 50, 51 of the steering column 5 (and thus also the steering torque) can be determined by a subtraction of the measured angles (differential angle method). The angular positions of the two steering column sections 50, 51 in front of and behind the torsion element 6 are determined independently of each other. For this purpose, the inductive torque sensor 1 has an evaluation circuit, likewise not explicitly shown here, for evaluating the signals induced in the receiver structures of the receiver means 20, 21 during the relative rotation of the two steering column sections 50, 51.
Mittels des hier vorgestellten induktiven Drehmomentsensors 1 kann das Lenkmoment, das auf die Lenksäule 5 des Kraftfahrzeugs einwirkt, zuverlässig und mit geringen Messfehlern erfasst werden. Das Lenkmoment kann durch den in der Lenksäule 5 angeordneten Torsionsstab 6 in Differenzwinkel umgewandelt werden. Durch die unterschiedliche Verdrehung der beiden Rotoren 3, 4 bei entsprechenden Lenkbewegungen, die nach dem Differenzwinkelverfahren ausgewertet werden, kann auf die wirkenden Lenkmomente geschlossen werden. Auf Grund des ganzzahligen Verhältnisses der Anzahlen N, M der Empfängerstrukturen der beiden Empfängermittel 20, 21 können in besonders vorteilhafterweise mögliche Fehlereinflüsse nicht nur bei einer Betrachtung über den vollen Kreis (360°), sondern bereits bei wesentlich kleineren Drehwinkeln reduziert werden. By means of the inductive torque sensor 1 presented here, the steering torque, which acts on the steering column 5 of the motor vehicle, can be detected reliably and with low measurement errors. The steering torque can be converted by the arranged in the steering column 5 torsion bar 6 in differential angle. Due to the different rotation of the two rotors 3, 4 with corresponding steering movements, which are evaluated according to the differential angle method, it can be concluded that acting steering moments. Due to the integer ratio of the numbers N, M of the receiver structures of the two receiver means 20, 21 can be reduced in a particularly advantageous manner possible error influences not only when viewing the full circle (360 °), but even at much smaller angles of rotation.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Drehmomentsensor1 torque sensor
2 Statorleiterplatte2 stator PCB
3 erster Rotor3 first rotor
4 zweiter Rotor4 second rotor
5 Lenksäule5 steering column
6 Torsionselement6 torsion element
20 erstes Empfängermittel20 first receiver means
21 zweites Empfängermittel21 second receiver means
50 erster Lenksäulenabschnitt50 first steering column section
51 zweiter Lenksäulenabschnitt 51 second steering column section

Claims

Induktiver DrehmomentsensorPatentansprüche Inductive torque sensor patent claims
1. Induktiver Drehmomentsensor (1 ), insbesondere für ein Kraftfahrzeug, umfassend1. Inductive torque sensor (1), in particular for a motor vehicle, comprising
- mindestens eine Erregerspule,at least one exciter coil,
- mindestens eine Oszillatorschaltung, die mit der Erregerspule gekoppelt ist und während des Betriebs ein periodisches Wechselspannungssignal in die Erregerspule einkoppelt,at least one oscillator circuit which is coupled to the excitation coil and couples a periodic alternating voltage signal into the exciter coil during operation,
- eine Statorleiterplatte (2) mit einem ersten Empfängermittel (20) und einem zweiten Empfängermittel (21 ), die jeweils eine Anzahl sich periodisch wiederholender Empfängerstrukturen aufweisen,a stator circuit board (2) having a first receiver means (20) and a second receiver means (21) each having a number of periodically repeating receiver structures,
- mindestens zwei Rotoren (3, 4), die relativ zueinander und relativ zur Statorleiterplatte (2) verdrehbar sind und die Stärke der induktiven Kopplung zwischen der Erregerspule und den Empfängermitteln (20, 21) beeinflussen,at least two rotors (3, 4) which are rotatable relative to one another and relative to the stator circuit board (2) and influence the strength of the inductive coupling between the exciter coil and the receiver means (20, 21),
- Auswertemittel, die zur Auswertung der in den Empfängermitteln (20, 21) induzierten Signale geeignet sind, dadurch gekennzeichnet, dass die Anzahl N der Empfängerstrukturen des ersten Empfängermittels (20) und die Anzahl M der Empfängerstrukturen des zweiten Empfängermittels (21) zueinander in einem ganzzahligen Verhältnis stehen.- Evaluation means, which are suitable for the evaluation of the receiver means (20, 21) induced signals, characterized in that the number N of the receiver structures of the first receiver means (20) and the number M of the receiver structures of the second receiver means (21) to each other in one integer ratio stand.
2. Induktiver Drehmomentsensor (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die Anzahl N der Empfängerstrukturen des ersten Empfängermittels (20) zur Anzahl M der Empfängerstrukturen des zweiten Empfängermittels (21 ) in einem Verhältnis 2 : 1 steht.2. Inductive torque sensor (1) according to claim 1, characterized in that the number N of the receiver structures of the first receiver means (20) to the number M of the receiver structures of the second receiver means (21) in a ratio of 2: 1 stands.
3. Induktiver Drehmomentsensor (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Rotor (3) eine Anzahl N' von Rotorsegmenten aufweist. 3. Inductive torque sensor (1) according to claim 1 or 2, characterized in that the first rotor (3) has a number N 'of rotor segments.
4. Induktiver Drehmomentsensor (1 ) nach Anspruch 3, dadurch gekennzeichnet, dass die Anzahl N' der Rotorsegmente des ersten Rotors (3) der Anzahl N der Empfängerstrukturen des ersten Empfängermittels (20) entspricht.4. Inductive torque sensor (1) according to claim 3, characterized in that the number N 'of the rotor segments of the first rotor (3) corresponds to the number N of the receiver structures of the first receiver means (20).
5. Induktiver Drehmomentsensor (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der zweite Rotor (3) eine Anzahl M' von Rotorsegmenten aufweist.5. Inductive torque sensor (1) according to one of claims 1 to 4, characterized in that the second rotor (3) has a number M 'of rotor segments.
6. Induktiver Drehmomentsensor (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass die Anzahl M' der Rotorsegmente des zweiten Rotors (4) der Anzahl M der Empfängerstrukturen des zweiten Empfängermittels (21 ) entspricht.6. Inductive torque sensor (1) according to claim 5, characterized in that the number M 'of the rotor segments of the second rotor (4) corresponds to the number M of the receiver structures of the second receiver means (21).
7. Induktiver Drehmomentsensor (1 ) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Empfängerstrukturen des ersten Empfängermittels (20) eine Winkelperiodizität von 15° oder 20° aufweisen.7. Inductive torque sensor (1) according to one of claims 1 to 6, characterized in that the receiver structures of the first receiver means (20) have an angular periodicity of 15 ° or 20 °.
8. Induktiver Drehmomentsensor (1 ) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Empfängerstrukturen des zweiten Empfängermittels (21 ) eine Winkelperiodizität von 30° oder 40° aufweisen.8. Inductive torque sensor (1) according to one of claims 1 to 7, characterized in that the receiver structures of the second receiver means (21) have an angular periodicity of 30 ° or 40 °.
9. Induktiver Drehmomentsensor (1 ) nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die Rotorsegmente des ersten Rotors (3) eine Winkelperiodizität von 15° oder 20° aufweisen.9. Inductive torque sensor (1) according to one of claims 3 to 8, characterized in that the rotor segments of the first rotor (3) have an angular periodicity of 15 ° or 20 °.
10. Induktiver Drehmomentsensor (1 ) nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Rotorsegmente des zweiten Rotors (4) eine Winkelperiodizität von 30° oder 40° aufweisen. 10. Inductive torque sensor (1) according to one of claims 5 to 9, characterized in that the rotor segments of the second rotor (4) have an angular periodicity of 30 ° or 40 °.
EP09704941A 2008-01-31 2009-01-29 Inductive torque sensor Withdrawn EP2240751A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008006865.9A DE102008006865B4 (en) 2008-01-31 2008-01-31 Inductive torque sensor
PCT/EP2009/051009 WO2009095442A1 (en) 2008-01-31 2009-01-29 Inductive torque sensor

Publications (1)

Publication Number Publication Date
EP2240751A1 true EP2240751A1 (en) 2010-10-20

Family

ID=40585453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09704941A Withdrawn EP2240751A1 (en) 2008-01-31 2009-01-29 Inductive torque sensor

Country Status (4)

Country Link
US (1) US8453518B2 (en)
EP (1) EP2240751A1 (en)
DE (1) DE102008006865B4 (en)
WO (1) WO2009095442A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014060A1 (en) 2011-03-16 2012-09-20 Volkswagen Ag Method for determining resultant steering angle change of steering column in electromechanical steering system of motor car, involves determining steering angle change based on periodicity and number of periodic transitions of signal
CN105164502B (en) 2013-05-03 2019-07-16 Ksr Ip控股有限责任公司 Micro- inductive pick-up
DE102013225873A1 (en) * 2013-12-13 2015-06-18 Continental Teves Ag & Co. Ohg Inductive sensor based on the vernier principle
US10466121B2 (en) * 2014-03-06 2019-11-05 Joyson Safety Systems Acquisition Llc Force-based detection systems and methods
US9983045B2 (en) 2014-08-22 2018-05-29 Ksr Ip Holdings Llc Inductive sensor
US10444037B2 (en) 2017-08-22 2019-10-15 Semiconductor Components Industries, Llc Inductive position sensor
DE102018202226B4 (en) * 2018-02-14 2022-05-12 Robert Bosch Gmbh Steering device with a steering sensor unit for the inductive detection of at least one item of steering information
US11079291B2 (en) 2018-04-10 2021-08-03 Semiconductor Components Industries, Llc Inductive position sensor
US11112275B2 (en) * 2018-08-24 2021-09-07 Semiconductor Components Industries, Llc Devices, systems and methods for determining and compensating for offset errors arising in inductive sensors
US11692887B2 (en) * 2020-06-11 2023-07-04 Kyocera Avx Components (Werne) Gmbh Torque sensing device and method
US11885649B2 (en) 2021-04-09 2024-01-30 Semiconductor Components Industries, Llc Rotor for inductive slip, eccentricity, and tilt sensing
US11994387B2 (en) 2021-04-13 2024-05-28 Infineon Technologies Ag Inductive sensor with improved safety
US11662260B2 (en) 2021-09-03 2023-05-30 Allegro Microsystems, Llc Linear inductive torque sensor
US11953395B2 (en) 2022-03-18 2024-04-09 Allegro Microsystems, Llc Magnetic field differential linear torque sensor
SE2250676A1 (en) * 2022-06-03 2023-12-04 Sentient Ab Improved inductive torsion bar torque sensor
DE102022207280A1 (en) 2022-07-18 2024-01-18 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for determining a difference value between two movements
DE102022207287A1 (en) 2022-07-18 2024-01-18 Robert Bosch Gesellschaft mit beschränkter Haftung Inductive sensor arrangement and method for determining a difference value between two movements
DE102022208796A1 (en) 2022-08-25 2024-03-07 Robert Bosch Gesellschaft mit beschränkter Haftung Sensor arrangement for determining a torsion angle of a torsion bar, steering device of a motor vehicle, motor vehicle, method for operating a sensor arrangement
EP4394331A1 (en) 2023-08-09 2024-07-03 Melexis Technologies SA Inductive angle sensor and inductive torque sensor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936680A (en) * 1973-07-10 1976-02-03 Kabushiki Kaisha Tokai Rika Denki Seisakusho Miniature self-starting electric motor
FR2612633B1 (en) * 1987-03-17 1989-05-05 Alsthom Cgee VERNIER EFFECT COUPLEMETER
DE3713305A1 (en) * 1987-04-18 1988-11-03 Heldt & Rossi Servoelektronik TACHOGENERATOR FOR ELECTRICAL MACHINES
DE3713304A1 (en) * 1987-04-18 1988-11-03 Heldt & Rossi Servoelektronik DEVICE FOR DETECTING TURNING ANGLE POSITION IN ROTARY DRIVES
US5260635A (en) * 1988-10-07 1993-11-09 Kabushikigaisha Sekogiken Reluctance motor
DE19738836A1 (en) * 1997-09-05 1999-03-11 Hella Kg Hueck & Co Inductive angle sensor
DE19941464A1 (en) * 1999-09-01 2001-03-15 Hella Kg Hueck & Co Inductive position sensor
FR2801969B1 (en) * 1999-12-01 2002-02-08 Siemens Automotive Sa NON-CONTACT ANGLE SHIFT ANALOG SENSOR
DE10156238A1 (en) * 2001-11-15 2003-06-05 Hella Kg Hueck & Co Patente Ma Inductive angle sensor, especially for a motor vehicle
WO2004047258A2 (en) * 2002-11-18 2004-06-03 Seiko Epson Corporation Magnetic structure and motor employing said magnetic structure, and driver comprising said motor
DE20313045U1 (en) * 2003-08-23 2003-10-23 Hella KG Hueck & Co., 59557 Lippstadt Rotor for inductive sensor, e.g. for angle sensor, has similar rotor structures, isolated from each other and arranged on each side of carrier such as circuit board
DE102004027954B4 (en) * 2004-06-08 2018-06-14 HELLA GmbH & Co. KGaA Inductive protractor, especially for the measurement of torsion angles
DE102004056049A1 (en) 2004-11-19 2006-06-01 Ab Elektronik Gmbh Sensor for use as torque sensor, has stator unit with coil circuit having flexible substrate running along sensor region, and evaluation circuit to evaluate signal received from one coil to determine value for rotary position of rotor units
GB2426591B (en) 2005-05-27 2009-12-30 Tt Electronics Technology Ltd Sensing apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009095442A1 *

Also Published As

Publication number Publication date
US20100319467A1 (en) 2010-12-23
DE102008006865A1 (en) 2009-08-06
DE102008006865B4 (en) 2024-02-29
WO2009095442A1 (en) 2009-08-06
US8453518B2 (en) 2013-06-04

Similar Documents

Publication Publication Date Title
DE102008006865B4 (en) Inductive torque sensor
EP1081454B1 (en) Inductive position sensor
EP0893668B1 (en) Angle sensor
EP2225142B1 (en) Absolute measurement steering angle sensor arrangement
DE102004027954B4 (en) Inductive protractor, especially for the measurement of torsion angles
DE102013218768A1 (en) Inductive position measuring device
EP3500825B1 (en) Sensor system and method for determining the absolute angle position of a shaft, and vehicle with such sensor system
EP3837518A1 (en) Torque sensor device, method for determining a torque, stator, and stator assembly
DE102019212618A1 (en) Motor vehicle power steering
EP1313638B1 (en) Method for self-calibrating a torsion angle detected by a torque/angle sensor
DE112017005343T5 (en) Electric power steering system
EP1752361B1 (en) Shaft torque and position sensor
DE102016212173A1 (en) Method and device for determining a number of revolutions and an angular position of a component rotatable about an axis of rotation
EP1074454B1 (en) Steering angle measuring device
EP1312889A2 (en) Inductive angle sensor in particular for a motor vehicle
DE102005035107A1 (en) Shaft rotational angle change measuring/sensing device for digital system, has rotary bodies, where gear transmission ratio is preset, with which angle change of one body exceeds that of other only around fractional part of latter change
DE102007028421A1 (en) Device for determining an absolute angle of rotation of a rotation axis
DE102018102698A1 (en) Inductive position sensor
DE102010048750B4 (en) Circuit arrangement for evaluating switching states and switch with such a circuit arrangement
DE102017223477A1 (en) Sensor system for determining at least one rotational property of an element rotating about a rotation axis
DE10357146A1 (en) Angular displacement and or torque measurement device, especially for a motor vehicle, comprises capacitors with moving capacitor plates attached to the steering column so that they move relative to fixed capacitor plates
DE102023208941A1 (en) Device for measuring an absolute angle of rotation of a rotatably mounted element
DE102020108982A1 (en) Sensor arrangement with a fully redundant measuring system for recording the absolute angular position of a steering element
DE19948026A1 (en) Circuit and method for determining a magnetic field
DE102022207287A1 (en) Inductive sensor arrangement and method for determining a difference value between two movements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHAMNE, ROMAN

Inventor name: DIEKMANN, JOERG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101026