EP2238228B1 - Procédé d'enduction de surfaces métalliques avec une composition de lubrifiant - Google Patents

Procédé d'enduction de surfaces métalliques avec une composition de lubrifiant Download PDF

Info

Publication number
EP2238228B1
EP2238228B1 EP09706791.2A EP09706791A EP2238228B1 EP 2238228 B1 EP2238228 B1 EP 2238228B1 EP 09706791 A EP09706791 A EP 09706791A EP 2238228 B1 EP2238228 B1 EP 2238228B1
Authority
EP
European Patent Office
Prior art keywords
coating
lubricant composition
ionomer
content
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09706791.2A
Other languages
German (de)
English (en)
Other versions
EP2238228A1 (fr
Inventor
Uwe Rau
Klaus-Dieter Nittel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemetall GmbH
Original Assignee
Chemetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40547598&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2238228(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chemetall GmbH filed Critical Chemetall GmbH
Priority to PL09706791T priority Critical patent/PL2238228T3/pl
Publication of EP2238228A1 publication Critical patent/EP2238228A1/fr
Application granted granted Critical
Publication of EP2238228B1 publication Critical patent/EP2238228B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/04Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/18Natural waxes, e.g. ceresin, ozocerite, bees wax, carnauba; Degras
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • C10M2209/0845Acrylate; Methacrylate used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/02Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/04Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/023Multi-layer lubricant coatings
    • C10N2050/025Multi-layer lubricant coatings in the form of films or sheets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2080/00Special pretreatment of the material to be lubricated, e.g. phosphatising or chromatising of a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the invention relates to a process for coating metallic surfaces with a lubricant composition in the form of an aqueous solution or dispersion based on polymeric organic material containing at least one water glass and at least one organic polymeric material of ionomer, further polymer / copolymer or / and their Derivatives and optionally at least one solid lubricant, at least one Reibwertminderer and / or at least one other additive and a corresponding lubricant composition, which is to serve after the formation of a coating on a metallic molding, in particular the ease of cold forming of this molding.
  • a cold working can usually be carried out at surface temperatures of up to about 450 ° C but without heat.
  • the heating occurs only by the deformation and optionally the preheating of the workpieces to be formed. Usually, however, the temperature of the workpieces to be reshaped is about 20 ° C. However, if the workpieces to be reshaped are preheated to temperatures in the range of 650 to 850 ° C or 900 to 1,250 ° C, this is called warm or hot forming.
  • the cold-forming metal moldings have been made almost exclusively either by applying a grease, an oil or an oil emulsion, or first by coating with zinc phosphate and then by coating either with a soap, especially alkali or alkaline earth stearate or / and with a soap Solid lubricant prepared in particular based on molybdenum sulfide, tungsten sulfide or / and carbon.
  • a soap-containing coating will find its upper limit of use at medium and mid-high temperatures.
  • a solid lubricant was only used if it was medium or heavy cold forming. In the cold forming of stainless steels coatings were often used from chloroparaffins, which are now used for reasons of environmental protection reluctant. But sulfide-containing coatings affect stainless steel.
  • DE-A-44 45 993 describes a lubricant concentrate for cold forming with a content of polyethylene, polyacrylic acid and styrene / acrylic acid copolymer of certain properties and the corresponding method for applying the lubricant coating.
  • Waxes are not explicitly mentioned.
  • this lubricant system has the disadvantage that the viscosity drops relatively sharply at high temperature and that it also requires a solid lubricant such as molybdenum disulfide and / or graphite even in medium-heavy forming.
  • the sulfidic solid lubricants are necessary especially at high temperature. But they have the disadvantage that the sulfides are not resistant to hydrolysis and are easily converted into sulfurous acid. The sulfurous acid can easily cause corrosion if the coating is not removed from the workpiece immediately after cold working.
  • US 2004/0101697 A1 teaches organic thin films on galvanized steel sheets of excellent corrosion resistance.
  • US 5,531,912 protects stearate-free solid lubricants based on ionomer and alkoxylated alcoholic film-forming agent.
  • JP 2002-24195 A1 teaches compositions based on 40-90% ionomer, 1-10% epoxy compound and 9-50% colloidal SiO 2 particles coated with ammonium ions for coating metallic surfaces.
  • EP 1 454 965 A1 teaches coatings to protect metal surfaces based on alkali silicate, lubricants and thickening agents for cold forming.
  • the coating should be able to be removed in a simple manner if necessary after the cold forming of the formed workpiece.
  • the object is achieved with a method for preparing metallic workpieces for cold forming by applying a lubricant layer, which is also referred to as a coating, either on a metallic surface or on a pre-coated metallic surface, wherein the lubricant layer by contacting the surface with a aqueous lubricant composition containing at least one water glass in the range of 0.1 to 85 wt .-% of solids and active ingredients and a content of organic polymeric material based on ionomer, acrylic acid / methacrylic acid, epoxy, ethylene, polyamide , Propylene, styrene, urethane, the ester (s) or / and salt (s) thereof, containing a content of at least one ionomer in the range of 3 to 98 wt .-% of the solids and active ingredients.
  • a lubricant layer which is also referred to as a coating, either on a metallic surface or on a pre-coated metallic surface, where
  • an additional solid lubricant layer based on sulfidic lubricant such as e.g. Molybdenum disulfide
  • this solid lubricant layer is the second coating
  • the third coating which follows a zinc phosphate layer as the first coating.
  • this product spectrum would today be treated first with a zinc phosphate layer, then with a conventional organic-polymeric lubricant composition and optionally additionally, if necessary, additionally coated with a third coating based on sulfidic solid lubricant and optionally additionally of graphite.
  • Sulphide solid lubricant was at all Moderate and heavy Kaltumformache necessary.
  • the organic-polymeric lubricant composition which is significantly higher in quality than the soap coating, had been isolated despite the higher cost. However, it was free of water-soluble, hydrous and / or water-binding oxides or / and silicates. In this sequence, about 40% of the product spectrum would require the additional third coating.
  • an additional third coating based on sulfidic solid lubricant is now required only at 12 to 20% of the product spectrum.
  • the inventive method is used in particular to facilitate, improve or / and simplify the cold forming of metallic moldings.
  • lubricant composition denotes the stages from the aqueous over the drying to the dry lubricant composition as the chemical composition, phases related composition and composition relating to mass, while the term “coating” refers to the dry, heated, softening and / or melting coating is formed from the lubricant composition and / or formed, including its chemical composition, phase-related composition and composition referred to composition.
  • the aqueous lubricant composition may be a dispersion or solution, especially a solution, colloidal solution, emulsion and / or suspension. It usually has a pH in the range from 7 to 14, in particular from 7.5 to 12.5 or from 8 to 11.5, particularly preferably from 8.5 to 10.5 or from 9 to 10.
  • the lubricant composition and / or the coating formed therefrom contain a content of at least one water glass in the range of 0.1 to 85 wt .-% of solids and active ingredients and a content of at least one ionomer, at least one non-ionomer and / or at least a wax and optionally a content of at least one additive.
  • it additionally particularly preferably contains in each case at least one content of acrylic acid / methacrylic acid or / and styrene, in particular as polymer (s) or / and as copolymer (s), which is / are not ionomer (s).
  • the lubricant composition and / or the coating formed therefrom each contain a content of from 3 to 98% by weight of at least one ionomer in each case.
  • the organic polymeric material consists essentially of oligomers, cooligomers, polymers and / or copolymers based on ionomer, acrylic acid / methacrylic acid, epoxide, ethylene, polyamine, propylene, styrene, urethane, their ester (s) or / and their salt ( s).
  • ionomer here includes a content of free and / or associated ions.
  • the water-soluble, water-containing or / and water-binding oxide or / and silicate is in each case at least one water glass, in particular a lithium, sodium or / and potassium-containing water glass.
  • a content of water in the range from 5 to 85% by weight, based on the content of solids, of or bound to the water-soluble, water-containing or / and water-binding oxide or / and silicate, preferably in the range from 10 to 75, from 15 to 70, from 20 to 65, from 30 to 60 or from 40 to 50 wt .-%, wherein the typical water content may have significantly different water contents depending on the nature of the oxide or / and silicate.
  • the water may for example be bound to the solid or / and coupled due to the solubility, adsorption, wetting, chemical bonding, porosity, complex particle shape, complex aggregate form and / or intermediate layers.
  • These water-bound or / and coupled substances apparently act in the lubricant composition and / or in the coating similar to a sliding layer. It is also possible to use a mixture of two or at least three substances of this group.
  • other cations may be present, in particular ammonium ions, alkali metal ions other than sodium and / or potassium ions, alkaline earth ions and / or transition metal ions.
  • the ions may be or have been at least partially replaced.
  • the water of the water-soluble, water-containing or / and water-binding oxide or / and silicate can in each case be at least partially adsorbed as water of crystallization, as solvent, bound to pore space, in a dispersion, in an emulsion, in a gel or / and in a sol.
  • Particularly preferred is at least one water glass, in particular a sodium-containing water glass.
  • a content of at least one oxide such as, in each case at least one silica or / and magnesium oxide and / or each at least one silicate such as, in each case at least one layered silicate, modified silicate and / or alkaline earth silicate may be included.
  • this is in each case at least one oxide or / and silicate in dissolved form, in nanocrystalline form, as a gel or / and as a sol.
  • a solution may also be present as a colloidal solution.
  • the water-soluble, water-containing or / and water-binding oxide or / and silicate is present in particulate form, it is preferably very fine-grained, in particular with an average particle size of less than 0.5 ⁇ m, less than 0.1 or even less than 0.03 ⁇ m, respectively determined with a laser particle measuring device and / or nanoparticle measuring device.
  • the water-soluble, hydrous or / and water-binding oxides or / and silicates help to increase the viscosity of the dried, emollient and melting coating and are widely used as binders, as water repellents and as corrosion inhibitors. It has been shown that among the water-soluble, water-containing or / and water-binding oxides or / and silicates, water glass behaves particularly favorably. By adding, for example, from 2 to 5% by weight of water glass, based on solids and active ingredients, to the aqueous lubricant composition, the viscosity of the dried, softening and melting coating is markedly increased in many embodiments, especially at temperatures of more than 230 ° C.
  • the content of water glass in the lubricant composition or / and in the coating formed therefrom is 0.1 to 85, 0.3 to 80 or 0.5 to 75 wt .-% of the solids and active ingredients, particularly preferably 1 to 72, 5 bis 70, 10 to 68, 15 to 65, 20 to 62, 25 to 60, 30 to 58, 35 to 55 or 40 to 52 wt .-% of the solids and active ingredients, determined without the bound thereto and / or coupled water content.
  • the weight ratio of the contents of water-soluble, hydrous or / and water-binding oxides or / and silicates to the content of ionomer (s) and / or non-ionomer (s) in the lubricant composition or / and in the coating is preferably in the range from 0.001: 1 to 0.2: 1, more preferably in the range of 0.003: 1 to 0.15: 1, from 0.006: 1 to 0.1: 1 or from 0.01: 1 to 0.02: 1.
  • the ionomers are a special type of polyelectrolytes. They preferably consist essentially of ionomeric copolymers, optionally together with corresponding ions, monomers, comonomers, oligomers, cooligomers, polymers, their esters or / and their salts. Block copolymers and graft copolymers are considered to be a subset of the copolymers.
  • the ionomers are compounds based on acrylic acid / methacrylic acid, ethylene, propylene, styrene, their esters or / and their salt (s) or mixtures with at least one of these ionomeric compounds.
  • the lubricant composition and / or the coating formed therefrom have a content of at least one ionomer in the range from 3 to 98% by weight of the solids and active ingredients.
  • the content of at least one ionomer is from 5 to 95, 10 to 90, 15 to 85, 20 to 80, 25 to 75, 30 to 70, 35 to 65, 40 to 60 or 45 to 55 wt .-% of the solids and active ingredients of the lubricant composition and / or the coating formed therefrom.
  • the composition of the lubricant composition and / or the coating formed therefrom may vary and vary widely.
  • the lubricant composition and / or the coating formed therefrom may preferably contain at least one ionomer having a substantial content of at least one copolymer, in particular a copolymer based on polyacrylic, polymethacrylic, polyethylene or / and polypropylene.
  • an ionomer has a glass transition temperature T g in the range of - 30 ° C to + 40 ° C, preferably in the range of - 20 to + 20 ° C.
  • the molecular weight of the ionomer is preferably in the range of 2,000 to 15,000, more preferably in the range of 3,000 to 12,000 or 4,000 to 10,000.
  • the lubricant composition and / or the coating formed therefrom particularly preferably contains / contains at least one ionomer based on ethylene acrylate and / or ethylene methacrylate, preferably one having a molecular weight in the range from 3,500 to 10,500, more preferably in the range from 5,000 to 9,500, and / or with a glass transition temperature T g in the range of - 20 ° C to + 30 ° C.
  • the acrylate content may be up to about 25% by weight.
  • a slightly higher molecular weight may be advantageous for higher loadable coatings.
  • Some ionomer additives also serve to ensure lubrication and reduce friction in the early stages of cold forming, especially when the workpiece is cold and the tool is cold. This is all the more important the easier and / or weaker the cold forming is and the lower the forming temperature is.
  • the melting point of the at least one ionomer in many embodiments is preferably in the range of 30 to 85 ° C. Its glass transition temperature is preferably below 35 ° C. At least one ionomer is preferably added as a dispersion.
  • Block copolymers and graft copolymers are considered to be a subset of the copolymers.
  • some acrylic-containing polymers / copolymers and some styrene acrylates may act as thickeners.
  • Polyethylene or polypropylene may preferably be modified by propylene, ethylene, their corresponding polymers or / and by further additives such as acrylate. They may preferably have waxy properties. They may preferably have at least one softening / softening point and / or at least one melting range / melting point in the range from 80 to 250 ° C.
  • the polymers or / and copolymers of these substances preferably have a molecular weight in the range of 1,000 to 500,000.
  • Individual substances preferably have a molecular weight in the range of 1,000 to 30,000, others one in the range of 25,000 to 180,000 or / and in the range of 150,000 to 350,000.
  • Particularly high molecular weight substances can be used as thickeners.
  • An acrylic or / and a styrene-acrylate additive can also have a thickening effect.
  • one or two, three, four or five different non-ionomers are added to the ionomer-containing lubricant composition and / or the coating.
  • the lubricant composition and / or the coating formed therefrom preferably does not have a content or content of at least one non-ionomer in the range of 0.1 to 90% by weight of the solids and the active ingredients. More preferably, the content of the at least one non-ionomer is 0.5 to 80, 1 to 65, 3 to 50, 5 to 40, 8 to 30, 12 to 25 or 15 to 20 wt .-% of the solids and active ingredients of the lubricant composition or of the coating.
  • Both the individual or premixed ionomers, as well as the individual or premixed non-ionomers, may each be added, independently of each other, as a solution, colloidal solution, dispersion, and / or emulsion of the aqueous lubricant composition.
  • the ionomers and / or non-ionomers may be present at least partially, in particular the acrylic acid components of the polymers according to b) and c), preferably under application conditions partially, in particular predominantly or completely, as salts of inorganic or / and organic cations.
  • the weight ratio of the contents of ionomer (s) to non-ionomer (s) is preferably in the range of 1: 3 to 50: 1, more preferably in the range of 1: 1 to 35: 1, from 2: 1 to 25: 1, from 4: 1 to 18: 1 or from 8: 1 to 12: 1.
  • the lubricant composition and / or the coating made therewith have a total content of at least one ionomer, or / and non-ionomer, preferably from zero or in the range from 3 to 99% by weight of the solids and active ingredients.
  • This content is particularly preferably 10 to 97, 20 to 94, 25 to 90, 30 to 85, 35 to 80, 40 to 75, 45 to 70, 50 to 65 or 55 to 60 wt .-% of the solids and active ingredients of Lubricant composition and / or coating.
  • Thickeners based on non-ionomers are included here.
  • the content of ionomer (s) or / and non-ionomer (s) can vary within wide limits. At least one content of at least one ionomer is particularly preferred.
  • the entire organic polymeric material - this term is intended to include ionomer (s) or / and non-ionomer (s) but not waxes - has an average acid number in the range of from 20 to 300, more preferably in the range of from 30 to 250 40 to 200, from 50 to 160 or from 60 to 100.
  • the term "all organic polymeric material” is intended to include ionomer (s) and / or non-ionomer (s) but not waxes.
  • At least one ionomer and / or at least one non-ionomer is at least partially neutralized, at least partially saponified and / or at least partially present as at least one organic salt in the lubricant composition or / and in the coating.
  • neutralizing agent for the neutralization of the lubricant composition is preferably used as neutralizing agent in each case at least one primary, secondary or / and tertiary amine, ammonia and / or at least one hydroxide, for example ammonium hydroxide, at least one alkali hydroxide such as lithium, sodium or / and potassium hydroxide or / and at least one alkaline earth metal hydroxide.
  • At least one alkylamine of at least one aminal alcohol or / and of at least one amine related thereto, for example in each case at least one alkanolamine, an aminoethanol, an aminopropanol, a diglycolamine, an ethanolamine, an ethylenediamine, a monoethanolamine, a diethanolamine or / and a triethanolamine, in particular dimethylethanolamine, 1- (dimethylamino) -2-propanol or / and 2-amino-2-methyl-1-propanol (AMP).
  • the at least one organic salt in particular at least one salt of inorganic or / and organic cations such as ammonium ions, can be obtained, for example, by adding at least one neutralizing agent to at least one ionomer or / and at least one non-ionomer or / and to a mixture containing at least one these polymeric organic materials and optionally at least one further component such as at least one wax and / or at least one additive contains, are formed.
  • the salt formation can take place before or / and in the preparation of the lubricant composition and / or in the lubricant composition.
  • the neutralizing agent in particular at least one aminal alcohol, forms many times in the temperature range from room temperature to about 100 ° C, in particular at temperatures in the range of 40 to 95 ° C, with at least one ionomer and / or with at least one non-ionomer corresponding salts. It is believed that the neutralizing agent in some Embodiments, in particular at least one Aminalkohol, can react chemically with the water-soluble, water-containing and / or water-binding oxide and / or silicate and forms an advantageous for cold forming behaving reaction product.
  • At least one amine in particular at least one amino alcohol, a single ionomer, a single non-ionomer, a mixture containing at least one ionomer or / and a mixture containing at least one non-ionomer in advance in the preparation the aqueous lubricant composition.
  • the previous addition is often beneficial to allow reactions to organic salts.
  • the amines usually react with any organic polymeric material containing carboxyl groups, as far as the temperatures for the reactions are sufficiently high. These reactions are preferably carried out at or above the temperatures of the melting point / melting range of the corresponding polymeric compounds.
  • Aqueous lubricant compositions with an addition of ammonia should preferably not be heated above 30 ° C.
  • Aqueous lubricant compositions with an addition of at least one amine should preferably be maintained in a temperature range of 60 to 95 ° C, in which many reactions take place to amine salts.
  • At least one neutralizing agent such as at least one amine or / and at least one Aminalkohols helps the organic make polymeric material more water-soluble and / or better water-dispersible.
  • the reactions to corresponding salts preferably proceed with water-soluble or / and water-dispersed organic polymeric materials.
  • the at least one neutralizing agent in particular at least one amine, is added early in the mixing together of the various components of the aqueous lubricant composition and thereby optionally at least partially an already contained organic polymeric material and / or at least one subsequently added organic polymeric material is neutralized.
  • the neutralizing agent is added in excess or / and is contained in the lubricant composition and / or in the coating in excess.
  • the at least one neutralizing agent in particular the at least one amine alcohol, can also be used to adjust the pH of a mixture or of the aqueous lubricant composition.
  • the organic salts have the advantage over the ionomers and / or non-ionomers of being often more water-soluble or / and better water-dispersible than the corresponding ionomers and / or non-ionomers.
  • the coatings and deposits from cold forming can be better removed from the formed workpiece.
  • lower softening ranges / softening points or / and lower melting ranges / melting points result with the organic salts, which is often advantageous.
  • better lubricating properties also result for the desired processing conditions.
  • organic salts especially amine salts and / or organic ammonium salts are preferred.
  • amine salts since these after application of the aqueous lubricant composition, they do not change their composition more and have higher water solubility and / or water dispersibility, and therefore help to relatively easily remove the coating and deposits on the formed workpiece after cold working.
  • ammonia rapidly escapes after the application of the aqueous lubricant composition, which not only can be an odor nuisance, but also causes a back reaction of the ammonium salts to the original organic polymeric substances, which can later be removed worse than the amine salts. This results in chemically and in water quite resistant coatings.
  • hydroxide (s) as a neutralizing agent often results in fairly hard and brittle, but water-sensitive coatings.
  • the content of the at least one neutralizing agent, in particular also the at least one Aminalkohols, in the lubricant composition may - especially depending on the acid number of the ionomer or non-ionomer - at the beginning of the neutralization reaction preferably at zero or in the range of 0.05 to 15, from 0 , 2 to 12, from 0.5 to 10, from 0.8 to 8, from 1 to 6, from 1.5 to 4 or from 2 to 3 wt .-% of the solids and active ingredients.
  • Higher contents may be advantageous in some embodiments, in particular with the addition of at least one amine, while in the case of an addition of ammonia or / and at least one hydroxide in most embodiments rather lower contents are selected.
  • the weight ratio of the contents of neutralizing agent (s), in particular to amine alcohol (s), to contents of ionomer (s) or / and non-ionomer (s) or / and to the total content of organic polymeric material is preferably in the range of 0.001: From 1 to 0.2: 1, more preferably in the range of from 0.003: 1 to 0.15: 1, from 0.006: 1 to 0.1: 1, or from 0.01: 1 to 0.05: 1.
  • the lubricant composition of the present invention and / or the coating formed therefrom preferably does not have a content or content of at least one organic salt, preferably formed by neutralization, in the range of 0.1 to 95 or 1 to 90% by weight of the solid and active ingredients.
  • the content of at least one salt is 3 to 85, 8 to 80, 12 to 75, 20 to 70, 25 to 65, 30 to 60, 35 to 55 or 40 to 50 wt .-% of the solids and active ingredients of the lubricant composition ,
  • the weight ratio of the contents of at least one organic salt to contents of ionomer (s) or / and non-ionomer (s) in the lubricant composition or / and in the coating is preferably in the range from 0.01: 1 to 100: 1, particularly preferred in the range of 0.1: 1 to 95: 1, from 1: 1 to 90: 1, from 2: 1 to 80: 1, from 3: 1 to 60: 1, from 5: 1 to 40: 1 or from 8: 1 to 20: 1.
  • a wax is intended to mean a compound which has a defined melting point, which in the molten state has a fairly low viscosity and which is capable of occurring in crystalline form.
  • a wax has no or no substantial content of carboxyl groups, is hydrophobic, and is highly chemically inert.
  • the lubricant composition and / or the coating formed therefrom may preferably contain at least one wax, in particular at least one paraffin wax, a carnauba wax, a silicone wax, an amide wax, an ethylene and / or a propylene-based wax and / or a crystalline wax.
  • it can serve to increase the lubricity and / or creep of the forming and / or formed coating, the separation of the workpiece and the tool and to reduce friction.
  • no wax or a content of at least one wax is in the range of 0.05 to 60% by weight of the solids and active ingredients in the lubricant composition and / or in the coating, particularly preferably and in particular depending on the conditions of use and total chemical composition, for example in the range of 0.5 to 52, 1 to 40, 2 to 35, 3 to 30, 4 to 25, 5 to 20, 6 to 15, 7 to 12 or 8 to 10 wt .-% of the solids and active ingredients.
  • the content of the individual wax is in each case in the range from 0.05 to 36% by weight of the solids and active substances in the lubricant composition or / and in the coating, particularly preferably in the range from 0.5 to 30, 1 to 25 , 2 to 20, 3 to 16, 4 to 12, 5 to 10 or 6 to 8 wt .-% of the solids and active ingredients.
  • At least one wax may preferably have an average particle size in the range from 0.01 to 15 ⁇ m, particularly preferably in the range from 0.03 to 8 ⁇ m or 0.1 to 4 ⁇ m. With these particle sizes, it may be preferred in many embodiments if the wax particles at least partially protrude from the formed coating.
  • the addition of at least one wax can be dispensed with, in particular if the cold forming is not too heavy and / or if a higher content of ionomer, waxy substance or / and water-soluble, hydrous and / or water-binding oxide and / or silicate is contained , Only with heavy cold extrusion with lubricant compositions of very high ionomer content can be dispensed with a wax additive. In most embodiments, however, an addition of at least one wax is advantageous.
  • the at least partially softened or at least partially melting coating can raise during cold working on the workpiece to be formed and form a release film between the workpiece and the tool. As a result, e.g. Grooves in the workpiece are avoided.
  • the weight ratio of the contents of at least one wax to the total content of ionomer (s) and / or non-ionomer (s) in the lubricant composition and / or in the coating formed therefrom is preferably in the range of 0.01: 1 to 8: 1, more preferably in the range of 0.08: 1 to 5: 1, of 0.2: 1 to 3: 1, of 0.3: 1 to 2: 1, from 0.4: 1 to 1.5: 1, from 0.5: 1 to 1: 1 or from 0.6: 1 to 0.8: 1.
  • different content ranges can be particularly advantageous: Once very small, a other times very high contents.
  • a comparatively very high wax content is recommended for sliding pull, deep drawing and light to medium hard cold forming.
  • a comparatively low wax content has been found to be sufficient for heavy cold extrusion or difficult sliding operations such as solid parts and extra thick wire.
  • the lubricant composition and / or the coating formed therefrom have a plurality of successive softening areas / softening points or / and melting areas / melting points over a larger temperature range, which is passed through the cold forming during heating of the metallic workpiece, in particular such that there is a substantially continuous change in the thermal and / or mechanical properties and / or viscosity of the lubricant composition and / or the softening and / or melting coating.
  • the waxes in the lubricant composition and / or in the coating formed therefrom have at least one melting range / melting point in the range from 50 to 120 ° C (eg paraffin waxes), from 80 to 90 ° C (eg carnauba waxes), from 75 to 200 ° C ( eg amide waxes), from 90 to 145 ° C (eg polyethylene waxes) or from 130 to 165 ° C (eg polypropylene waxes).
  • Low-melting waxes can also serve to ensure lubrication in the early stages of cold forming, in particular when the workpiece is cold and when the tool is cold, and the To reduce friction.
  • At least two low-melting waxes - for example, with at least one melting range / melting point T m in the range of 60 to 90 or 65 to 100 ° C - or / and at least two high-melting waxes - for example, with at least a melting range / melting point T m in the range of 110 to 150 or 130 to 160 ° C - to use.
  • This is particularly advantageous if these waxes have significantly different viscosities at those low or high temperatures in the range of the melting range / melting point, whereby a certain viscosity can be set in the heated or / and melting lubricant composition.
  • a high melting amide wax may be less viscous than a high melting polyethylene or / and polypropylene wax.
  • the waxes are spread over the desired processing range, in particular over the desired temperature range selected.
  • the lubricant composition and / or the coating formed therefrom may contain at least one solid lubricant and / or at least one friction modifier.
  • at least one such additive in the lubricant composition, in the coating formed therefrom and / or in the film formed on a coating based on at least one solid lubricant is advantageous when high degrees of deformation are required.
  • the total content of at least one solid lubricant or / and at least one Reibwertminderer in the lubricant composition and / or in the coating formed therefrom is preferably either at zero or in the range of 0.5 to 50, 1 to 45, 3 to 40, 5 to 35, 8 to 30, 12 to 25 or 15 to 20 wt .-% of Solids and active ingredients.
  • At least one solid lubricant may be added to the lubricant composition and / or on the other hand a film containing at least one solid lubricant may be applied to the coating made with an aqueous lubricant composition.
  • a film containing at least one solid lubricant may be applied to the coating made with an aqueous lubricant composition.
  • the solid lubricant may preferably be molybdenum disulfide, tungsten sulfide, bismuth sulfide or / and amorphous or / and crystalline carbon. Preferably, heavy metal free is also worked for reasons of environmental protection. All of these solid lubricants have the disadvantage of strongly staining and heavily soiling.
  • the sulfidic solid lubricants have the disadvantage that the sulfides are not resistant to hydrolysis and are easily converted into sulfurous acid. The sulfurous acid can easily cause corrosion if the solid lubricant containing coating and the solid lubricant containing deposits are not removed from the workpiece immediately after cold working.
  • the sulfidic solid lubricants are particularly necessary for heavy cold forming and resulting medium to high temperature.
  • the carbon additives are especially at very high temperature and at a higher degree of deformation advantageous. While molybdenum disulfide can be used up to temperatures of about 450 ° C, graphite can be used up to temperatures of about 1100 ° C, but its lubricating effect at cold working only starts at about 600 ° C. Therefore, a mixture of molybdenum disulfide powder, preferably very finely ground, is often used together with graphite or / and amorphous carbon. But carbon addition can lead to unwanted carburizing of an iron material. And sulfide addition can even lead to intercrystalline corrosion in stainless steel.
  • the lubricant composition of the present invention and / or the coating formed therefrom preferably has no content or content of at least one solid lubricant in the range of 0.5 to 50, 1 to 45, 3 to 40, 5 to 35, 8 to 30, 12 to 25 or 15 to 20 wt .-% of solids and active ingredients.
  • At least one of the following substances may be used in the lubricant composition: alkali nitrate, alkali formate, alkali propionate, phosphoric acid ester preferably as amine salt, thiophosphate, e.g. Zinc dialkyl dithiophosphate, thiosulfate and / or alkali metal pyrophosphate - the latter preferably combined with alkali metal thiosulfate.
  • They participate in many embodiments in the formation of a protective layer and / or a release layer for separating workpiece and tool and help to avoid cold welding between the workpiece and tool. But they can be partially corrosive. Because the phosphorus and / or sulfur-containing additives can react chemically with the metallic surface.
  • the lubricant composition according to the invention or / and the coating formed therefrom preferably has / does not have a content or a content of at least one coefficient of friction reducer in the range from 0.05 to 5 or 0.1 to 4 wt .-% of the solids and active ingredients, more preferably in the range of 0.3 to 3, from 0.5 to 2.5 or from 1 to 2 wt .-%.
  • the lubricant composition and / or the coating formed therefrom may each contain at least one additive. It may contain at least one additive selected from the group consisting of wear-protective additives, silane additives, elastomers, film-forming aids, corrosion inhibitors, surfactants, defoamers, leveling agents, biocides, thickeners and organic solvents.
  • the total content of additives in the lubricant composition and / or in the coating formed therefrom is preferably in the range of 0.005 to 20, 0.1 to 18, 0.5 to 16, 1 to 14, 1.5 to 12, 2 to 10, 2 , 5 to 8, 3 to 7 or 4 to 5.5 wt .-% of the solids and active ingredients.
  • Thickeners based on non-monomers are excluded at these levels and are considered in the non-ionomers.
  • the content and the choice of additives can vary within wide limits.
  • the lubricant composition of the present invention and / or the coating formed therefrom preferably has no content or content of at least one wear-resistant organic substance in the range of 0.1 to 10 or 0.5 to 8 wt .-% of the solids and active ingredients. Preferably, this content is 1 to 6, 2 to 5 or 3 to 4 wt .-% of the solids and active ingredients.
  • aqueous solutions containing at least one silane additive in concentrations in the range from 5 to 50% by weight, in particular also an 8%, a 12% and an 18% solution, based on at least one silane have been used in experiments.
  • Silanol / siloxane based on ⁇ -aminopropyltriethoxysilane, diaminosilane or / and 1,2-bis (trimethoxysilyl) ethane used to pre-rinse the phosphated workpiece, dried and then coated with the lubricant composition.
  • this solution may also be mixed with the aqueous lubricant composition. In both variants, this addition had a significant improvement in lubricity.
  • It may preferably contain at least one elastomer, in particular a hydroxy-terminated polysiloxane preferably having a molecular weight greater than 90,000, for increasing lubricity and scratch resistance, in particular at a content of 0.01 to 5 or from 0.2 to 2.5 wt. -% of the solid and active substances of the lubricant composition or / and of the coating.
  • at least one elastomer in particular a hydroxy-terminated polysiloxane preferably having a molecular weight greater than 90,000, for increasing lubricity and scratch resistance, in particular at a content of 0.01 to 5 or from 0.2 to 2.5 wt. -% of the solid and active substances of the lubricant composition or / and of the coating.
  • It may preferably comprise at least one film-forming aid for producing a substantially or wholly-closed organic coating contain.
  • the cold-working coating will not be fully closed, which is quite sufficient for these applications when subsequently removed from the formed workpiece.
  • the addition of at least one film-forming aid may be advantageous.
  • Film formation under the action of the at least one film-forming auxiliary can be carried out in particular together with corresponding non-ionomers and, for example, with water glass.
  • the film can be formed together with ionomers, non-ionomers and, for example, with water glass.
  • film-forming aids are particularly worthwhile for coatings which are to be retained at least partially on the reshaped workpiece after cold forming, for example in the case of steering parts. As a result, the workpiece can be permanently protected against corrosion there.
  • film-forming aids usually long-chain alcohols and / or alkoxylates are used.
  • the level of film-forming assistant (s) in the lubricant composition is in the range of 0.03 to 5% by weight of the lubricants and / or coating solids and / or the coating, more preferably 0.1 to 2% by weight.
  • the weight ratio of organic film-forming agent contents to film-forming aids in the lubricant composition is preferably in the range of 10: 1 to 400: 1, 20: 1 to 250: 1, or 40: 1 to 160: 1, more preferably in the range of 50: 1 to 130: 1, from 60: 1 to 110: 1 or from 70: 1 to 100: 1.
  • the lubricant composition according to the invention may preferably contain at least one corrosion inhibitor, for example based on carboxylate, dicarboxylic acid, organic amine salt, succinate or / and sulfonate. Such addition may be particularly advantageous for coatings that are to remain at least partially permanently on the formed workpiece, and / or at the risk of Anros, for example, when Flash Rusting.
  • the at least one anticorrosive agent is preferably contained in a content of 0.005 to 2 wt .-% of the solids and active ingredients of the lubricant composition and / or the coating, particularly preferably from 0.1 to 1.2 wt .-%.
  • the lubricant composition may preferably each contain at least one surfactant, a defoamer, a leveling agent and / or a biocide .
  • These additives are preferably each contained in a content of 0.005 to 0.8 wt .-% of the solids and active ingredients of the lubricant composition and / or the coating, particularly preferably from 0.01 to 0.3 wt .-%.
  • a surfactant can serve as a leveling agent.
  • At least one surfactant may in particular be a nonionic surfactant; this is preferably an ethoxylated fatty alcohol having 6 to 20 ethylene oxide groups.
  • the at least one surfactant is preferably contained in a content of 0.01 to 2 wt .-%, particularly preferably from 0.05 to 1.4 wt .-%.
  • the addition of a defoamer may u.U. be advantageous to brake the tendency to foaming, which can be enhanced or caused in particular by an added surfactant.
  • the lubricant composition may preferably contain at least one thickener which belongs to the non-ionomers as a polymeric organic thickener and otherwise belongs not to the non-ionomers, but to the additives.
  • preference is given in each case to at least one primary or / and tertiary amine-containing compound, a cellulose, a cellulose derivative, a silicate such as, for example, a bentonite-based or / and at least one other layered silicate, a starch, a starch derivative or / and a sugar derivative used. It is preferably in the lubricant composition and / or in the coating formed therefrom in a content of 0.1 to 12 or from 1 to 6 wt .-% of the solids and active ingredients of the lubricant composition and / or the coating.
  • At least one organic solvent or / and at least one solubilizer may also be added or / and contained in the lubricant composition.
  • no or no higher contents eg less than 0.5% by weight of the solids and active substances of the lubricant composition and / or the coating
  • chlorine-containing compounds fluorine containing compounds such as in particular fluorine-containing polymers / copolymers, compounds based on or containing isocyanate or / and isocyanurate
  • melamine resin phenolic resin, polyethyleneimine, polyoxyethylene, polyvinyl acetate, polyvinyl alcohol, polyvinyl esters, polyvinylpyrrolidone, more corrosive substances, to umweltunUNIen and / or toxic heavy metal compounds, on borates, chromates, chromium oxides, other chromium compounds, molybdates, phosphates, polyphosphates, vanadates, tungstates, metal powders and / or on a soap commonly used in cold forming such as alkali metal and
  • the lubricant composition in many embodiments has a solids and active ingredient content preferably in the range of 2 to 95% by weight, in particular in the range of 3 to 85, 4 to 70 or 5 to 50, 10 to 40, 12 to 30 or 15 to 22 Wt .-%, wherein the remaining contents up to 100 wt .-% either only water or predominantly water with contents of at least one organic solvent and / or at least one solubilizer.
  • the aqueous lubricant composition is agitated prior to its application to the metallic surface.
  • the aqueous lubricant composition When used as a so-called concentrate, the aqueous lubricant composition may have a solids and active substance content preferably in the range from 12 to 95, 20 to 85, 25 to 70 or 30 to 55% by weight, as application mixture ("bath") preferably in the range from 4 to 70, 5 to 50, 10 to 30 or 15 to 22 wt .-%. At low concentrations, the addition of at least one thickener may be advantageous.
  • the metallic particles to be cold formed with the lubricant composition can preferably be wetted for a time of 0.1 second to 1 hour.
  • the wetting time may depend on the type, shape and size of the metallic moldings as well as on the desired layer thickness of the coating to be produced, e.g. Long pipes are often introduced obliquely into the lubricant composition, so that the air can escape for a long time, especially in the tube interior.
  • the application of the aqueous lubricant composition on the workpiece can be carried out with all methods customary in surface technology, for example by manual and / or automated application, by spraying and / or dipping and optionally additionally by squeezing and / or rolling, optionally in a continuous dip process.
  • the cold-formed metallic molded body with the lubricant composition at a temperature preferably in the range of room temperature to 95 ° C, in particular at 50 to 75 ° C, wetted.
  • the drying usually proceeds without additional measures such as e.g. stronger circulation with warm air or treatment with radiant heat very slow; Moreover, if the drying is too slow, oxidation of the metallic surface, in particular rusting, such as e.g. Flash Rust, occur.
  • a coating of the lubricant composition is formed, the chemical composition of which does not have to match the starting composition and the phase content of the aqueous lubricant composition in every variant, but which largely or completely matches in many embodiments. In most embodiments hardly or no crosslinking reactions occur. For most or all of the embodiments involve drying of the aqueous lubricant composition on the metallic surface.
  • the added substances are preferably selected such that the softening ranges / softening points or / and melting ranges / melting points of the individual polymeric constituents (monomers, comonomers, oligomers, cooligomers, polymers or / and copolymers of the polymeric organic material), if appropriate also of the waxes and optionally co-acting Distribute additives over the temperature range, which is limited by the ambient or elevated temperature benchmarks in the range of 20, 50, 100, 150 or 200 ° C to 150, 200, 250, 300, 350 or 400 ° C.
  • the friction in each temperature range, which is passed through the cold forming, facilitated by at least one softened and / or molten substance and thereby usually the cold forming is guaranteed.
  • the coating produced with the lubricant compositions of the invention is intended to facilitate cold working and thereafter be removed from the formed workpiece.
  • the composition according to the invention may be designed so that the coating is particularly suitable for permanent retention on a formed workpiece, eg by using a content of at least one thermal crosslinking agent on at least one resin which is suitable for radical curing, for example UV curing, on at least one photoinitiator, for example for UV curing or / and on at least one film-forming auxiliary, in order to produce a particularly high-quality coating which is closed in many variants.
  • the cured, crosslinked and / or post-crosslinked coatings can provide increased corrosion resistance and hardness compared to the coatings of the other embodiments.
  • Particularly high quality coatings for higher or highest mechanical and / or thermal requirements have been found to be those in which the liquid, dry and / or dry coating applied with the aqueous lubricant composition of the invention has temperatures of at least 200 ° C no stronger softening or / and only a limited softening or no softening until at least 300 ° C shows.
  • the coating applied from the aqueous lubricant composition preferably has a coating weight in the range from 0.3 to 15 g / m 2 , in particular from 1 to 12, from 2 to 9 or from 3 to 6 g / m 2 .
  • the layer thickness of the coating is adjusted according to the conditions of use and can be present in particular in a thickness in the range from 0.25 to 25 ⁇ m, preferably in the range from 0.5 to 20, from 1 to 15, from 2 to 10, from 3 to 8 or from 4 to 6 ⁇ m.
  • the cold formed metallic moldings can basically consist of any metallic material. Preferably, they consist essentially of steel, aluminum, aluminum alloy, copper, copper alloy, magnesium alloy, titanium, titanium alloy, in particular of structural steel, high-strength steel, stainless steel and / or metallically coated Steel such as aluminized or galvanized steel. In most cases, the workpiece consists essentially of steel.
  • the metallic surfaces of the metallic workpieces to be cold formed and / or the surfaces of their metallized coating can be cleaned prior to wetting with the aqueous lubricant composition in at least one cleaning procedure, basically all cleaning methods are suitable for this purpose.
  • the chemical and / or physical cleaning may, above all, be peeling, blasting, e.g. Annealing, sandblasting, mechanical descaling, alkaline cleaning and / or acid pickling include.
  • the chemical cleaning is carried out by degreasing with organic solvents, by cleaning with alkaline and / or acidic cleaners, with acid pickling or / and by rinsing with water.
  • the pickling and / or blasting is used primarily for descaling the metallic surfaces.
  • a welded tube of cold rolled strip after welding and scraping, e.g. to pickle, rinse and neutralize a seamless tube, e.g. degrease and rinse a stainless steel nozzle.
  • a seamless tube e.g. degrease and rinse a stainless steel nozzle.
  • Parts made of stainless steel can be brought into contact both moist and dry with the lubricant composition, since rusting is not to be expected.
  • the cold-formed metallic shaped bodies can be precoated with the lubricant composition according to the invention before wetting.
  • the metallic surface of the workpiece can be provided, prior to wetting with the lubricant composition according to the invention, with a metallic coating consisting essentially of a metal or of a metal alloy (eg aluminized or galvanized).
  • the metallic surface of the workpiece or its metallically coated coating can be provided with a conversion coating, in particular oxalated or phosphated.
  • the conversion coating may preferably with a aqueous composition based on oxalate, alkali metal phosphate, calcium phosphate, magnesium phosphate, manganese phosphate, zinc phosphate or corresponding mixed crystal phosphate such as ZnCa-phosphate.
  • a aqueous composition based on oxalate, alkali metal phosphate, calcium phosphate, magnesium phosphate, manganese phosphate, zinc phosphate or corresponding mixed crystal phosphate such as ZnCa-phosphate.
  • the metallic moldings are also blank, that is wetted without a previous conversion coating, with the lubricant composition of the invention. The latter is only possible if the metallic surface of the workpiece to be formed is previously cleaned chemically and / or physically.
  • the metallic moldings are preferably thoroughly dried after coating with the lubricant composition, in particular with warm air and / or radiant heat. This is often necessary because, as a rule, water contents in coatings interfere with cold forming, because otherwise the coating can be insufficiently formed and / or because a coating of inferior quality can be formed. This can also occur quickly Anrosten.
  • the coating according to the invention with sufficient drying of such good quality that it is not damaged by careful handling of the metallic coated moldings and not partially removed.
  • the inventively coated metallic moldings can be used for cold forming, in particular for Gleit say eg pipes, hollow profiles, rods, other solid profiles and / or wires, for ironing and / or deep drawing, for example, of ribbons, sheets and / or hollow bodies, for example to hollow bodies, for cold extrusion
  • hollow or / and solid bodies and / or cold heading for example of wire sections to fasteners such as bolts and / or screw blanks, sometimes also several, possibly even different, cold forming operations can be performed sequentially.
  • the formed workpiece may preferably be at least partially cleaned of the remaining coating or / and the deposits of the lubricant composition.
  • the coating on the reshaped workpieces may, if necessary after cold forming, remain at least partially permanent.
  • the object is likewise achieved with a lubricant composition according to the invention for application to a workpiece to be formed and for cold forming.
  • the object is also achieved with a coating which has been formed from a lubricant composition according to the invention.
  • It also relates to the use of a lubricant composition according to the invention for application to a workpiece to be formed and for cold forming and the use of a coating according to the invention for cold forming and optionally also as a durable protective coating.
  • the cold extrusion - in particular steel scraps - according to the invention particularly low friction and especially without breakage of the tool even when using significantly increased forces.
  • the range of extreme pressing pressures as well as for the area of maximum wear minimization during cold forming, increased molding accuracy or / and increased forming speed, to produce coatings which are produced in a one-pot process, e.g. can be applied simply, reproducibly and inexpensively by dipping, pulling out and drying.
  • lubricant concentrates and baths was basically the same procedure.
  • the at least one ionomer based on ethylene acrylate was added to the water introduced, partly as a dispersion.
  • the mixture (A) was further maintained at temperatures in the range of 80 to 95 ° C and further vigorously stirred with a dissolver to the neutralization and to allow salt formation. This resulted in a transparent liquid after some time.
  • the at least one ionomer based on ethylene acrylate in the form of at least one dispersion of at least one organic ammonium salt was added and further stirred vigorously with a dissolver.
  • the non-ionomers were added first in dissolved and / or dispersed form and then in powder form with vigorous and long-term stirring with a dissolver.
  • the temperature was again lowered to the range of 60 to 70 ° C in the mixtures (A).
  • further additives such as biocide, wetting agent and corrosion inhibitor and finally at least one thickener for adjusting the viscosity were added as needed.
  • the respective concentrate was filtered and the pH was adjusted.
  • the respective concentrate was diluted accordingly with demineralized water and, if necessary, the pH was adjusted.
  • the baths with the aqueous lubricant composition were stirred gently over time and maintained at a temperature in the range of 50 to 70 ° C (Bath A) or 15 to 30 ° C (Bath B).
  • the coating of the phosphated slugs with the polymeric and mostly aqueous lubricant composition according to the invention was carried out by dipping for 1 min and then drying for 10 min at 60 to 65 ° C in a convection oven. These doubly coated dried slugs were then cold worked in a press by backward extrusion at 300 tons.
  • Tables 1 and 2 give the lubricant compositions and the suitability of the coatings formed therewith to ZnCa phosphate coatings for certain cold forming operations and their degree of deformation. The remainder to 100 wt .-% form the additives and solid lubricants, only the latter are given.
  • the ionomers used were ethylene acrylates or / and ethylene methacrylates ("ethylene acrylate").
  • ammonium polymer are meant organic polymeric ammonium salts of the non-monomers added as dispersions.
  • Types A and C ionomers have a slightly higher molecular weight and significantly higher melt viscosity (high temperature viscosity especially in the softening and / or melting) than type B and D ionomers.
  • Type A and B ionomers were included the preparation of the aqueous lubricant composition with an amine alcohol.
  • the ionomers of types C and D have an ammonium content and have already been added as organic salts.
  • Table 1 Compositions of the aqueous lubricant compositions with information in wt .-% of the solids and active ingredients and the suitability of the coatings formed therewith on ZnCa-phosphate coatings for certain cold forming operations and their degree of deformation for different types and amounts of water glass.
  • the content of the lubricant compositions according to the invention can be varied to a large extent on various components.
  • the addition of at least one ionomer and water glass, but also of at least two waxes with graduated melting temperatures has proven particularly useful.
  • the lubricant composition and the coating formed therefrom are more or better usable for heavy forming if a higher content of ionomer (s) or an additional high content of at least one solid lubricant is included.
  • the lubricant compositions of Examples 19 and 20 are particularly suitable for heavy cold working such as tumble pressing due to the content of graphite or molybdenum disulfide.
  • the lubricant compositions according to the invention enable environmentally friendly coatings, which are applied to metallic workpieces in a simple and cost-effective manner and are suitable for simple, medium-weight or / and particularly severe cold forming operations. Due to the use of organic salts, the coatings and corresponding deposits can be easily removed after cold working from the formed workpiece.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Lubricants (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Claims (15)

  1. Procédé de préparation de pièces métalliques en vue du formage à froid, par application d'une couche de lubrifiant qui est désignée ci-après également comme revêtement, soit sur une surface métallique soit sur une surface métallique préenduite, caractérisé en ce que la couche de lubrifiant est réalisée par mise en contact de la surface avec une composition de lubrifiant aqueuse, qui présente une teneur en au moins un verre soluble, dans la plage allant de 0,1 à 85 % en poids des matières solides et des agents actifs, ainsi qu'une teneur en matériau polymère organique à base d'un ionomère, acide acrylique/méthacrylique, époxyde, éthylène, polyamide, propylène, styrène, uréthane, leur(s) ester(s) ou/et leur(s) sel(s), sachant qu'elle présente une teneur en au moins un ionomère dans la plage allant de 3 à 98 % en poids des matières solides et agents actifs.
  2. Procédé selon la revendication 1, caractérisé en ce que le revêtement formé à partir de la composition de lubrifiant présente une teneur en au moins un ionomère dans la plage allant de 3 à 98 % en poids des matières solides et agents actifs.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la composition de lubrifiant ou/et le revêtement formé à partir de celle-ci a/ont une teneur en au moins un verre soluble, ainsi qu'une teneur en au moins un ionomère, en au moins un autre constituant polymère organique, qui n'est pas à considérer comme ionomère, ou/et en au moins une cire et, le cas échéant, une teneur en au moins un additif.
  4. Procédé selon la revendication 3, caractérisé en ce que la teneur en au moins un verre soluble dans le revêtement formé à partir de la composition de lubrifiant est de 0,1 à 85 % en poids des matières solides et agents actifs.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les ionomères sont constitués essentiellement de copolymères ionomères, le cas échéant conjointement avec des ions, monomères, comonomères, oligomères, co-oligomères, polymères correspondants, leurs esters ou/et leurs sels.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition de lubrifiant ou/et le revêtement formé à partir de celle-ci contient/contiennent d'autres constituants polymères organiques qui ne sont pas à considérer comme ionomères, tels que des oligomères, polymères ou/et copolymères à base d'acide acrylique/méthacrylique, amide, amine, aramide, époxyde, éthylène, imide, polyester, propylène, styrène, uréthane, leur(s) ester(s) ou/et leur(s) sel(s).
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un ionomère ou/et au moins un autre constituant polymère organique, qui n'est pas à considérer comme ionomère, est/sont neutralisé(s) au moins en partie, est/sont saponifié(s) au moins en partie ou/et est/sont présent(s) au moins en partie en tant qu'au moins un sel organique dans la composition de lubrifiant ou/et le revêtement.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition de lubrifiant ou/et le revêtement formé à partir de celle-ci contient/contiennent au moins une cire, en particulier respectivement une cire de paraffine, une cire de carnauba, une cire de silicone, une cire d'amide, une cire à base d'éthylène ou/et de propylène ou/et une cire cristalline.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition de lubrifiant ou/et le revêtement formé à partir de celle-ci contient/contiennent au moins un additif sélectionné dans le groupe comprenant des lubrifiants solides, des réducteurs de coefficient de frottement, des additifs protégeant contre fusure, des additifs à base de silane, des élastomères, des auxiliaires filmogènes, des agents anticorrosifs, des agents tensioactifs, des agents antimoussants, des agents d'écoulement, des biocides, des épaississants et des solvants organiques.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, après le formage à froid, la pièce formée est nettoyée pour être débarrassée au moins en partie du revêtement restant ou/et des dépôts de la composition de lubrifiant.
  11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que, après le formage à froid, le revêtement reste au moins en partie de façon durable sur la pièce formée.
  12. Composition de lubrifiant pour l'application sur une pièce à former et pour le formage à froid selon l'une des revendications 1 à 9.
  13. Revêtement qui est/a été formé à partir d'une composition de lubrifiant selon la revendication 12.
  14. Utilisation d'une composition de lubrifiant selon la revendication 12 pour l'application sur une pièce à former et pour le formage à froid.
  15. Utilisation d'un revêtement selon la revendication 13 pour le formage à froid et, le cas échéant, également en tant que revêtement de protection durable.
EP09706791.2A 2008-01-30 2009-01-26 Procédé d'enduction de surfaces métalliques avec une composition de lubrifiant Active EP2238228B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09706791T PL2238228T3 (pl) 2008-01-30 2009-01-26 Sposób powlekania powierzchni metalowych za pomocą kompozycji środka smarnego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008000185 2008-01-30
PCT/EP2009/050854 WO2009095375A1 (fr) 2008-01-30 2009-01-26 Procédé d'enduction de surfaces métalliques avec une composition de lubrifiant

Publications (2)

Publication Number Publication Date
EP2238228A1 EP2238228A1 (fr) 2010-10-13
EP2238228B1 true EP2238228B1 (fr) 2014-06-18

Family

ID=40547598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09706791.2A Active EP2238228B1 (fr) 2008-01-30 2009-01-26 Procédé d'enduction de surfaces métalliques avec une composition de lubrifiant

Country Status (20)

Country Link
US (1) US8915108B2 (fr)
EP (1) EP2238228B1 (fr)
KR (1) KR101653782B1 (fr)
CN (1) CN101983233B (fr)
AR (1) AR070688A1 (fr)
AU (1) AU2009209699B2 (fr)
BR (1) BRPI0906445B1 (fr)
CA (1) CA2713543C (fr)
CL (1) CL2009000225A1 (fr)
DK (1) DK2238228T3 (fr)
ES (1) ES2523589T3 (fr)
HU (1) HUE026557T2 (fr)
MX (1) MX2010008373A (fr)
PL (1) PL2238228T3 (fr)
PT (1) PT2238228E (fr)
RU (1) RU2535666C2 (fr)
TW (1) TWI457431B (fr)
UA (1) UA103312C2 (fr)
WO (1) WO2009095375A1 (fr)
ZA (1) ZA201005733B (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907997B2 (ja) * 2012-02-02 2016-04-26 しのはらプレスサービス株式会社 超伝導加速空洞の純ニオブ製エンドグループ部品の製造方法
RU2580766C1 (ru) * 2014-12-29 2016-04-10 Федеральное государственное бюджетное учреждение науки Южный научный центр Российской академии наук (ЮНЦ РАН) Способ нанесения антифрикционных покрытий на стальную поверхность
JP2017159357A (ja) * 2016-03-11 2017-09-14 富士ゼロックス株式会社 金属筒状体の製造方法、電子写真感光体用基材の製造方法、電子写真感光体の製造方法及びインパクトプレス加工用金属塊
CN105772373B (zh) * 2016-05-17 2018-06-15 中国矿业大学 一种双层复合自组装润滑膜的制备方法
US11453947B2 (en) * 2017-03-30 2022-09-27 Tata Steel Ijmuiden B.V. Aqueous acidic composition for treating metal surfaces, treating method using this composition and use of treated metal surface
CN111295437B (zh) * 2017-11-01 2022-08-09 株式会社Moresco 塑性加工用润滑剂组合物
RU2708882C1 (ru) * 2019-07-01 2019-12-12 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Низкотемпературная пластичная смазка (варианты)
DE102020102645A1 (de) * 2020-02-03 2021-08-05 Klüber Lubrication München Se & Co. Kg Tribologisches System
US20230091443A1 (en) * 2020-02-25 2023-03-23 Chemetall Gmbh One-step pretreatment method of metallic substrates for metal cold forming
MX2022010366A (es) 2020-02-25 2022-09-21 Chemetall Gmbh Metodo de pretratamiento de una etapa de sustratos metalicos para el conformado en frio de metales.
CN111635810A (zh) * 2020-06-03 2020-09-08 上海铂斯海特材料科技有限公司 一种水性金属冷挤压润滑剂的制备工艺及使用方法
CA3213974A1 (fr) 2021-04-01 2022-10-06 Chemetall Gmbh Procede de pretraitement en une etape de substrats metalliques a des valeurs de ph non neutres pour la formage a froid de metal
KR102348981B1 (ko) * 2021-07-30 2022-01-10 현대제철 주식회사 연료전지 분리판 제조용 윤활 조성물 및 이를 이용한 연료전지 분리판 제조방법
CN115386410B (zh) * 2022-08-11 2023-09-12 西安建筑科技大学 一种钛合金挤压用高温固体润滑剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1454965A1 (fr) * 2001-08-17 2004-09-08 Nihon Parkerizing Co., Ltd. Agent de traitement servant a former un revetement protecteur et materiau metallique comportant ce revetement protecteur

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1365943A (en) 1970-09-16 1974-09-04 Gaf Corp Metalworking additive and composition and process for making the same
FR2130981A5 (fr) 1971-03-29 1972-11-10 Rhone Poulenc Sa
DE2736874C2 (de) 1977-08-16 1987-03-26 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Erleichterung der Kaltumformung von Metallen
JPS6020463B2 (ja) 1982-06-04 1985-05-22 日本パ−カライジング株式会社 鉄鋼材の冷間加工潤滑処理方法
DE3413571A1 (de) * 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
US4668193A (en) 1984-12-31 1987-05-26 White Cap Dental Company, Inc. Dental crown composite and method of making and using same
US5525648A (en) 1991-12-31 1996-06-11 Minnesota Mining And Manufacturing Company Method for adhering to hard tissue
US5462905A (en) * 1992-08-21 1995-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
DE4306446A1 (de) 1993-03-02 1994-09-08 Metallgesellschaft Ag Verfahren zur Erleichterung der Kaltumformung
US5531912A (en) * 1994-09-02 1996-07-02 Henkel Corporation Composition and process for lubricating metal before cold forming
DE4440301A1 (de) 1994-11-11 1996-05-15 Metallgesellschaft Ag Schmiermittelträgersalz für die Metallumformung
DE4445993A1 (de) 1994-12-22 1996-06-27 Metallgesellschaft Ag Schmiermittel für die Metallumformung
ZA963198B (en) * 1995-05-16 1996-10-25 Timcal Ltd Lubricant composition for use on workpieces in the hot forming of metals
US6258759B1 (en) * 1997-10-24 2001-07-10 Sadao Futahashi Metal working water and metal working composition
US6472352B1 (en) 1998-08-31 2002-10-29 Henkel Corporation Aqueous lubricant and process for cold forming metal, with improved formed surface quality
DE19844391C2 (de) 1998-09-28 2003-01-09 Chemetall Gmbh Verfahren zur Vorbereitung von Werkstücken für die Kaltumformung
US20040221924A1 (en) 1999-09-30 2004-11-11 Klaus-Dieter Nittel Method for applying manganese phosphate layers
CA2398771A1 (fr) 2000-01-31 2001-08-02 Henkel Corporation Procede et composition de phosphatation par conversion
US6846779B1 (en) * 2000-03-24 2005-01-25 Omnitechnik Mikroverkapselungsgesellschaft Mbh Coating compositions having antiseize properties for a disassemblable socket/pin and/or threaded connections
JP2002024195A (ja) 2000-07-05 2002-01-25 Nec Corp 並列処理装置、及び、並列処理方法
DE10062310C2 (de) * 2000-12-14 2002-11-07 Geesthacht Gkss Forschung Verfahren zur Behandlung metallischer Werkstoffe
JP4236383B2 (ja) 2001-02-15 2009-03-11 新日本製鐵株式会社 水分散性金属表面処理剤、表面処理金属材とその製造方法
RU2258859C2 (ru) 2001-04-11 2005-08-20 Сумитомо Метал Индастриз, Лтд. Резьбовое соединение для стальных труб (варианты)
JP2004176092A (ja) * 2002-11-25 2004-06-24 Kobe Steel Ltd 溶接性および耐食性に優れた樹脂被覆溶融亜鉛系めっき鋼板並びにその製造方法
DE10320313B4 (de) 2003-05-06 2005-08-11 Chemetall Gmbh Verfahren zum Beschichten von metallischen Körpern mit einer Phosphatierungslösung, Phosphatierungslösung und die Verwendung des beschichteten Gegenstandes
JP4110419B2 (ja) 2004-04-23 2008-07-02 ライオン株式会社 洗浄用粒子の製造方法
EP1765944A1 (fr) 2004-07-02 2007-03-28 Henkel Kommanditgesellschaft Auf Aktien Lubrifiant de film sec
JP2006143988A (ja) * 2004-10-20 2006-06-08 Yushiro Chem Ind Co Ltd 塑性加工用潤滑被膜、塑性加工用潤滑被膜形成用組成物、塑性加工用素材、塑性加工品の製造方法並びに金属管、金属線又は金属棒の製造方法
US20060233955A1 (en) 2005-04-14 2006-10-19 Noel Smith Process for the coating of metallic components with an aqueous organic composition
DE102005023023B4 (de) 2005-05-19 2017-02-09 Chemetall Gmbh Verfahren zur Vorbereitung von metallischen Werkstücken zum Kaltumformen, mit dem Verfahren beschichtete Werkstücke und ihre Verwendung
US8445106B2 (en) 2005-08-02 2013-05-21 Kobe Steel, Ltd. Resin-coated metal sheet and resin composition
JP4668826B2 (ja) 2006-03-31 2011-04-13 住友金属工業株式会社 金属の冷間引抜き加工方法、及び引抜き材の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1454965A1 (fr) * 2001-08-17 2004-09-08 Nihon Parkerizing Co., Ltd. Agent de traitement servant a former un revetement protecteur et materiau metallique comportant ce revetement protecteur

Also Published As

Publication number Publication date
TW200932894A (en) 2009-08-01
AR070688A1 (es) 2010-04-28
US20110048090A1 (en) 2011-03-03
AU2009209699B2 (en) 2013-01-17
WO2009095375A1 (fr) 2009-08-06
UA103312C2 (ru) 2013-10-10
TWI457431B (zh) 2014-10-21
MX2010008373A (es) 2010-08-23
CN101983233B (zh) 2015-02-11
EP2238228A1 (fr) 2010-10-13
ZA201005733B (en) 2011-10-26
BRPI0906445B1 (pt) 2022-01-11
PT2238228E (pt) 2014-10-15
RU2010135775A (ru) 2012-03-10
AU2009209699A1 (en) 2009-08-06
KR101653782B1 (ko) 2016-09-05
CA2713543C (fr) 2016-12-13
CL2009000225A1 (es) 2010-10-15
HUE026557T2 (hu) 2016-06-28
KR20100112635A (ko) 2010-10-19
ES2523589T3 (es) 2014-11-27
US8915108B2 (en) 2014-12-23
RU2535666C2 (ru) 2014-12-20
CN101983233A (zh) 2011-03-02
BRPI0906445A2 (pt) 2021-05-11
PL2238228T3 (pl) 2015-02-27
DK2238228T3 (da) 2014-09-29
CA2713543A1 (fr) 2009-08-06

Similar Documents

Publication Publication Date Title
EP2238228B1 (fr) Procédé d'enduction de surfaces métalliques avec une composition de lubrifiant
EP2247701B1 (fr) Procédé d'enduction de surfaces métalliques avec une composition de lubrifiant contenant des cires
EP2238227B1 (fr) Procédé d'enduction de surfaces métalliques avec une couche de phosphate puis avec une couche de lubrifiant polymère
DE69005941T2 (de) Schmierverfahren zur plastischen Bearbeitung metallischer Materialien.
WO2016037814A1 (fr) Utilisation d'un sulfate et procédé de fabrication d'une pièce en acier par formage sur une machine de formage
EP2311928A2 (fr) Solution aqueuse contenant un ester d'acide phosphorique organique pour la fabrication d'une tôle métallique revêtue de lubrifiant ayant des propriétés de déformation améliorées
EP0251192B1 (fr) Lubrifiant pour la formation de métaux
DE3519078A1 (de) Verfahren zur kaltumformung metallischer werkstuecke
WO2020165035A1 (fr) Procédé simplifié de traitement préalable de substrats métalliques pour la déformation à froid et lubrifiant réactif approprié
DE102007061109B4 (de) Behandlungslösung zum Beschichten eines Stahlbandes, ein Verfahren zum Aufbringen derselben sowie ein Stahlband mit einer Beschichtung erhalten aus der Behandlungslösung zur Verbesserung des Umformverhaltens
EP3705556A1 (fr) Lubrifiant de formage de métaux, en particulier de formage d'acier, et procédé de fabrication de lubrifiant de formage
EP3837061A1 (fr) Procédé de fabrication d'un fil phosphaté recouvert d'un moyen de protection contre la corrosion, en particulier d'un fil d'acier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100830

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17Q First examination report despatched

Effective date: 20110120

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 673373

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009009530

Country of ref document: DE

Effective date: 20140731

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140924

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20141008

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140918

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2523589

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141018

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009530

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150126

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E026557

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200128

Year of fee payment: 12

Ref country code: NL

Payment date: 20200128

Year of fee payment: 12

Ref country code: PT

Payment date: 20200106

Year of fee payment: 12

Ref country code: GB

Payment date: 20200129

Year of fee payment: 12

Ref country code: PL

Payment date: 20200103

Year of fee payment: 12

Ref country code: HU

Payment date: 20200120

Year of fee payment: 12

Ref country code: DK

Payment date: 20200127

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200122

Year of fee payment: 12

Ref country code: LU

Payment date: 20200128

Year of fee payment: 12

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210127

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210127

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210726

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240213

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 16

Ref country code: CH

Payment date: 20240201

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240110

Year of fee payment: 16

Ref country code: IT

Payment date: 20240123

Year of fee payment: 16

Ref country code: FR

Payment date: 20240125

Year of fee payment: 16

Ref country code: BE

Payment date: 20240125

Year of fee payment: 16