EP2235224B1 - MANUFACTURING METHOD OF AN Al-Li ROLLED PRODUCT FOR AERONAUTICAL APPLICATIONS - Google Patents

MANUFACTURING METHOD OF AN Al-Li ROLLED PRODUCT FOR AERONAUTICAL APPLICATIONS Download PDF

Info

Publication number
EP2235224B1
EP2235224B1 EP08872581.7A EP08872581A EP2235224B1 EP 2235224 B1 EP2235224 B1 EP 2235224B1 EP 08872581 A EP08872581 A EP 08872581A EP 2235224 B1 EP2235224 B1 EP 2235224B1
Authority
EP
European Patent Office
Prior art keywords
weight
mpa
crack
hours
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08872581.7A
Other languages
German (de)
French (fr)
Other versions
EP2235224A1 (en
Inventor
Armelle Danielou
Jean-Christophe Ehrstrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP2235224A1 publication Critical patent/EP2235224A1/en
Application granted granted Critical
Publication of EP2235224B1 publication Critical patent/EP2235224B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the present invention generally relates to aluminum-lithium alloys and, in particular, such products useful in the aeronautical industry.
  • Al-Li alloys have long been recognized as an effective solution for reducing the weight of structural elements due to their low density.
  • the different properties required for materials used in the aerospace industry such as high yield strength, high compressive strength, high damage tolerance, and high corrosion resistance, have proved difficult. to obtain simultaneously.
  • Al-Li alloys are particularly sensitive to the crack bifurcation which is part of the problems related to the damage tolerance limiting the use of Al-Li alloys, ( Hurtado, JA; de los Rios, ER; Morris, A.J., "Crack deflection in Al-Li alloys for aircraft structures," 18th Symposium of the International Committee on Aeronautical Fatigue, Melbourne, UNITED KINGDOM, 3-5 May 1995, pp. 107-136. ).
  • Crack bifurcation, crack deflection, crack rotation, or crack branching are terms used to express the propensity for the propagation of a crack to deviate from the expected plane of fracture perpendicular to the load applied during a stress test. fatigue or tenacity.
  • the crack bifurcation occurs at the microscopic ( ⁇ 100 ⁇ m), mesoscopic (100-1000 ⁇ m) or macroscopic scale (> 1 mm) scale, but it is considered harmful only if the direction of the crack remains stable after bifurcation (macroscopic scale). This phenomenon is of particular concern for fatigue tests in the LS direction for aluminum-lithium alloys.
  • crack bifurcation is used here for the macroscopic crack bifurcation during fatigue or toughness testing in the LS direction, from the S direction to the L direction which occurs for rolled products whose thickness is from less than 30 mm.
  • the crack bifurcation may occur in relation to the composition of the rolled product, its microstructure and the test conditions.
  • Rolled products in AA7050 alloy can be considered as a product reference with a low tendency to crack bifurcation.
  • Bifurcation of cracks has been considered a major problem by aircraft manufacturers because it is difficult to take into account for sizing of elements, which makes it impossible to use traditional design methods. Thus, crack bifurcation invalidates material testing procedures and traditional design methods, based on mode I propagation.
  • the static mechanical characteristics in other words the ultimate tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 and the elongation at break A, are determined by a tensile test according to EN 10002-1, the sampling and the direction of the test being defined by EN 485-1. Unless otherwise stated, the definitions of EN 12258-1 apply.
  • the cracking rate (da / dN) is determined according to ASTM E 647.
  • the stress intensity factor (K 1C ) is determined according to ASTM E 399.
  • the mode I or mode by opening, is characterized in that one exerts a stress perpendicular to the faces of the crack.
  • Mode II where plane bias mode, has a shear stress perpendicular to the crack front.
  • the mode III or anti-plane biasing mode, is a mode in which the shear stress is parallel to the crack front.
  • the Sinclair sample (6) is a SL sample and the initial crack corresponds to a 90 ° bifurcated crack in an LS sample. If the crack of the Sinclair sample is stable when subjected to a mixed mode I and II stress representative of the stress experienced by the bifurcated crack, then the bifurcated crack would have been stable and the sample has a high propensity to crack bifurcation.
  • the geometry of the Sinclair sample is given Figure 2 .
  • Six orifices (61) are used to attach the Sinclair sample to the test device. The sample is mechanically pre-milled, the length of the pre-crack is 7 mm.
  • the Sinclair sample is subjected to mixed mode I and II stress in accordance with the Figure 3 .
  • Two sample holders (71) and (72) are used to subject the sample to mixed mode I and II stress.
  • the samples are attached to the sample holders by the six orifices (61) to form an assembly that is stressed between the orifices (711) and (721).
  • the angle ⁇ of application of the load between a plane perpendicular to the initial direction of crack and the direction of the stress is 75 °. It may be noted that the angle ⁇ is the angle complementary to the angle of inclination of the crack with respect to the axis of stress.
  • P max the maximum load
  • K max the corresponding stress intensity factor
  • F II sin ⁇ 1 - at W - 0 , 23 + 1 , 40 at W - at 1 - 0 , 67 at W - at + 2 , 08 at W - at 2 where ⁇ is the angle between a plane perpendicular to the initial crack direction and the direction of the stress.
  • K eff 1 - v 2 K I 2 + 1 - v 2 K II 2 + 1 + v K III 2
  • K eff max is the maximum stress intensity factor during a fatigue cycle, it corresponds to the maximum load P max .
  • the deflection angle ⁇ between the initial crack direction and the direction of the deflected crack allows a quantitative evaluation of the propensity for crack bifurcation. It is measured as described in Figure 4 .
  • the Figure 4 is a representation of a broken Sinclair sample (61).
  • the profile (65) of the broken sample is measured using a profilometer with steps of 0.5 mm.
  • the data obtained is smoothed by a sliding average over three points.
  • the deflection angle is measured for each set of three points.
  • the maximum deflection angle between the end of the mechanical crack (69) and a distance of 32 mm from the edge of the sample is the value of ⁇ .
  • a "structural element” or “structural element” of a mechanical construction is called a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure, and for which a structural calculation is usually prescribed or realized.
  • These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs (ribs) and spars) and empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
  • fuselage such as fuselage skin (fuselage skin in English
  • stiffeners or stringers such as fuselage skin
  • bulkheads fuselage (circumferential frames)
  • wings such as wing skin
  • stiffeners stiffeners (stiffeners), ribs (ribs) and spars
  • empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
  • a substantially uncrystallized laminate product having a thickness of at least 30 mm according to the invention has a low propensity for crack bifurcation due to the combination of a carefully selected composition and specific steps of the manufacturing process.
  • the laminated aluminum-lithium alloy product according to the invention comprises 2.2 to 3.9% by weight of Cu, 0.7 to 2.1% by weight of Li, 0.2 to 0.8% by weight of Mg, 0.2 to 0.5 wt% Mn, 0.04 to 0.18 wt% Zr, less than 0.05 wt% Zn, and optionally 0.1 to 0.5 wt%.
  • weight of Ag remains aluminum and unavoidable impurities.
  • the content of iron and silicon is at most 0.15% by weight each or preferably 0.10% by weight and the content of the other unavoidable impurities is at most 0.05% by weight each and 0 15% by weight in total.
  • a refining agent containing titanium is added during casting.
  • the titanium content is preferably between 0.01 and 0.15% by weight and preferably between 0.01 and 0.04% by weight.
  • the copper content is preferably at least 2.7% by weight or even at least 3.2% by weight so as to achieve sufficient strength.
  • the lithium content is preferably at least 0.8% by weight and even more preferably at least 0.9% by weight, so as to obtain a low density.
  • the maximum lithium content is limited to 1.8 wt% or even 1.4 wt% and more preferably 1.25 wt%.
  • the invention is particularly advantageous for alloys which simultaneously contain a high lithium content and a high copper content, because these alloys have a very favorable compromise of mechanical properties but are particularly sensitive to the bifurcation of cracks.
  • the content of Li and Cu, expressed in% by weight are in accordance with Li + Cu> 4 and preferably Li + Cu> 4.3.
  • the contents of Li and Cu, expressed in% by weight are in accordance with Li + 0.7 Cu ⁇ 4.3 and preferably Li + 0.5 Cu ⁇ 3.3.
  • Manganese is an essential component of the laminated product according to the invention and its content is carefully selected, preferably between 0.3 and 0.5% by weight. Carefully controlled distribution of manganese dispersoids obtained through the combination of selected content and thermo-mechanical processing conditions helps to avoid stress localization and grain boundary constraints. Although not related to any specific theory, the inventors believe that the distribution of the manganese-containing dispersoids obtained according to the invention contributes to the low propensity for crack bifurcation.
  • the performance in terms of strength and toughness observed by the inventors are generally difficult to achieve for alloys containing no silver, especially when the permanent deformation after controlled pulling is less than 3%.
  • the present inventors believe that silver plays a role during the formation of the copper-containing hardening phases formed during natural or artificial aging, and, in particular, allows the formation of finer phases and also allows a more homogeneous distribution of these phases. .
  • the advantageous effect of silver is observed when the silver content is at least 0.1% by weight and preferably at least 0.2% by weight. An excessive addition of silver would probably be prohibitively expensive in many cases because of the high price of silver, and it is advantageous not to exceed a content of 0.5% by weight and preferably 0.3% by weight. in weight.
  • the addition of magnesium improves the mechanical strength and decreases the density. Too high an addition of Mg can, however, be detrimental to toughness.
  • the Mg content is at most 0.4% by weight. The present inventors believe that the addition of Mg may also play a role in the formation of copper-containing phases.
  • An alloy containing controlled amounts of alloying elements is cast as a plate.
  • the plate is homogenized at a temperature between 470 ° C and 510 ° C for 2 to 30 hours.
  • a homogenization temperature of at least 470 ° C and preferably at least 490 ° C simultaneously makes it possible to form the dispersoids and to prepare an effective solution solution.
  • the present inventors have found that a homogenization temperature greater than about 510 ° C causes a higher propensity for crack bifurcation. The present inventors believe that high homogenization temperatures affect the size and distribution of manganese-containing dispersoids.
  • a hot rolling step is performed after reheating if necessary to obtain sheets having a thickness of at least 30 mm.
  • a hot rolling exit temperature of at least 410 ° C, preferably at least 430 ° C, and preferably at least 450 ° C, is necessary to obtain a substantially non-recrystallized product after dissolution.
  • product essentially not recrystallized a product whose recrystallization rate is less than 10% to quarter and half thickness (T / 4 and T / 2).
  • the sheets are dissolved by heating between 490 and 540 ° C for 15 minutes to 4 hours and quenched with cold water.
  • the dissolution parameters depend on the thickness of the product. It is important to avoid the coalescence of dispersoids during dissolution, as this may compromise the effect of the carefully controlled homogenization treatment. Thus, the total equivalent time for homogenization and dissolution t (eq) does not exceed 30h and preferably 20h.
  • the formula giving t (eq) takes into account the heating and cooling phases.
  • Quenching with cold water is carried out after dissolution.
  • rapid quenching is performed.
  • Fast quenching means that the cooling rate is as high as possible given the thickness of the sheet.
  • vertical immersion quenching is preferably carried out by horizontal spraying quenching. The present inventors have observed that fast quenched products have a lower propensity to crack bifurcation. The present inventors believe that this effect could be related to a lower precipitation at the grain boundaries.
  • the product then undergoes a controlled pull with a permanent deformation of between 2% and 5% and preferably between 3% and 4%.
  • the income is made at a temperature between 130 ° C and 160 ° C for a period of 5 to 60 hours, resulting in a T8 state.
  • the yield is preferably between 140 and 160 ° C for 12 to 50 hours. Lower tempering temperatures generally favor higher toughness.
  • the products according to the invention have a high resistance to corrosion.
  • the products according to the invention tested under the MASTMAASIS (Modified ASTM Acetic Acid Salt Intermittent Spray) conditions according to the ASTM G85 standard reach the EA level and, preferably, the P level (pitting alone).
  • the stress corrosion resistance according to the ASTM G47 standard of the products according to the invention reaches a 30-day hold for ST samples subjected to a stress of 300 MPa and preferably at a stress of 350 MPa.
  • a structural member made of a laminate according to the present invention may typically include a spar, rib or frame for aircraft construction in a preferred manner.
  • the invention is particularly advantageous for parts of complex shape obtained by integral machining, used in particular for the manufacture of aircraft wings and for any other use for which the properties of the products according to the invention are advantageous. .
  • Plate A was homogenized according to the invention for 12 hours at 500 ° C. (rise speed: 15 ° C./h, time equivalent to 500 ° C.:16.7h).
  • Plate B (reference) was homogenized for 8 hours at 500 ° C. and then for 36 hours at 530 ° (rise rate: 15 ° C./hr, time equivalent to 500 ° C. 140 h).
  • Plate A was hot rolled to a 60 mm thick sheet and the hot roll output temperature was 466 ° C. The sheet thus obtained was dissolved for 2 hours at 504 ° C. (rise rate: 50 ° C./h, time equivalent to 500 ° C./2.9 hours) and quenched with cold water.
  • Plate B was hot rolled to a 65 mm thick sheet and the hot roll output temperature was 494 ° C.
  • the sheet thus obtained was dissolved for 2 hours at 526 ° C (rise rate: 50 ° C / h, time equivalent to 500 ° C: 6h) and quenched with cold water. Both sheets were controlled in a controlled manner, with a permanent elongation of 3.5% and were 18 hours at 155 ° C.
  • the sheets from plates A and B are referenced sheet A-60 and sheet B-60, respectively.
  • the total equivalent time at 773 K for homogenization and dissolution t (eq) was therefore 19.6 h and 146 h for sheets A-60 and B-60, respectively.
  • Sheet A-60 has a deflection angle ⁇ greater than 20 ° for a K max value of 10 MPa ⁇ m, which demonstrates a low propensity for crack bifurcation. This result was confirmed by fatigue tests on LS specimens.
  • Figures 7a and 7b show, respectively, the four samples from sheets A-60 and B-60 after the fatigue test. The results are consistent with those obtained in tests on SL samples under mixed mode I and II stress: all samples from sheet B-60 show a severe crack bifurcation while the samples from sheet A-60 show only mode I crack propagation.
  • the plate A ' was homogenized according to the invention for 12 hours at 500 ° C. (rise speed: 15 ° C./h, time equivalent to 500 ° C.:16.7h). Plate C (reference) was homogenized for 8 hours at 500 ° C and then for 36 hours at 530 ° (rise rate: 15 ° C / h, time equivalent to 500 ° C: 140h). Plate A 'was hot rolled to a 30 mm thick sheet and the hot roll output temperature was 466 ° C. The sheet thus obtained was dissolved for 2 hours at 505 ° C. (rise rate: 50 ° C./h, time equivalent to 500 ° C. for 3.0 hours) and quenched with cold water.
  • Plate C was hot rolled to a 30 mm thick sheet and the hot roll output temperature was 474 ° C.
  • the sheet thus obtained was dissolved for 5 hours at 525 ° C. (rise rate: 50 ° C./h, time equivalent to 500 ° C. for 15.7 hours) and quenched with cold water. Both sheets were controlled in a controlled manner, with a permanent elongation of 3.5% and were 18 hours at 155 ° C.
  • the sheets from the plates A 'and C are referenced sheet A'-30 and sheet C-30, respectively.
  • the plates D and E were homogenized for 15 hours at 492 ° C. (rise rate: 15 ° C./hr, time equivalent to 500 ° C. 11.5h). Plate D was hot rolled to a 25 mm thick sheet and the hot roll output temperature was 430 ° C. The sheet thus obtained was dissolved for 5 hours at 510 ° C. (rise speed: 50 ° C./h, time equivalent to 500 ° C: 8.4h) and quenched with cold water. Plate E was hot rolled to a 30 mm thick sheet and the hot rolling exit temperature was 411 ° C. The sheet thus obtained was dissolved for 4.5 h at 510 ° C.
  • the method according to the invention which combines a particular composition and defined homogenization and dissolution conditions makes it possible to obtain a sheet free from crack bifurcation A'-30, while the C-30 plates (temperature of 30.degree. high homogenization) and D-25 and E-30 (high copper content) plates do not allow this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Laminated Bodies (AREA)

Description

Domaine de l'inventionField of the invention

La présente invention concerne en général les alliages aluminium-lithium et, en particulier, de tels produits utiles dans l'industrie aéronautique.The present invention generally relates to aluminum-lithium alloys and, in particular, such products useful in the aeronautical industry.

Etat de la techniqueState of the art

Les alliages d'aluminium et de lithium (Al-Li) sont reconnus depuis longtemps comme une solution efficace pour réduire le poids des éléments structuraux en raison de leur faible densité. Cependant, les différentes propriétés requises pour les matériaux utilisés dans l'industrie aéronautique, telles qu'une limite élastique élevée, une résistance à la compression élevée, une tolérance aux dommages élevée ainsi qu'une résistance à la corrosion élevée, se sont avérées difficiles à obtenir simultanément. Les alliages Al-Li sont particulièrement sensibles à la bifurcation de fissure qui fait parties des problèmes liés à la tolérance aux dommage limitant l'utilisation des alliages Al-Li, ( Hurtado, J A; de los Rios, E R; Morris, A .J , « Crack deflection in Al-Li alloys for aircraft structures", 18th Symposium of the International Committee on Aeronautical Fatigue, Melbourne; UNITED KINGDOM; 3-5 May 1995. pp. 107-136. 1995 ).Aluminum and lithium (Al-Li) alloys have long been recognized as an effective solution for reducing the weight of structural elements due to their low density. However, the different properties required for materials used in the aerospace industry, such as high yield strength, high compressive strength, high damage tolerance, and high corrosion resistance, have proved difficult. to obtain simultaneously. Al-Li alloys are particularly sensitive to the crack bifurcation which is part of the problems related to the damage tolerance limiting the use of Al-Li alloys, ( Hurtado, JA; de los Rios, ER; Morris, A.J., "Crack deflection in Al-Li alloys for aircraft structures," 18th Symposium of the International Committee on Aeronautical Fatigue, Melbourne, UNITED KINGDOM, 3-5 May 1995, pp. 107-136. ).

La bifurcation des fissures, la déviation de fissure, la rotation des fissures ou le branchement des fissures sont des termes utilisés pour exprimer la propension pour la propagation d'une fissure de dévier du plan attendu de fracture perpendiculaire à la charge appliquée pendant un test de fatigue ou de ténacité. La bifurcation de fissure se produit à l'échelle microscopique (<100 µm), à l'échelle mésoscopique (100-1000 µm) ou à l'échelle macroscopique (> 1 mm), mais elle n'est considérée comme néfaste que si la direction de la fissure reste stable après bifurcation (échelle macroscopique). Ce phénomène est en particulier préoccupant pour des essais en fatigue dans la direction L-S pour des alliages aluminium-lithium. Le terme bifurcation de fissure est utilisé ici pour la bifurcation macroscopique de fissures lors de tests en fatigue ou en ténacité dans la direction L-S, de la direction S vers la direction L qui se produit pour des produits laminés dont l'épaisseur est d'au moins 30 mm. La bifurcation de fissure peut se produire en relation avec la composition du produit laminé, de sa microstructure et des conditions d'essai. Les produits laminés en alliage AA7050 peuvent être considérés comme une référence de produit ayant une faible tendance à la bifurcation de fissures.
La bifurcation de fissures a été considérée comme un problème majeur par les fabricants d'avion parce qu'elle est difficile à prendre en compte pour le dimensionnement des éléments, ce qui rend impossible l'utilisation des méthodes de design traditionnelles. Ainsi, la bifurcation de fissures rend invalides les procédures de tests de matériaux et les méthodes de design traditionnelles, basées sur une propagation en mode I. Le problème de la bifurcation de fissures s'est avéré difficile à résoudre. Récemment il a été envisagé qu'en l'absence de solution pour éviter la bifurcation de fissures, les efforts devraient être orientés sur la prédiction des comportements de bifurcation de fissure. ( M. J. Crill, D. J. Chellman, E. S. Balmuth, M. Philbrook, K. P. Smith, A. Cho, M. Niedzinski, R. Muzzolini and J. Feiger, Evaluation of AA 2050-T87 Al-Li Alloy Crack Turning Behavior, Materials Science Forum, Vol 519-521 (July 2006) pp 1323 - 1328 ).
Il existe un besoin pour un produit laminé en alliage aluminium lithium pour des applications aéronautiques, en particulier pour des pièces intégralement usinées, ayant une faible tendance à la bifurcation de fissure.
Crack bifurcation, crack deflection, crack rotation, or crack branching are terms used to express the propensity for the propagation of a crack to deviate from the expected plane of fracture perpendicular to the load applied during a stress test. fatigue or tenacity. The crack bifurcation occurs at the microscopic (<100 μm), mesoscopic (100-1000 μm) or macroscopic scale (> 1 mm) scale, but it is considered harmful only if the direction of the crack remains stable after bifurcation (macroscopic scale). This phenomenon is of particular concern for fatigue tests in the LS direction for aluminum-lithium alloys. The term crack bifurcation is used here for the macroscopic crack bifurcation during fatigue or toughness testing in the LS direction, from the S direction to the L direction which occurs for rolled products whose thickness is from less than 30 mm. The crack bifurcation may occur in relation to the composition of the rolled product, its microstructure and the test conditions. Rolled products in AA7050 alloy can be considered as a product reference with a low tendency to crack bifurcation.
Bifurcation of cracks has been considered a major problem by aircraft manufacturers because it is difficult to take into account for sizing of elements, which makes it impossible to use traditional design methods. Thus, crack bifurcation invalidates material testing procedures and traditional design methods, based on mode I propagation. The problem of crack bifurcation has proved difficult to solve. Recently it has been envisaged that in the absence of a solution to avoid the bifurcation of cracks, the efforts should be oriented on the prediction of crack bifurcation behaviors. ( MJ Crill, DJ Chellman, Balmuth ES, Philbrook M, KP Smith, Cho A., Niedzinski M., Muzzolini R. and Feiger J., Evaluation of AA 2050-T87 Al-Alloy Crack Turning Behavior, Materials Science Forum, Flight 519-521 (July 2006) pp 1323 - 1328 ).
There is a need for a laminated aluminum lithium alloy product for aeronautical applications, particularly for fully machined parts having a low tendency to crack bifurcation.

Objet de l'inventionObject of the invention

L' objet de l'invention est un procédé de fabrication d'une tôle essentiellement non recristallisée d'épaisseur au moins 30 mm ayant une faible propension à la bifurcation de fissure, le procédé comprenant :

  1. a) la coulée d'une plaque comprenant 2,2 à 3,9 % en poids de Cu, 0,7 à 2,1 % en poids de Li, 0,2 à 0,8 % en poids de Mg, 0,2 à 0,5 % en poids de Mn, 0,04 à 0,18 % en poids de Zr, moins de 0,05 % en poids de Zn, et optionnellement 0,1 à 0,5 % en poids de Ag, reste aluminium et impuretés inévitables,
  2. b) l'homogénéisation de ladite plaque entre 470 °C et 510 °C pour une durée de 2 à 30 heures,
  3. c) le laminage à chaud de ladite plaque pour obtenir une tôle d'au moins 30 mm d'épaisseur, avec une température de sortie d'au moins 410 °C,
  4. d) la mise en solution entre 490 °C et 540 °C pendant 15 mn à 4h, de façon à ce que le temps équivalent total pour l'homogénéisation et la mise en solution t(eq) t eq = exp 26100 / T dt exp 26100 / T ref
    Figure imgb0001
    ne dépasse pas 30h et de manière préférée 20h, où T (en Kelvin) est la température instantanée de traitement, qui évolue avec le temps t (en heures), et Tref est une température de référence fixée à 773 K,
  5. e) la trempe à l'eau froide,
  6. f) la traction contrôlée de la dite tôle avec une déformation permanente de 2 à 5%,
  7. g) le revenu de ladite tôle par chauffage entre 130°C et 160 °C pendant 5 à 60 heures.
The object of the invention is a method of manufacturing a substantially unrequistallized sheet having a thickness of at least 30 mm having a low propensity for crack bifurcation, the method comprising:
  1. a) casting a plate comprising 2.2 to 3.9% by weight of Cu, 0.7 to 2.1% by weight of Li, 0.2 to 0.8% by weight of Mg, O, 2 to 0.5% by weight of Mn, 0.04 to 0.18% by weight of Zr, less than 0.05% by weight of Zn, and optionally 0.1 to 0.5% by weight of Ag, remains aluminum and unavoidable impurities,
  2. b) homogenizing said plate between 470 ° C and 510 ° C for a period of 2 to 30 hours,
  3. c) hot rolling said plate to obtain a sheet of at least 30 mm thickness, with an outlet temperature of at least 410 ° C,
  4. d) dissolving between 490 ° C and 540 ° C for 15 minutes to 4 hours, so that the total equivalent time for homogenization and dissolution t (eq) t eq = exp - 26100 / T dt exp - 26100 / T ref
    Figure imgb0001
    does not exceed 30h and preferably 20h, where T (in Kelvin) is the instantaneous treatment temperature, which changes with time t (in hours), and T ref is a reference temperature set at 773 K,
  5. e) quenching with cold water,
  6. f) the controlled traction of said sheet with a permanent deformation of 2 to 5%,
  7. g) the income of said sheet by heating between 130 ° C and 160 ° C for 5 to 60 hours.

Description des figuresDescription of figures

  • Figure 1 : représentation schématique de la localisation de l'échantillon Sinclair.Figure 1: Schematic representation of the location of the Sinclair sample.
  • Figure 2 : géométrie de l'échantillon Sinclair. Figure 2 : geometry of the Sinclair sample.
  • Figure 3 : représentation schématique des conditions d'essai en mode mixte I et II utilisées sur l'échantillon Sinclair. Figure 3 : schematic representation of the mixed mode test conditions I and II used on the Sinclair sample.
  • Figure 4 : représentation schématique de la méthode de détermination de l'angle de déviation sur un échantillon Sinclair fracturé. Figure 4 : Schematic representation of the method of determining the deflection angle on a fractured Sinclair sample.
  • Figure 5 : évolution de l'angle de déviation avec le facteur d'intensité de contrainte équivalent maximal pour deux traitements d'homogénéisation appliqués au même alliage et pour une tôle en alliage AA7050 de référence. Figure 5 : evolution of the deflection angle with the maximum equivalent stress intensity factor for two homogenization treatments applied to the same alloy and for a standard AA7050 alloy sheet.
  • Figure 6 : géométrie de l'échantillon utilisé pour les tests en fatigue dans le sens L-S. Figure 6 : geometry of the sample used for fatigue tests in the LS direction.
  • Figure 7 : photographies d'échantillons après un test en fatigue L-S. Figure 7 : photographs of samples after an LS fatigue test.
  • Figure 8 : photographies d'échantillons d'épaisseur 25 ou 30 mm après un test en fatigue L-S Figure 8 : photographs of 25 or 30 mm thick samples after LS fatigue test
Description détaillée de l'inventionDetailed description of the invention

Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515.Unless stated otherwise, all the information concerning the chemical composition of the alloys is expressed as a percentage by weight based on the total weight of the alloy. The expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of alloys is in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The definitions of the metallurgical states are given in the European standard EN 515.

Sauf mention contraire, les caractéristiques mécaniques statiques, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. Sauf mention contraire, les définitions de la norme EN 12258-1 s'appliquent.Unless otherwise stated, the static mechanical characteristics, in other words the ultimate tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 and the elongation at break A, are determined by a tensile test according to EN 10002-1, the sampling and the direction of the test being defined by EN 485-1. Unless otherwise stated, the definitions of EN 12258-1 apply.

La vitesse de fissuration (da/dN) est déterminée selon la norme ASTM E 647.The cracking rate (da / dN) is determined according to ASTM E 647.

Le facteur d'intensité de contrainte (K1C) est déterminé selon la norme ASTM E 399.The stress intensity factor (K 1C ) is determined according to ASTM E 399.

Il existe trois modes de rupture. Le mode I, où mode par ouverture, est caractérisé en ce que l'on exerce une contrainte perpendiculaire aux faces de la fissure. Le mode II, où mode par sollicitation plane, présente une contrainte de cisaillement perpendiculaire au front de fissure. Enfin le mode III, ou mode de sollicitation anti-plan, est un mode dans lequel la contrainte de cisaillement est parallèle au front de fissure.There are three modes of rupture. The mode I, or mode by opening, is characterized in that one exerts a stress perpendicular to the faces of the crack. Mode II, where plane bias mode, has a shear stress perpendicular to the crack front. Finally, the mode III, or anti-plane biasing mode, is a mode in which the shear stress is parallel to the crack front.

La propension à la bifurcation de fissure est généralement observée pendant un test en fatigue ou en ténacité L-S. Un résultat quantitatif est obtenu avec un test de propagation de fissure réalisé en mode mixte I et II sur un échantillon S-L. Les échantillons et les conditions d'essai pour étudier les propriétés de fatigue bi-axiale ont été décrits par H.A. Richard ("Specimens for investigating biaxial fracture and fatigue properties", Biaxial and Multiaxial Fatigue, EGF 3 (Edited by M. W. Brown and K. J. Miller), 1989, Mechanical Engineering Publications, London pp 217 - 229 ). Des échantillons S9 décrits par Richard son utilisés dans le cadre de la présente invention. Le raisonnement permettant de relier la propension à la bifurcation de fissure dans des tests de fatigue ou de ténacité L-S à des angles de déviation mesurés pour des tests en mode mixte I et II est décrit par Sinclair et Gregson ("The effects of mixed mode loading on intergranular failure in AA7050-T7651", Materials Science Forum, Vol.242 (1997) pp 175-180 ). L'objectif est de reproduire la contrainte locale se produisant à l'extrémité de la fissure d'un échantillon L-S après bifurcation. La Figure 1 montre schématiquement une bifurcation de fissure sur un échantillon L-S et la localisation de l'échantillon proposé par Sinclair (« l'échantillon Sinclair »). Un échantillon L-S (1) présentant des grains allongés (3) soumis à une contrainte (2) avec une fissure initiale en mode I (4) subit une bifurcation de fissure vers la direction L (fissure déviée (5)). L'échantillon Sinclair (6) est un échantillon S-L et la fissure initiale correspond à une fissure bifurquée de 90° dans un échantillon L-S. Si la fissure de l'échantillon Sinclair est stable quand elle est soumise à une contrainte en mode mixte I et II représentative de la contrainte subie par la fissure bifurquée, alors la fissure bifurquée aurait été stable et l'échantillon présente une propension élevée à la bifurcation de fissure. La géométrie de l'échantillon Sinclair est donnée Figure 2. Six orifices (61) sont utilisés pour fixer l'échantillon Sinclair au dispositif de test. L'échantillon est préfissuré mécaniquement, la longueur de la préfissure est 7 mm.The propensity for crack bifurcation is generally observed during a fatigue or LS test. A quantitative result is obtained with a crack propagation test carried out in mixed mode I and II on a sample SL. Samples and test conditions for studying bi-axial fatigue properties have been described by HA Richard ("Specimens for Investigating Biaxial Fracture and Fatigue Properties," Biaxial and Multiaxial Fatigue, EGF 3 (Edited by MW Brown and KJ Miller), 1989, Mechanical Engineering Publications, London pp 217-229 ). S9 samples described by Richard are used in the context of the present invention. The reasoning for linking crack crack propensity in LS fatigue or toughness tests to deflection angles measured for mixed mode I and II tests is described by Sinclair and Gregson ("The effects of mixed mode loading on intergranular failure in AA7050-T7651", Materials Science Forum, Vol.242 (1997) pp 175-180 ). The objective is to reproduce the local stress occurring at the crack end of a LS sample after bifurcation. Figure 1 schematically shows a crack bifurcation on an LS sample and the location of the sample proposed by Sinclair ("the Sinclair sample"). An LS (1) sample with elongated grains (3) stressed (2) with an initial crack in mode I (4) undergoes a crack bifurcation towards the L direction (deviated crack (5)). The Sinclair sample (6) is a SL sample and the initial crack corresponds to a 90 ° bifurcated crack in an LS sample. If the crack of the Sinclair sample is stable when subjected to a mixed mode I and II stress representative of the stress experienced by the bifurcated crack, then the bifurcated crack would have been stable and the sample has a high propensity to crack bifurcation. The geometry of the Sinclair sample is given Figure 2 . Six orifices (61) are used to attach the Sinclair sample to the test device. The sample is mechanically pre-milled, the length of the pre-crack is 7 mm.

L'échantillon Sinclair est soumis à une contrainte en mode mixte I et II conformément à la Figure 3. Deux porte-échantillons (71) et (72) sont utilisés pour soumettre l'échantillon à une contrainte en mode mixte I et II. Les échantillons sont fixés aux porte-échantillons par les six orifices (61) de façon à former un assemblage qui est soumis à une contrainte entre les orifices (711) et (721). L'angle Ψ d'application de la charge entre un plan perpendiculaire à la direction initiale de fissure et la direction de la contrainte est 75°. On peut noter que l'angle Ψ est l'angle complémentaire de l'angle d'inclinaison de la fissure par rapport à l'axe de sollicitation.The Sinclair sample is subjected to mixed mode I and II stress in accordance with the Figure 3 . Two sample holders (71) and (72) are used to subject the sample to mixed mode I and II stress. The samples are attached to the sample holders by the six orifices (61) to form an assembly that is stressed between the orifices (711) and (721). The angle Ψ of application of the load between a plane perpendicular to the initial direction of crack and the direction of the stress is 75 °. It may be noted that the angle Ψ is the angle complementary to the angle of inclination of the crack with respect to the axis of stress.

Les facteurs d'intensité de contrainte KI et KII sont obtenus selon K I , II = P π . a Wt F I , II

Figure imgb0002
où P est la charge (N), a est la longueur de fissure (mm), W est la largeur de l'échantillon (mm), t est l'épaisseur de l'échantillon (mm). Pour des tests de fatigue, la charge maximale est référencée Pmax et le facteur d'intensité de contrainte correspondant est référencé Kmax. Les facteurs de forme FI et FII, qui correspondent aux mode I et au mode II, respectivement, sont pour la géométrie de l'échantillon donnés par F I = cosΨ 1 a W 0 , 26 + 2 , 65 a W a 1 + 0 , 55 a W a 0 , 08 a W a 2
Figure imgb0003
F II = sinΨ 1 a W 0 , 23 + 1 , 40 a W a 1 0 , 67 a W a + 2 , 08 a W a 2
Figure imgb0004
où Ψ est l'angle entre un plan perpendiculaire à la direction initiale de fissure et la direction de la contrainte.The stress intensity factors K I and K II are obtained according to K I , II = P π . at Wt F I , II
Figure imgb0002
where P is the load (N), a is the crack length (mm), W is the width of the sample (mm), t is the thickness of the sample (mm). For fatigue tests, the maximum load is referenced P max and the corresponding stress intensity factor is referenced K max . The form factors F I and F II , which correspond to the modes I and II, respectively, are for the geometry of the sample given by F I = cosΨ 1 - at W 0 , 26 + 2 , 65 at W - at 1 + 0 , 55 at W - at - 0 , 08 at W - at 2
Figure imgb0003
F II = sinΨ 1 - at W - 0 , 23 + 1 , 40 at W - at 1 - 0 , 67 at W - at + 2 , 08 at W - at 2
Figure imgb0004
where Ψ is the angle between a plane perpendicular to the initial crack direction and the direction of the stress.

Le facteur d'intensité de contrainte équivalent Keff est obtenu selon K eff = 1 v 2 K I 2 + 1 v 2 K II 2 + 1 + v K III 2

Figure imgb0005
The equivalent stress intensity factor K eff is obtained according to K eff = 1 - v 2 K I 2 + 1 - v 2 K II 2 + 1 + v K III 2
Figure imgb0005

Pour la géométrie utilisée dans le test KIII = 0. Keff max est le facteur d'intensité de contrainte maximal pendant un cycle de fatigue, il correspond à la charge maximale Pmax.For the geometry used in the test K III = 0. K eff max is the maximum stress intensity factor during a fatigue cycle, it corresponds to the maximum load P max .

L'angle de déviation Θ entre la direction initiale de fissure et la direction de la fissure déviée permet une évaluation quantitative de la propension à la bifurcation de fissure. Il est mesuré tel que décrit dans la Figure 4. La Figure 4 est une représentation d'un échantillon Sinclair cassé (61). Le profil (65) de l'échantillon cassé est mesuré à l'aide d'un profilomètre avec des pas de 0,5 mm. Les données obtenues sont lissées par une moyenne glissante sur trois points. L'angle de déviation est mesuré pour chaque ensemble de trois points. L'angle de déviation maximal entre l'extrémité de la fissure mécanique (69) et une distance de 32 mm du bord de l'échantillon est la valeur de Θ.The deflection angle Θ between the initial crack direction and the direction of the deflected crack allows a quantitative evaluation of the propensity for crack bifurcation. It is measured as described in Figure 4 . The Figure 4 is a representation of a broken Sinclair sample (61). The profile (65) of the broken sample is measured using a profilometer with steps of 0.5 mm. The data obtained is smoothed by a sliding average over three points. The deflection angle is measured for each set of three points. The maximum deflection angle between the end of the mechanical crack (69) and a distance of 32 mm from the edge of the sample is the value of Θ.

Un graphe de Θ en fonction de Keff max procure une mesure quantitative qui peut être reliée à la propension à la bifurcation de fissure pour un échantillon L-S. Pour une valeur donnée de Keff max des valeurs plus élevées de Θ indiquent une plus faible propension à la bifurcation de fissure. Cependant, pour des raisons expliquées dans l'article de Sinclair et Gregson déjà mentionné, pour des valeurs de Keff max inférieure à environ 5 MPa √m ou supérieures à environ 15 MPa √m, la valeur de Θ n'est pas discriminante entre les échantillons. Pour cette raison, la valeur de Θ est particulièrement significative pour Keff max = 10 MPa √m.A plot of Θ versus K eff max provides a quantitative measure that can be related to the propensity to crack bifurcation for an LS sample. For a given value of K eff max, higher values of Θ indicate a lower propensity for crack bifurcation. However, for reasons explained in the article by Sinclair and Gregson already mentioned, for values of K eff max less than about 5 MPa √m or greater than about 15 MPa √m, the value of Θ is not discriminating between the samples. For this reason, the value of Θ is particularly significant for K eff max = 10 MPa √m.

Selon l'invention, un produit laminé essentiellement non recristallisé d'épaisseur au moins 30 mm a une faible propension à la bifurcation de fissure si l'angle de déviation de fissure Θ est d'au moins 20° et de préférence d'au moins 30° sous un facteur d'intensité de contrainte équivalent maximal Keff max de 10 MPa √m pour un échantillon d'essai fissuré S-L soumis à une contrainte en mode mixte I et II, (Ψ = 75°). L'article de Sinclair et Gregson montre clairement que pour un échantillon en alliage AA7050, connu pour présenter une faible propension à la bifurcation de fissure, la condition sur l'angle Θ est atteinte.According to the invention, a substantially non-recrystallized laminate having a thickness of at least 30 mm has a low propensity for crack bifurcation if the crack deflection angle Θ is at least 20 ° and preferably at least 20 °. 30 ° under a maximum equivalent stress intensity factor K eff max of 10 MPa √m for a cracked SL test specimen subjected to mixed mode stress I and II, (Ψ = 75 °). The article by Sinclair and Gregson clearly shows that for an AA7050 alloy sample, known to have a low propensity for crack bifurcation, the condition on the angle Θ is reached.

On appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique pour laquelle les propriétés mécaniques statiques et/ou dynamiques sont particulièrement importantes pour la performance de la structure, et pour laquelle un calcul de structure est habituellement prescrit ou réalisé. Il s'agit typiquement d'éléments dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, des ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.Here, a "structural element" or "structural element" of a mechanical construction is called a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure, and for which a structural calculation is usually prescribed or realized. These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others. For an aircraft, these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs (ribs) and spars) and empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.

Un produit laminé essentiellement non recristallisé d'épaisseur au moins 30 mm selon l'invention a une faible propension à la bifurcation de fissure grâce à la combinaison d'une composition sélectionnée soigneusement et d'étapes spécifiques du procédé de fabrication.A substantially uncrystallized laminate product having a thickness of at least 30 mm according to the invention has a low propensity for crack bifurcation due to the combination of a carefully selected composition and specific steps of the manufacturing process.

Le produit laminé en alliage aluminium-lithium selon l'invention comprend 2,2 à 3,9 % en poids de Cu, 0,7 à 2,1 % en poids de Li, 0,2 à 0,8 % en poids de Mg, 0,2 à 0,5 % en poids de Mn, 0,04 à 0,18 % en poids de Zr, moins de 0,05 % en poids de Zn, et optionnellement 0,1 à 0,5 % en poids de Ag, reste aluminium et impuretés inévitables. De manière préférée, la teneur en fer et en silicium est au plus de 0,15 % en poids chacun ou préférentiellement 0,10 % en poids et la teneur des autres impuretés inévitables est au plus de 0,05 % en poids chacune et 0,15 % en poids au total. De manière préférée, un agent affinant contenant du titane, est ajouté lors de la coulée. La teneur en titane est de préférence comprise entre 0,01 et 0,15 % en poids et de manière préférée entre 0,01 et 0,04 % en poids. La teneur en cuivre est de manière préférée au moins 2,7 % en poids ou même d'au moins 3,2 % en poids de façon à atteindre une résistance mécanique suffisante. La teneur en lithium est de manière préférée d'au moins 0,8 % en poids et de manière encore plus préférée d'au moins 0,9 % en poids, de façon à obtenir une faible densité. Dans certains modes de réalisation de l'invention, la teneur maximale en lithium est limitée à 1,8 % en poids ou même à 1,4 % en poids et de manière préférée à 1,25 % en poids. L'invention est particulièrement avantageuse pour les alliages qui contiennent simultanément une teneur élevée en lithium et une teneur élevée en cuivre, parce que ces alliages présentent un compromis très favorable de propriétés mécaniques mais sont particulièrement sensibles à la bifurcation de fissures. Dans un mode de réalisation avantageux, la teneur en Li et en Cu, exprimés en % en poids, sont conformes à Li + Cu > 4 et de manière préférée Li + Cu > 4,3. Cependant, si l'alliage contient simultanément une teneur très élevée en Li et en Cu, des phénomènes de brulure peuvent se produire lors de l'homogénéisation. Dans une réalisation préférée de l'invention, les teneurs en Li et en Cu, exprimées en % en poids sont conformes à Li + 0,7 Cu < 4,3 et de préférence Li + 0,5 Cu < 3,3.The laminated aluminum-lithium alloy product according to the invention comprises 2.2 to 3.9% by weight of Cu, 0.7 to 2.1% by weight of Li, 0.2 to 0.8% by weight of Mg, 0.2 to 0.5 wt% Mn, 0.04 to 0.18 wt% Zr, less than 0.05 wt% Zn, and optionally 0.1 to 0.5 wt%. weight of Ag, remains aluminum and unavoidable impurities. Preferably, the content of iron and silicon is at most 0.15% by weight each or preferably 0.10% by weight and the content of the other unavoidable impurities is at most 0.05% by weight each and 0 15% by weight in total. Preferably, a refining agent containing titanium is added during casting. The titanium content is preferably between 0.01 and 0.15% by weight and preferably between 0.01 and 0.04% by weight. The copper content is preferably at least 2.7% by weight or even at least 3.2% by weight so as to achieve sufficient strength. The lithium content is preferably at least 0.8% by weight and even more preferably at least 0.9% by weight, so as to obtain a low density. In some embodiments of the invention, the maximum lithium content is limited to 1.8 wt% or even 1.4 wt% and more preferably 1.25 wt%. The invention is particularly advantageous for alloys which simultaneously contain a high lithium content and a high copper content, because these alloys have a very favorable compromise of mechanical properties but are particularly sensitive to the bifurcation of cracks. In one embodiment Advantageously, the content of Li and Cu, expressed in% by weight, are in accordance with Li + Cu> 4 and preferably Li + Cu> 4.3. However, if the alloy simultaneously contains a very high content of Li and Cu, burn phenomena can occur during homogenization. In a preferred embodiment of the invention, the contents of Li and Cu, expressed in% by weight are in accordance with Li + 0.7 Cu <4.3 and preferably Li + 0.5 Cu <3.3.

Le manganèse est un composé essentiel du produit laminé selon l'invention et sa teneur est sélectionnée avec précaution, de manière préférée entre 0,3 et 0,5 % en poids. Une répartition contrôlée avec précaution de dispersoïdes au manganèse obtenue grâce à la combinaison de la teneur sélectionnée et des conditions thermo-mécaniques de transformation contribue à éviter la localisation des contraintes et les contraintes aux joints de grain. Bien qu'ils ne soient liés à aucune théorie spécifique, les inventeurs croient que la répartition des dispersoïdes contenant du manganèse obtenue selon l'invention contribue à la faible propension à la bifurcation de fissure.Manganese is an essential component of the laminated product according to the invention and its content is carefully selected, preferably between 0.3 and 0.5% by weight. Carefully controlled distribution of manganese dispersoids obtained through the combination of selected content and thermo-mechanical processing conditions helps to avoid stress localization and grain boundary constraints. Although not related to any specific theory, the inventors believe that the distribution of the manganese-containing dispersoids obtained according to the invention contributes to the low propensity for crack bifurcation.

Les performances en termes de résistance mécanique et de ténacité observées par les inventeurs sont en général difficiles à atteindre pour les alliages ne contenant pas d'argent, en particulier quand la déformation permanente après traction contrôlée est moins de 3%. Les présents inventeurs pensent que l'argent joue un rôle pendant la formation des phases durcissantes contenant du cuivre formées pendant un vieillissement naturel ou artificiel, et, en particulier, permet la formation de phases plus fines et permet aussi une répartition plus homogène de ces phases. L'effet avantageux de l'argent est observé quand la teneur en argent est au moins de 0,1 % en poids et de manière préférée au moins 0,2 % en poids. Un ajout excessif d'argent aurait probablement un coût prohibitif dans de nombreux cas en raison du prix élevé de l'argent, et il est avantageux de ne pas dépasser une teneur de 0,5 % en poids et de manière préférée 0,3 % en poids.The performance in terms of strength and toughness observed by the inventors are generally difficult to achieve for alloys containing no silver, especially when the permanent deformation after controlled pulling is less than 3%. The present inventors believe that silver plays a role during the formation of the copper-containing hardening phases formed during natural or artificial aging, and, in particular, allows the formation of finer phases and also allows a more homogeneous distribution of these phases. . The advantageous effect of silver is observed when the silver content is at least 0.1% by weight and preferably at least 0.2% by weight. An excessive addition of silver would probably be prohibitively expensive in many cases because of the high price of silver, and it is advantageous not to exceed a content of 0.5% by weight and preferably 0.3% by weight. in weight.

L'ajout de magnésium améliore la résistance mécanique et diminue la densité. Un ajout trop élevé de Mg peut cependant être néfaste pour la ténacité. Dans une réalisation avantageuse de l'invention, la teneur en Mg est au plus de 0,4 % en poids. Les présents inventeurs pensent que l'ajout de Mg peut aussi jouer un rôle lors de la formation des phases contenant du cuivre.The addition of magnesium improves the mechanical strength and decreases the density. Too high an addition of Mg can, however, be detrimental to toughness. In an advantageous embodiment of the invention, the Mg content is at most 0.4% by weight. The present inventors believe that the addition of Mg may also play a role in the formation of copper-containing phases.

Un alliage contenant des quantités contrôlées d'éléments d'alliages est coulé sous forme de plaque.An alloy containing controlled amounts of alloying elements is cast as a plate.

La plaque est homogénéisée à une température comprise entre 470 °C et 510 °C pendant 2 à 30 heures. Une température d'homogénéisation d'au moins 470 °C et de manière préférée d'au moins 490 °C permet simultanément de former les dispersoïdes et de préparer une mise en solution efficace. Les présents inventeurs ont constaté qu'une température d'homogénéisation supérieure à environ 510 °C provoque une propension plus élevée à la bifurcation de fissure. Les présents inventeurs pensent que les températures d'homogénéisation élevées affectent la taille et la répartition des dispersoïdes contenant du manganèse.The plate is homogenized at a temperature between 470 ° C and 510 ° C for 2 to 30 hours. A homogenization temperature of at least 470 ° C and preferably at least 490 ° C simultaneously makes it possible to form the dispersoids and to prepare an effective solution solution. The present inventors have found that a homogenization temperature greater than about 510 ° C causes a higher propensity for crack bifurcation. The present inventors believe that high homogenization temperatures affect the size and distribution of manganese-containing dispersoids.

Une étape de laminage à chaud est réalisée après réchauffage si nécessaire pour obtenir des tôles dont l'épaisseur est d'au moins 30 mm. Une température de sortie de laminage à chaud d'au moins 410 °C, préférentiellement d'au moins 430 °C, et de manière préférée d'au moins 450 °C, est nécessaire pour obtenir un produit essentiellement non recristallisé après mise en solution. On entend par produit essentiellement non recristallisé un produit dont le taux de recristallisation est de moins de 10 % à quart et à mi épaisseur (T/4 et T/2). Les tôles sont mises en solution par chauffage entre 490 et 540 °C pendant 15 minutes à 4 heures et trempées avec de l'eau froide. Les paramètres de mise en solution dépendant de l'épaisseur du produit. Il est important d'éviter la coalescence des dispersoïdes pendant la mise en solution, car cela pourrait compromettre l'effet obtenu par le traitement d'homogénéisation soigneusement contrôlé. Ainsi, le temps équivalent total pour l'homogénéisation et la mise en solution t(eq) ne dépasse pas 30h et de manière préférée 20h.A hot rolling step is performed after reheating if necessary to obtain sheets having a thickness of at least 30 mm. A hot rolling exit temperature of at least 410 ° C, preferably at least 430 ° C, and preferably at least 450 ° C, is necessary to obtain a substantially non-recrystallized product after dissolution. . The term product essentially not recrystallized a product whose recrystallization rate is less than 10% to quarter and half thickness (T / 4 and T / 2). The sheets are dissolved by heating between 490 and 540 ° C for 15 minutes to 4 hours and quenched with cold water. The dissolution parameters depend on the thickness of the product. It is important to avoid the coalescence of dispersoids during dissolution, as this may compromise the effect of the carefully controlled homogenization treatment. Thus, the total equivalent time for homogenization and dissolution t (eq) does not exceed 30h and preferably 20h.

Le temps équivalent t(eq) à 500 °C est défini par la formule : t eq = exp 26100 / T dt exp 26100 / T ref

Figure imgb0006
dans laquelle T est la température instantanée exprimée en Kelvin qui évolue avec le temps t (en heures) et Tref est une température de référence de 500 °C (773 K). t(eq) est exprimé en heures. La constante Q/R = 26100 K est dérivée de l'énergie d'activation pour la diffusion du Mn, Q = 217000 J/mol. La formule donnant t(eq) tient compte des phases de chauffage et de refroidissement.The equivalent time t (eq) at 500 ° C is defined by the formula: t eq = exp - 26100 / T dt exp - 26100 / T ref
Figure imgb0006
where T is the instantaneous temperature expressed in Kelvin which changes with time t (in hours) and T ref is a reference temperature of 500 ° C (773 K). t (eq) is expressed in hours. The constant Q / R = 26100 K is derived from the activation energy for the diffusion of Mn, Q = 217000 J / mol. The formula giving t (eq) takes into account the heating and cooling phases.

Une trempe à l'eau froide est réalisée après mise en solution. Dans une réalisation avantageuse de l'invention, une trempe rapide est réalisée. Par trempe rapide, on entend que la vitesse de refroidissement est la plus élevée possible compte tenu de l'épaisseur de la tôle. Dans une réalisation avantageuse de l'invention, une trempe par immersion verticale est réalisée de préférence à une trempe par aspersion horizontale. Les présents inventeurs ont observé que des produits ayant subi une trempe rapide ont une plus faible propension à la bifurcation de fissure. Les présents inventeurs pensent que cet effet pourrait être relié à une précipitation plus faible aux joints de grains.Quenching with cold water is carried out after dissolution. In an advantageous embodiment of the invention, rapid quenching is performed. Fast quenching means that the cooling rate is as high as possible given the thickness of the sheet. In an advantageous embodiment of the invention, vertical immersion quenching is preferably carried out by horizontal spraying quenching. The present inventors have observed that fast quenched products have a lower propensity to crack bifurcation. The present inventors believe that this effect could be related to a lower precipitation at the grain boundaries.

Le produit subit ensuite une traction contrôlée avec une déformation permanente comprise entre 2% et 5% et de préférence entre 3% et 4%. Le revenu est réalisé à une température comprise entre 130 °C et 160 °C pendant une durée de 5 à 60 heures, ce qui résulte en un état T8. Dans certains cas, et en particulier pour certaines compositions préférées, le revenu est réalisé de manière préférée entre 140 et 160 °C pendant 12 à 50 heures. Les températures de revenu plus basses favorisent en général une ténacité plus élevée.The product then undergoes a controlled pull with a permanent deformation of between 2% and 5% and preferably between 3% and 4%. The income is made at a temperature between 130 ° C and 160 ° C for a period of 5 to 60 hours, resulting in a T8 state. In some cases, and particularly for some preferred compositions, the yield is preferably between 140 and 160 ° C for 12 to 50 hours. Lower tempering temperatures generally favor higher toughness.

Les produits selon l'invention ont une faible propension à la bifurcation de fissure ce qui signifie que quand un échantillon fissuré S-L d'épaisseur au moins 30 mm et de préférence au moins 60 mm, est testé sous un mode mixte I et II (Ψ = 75° et Keff max = 10 MPa √m) l'angle de déviation de fissure Θ est d'au moins 20° et de préférence au moins 30 °.The products according to the invention have a low propensity for crack bifurcation, which means that when a cracked sample SL having a thickness of at least 30 mm and preferably at least 60 mm is tested under a mixed mode I and II (Ψ = 75 ° and K eff max = 10 MPa √m) the crack deflection angle Θ is at least 20 ° and preferably at least 30 °.

La propension à la bifurcation de fissure est aussi observée pour des essais de fatigue dans la direction L-S. Une faible propension à la bifurcation de fissure signifie également que pour les produits selon l'invention on observe une bifurcation de fissure sur moins de 20% et de préférence moins de 10 % des échantillons d'un lot d'au moins 4 échantillons L-S à trou selon la figure 6, testés en fatigue selon la norme ASTM E 647 (R = 0,1, σmax = 220 MPa). D'autres propriétés avantageuses des produits selon l'invention dont l'épaisseur est comprise entre 30 et 100 mm incluent au moins une des caractéristiques a1 et a2 et au moins une des caractéristiques b1, b2 et b3 à l'état T8, où les caractéristiques a1, a2, b1, b2 et b3 sont définies par :

  • a1 : la limite élastique RP0,2 à T/4 et T/2 est au moins de 455 MPa, préférentiellement au moins 460 MPa ou même au moins 465 MPa dans le sens L.
  • a2 : la résistance à rupture Rm à T/4 et T/2 est au moins 490 MPa, préférentiellement au moins 495 MPa ou même au moins 500 MPa dans le sens L.
  • b1 : la ténacité K1C: dans le sens L-T à T/4 et T/2 est au moins 31 MPa√m, préférentiellement au moins 32 MPa√m ou même au moins 33 MPa√m.
  • b2 : la ténacité K1C: dans le sens T-L à T/4 et T/2 est au moins 28 MPa√m et préférentiellement au moins 29 MPa√m ou même au moins 30 MPa√m.
  • b3 : la ténacité K1C: dans le sens S-L à T/4 et T/2 est au moins 25 MPa√m et préférentiellement au moins 26 MPa√m ou même au moins 27 MPa√m.
The propensity for crack bifurcation is also observed for fatigue tests in the LS direction. A low propensity for crack bifurcation also means that for the products according to the invention, a crack bifurcation is observed on less than 20% and preferably less than 10% of the samples of a batch of at least 4 LS samples. hole according to the figure 6 , fatigue tested according to ASTM E 647 (R = 0.1, σ max = 220 MPa). Other advantageous properties of the products according to the invention whose thickness is between 30 and 100 mm include at least one of the characteristics a1 and a2 and at least one of the characteristics b1, b2 and b3 in the T8 state, where the characteristics a1, a2, b1, b2 and b3 are defined by:
  • a1: the elastic limit R P0.2 to T / 4 and T / 2 is at least 455 MPa, preferably at least 460 MPa or even at least 465 MPa in the L direction.
  • a2: the breaking strength R m at T / 4 and T / 2 is at least 490 MPa, preferably at least 495 MPa or even at least 500 MPa in the L direction.
  • b1: the toughness K1C: in the direction LT to T / 4 and T / 2 is at least 31 MPa√m, preferably at least 32 MPa√m or even at least 33 MPa√m.
  • b2: the tenacity K1C: in the direction TL at T / 4 and T / 2 is at least 28 MPa√m and preferably at least 29 MPa√m or even at least 30 MPa√m.
  • b3: the tenacity K1C: in the direction SL to T / 4 and T / 2 is at least 25 MPa√m and preferably at least 26 MPa√m or even at least 27 MPa√m.

D'autres propriétés avantageuses des produits selon l'invention dont l'épaisseur est supérieure 100 mm incluent au moins une des caractéristiques a4 et a5 et au moins une des caractéristiques b4, b5 et b6 à l'état T8, où les caractéristiques a4, a5, b4, b5 et b6 sont définies par :

  • a4 : la limite élastique RP0,2 à T/4 et T/2 est au moins de 440 MPa, préférentiellement au moins 445 MPa ou même au moins 450 MPa dans le sens L.
  • a5 : la résistance à rupture Rm à T/4 et T/2 est au moins 475 MPa, préférentiellement au moins 480 MPa ou même au moins 485 MPa dans le sens L.
  • b4 : la ténacité K1C: dans le sens L-T à T/4 et T/2 est au moins 26 MPa√m, préférentiellement au moins 27 MPa√m ou même au moins 28 MPa√m.
  • b5 : la ténacité K1C: dans le sens T-L à T/4 et T/2 est au moins 25 MPa√m et préférentiellement au moins 26 MPa√m ou même 27 MPa√m.
  • b6 : la ténacité K1C: dans le sens S-L à T/4 et T/2 est au moins 24 MPa√m et préférentiellement au moins 25 MPa√m ou même au moins 26 MPa√m.
Other advantageous properties of the products according to the invention whose thickness is greater than 100 mm include at least one of characteristics a4 and a5 and at least one of characteristics b4, b5 and b6 in the T8 state, where the characteristics a4, a5, b4, b5 and b6 are defined by:
  • a4: the elastic limit R P0.2 at T / 4 and T / 2 is at least 440 MPa, preferably at least 445 MPa or even at least 450 MPa in the direction L.
  • a5: the breaking strength R m at T / 4 and T / 2 is at least 475 MPa, preferably at least 480 MPa or even at least 485 MPa in the L direction.
  • b4: toughness K1C: in the direction LT to T / 4 and T / 2 is at least 26 MPa√m, preferably at least 27 MPa√m or even at least 28 MPa√m.
  • b5: the tenacity K1C: in the direction TL at T / 4 and T / 2 is at least 25 MPa√m and preferably at least 26 MPa√m or even 27 MPa√m.
  • b6: the tenacity K1C: in the direction SL to T / 4 and T / 2 is at least 24 MPa√m and preferably at least 25 MPa√m or even at least 26 MPa√m.

Les produits selon l'invention présentent une résistance à la corrosion élevée. Les produits selon l'invention testés dans les conditions MASTMAASIS (Modified ASTM Acetic Acid Salt Intermittent Spray) selon la norme ASTM G85 atteignent le niveau EA et de manière préférée le niveau P (piqûration seule). La résistance à la corrosion sous contrainte selon la norme ASTM G47 des produits selon l'invention atteint une tenue de 30 jours pour des échantillons ST soumis à une contrainte de 300 MPa et de manière préférée à une contrainte de 350 MPa.The products according to the invention have a high resistance to corrosion. The products according to the invention tested under the MASTMAASIS (Modified ASTM Acetic Acid Salt Intermittent Spray) conditions according to the ASTM G85 standard reach the EA level and, preferably, the P level (pitting alone). The stress corrosion resistance according to the ASTM G47 standard of the products according to the invention reaches a 30-day hold for ST samples subjected to a stress of 300 MPa and preferably at a stress of 350 MPa.

Les produits selon l'invention peuvent de manière avantageuse être utilisés dans des éléments de structure. Un élément de structure réalisé à l'aide d'un produit laminé selon la présente invention peut inclure, typiquement, un longeron, une nervure ou un cadre pour la construction aéronautique de manière préférée. L'invention est particulièrement avantageuse pour des pièces de forme complexe obtenues par usinage intégral, utilisées en particulier pour la fabrication d'ailes d'avion ainsi que pour n'importe quel autre usage pour lequel les propriétés des produits selon l'invention sont avantageuses.The products according to the invention can advantageously be used in structural elements. A structural member made of a laminate according to the present invention may typically include a spar, rib or frame for aircraft construction in a preferred manner. The invention is particularly advantageous for parts of complex shape obtained by integral machining, used in particular for the manufacture of aircraft wings and for any other use for which the properties of the products according to the invention are advantageous. .

EXEMPLESEXAMPLES Exemple 1Example 1

Deux plaques en alliage AA2050, référencées A et B, ont été coulées. Leur composition est donnée dans le Tableau 1. A des fins de comparaison, une plaque en alliage AA7050 à l'état T7451 a également été testée pour la bifurcation de fissure. Sa composition est également donnée dans le Tableau 1. Tableau 1. Composition (% en poids) des différentes plaques. Si Fe Cu Mn Mg Ti Zr Li Ag Zn A 0.03 0.04 3.46 0.39 0.4 0.02 0.10 0.88 0.39 0.02 B 0.04 0.05 3.60 0.39 0.4 0.02 0.09 0.91 0.37 0.02 7050 0.04 0.09 2.11 0.01 2.22 0.02 0.11 - - 6.18 Two AA2050 alloy plates, referenced A and B, were cast. Their composition is given in Table 1. For comparison purposes, an alloy plate AA7050 in the state T7451 has also been tested for crack bifurcation. Its composition is also given in Table 1. Table 1. Composition (% by weight) of the different plates. Yes Fe Cu mn mg Ti Zr Li Ag Zn AT 0.03 0.04 3.46 0.39 0.4 0.02 0.10 0.88 0.39 0.02 B 0.04 0.05 3.60 0.39 0.4 0.02 0.09 0.91 0.37 0.02 7050 0.04 0.09 2.11 0.01 2.22 0.02 0.11 - - 6.18

La plaque A a été homogénéisée selon l'invention pendant 12 heures à 500°C (vitesse de montée : 15°C/h, temps équivalent à 500 °C : 16,7h). La plaque B (référence) a été homogénéisée pendant 8 heures à 500 °C puis pendant 36 heures à 530 ° (vitesse de montée : 15°C/h, temps équivalent à 500 °C : 140h). La plaque A a été laminée à chaud jusqu'à une tôle d'épaisseur 60 mm et la température de sortie de laminage à chaud était 466 °C. La tôle ainsi obtenue a été mise en solution pendant 2h à 504 °C (vitesse de montée : 50°C/h, temps équivalent à 500 °C : 2,9h) et trempée avec de l'eau froide. La plaque B a été laminée à chaud jusqu'à une tôle d'épaisseur 65 mm et la température de sortie de laminage à chaud était 494 °C. La tôle ainsi obtenue a été mise en solution pendant 2h à 526 °C (vitesse de montée : 50°C/h, temps équivalent à 500 °C : 6h) et trempée avec de l'eau froide. Les deux tôles ont été tractionnées de façon contrôlée, avec un allongement permanent de 3,5% et ont subi un revenu de 18 heures à 155 °C. Les tôles provenant des plaques A et B sont référencées tôle A-60 et tôle B-60, respectivement. Le temps équivalent total à 773 K pour l'homogénéisation et la mise en solution t(eq) était donc de 19,6 h et de 146 h, pour les tôles A-60 et B-60, respectivement.Plate A was homogenized according to the invention for 12 hours at 500 ° C. (rise speed: 15 ° C./h, time equivalent to 500 ° C.:16.7h). Plate B (reference) was homogenized for 8 hours at 500 ° C. and then for 36 hours at 530 ° (rise rate: 15 ° C./hr, time equivalent to 500 ° C. 140 h). Plate A was hot rolled to a 60 mm thick sheet and the hot roll output temperature was 466 ° C. The sheet thus obtained was dissolved for 2 hours at 504 ° C. (rise rate: 50 ° C./h, time equivalent to 500 ° C./2.9 hours) and quenched with cold water. Plate B was hot rolled to a 65 mm thick sheet and the hot roll output temperature was 494 ° C. The sheet thus obtained was dissolved for 2 hours at 526 ° C (rise rate: 50 ° C / h, time equivalent to 500 ° C: 6h) and quenched with cold water. Both sheets were controlled in a controlled manner, with a permanent elongation of 3.5% and were 18 hours at 155 ° C. The sheets from plates A and B are referenced sheet A-60 and sheet B-60, respectively. The total equivalent time at 773 K for homogenization and dissolution t (eq) was therefore 19.6 h and 146 h for sheets A-60 and B-60, respectively.

Les échantillons ont été testés mécaniquement pour déterminer leurs propriétés mécaniques statiques et leur ténacité. La résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 et l'allongement à la rupture A sont données dans le Tableau 2 et la ténacité K1C est donnée dans le tableau 3. Tableau 2 . Propriétés mécaniques statique. Echantillon T/4 T/2 L LT L LT Rm MPa Rp0,2 MPa A (%) Rm MPa Rp0,2 MPa A (%) Rm MPa Rp0,2 MPa A (%) Rm MPa Rp0,2 MPa A (%) Tôle A-60 511 484 13 511 464 10 518 477 10 481 441 13 Tôle B-60 531 500 11,2 521 474 8,8 531 489 8,1 490 449 10,9 Tableau 3 . Ténacité K1c MPa√lm) Echantillon T/4 T/2 L-T T-L L-T T-L S-L Tôle A-60 44,6 36,7 51,0 39,8 33,2 Tôle B-60 42,5 36,7 40,4 40,8 33,4 The samples were mechanically tested to determine their static mechanical properties and toughness. The tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 and elongation at break A are given in Table 2 and the toughness K 1C is given in the table. 3. Table 2. Static mechanical properties. Sample T / 4 T / 2 The LT The LT R m MPa R p0.2 MPa AT (%) R m MPa R p0.2 MPa AT (%) R m MPa R p0.2 MPa AT (%) R m MPa R p0.2 MPa AT (%) Sheet A-60 511 484 13 511 464 10 518 477 10 481 441 13 Sheet B-60 531 500 11.2 521 474 8.8 531 489 8.1 490 449 10.9 K1c MPa√lm) Sample T / 4 T / 2 LT TL LT TL SL Sheet A-60 44.6 36.7 51.0 39.8 33.2 Sheet B-60 42.5 36.7 40.4 40.8 33.4

Des « échantillons Sinclair » tels que décrits sur les Figures 1 et 2 et ayant pour caractéristiques largeur W = 40 mm et épaisseur 5 mm, ont été prélevés dans les tôles A-60 et B-60 à T/2 et testés en fatigue (R = 0,1). La géométrie de test décrite à la Figure 3 a été utilisée. Les essais en fatigue ont été réalisés pour plusieurs valeurs de Keff max et l'angle de déviation Θ a été mesuré sur les échantillons cassés selon la méthode décrite sur la Figure 4. Les résultats obtenus sont présentés sur la Figure 5 et dans le Tableau 4. Tableau 4. Angle de déviation Θ mesuré après un essai en fatigue S-L sous une contrainte en mode mixte I et II Tôle A-60 Tôle B-60 7050 Keff max (MPa √m) Charge (N) Nombre de cycles Θ (°) Charge (N) Nombre de cycles Θ (°) Charge (N) Nombre de cycles Θ (°) 5 2221 800700 57 2216 900 000 49 7,5 3364 336500 50* 3351 297600 51 3317 240 000 42 10 4457 102300 34 4468 44500 4 4423 71500 31 15 6715 3400 4 6662 2300 11 6648 1 700 4 * la rupture s'est produite dans les mors "Sinclair samples" as described on the Figures 1 and 2 and having the characteristics width W = 40 mm and thickness 5 mm, were taken from sheets A-60 and B-60 to T / 2 and tested in fatigue (R = 0.1). The test geometry described in Figure 3 was used. The fatigue tests were carried out for several values of K eff max and the deflection angle Θ was measured on the broken samples according to the method described on the Figure 4 . The results obtained are presented on the Figure 5 and in Table 4. Table 4. Deviation angle Θ measured after an SL fatigue test under a mixed mode I and II stress Sheet A-60 Sheet B-60 7050 Keff max (MPa √m) Charge (N) Number of cycles Θ (°) Charge (N) Number of cycles Θ (°) Charge (N) Number of cycles Θ (°) 5 2221 800700 57 2216 900,000 49 7.5 3364 336500 * 50 3351 297600 51 3317 240,000 42 10 4457 102300 34 4468 44500 4 4423 71500 31 15 6715 3400 4 6662 2300 11 6648 1,700 4 * the break occurred in the jaws

La tôle A-60 présente un angle de déviation Θ supérieur à 20° pour une valeur Keff max de 10 MPa √m, ce qui démontre une faible propension à la bifurcation de fissure. Ce résultat a été confirmé par des essais de fatigue sur des éprouvettes L-S. Quatre échantillons L-S selon la Figure 6 ont été prélevés dans la tôle A-60 et dans la tôle B-60 et soumis à un essai en fatigue (σmax = 220 MPa, R = 0,1) en mode I. Les figures 7a et 7b montrent, respectivement, les quatre échantillons issus des tôles A-60 et B-60 après l'essai en fatigue. Les résultats sont cohérents avec ceux obtenus dans les essais sur des échantillons S-L sous une contrainte en mode mixte I et II: tous les échantillons issus de la tôle B-60 présentent une sévère bifurcation de fissure tandis que les échantillons issus de la tôle A-60 ne présentent que de la propagation de fissure en mode I.Sheet A-60 has a deflection angle Θ greater than 20 ° for a K max value of 10 MPa √m, which demonstrates a low propensity for crack bifurcation. This result was confirmed by fatigue tests on LS specimens. Four LS samples according to Figure 6 were taken from sheet A-60 and sheet B-60 and subjected to a fatigue test (σmax = 220 MPa, R = 0.1) in mode I. Figures 7a and 7b show, respectively, the four samples from sheets A-60 and B-60 after the fatigue test. The results are consistent with those obtained in tests on SL samples under mixed mode I and II stress: all samples from sheet B-60 show a severe crack bifurcation while the samples from sheet A-60 show only mode I crack propagation.

Exemple 2.Example 2

Deux plaques en alliage AA2050 référencées A' et C et deux plaques de référence en alliage AA2195, référencées D et E, ont été coulées. Leur composition est donnée dans le Tableau 5. Tableau 5. Composition (% en poids) des différentes plaques. Si Fe Cu Mn Mg Ti Zr Li Ag Zn A' 0,03 0,04 3,46 0,39 0,4 0,02 0,10 0,88 0,39 0,02 C 0,02 0,05 3,56 0,41 0,35 0,03 0,09 0,93 0,37 0,02 D 0,03 0,04 4,2 - 0,4 0,02 0,11 1,06 0,35 0,02 E 0,03 0,06 4,3 0,3 0,4 0,02 0,12 1,17 0,35 0,01 Two AA2050 alloy plates referenced A 'and C and two AA2195 alloy reference plates, referenced D and E, were cast. Their composition is given in Table 5. Table 5. Composition (% by weight) of the different plates. Yes Fe Cu mn mg Ti Zr Li Ag Zn AT' 0.03 0.04 3.46 0.39 0.4 0.02 0.10 0.88 0.39 0.02 VS 0.02 0.05 3.56 0.41 0.35 0.03 0.09 0.93 0.37 0.02 D 0.03 0.04 4.2 - 0.4 0.02 0.11 1.06 0.35 0.02 E 0.03 0.06 4.3 0.3 0.4 0.02 0.12 1.17 0.35 0.01

La plaque A' a été homogénéisée selon l'invention pendant 12 heures à 500°C (vitesse de montée : 15°C/h, temps équivalent à 500 °C : 16,7h). La plaque C (référence) a été homogénéisée pendant 8 heures à 500 °C puis pendant 36 heures à 530 ° (vitesse de montée : 15°C/h, temps équivalent à 500 °C : 140h). La plaque A' a été laminée à chaud jusqu'à une tôle d'épaisseur 30 mm et la température de sortie de laminage à chaud était 466 °C. La tôle ainsi obtenue a été mise en solution pendant 2h à 505 °C (vitesse de montée : 50°C/h, temps équivalent à 500 °C : 3,0h) et trempée avec de l'eau froide. La plaque C a été laminée à chaud jusqu'à une tôle d'épaisseur 30 mm et la température de sortie de laminage à chaud était 474 °C. La tôle ainsi obtenue a été mise en solution pendant 5h à 525 °C (vitesse de montée : 50°C/h, temps équivalent à 500 °C : 15,7h) et trempée avec de l'eau froide. Les deux tôles ont été tractionnées de façon contrôlée, avec un allongement permanent de 3,5% et ont subi un revenu de 18 heures à 155 °C. Les tôles provenant des plaques A' et C sont référencées tôle A'-30 et tôle C-30, respectivement.The plate A 'was homogenized according to the invention for 12 hours at 500 ° C. (rise speed: 15 ° C./h, time equivalent to 500 ° C.:16.7h). Plate C (reference) was homogenized for 8 hours at 500 ° C and then for 36 hours at 530 ° (rise rate: 15 ° C / h, time equivalent to 500 ° C: 140h). Plate A 'was hot rolled to a 30 mm thick sheet and the hot roll output temperature was 466 ° C. The sheet thus obtained was dissolved for 2 hours at 505 ° C. (rise rate: 50 ° C./h, time equivalent to 500 ° C. for 3.0 hours) and quenched with cold water. Plate C was hot rolled to a 30 mm thick sheet and the hot roll output temperature was 474 ° C. The sheet thus obtained was dissolved for 5 hours at 525 ° C. (rise rate: 50 ° C./h, time equivalent to 500 ° C. for 15.7 hours) and quenched with cold water. Both sheets were controlled in a controlled manner, with a permanent elongation of 3.5% and were 18 hours at 155 ° C. The sheets from the plates A 'and C are referenced sheet A'-30 and sheet C-30, respectively.

Les plaques D et E ont été homogénéisées 15 heures à 492°C (vitesse de montée : 15°C/h, temps équivalent à 500 °C : 11,5h). La plaque D a été laminée à chaud jusqu'à une tôle d'épaisseur 25 mm et la température de sortie de laminage à chaud était 430 °C. La tôle ainsi obtenue a été mise en solution pendant 5h à 510 °C (vitesse de montée : 50°C/h, temps équivalent à 500 °C : 8,4h) et trempée avec de l'eau froide. La plaque E a été laminée à chaud jusqu'à une tôle d'épaisseur 30 mm et la température de sortie de laminage à chaud était 411 °C. La tôle ainsi obtenue a été mise en solution pendant 4,5h à 510 °C (vitesse de montée : 50°C/h, temps équivalent à 500 °C : 7,6h) et trempée avec de l'eau froide. Les deux tôles ont été tractionnées de façon contrôlée, avec un allongement permanent de 4,3% et ont subi un revenu de 24 heures à 150 °C. Les tôles provenant des plaques D et E sont référencées tôle D-25 et tôle E-30, respectivement. Le temps équivalent total à 773 K pour l'homogénéisation et la mise en solution t(eq) était donc de 19,7h, 155,7h, 19,9h et 19,1h pour les tôles A'-30, C-30, D-25 et E-30, respectivement.The plates D and E were homogenized for 15 hours at 492 ° C. (rise rate: 15 ° C./hr, time equivalent to 500 ° C. 11.5h). Plate D was hot rolled to a 25 mm thick sheet and the hot roll output temperature was 430 ° C. The sheet thus obtained was dissolved for 5 hours at 510 ° C. (rise speed: 50 ° C./h, time equivalent to 500 ° C: 8.4h) and quenched with cold water. Plate E was hot rolled to a 30 mm thick sheet and the hot rolling exit temperature was 411 ° C. The sheet thus obtained was dissolved for 4.5 h at 510 ° C. (rise rate: 50 ° C./h, time equivalent to 500 ° C.: 7.6 h) and quenched with cold water. The two sheets were controlled in a controlled manner, with a permanent elongation of 4.3% and a 24 hour income at 150 ° C. The sheets from the plates D and E are referenced sheet D-25 and sheet E-30, respectively. The total equivalent time at 773 K for homogenization and dissolution in solution t (eq) was therefore 19.7h, 155.7h, 19.9h and 19.1h for the sheets A'-30, C-30, D-25 and E-30, respectively.

Des essais de fatigue sur des éprouvettes L-S ont été réalisés sur des échantillons provenant des tôles A'-30, C-30, D-25 et E-30. Quatre échantillons L-S selon la Figure 6 ont été prélevés dans chacune des tôles et soumis à un essai en fatigue (σmax = 220 MPa, R = 0,1) en mode I. Les figures 8a, 8b, 8c et 8d montrent, respectivement, les quatre échantillons issus des tôles A'-30, C-30, D-25 et E-30 après l'essai en fatigue. Seuls les échantillons issus de la tôle A'-30 ne présentent pas de bifurcation de fissure tandis que les échantillons issus de la tôle C-30, D-25 et E-30 présentent dans au moins un cas une sévère bifurcation de fissure. Le procédé selon l'invention qui associe une composition particulière et des conditions d'homogénéisation et de mise en solution définies permet d'obtenir une tôle exempte de bifurcation de fissure A'-30, tandis que les plaques C-30 (température d'homogénéisation élevée) et les plaques D-25 et E-30 (teneur en cuivre élevée) ne le permettent pas.Fatigue tests on LS specimens were performed on samples from sheets A'-30, C-30, D-25 and E-30. Four LS samples according to Figure 6 were taken from each of the sheets and subjected to a fatigue test (σmax = 220 MPa, R = 0.1) in mode I. Figures 8a, 8b, 8c and 8d show, respectively, the four samples from plates A'-30, C-30, D-25 and E-30 after the fatigue test. Only the samples from the sheet A'-30 do not have crack bifurcation while the samples from sheet C-30, D-25 and E-30 have in at least one case a severe crack bifurcation. The method according to the invention which combines a particular composition and defined homogenization and dissolution conditions makes it possible to obtain a sheet free from crack bifurcation A'-30, while the C-30 plates (temperature of 30.degree. high homogenization) and D-25 and E-30 (high copper content) plates do not allow this.

Claims (8)

  1. Method of manufacturing an essentially unrecrystallised plate with a thickness of at least 30 mm with low propensity to crack bifurcation, comprising the following steps:
    a) casting a slab containing 2.2 to 3.9% by weight of Cu, 0.7 to 2.1% by weight of Li, 0.2 to 0.8% by weight of Mg, 0.2 to 0.5% by weight of Mn, 0.04 to 0.18% by weight of Zr, less than 0.05% by weight of Zn and optionally 0.1 to 0.5% by weight of Ag, the remainder being aluminium and inevitable impurities,
    b) homogenising said slab at between 470°C and 510°C for a duration of 2 to 30 hours,
    c) hot rolling said slab to obtain a plate at least 30 mm thick, with an exit temperature of at least 410°C
    d) solution heat treating the plate at between 490°C and 540°C for 15 minutes to 4h, such that the total equivalent time for homogenising and solution heat treating t(eq) t eq = exp 26100 / T dt exp 26100 / T ref
    Figure imgb0009
    does not exceed 30h and preferably 20h, in which T (in Kelvin) is the instantaneous treatment temperature, that varies with the time t (in hours), and Tref is a reference temperature fixed at 773 K,
    e) quenchng in cold water
    f) stretching in a controlled manner of said plate with a permanent deformation of 2 to 5%
    g) annealing of said plate by heating to between 130°C and 160°C for 5 to 60 hours.
  2. Method according to claim 1, in which the lithium and copper contents expressed as a % by weight satisfy the relation Li + Cu > 4 and preferably Li + Cu > 4.3
  3. Method according to claim 1 or claim 2, in which the lithium and copper contents expressed as a % by weight satisfy the relation Li + 0.7 Cu < 4.3 and preferably Li + 0.5 Cu < 3.3.
  4. Method according to claim 3, in which the lithium content is between 0.9 and 1.4% by weight and is preferably between 0.9 and 1.25% by weight.
  5. Method according to any one of claims 1 to 4, in which the copper content is between 2.7 and 3.9% by weight and is preferably between 3.2 and 3.9% by weight.
  6. Method according to any one of claims 1 to 5, in which the manganese content is between 0.3 and 0.5% by weight.
  7. Method according to any one of claims 1 to 6, in which said temperature at the exit from hot rolling is at least 430°C and is preferably at least 450°C.
  8. Method according to any one of claims 1 to 7, in which said annealing is done by heating to between 140°C and 160°C for 12 to 50 hours.
EP08872581.7A 2007-12-21 2008-12-19 MANUFACTURING METHOD OF AN Al-Li ROLLED PRODUCT FOR AERONAUTICAL APPLICATIONS Active EP2235224B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0709069A FR2925523B1 (en) 2007-12-21 2007-12-21 ALUMINUM-LITHIUM ALLOY IMPROVED LAMINATED PRODUCT FOR AERONAUTICAL APPLICATIONS
US2003808P 2008-01-09 2008-01-09
PCT/FR2008/001787 WO2009103899A1 (en) 2007-12-21 2008-12-19 Rolled product made of aluminum-lithium alloy for aeronautical applications

Publications (2)

Publication Number Publication Date
EP2235224A1 EP2235224A1 (en) 2010-10-06
EP2235224B1 true EP2235224B1 (en) 2017-02-22

Family

ID=39262686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08872581.7A Active EP2235224B1 (en) 2007-12-21 2008-12-19 MANUFACTURING METHOD OF AN Al-Li ROLLED PRODUCT FOR AERONAUTICAL APPLICATIONS

Country Status (8)

Country Link
US (2) US20090159159A1 (en)
EP (1) EP2235224B1 (en)
CN (1) CN101903546B (en)
BR (1) BRPI0821569B1 (en)
CA (1) CA2708989C (en)
DE (1) DE08872581T1 (en)
FR (1) FR2925523B1 (en)
WO (1) WO2009103899A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938553B1 (en) * 2008-11-14 2010-12-31 Alcan Rhenalu ALUMINUM-COPPER-LITHIUM ALLOY PRODUCTS
CN101838764B (en) * 2010-03-29 2011-06-22 江苏大学 Scandium and strontium compound microalloyed high zinc 2099 type aluminium alloy and preparation method thereof
FR2960002B1 (en) * 2010-05-12 2013-12-20 Alcan Rhenalu ALUMINUM-COPPER-LITHIUM ALLOY FOR INTRADOS ELEMENT.
US9090950B2 (en) 2010-10-13 2015-07-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Abnormal grain growth suppression in aluminum alloys
CN102021457B (en) * 2010-10-27 2012-06-27 中国航空工业集团公司北京航空材料研究院 High-toughness aluminum lithium alloy and preparation method thereof
CN101967588B (en) * 2010-10-27 2012-08-29 中国航空工业集团公司北京航空材料研究院 Damage-resistant aluminum-lithium alloy and preparation method thereof
CN101967589B (en) * 2010-10-27 2013-02-20 中国航空工业集团公司北京航空材料研究院 Medium-strength high-toughness aluminum lithium alloy and preparation method thereof
FR2969177B1 (en) * 2010-12-20 2012-12-21 Alcan Rhenalu LITHIUM COPPER ALUMINUM ALLOY WITH ENHANCED COMPRESSION RESISTANCE AND TENACITY
EP3187603A1 (en) * 2011-02-17 2017-07-05 Arconic Inc. 2xxx series aluminum lithium alloys
FR2974118B1 (en) * 2011-04-15 2013-04-26 Alcan Rhenalu PERFECT MAGNESIUM ALUMINUM COPPER ALLOYS WITH HIGH TEMPERATURE
FR3004196B1 (en) * 2013-04-03 2016-05-06 Constellium France ALUMINUM-COPPER-LITHIUM ALLOY SHEETS FOR THE MANUFACTURE OF AIRCRAFT FUSELAGES.
FR3004197B1 (en) * 2013-04-03 2015-03-27 Constellium France THIN ALUMINUM-COPPER-LITHIUM ALLOY SHEETS FOR THE MANUFACTURE OF AIRCRAFT FUSELAGES.
FR3014448B1 (en) * 2013-12-05 2016-04-15 Constellium France ALUMINUM-COPPER-LITHIUM ALLOY PRODUCT FOR INTRADOS ELEMENT WITH IMPROVED PROPERTIES
FR3014905B1 (en) 2013-12-13 2015-12-11 Constellium France ALUMINUM-COPPER-LITHIUM ALLOY PRODUCTS WITH IMPROVED FATIGUE PROPERTIES
RU2698242C1 (en) * 2015-11-25 2019-08-23 Отто Фукс-Коммандитгезельшафт Pipe for use with deep well
FR3047253B1 (en) * 2016-02-03 2018-01-12 Constellium Issoire AL-CU-LI THICK-ALLOY TILES WITH IMPROVED FATIGUE PROPERTIES
CA3032261A1 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
EP3529394A4 (en) 2016-10-24 2020-06-24 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
EP3577246A1 (en) 2017-01-31 2019-12-11 Universal Alloy Corporation Low density aluminum-copper-lithium alloy extrusions
FR3075078B1 (en) * 2017-12-20 2020-11-13 Constellium Issoire IMPROVED MANUFACTURING PROCESS OF ALUMINUM-COPPER-LITHIUM ALLOY SHEETS FOR THE MANUFACTURE OF AIRCRAFT FUSELAGE
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
CN108531782A (en) * 2018-04-11 2018-09-14 上海交通大学 One kind Casting Al-Li Alloy containing magnesium and preparation method thereof
ES2945730T3 (en) * 2018-10-31 2023-07-06 Novelis Koblenz Gmbh Method of manufacturing a 2x24 series aluminum alloy plate product having improved resistance to fatigue failure
CN109385588B (en) * 2018-12-05 2020-04-14 湖南恒佳新材料科技有限公司 Preparation method of high-toughness 2050 aluminum alloy medium plate
EP3670690A1 (en) 2018-12-20 2020-06-24 Constellium Issoire Al-zn-cu-mg alloys and their manufacturing process
WO2020206161A1 (en) * 2019-04-05 2020-10-08 Arconic Technologies Llc Methods of cold forming aluminum lithium alloys
CN110423966B (en) * 2019-07-29 2020-09-22 中国航发北京航空材料研究院 Preparation process for improving comprehensive performance of aluminum-lithium alloy product
CN110541131B (en) * 2019-08-29 2021-02-19 哈尔滨工业大学 Al-Cu-Li alloy thermomechanical treatment process based on particle-excited nucleation
CN112281035B (en) * 2019-11-25 2021-07-27 重庆文理学院 Preparation method of metal alloy with excellent comprehensive performance
CN110904371A (en) * 2019-12-18 2020-03-24 东北轻合金有限责任公司 Super-strong corrosion-resistant aluminum alloy section for aerospace and manufacturing method thereof
CN111471945B (en) * 2020-06-03 2021-04-02 中南大学 Hot forming method for improving comprehensive performance and surface quality of aluminum alloy component
CN112593169B (en) * 2020-12-16 2022-02-08 北京理工大学 Method for controlling defects and structure of aluminum-lithium alloy manufactured by electric arc additive manufacturing
CN113981344B (en) * 2021-08-19 2022-09-02 山东南山铝业股份有限公司 Preparation method of high-damage-tolerance 2-series aluminum alloy thick plate for aviation
CN114561578A (en) * 2022-03-23 2022-05-31 中南大学 Aluminum lithium alloy and heat treatment process thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999061A (en) * 1983-12-30 1991-03-12 The Boeing Company Low temperature underaging of lithium bearing alloys and method thereof
JPH03107440A (en) * 1989-09-20 1991-05-07 Showa Alum Corp Aluminum alloy for load cell
US5393357A (en) * 1992-10-06 1995-02-28 Reynolds Metals Company Method of minimizing strength anisotropy in aluminum-lithium alloy wrought product by cold rolling, stretching and aging
DE69836569T3 (en) * 1997-01-31 2014-07-31 Constellium Rolled Products Ravenswood, Llc Process for increasing the fracture toughness in aluminum-lithium alloys
US7438772B2 (en) * 1998-06-24 2008-10-21 Alcoa Inc. Aluminum-copper-magnesium alloys having ancillary additions of lithium
FR2848480B1 (en) * 2002-12-17 2005-01-21 Pechiney Rhenalu METHOD OF MANUFACTURING STRUCTURAL ELEMENTS BY MACHINING THICK TOLES
WO2004106570A1 (en) * 2003-05-28 2004-12-09 Pechiney Rolled Products New al-cu-li-mg-ag-mn-zr alloy for use as stractural members requiring high strength and high fracture toughness
FR2872172B1 (en) * 2004-06-25 2007-04-27 Pechiney Rhenalu Sa ALUMINUM ALLOY PRODUCTS WITH HIGH TENACITY AND HIGH FATIGUE RESISTANCE
ES2339148T3 (en) * 2005-02-10 2010-05-17 Alcan Rolled Products - Ravenswood, Llc AL-ZN-CU-MG ALUMINUM ALLOYS AND MANUFACTURING AND USE PROCESSES.

Also Published As

Publication number Publication date
US20090159159A1 (en) 2009-06-25
WO2009103899A1 (en) 2009-08-27
US20100314007A1 (en) 2010-12-16
DE08872581T1 (en) 2011-01-20
BRPI0821569A2 (en) 2015-09-08
US8323426B2 (en) 2012-12-04
CN101903546B (en) 2013-01-02
CN101903546A (en) 2010-12-01
BRPI0821569B1 (en) 2018-06-26
CA2708989C (en) 2017-04-18
FR2925523B1 (en) 2010-05-21
BRPI0821569A8 (en) 2017-08-22
FR2925523A1 (en) 2009-06-26
CA2708989A1 (en) 2009-08-27
EP2235224A1 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
EP2235224B1 (en) MANUFACTURING METHOD OF AN Al-Li ROLLED PRODUCT FOR AERONAUTICAL APPLICATIONS
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
EP1966402B1 (en) Sheet made of high-toughness aluminium alloy containing copper and lithium for an aircraft fuselage
FR2907796A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
CA2907854C (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
EP1114877A1 (en) Al-Cu-Mg alloy aircraft structural element
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
EP1544315B1 (en) Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy
CA2923109C (en) Underwing sheet metal with improved damage tolerance properties
EP1382698A1 (en) Wrought product in Al-Cu-Mg alloy for aircraft structural element
EP3411508B1 (en) Thick al - cu - li - alloy sheets having improved fatigue properties
EP1644546A2 (en) Products made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage
EP3635146B1 (en) Aluminium alloy comprising lithium with improved fatigue properties
EP1544316B1 (en) Thick sheet made of Al-Zn-Cu-Mg recrystallised alloy with low Zirconium content
EP3788178B1 (en) Aluminium-copper-lithium alloy having improved compressive strength and improved toughness
WO2019211546A1 (en) Method for manufacturing an aluminum-copper-lithium alloy with improved compressive strength and improved toughness

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DET De: translation of patent claims
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM FRANCE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM ISSOIRE

17Q First examination report despatched

Effective date: 20160316

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008048877

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 869338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008048877

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170522

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170522

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008048877

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171219

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20191204

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191231

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191231

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008048877

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 869338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231227

Year of fee payment: 16