EP2218119B1 - Variabel gestaffelter reflektor für eine azimutstrahlbreitengesteuerte antenne - Google Patents

Variabel gestaffelter reflektor für eine azimutstrahlbreitengesteuerte antenne Download PDF

Info

Publication number
EP2218119B1
EP2218119B1 EP08847232A EP08847232A EP2218119B1 EP 2218119 B1 EP2218119 B1 EP 2218119B1 EP 08847232 A EP08847232 A EP 08847232A EP 08847232 A EP08847232 A EP 08847232A EP 2218119 B1 EP2218119 B1 EP 2218119B1
Authority
EP
European Patent Office
Prior art keywords
reflector
radiators
antenna
configuration
beam width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08847232A
Other languages
English (en)
French (fr)
Other versions
EP2218119A1 (de
EP2218119A4 (de
Inventor
Gang Yi Deng
Björn LINDMARK
Matthew J. Hunton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powerwave Technologies Inc
Original Assignee
Powerwave Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerwave Technologies Inc filed Critical Powerwave Technologies Inc
Publication of EP2218119A1 publication Critical patent/EP2218119A1/de
Publication of EP2218119A4 publication Critical patent/EP2218119A4/de
Application granted granted Critical
Publication of EP2218119B1 publication Critical patent/EP2218119B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/01Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the shape of the antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present invention relates in general to communication systems and components. More particularly the present invention is directed to antennas and antenna arrays employed in wireless communications systems.
  • Modern wireless antenna implementations generally include a plurality of radiating elements that may be arranged over a reflector plane defining a radiated (and received) signal beam width and azimuth scan angle.
  • Azimuth antenna beam width can be advantageously modified by varying the amplitude and phase of an RF signal applied to respective radiating elements.
  • Azimuth antenna beam width has been conventionally defined by Half Power Beam Width (HPBW) of the azimuth beam relative to a bore sight of such antenna array.
  • HPBW Half Power Beam Width
  • radiating element positioning is important to the overall beam width control as such antenna systems rely on accuracy of amplitude and phase angle of RF signal supplied to each radiating element. This places a requirement for a great deal of tolerance and accuracy on a mechanical phase shifter to provide the required signal division between various radiating elements over various azimuth bandwidth settings.
  • Real world applications often call for an antenna array with beam down tilt and azimuth beam width control that may incorporate a plurality of mechanical phase shifters to achieve such functionality.
  • Such highly functional antenna arrays are typically retrofitted in place of simpler, lighter and less functional antenna arrays while weight and wind loading of the newly installed antenna array can not be significantly increased.
  • Accuracy of a mechanical phase shifter generally depends on its construction materials.
  • highly accurate mechanical phase shifter implementations require substantial amounts of relatively expensive dielectric materials and rigid mechanical support. Such construction techniques result in additional size and weight not to mention being relatively expensive.
  • mechanical phase shifter configurations that have been developed utilizing lower cost materials may fail to provide adequate passive intermodulation suppression under high power RF signal levels.
  • the present invention provides an antenna for a wireless network comprising a first generally planar reflector having a first plurality of radiators mounted thereon and a second generally planar reflector having a second plurality of radiators mounted thereon, the second generally planar reflector configured in a variable partial overlapping relation with the first generally planar reflector.
  • At least one of the first and second generally planar reflectors is movable relative to the other reflector in a direction generally parallel to the reflector plane and the radiators mounted on the reflectors are reconfigurable from a first configuration where the radiators are all aligned to a second configuration where the radiators are staggered relative to each other.
  • at least one of the first and second reflectors has a comb-like structure having a plurality of notched portions configured in alignment with the radiators on the other reflector.
  • the first and second plurality of radiators comprise radiating elements extending perpendicular to the plane of the respective reflectors. At least one of the first and second reflectors has a comb-like structure having a plurality of notched portions configured in alignment with the radiators on the other reflector.
  • the first and second plurality of radiators are arranged in first and second columns respectively on the first and second reflectors.
  • the first and second plurality of radiators in each of the first and second columns are preferably equally spaced along the length direction of the columns. In the first configuration the first and second columns may be aligned along a centerline and the first and second plurality of radiators are equally spaced apart a distance Vs.
  • the operating frequency of the antenna may be between 1.7 GHz and 2.2 GHz and the spacing Vs is between about 75 to 125 mm.
  • the spacing HS 1 and HS 2 may be variable between 0 and 40 mm.
  • the present invention provides a variable azimuth beam width antenna comprising a reflector structure, the reflector structure comprising first and second generally planar reflector panels each having plural alternating extensions and notched portions forming a comb shape, wherein the first and second generally planar reflector panels are interdigitated to form a generally rectangular shape for the reflector structure and wherein one or both of the panels are movable relative to the other to provide a variable overlap.
  • the antenna further comprises a first plurality of radiators mounted on the first reflector panel in the plural extensions thereof and a second plurality of radiators mounted on the second reflector panel in the plural extensions thereof.
  • Signal azimuth beam width is variable based on variable relative positioning of the first plurality of radiators and the second plurality of radiators as the first and second reflector panel overlap is varied.
  • the reflector structure has a variable width as the first and second reflector panel overlap is varied.
  • the operating frequency of the antenna may be between 1.7 GHz and 2.2 GHz and the reflector structure width is variable between about 120 mm and 200 mm.
  • the beam width of the antenna may be variable between about 100 degrees and 47 degrees.
  • the first plurality of radiators mounted on the first reflector panel are preferably arranged in a first column aligned perpendicular to the azimuth direction and the second plurality of radiators mounted on the second reflector panel are preferably arranged in a second column also aligned perpendicular to the azimuth direction and the spacing of the first and second columns is varied as the reflector panel overlap is varied.
  • the aspect and its preferred embodiments/examples are related to each other according to the following:
  • the present invention provides a method of adjusting signal beam width in an antenna having first and second generally comb shaped planar reflector panels each having a plurality of radiators mounted thereon.
  • the method comprises adjusting the position of at least one of the panels by moving the panel in a direction generally parallel to the plane of the reflector to a first configuration having plural interdigitated first and second radiators on the first and second reflector panels with a first spacing to provide a first signal beam width.
  • the method further comprises adjusting the position of at least one of the panels by moving the panel in a direction generally parallel to the plane of the reflector to a second configuration having interdigitated first and second radiators with a second different spacing to provide a second signal beam width.
  • the beam width of the antenna may be variable between about 100 degrees and 47 degrees.
  • the first and second reflector panels together preferably form a rectangular reflector structure having a width which is variable, for example between about 120 mm and 200 mm.
  • the present invention provides an azimuth beam width variable antenna array for a wireless network system and related methods of beam width control.
  • Figure 1 shows a front view of a dual polarization, staggerable reflector antenna array, 100, according to an exemplary implementation, which utilizes twin element staggerable reflector plates or panels 105a and 105b. As may be seen these panels each have a comb shape which together form an interdigitated structure. More specifically, the two reflector plates 105a and 105b are oriented in a vertical orientation (Z-dimension) of the antenna array together forming a rectangular shaped reflector 105. Reflector plates 105a and 105b may, for example, consist of electrically conductive plates suitable for use with Radio Frequency (RF) signals. Further, reflector plates 105a and 105b when combined together are shown as a featureless rectangle, but in actual practice additional details such as outer perimeter augmentation (not shown) may be added to aid reflector performance and HPBW control.
  • RF Radio Frequency
  • an antenna array, 100 contains a plurality of RF radiating (110, 120, 130, 140 -to- 220) elements preferably arranged both vertically and horizontally along operationally defined vertical axis P0 which corresponds to a minimum stagger distance O1.
  • RF radiating (110, 120, 130, 140 -to- 220) elements are preferably equidistantly spaced a distance Vs as shown; alternatively unequal elements groupings and offset vertical arrangements can also be employed.
  • the illustrated embodiment utilizes 12 radiating elements, however it shall be understood that the number of radiating elements can be greater or fewer depending on performance requirements and other implementation requirements.
  • the first group of RF radiating (120, 140, 160, 180, 200, and 220) elements are rigidly attached (122, 142, 162, 182, 202, and 222) to the left side reflector plate 105a along P1 axis common to the reflector plate 105a.
  • the second group of RF radiating (110, 130, 150, 170, 190, and 210) elements are rigidly attached (112, 132, 152, 172, 192, and 212) to the right side reflector plate 105b along P2 axis common to the reflector plate 105b.
  • Both left 105a and right reflector plates utilize a comb style shape with extensions and notched portions which are interdigitated to allow for interference free radiating element positioning while providing a substantially homogenous reflector plane.
  • left reflector plate 105a is set to overlay right reflector plate 105b.
  • the two reflector plates 105a and 105b are equidistantly movable about vertical center axis P0, in opposite directions having identical lateral displacement HS1 & HS2.
  • One skilled in the art can readily implement a simple electro-mechanical actuator (not shown) that can provide such controlled lateral movement.
  • unequal shifting about center axis P0 is possible, such that displacement
  • O1 maximum
  • overall combined antenna reflector 105 dimension W1 minimum dimension.
  • VS dimension is defined by the overall length of the reflector 105 plane which defines the effective antenna aperture.
  • RF radiator, 105 together with a plurality of folded dipole (110, 120, 130, 140 -to- 250) radiating elements forms an antenna array useful for RF signal transmission and reception.
  • alternative radiating elements such as taper slot, horn, aperture coupled patches (APC), etc., can be used as well.
  • a cross section datum A-A and B-B will be used to detail constructional and operational aspects relating to reflector plates 105a and 105b relative movement with respect to each other. Drawing details of A-A and B-B datum can be found in Figure 3A .
  • Minimum reflector overlap O1 dimension is preferably not Omm, but has an additional mechanical safety margin to prevent reflector planes from disengaging each other at minimum overlap settings.
  • Figure 3B provides cross sectional views along A1-A1 and B1-B1 datum of Figure 2 .
  • Figures 4 , 5 , and 6 provide azimuth radiation patterns for different stagger settings.
  • Preferred dimensions for a 1.7 GHz to 2.2 GHz embodiment are shown in Table 1. Other frequency ranges and dimensions are also possible, however.
  • Table 1 Element Dimension Min (mm) Max (mm) Typical (mm) Vertical radiating element spacing Vs 75 125 Reflector Width W1 120 200 Reflector movement HS1, HS2 0 40 Overlap O1 20 60 HPBW HPBW 99.7 deg 46.9 deg

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (14)

  1. Antenne (100) für ein Funknetzwerk, umfassend:
    einen ersten, allgemein planaren Reflektor (105a) mit einer daran montierten ersten Mehrzahl von Strahlern (120, 140, 160, 180, 200, 220); und
    einen zweiten, allgemein planaren Reflektor (105b) mit einer daran montierten zweiten Mehrzahl von Strahlern (110, 130, 150, 170, 190, 210), wobei der zweite, allgemein planare Reflektor (105b) in einer variablen, teilweise überlappenden Beziehung mit dem ersten, allgemein planaren Reflektor (105a) konfiguriert ist;
    wobei der erste und/oder zweite, allgemein planare Reflektor (105a, 105b) relativ zu dem anderen Reflektor in einer Richtung allgemein parallel zu der Reflektorebene bewegt werden kann, wobei die an den Reflektoren (105a, 105b) montierten Strahler (110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220) von einer ersten Konfiguration, wo die Strahler alle ausgerichtet sind, auf eine zweite Konfiguration, wo die Strahler relativ zueinander gestaffelt sind, rekonfiguriert werden können; und
    wobei der erste (105a) und/oder der zweite (105b) Reflektor eine kammartige Struktur mit einer Mehrzahl von gekerbten Abschnitten, in Ausrichtung auf die Radiatoren an dem anderen Reflektor konfiguriert, aufweist.
  2. Antenne (100) nach Anspruch 1, wobei die erste (120, 140, 160, 180, 200, 220) und zweite (110, 130, 150, 170, 190, 210) Mehrzahl von Strahlern strahlende Elemente umfassen, die sich senkrecht zu der Ebene der jeweiligen Reflektoren (105a, 105b) erstrecken.
  3. Antenne nach Anspruch 1, wobei die erste (120, 140, 160, 180, 200, 220) und zweite (110, 130, 150, 170, 190, 210) Mehrzahl von Strahlern in ersten bzw. zweiten Spalten auf dem ersten (105a) und zweiten (105b) Reflektor angeordnet sind.
  4. Antenne (100) nach Anspruch 3, wobei die erste und zweite Mehrzahl von Strahlern in jeder der ersten und zweiten Spalte entlang der Längenrichtung der Spalten gleichmäßig beabstandet sind.
  5. Antenne (100) nach Anspruch 4, wobei die erste und zweite Spalte in der ersten Konfiguration entlang einer Mittellinie P0 ausgerichtet sind und die erste (120, 140, 160, 180, 200, 220) und die zweite (110, 130, 150, 170, 190, 210) Mehrzahl von Strahlern mit einem Abstand Vs gleichmäßig beabstandet sind.
  6. Antenne (100) nach Anspruch 5, wobei die erste und zweite Spalte in der zweiten Konfiguration nicht ausgerichtet sind und die erste (120, 140, 160, 180, 200, 220) und zweite (110, 130, 150, 170, 190, 210) Mehrzahl von Strahlern mit einem Staffelabstand SD, der größer ist als Vs, beabstandet sind.
  7. Antenne (100) nach Anspruch 6, wobei die erste und zweite Spalte in der zweiten Konfiguration in entgegengesetzten Richtungen von der Mittellinie mit einem Abstand HS1 bzw. HS2 beabstandet sind und wobei der Staffelabstand SD der Strahler gegeben ist durch: SD = HS 2 + VS 2 ,
    Figure imgb0005

    wobei HS = HS1 = HS2.
  8. Antenne (100) nach Anspruch 7, wobei die Arbeitsfrequenz der Antenne zwischen 1,7 GHz und 2,2 GHz liegt und wobei die Beabstandung Vs zwischen etwa 75 und 125 mm liegt.
  9. Antenne (100) nach Anspruch 7, wobei die Beabstandung HS1 und HS2 zwischen 0 und 40 mm variabel ist.
  10. Verfahren zum Einstellen einer Signalstrahlbreite in einer Antenne (100) mit ersten (105a) und zweiten (105b), allgemein kammförmigen planaren Reflektorpanels mit jeweils darauf montierter Mehrzahl von Strahlern, wobei das Verfahren Folgendes umfasst:
    Einstellen der Position mindestens eines der Panels (105a, 105b) durch Bewegen der Panels in einer Richtung allgemein parallel zu der Ebene des Reflektors zu einer ersten Konfiguration mit mehreren verzahnten ersten (120, 140, 160, 180, 200, 220) und zweiten (110, 130, 150, 170, 190, 210) Strahlern an dem ersten (105a) und zweiten (105b) Reflektorpanel mit einer ersten Beabstandung zum Bereitstellen einer ersten Signalstrahlbreite; und
    Einstellen der Position mindestens eines der Panels (105a, 105b) durch Bewegen der Panels in einer Richtung allgemein parallel zu der Ebene des Reflektors zu einer zweiten Konfiguration mit verzahnten ersten (120, 140, 160, 180, 200, 220) und zweiten (110, 130, 150, 170, 190, 210) Strahlern mit einer zweiten verschiedenen Beabstandung zum Bereitstellen einer zweiten Signalstrahlbreite.
  11. Verfahren nach Anspruch 10, wobei alle Strahler (110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220) in der ersten Konfiguration auf eine Mittellinie P0 des Reflektors ausgerichtet sind und wobei abwechselnde Strahler in der zweiten Konfiguration von der Mittellinie des Reflektors in entgegengesetzten Richtungen versetzt sind.
  12. Verfahren nach Anspruch 11, wobei die Strahlbreite in der ersten Konfiguration größer ist als in der zweiten Konfiguration.
  13. Verfahren nach Anspruch 10, wobei die Strahlbreite der Antenne (100) zwischen etwa 100 Grad und 47 Grad variabel ist.
  14. Verfahren nach Anspruch 10, wobei das erste (105a) und zweite (105b) Reflektorpanel zusammen eine rechteckige Reflektorstruktur mit einer Breite bilden, die zwischen etwa 120 mm und 200 mm variabel ist.
EP08847232A 2007-11-09 2008-11-06 Variabel gestaffelter reflektor für eine azimutstrahlbreitengesteuerte antenne Not-in-force EP2218119B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US263507P 2007-11-09 2007-11-09
PCT/US2008/082697 WO2009061966A1 (en) 2007-11-09 2008-11-06 Variable stagger reflector for azimuth beam width controlled antenna

Publications (3)

Publication Number Publication Date
EP2218119A1 EP2218119A1 (de) 2010-08-18
EP2218119A4 EP2218119A4 (de) 2011-05-25
EP2218119B1 true EP2218119B1 (de) 2012-07-25

Family

ID=40626178

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08847232A Not-in-force EP2218119B1 (de) 2007-11-09 2008-11-06 Variabel gestaffelter reflektor für eine azimutstrahlbreitengesteuerte antenne

Country Status (2)

Country Link
EP (1) EP2218119B1 (de)
WO (1) WO2009061966A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039019B4 (de) 2010-08-06 2014-08-07 Technische Universität Dresden Antikörper gegen 6-sulfo LacNAc positive humane dendritische Zellen und deren Verwendung
CN206673107U (zh) * 2017-04-07 2017-11-24 深圳市景程信息科技有限公司 利用微带线馈电的三模宽带阶梯型缝隙天线
CN206806508U (zh) * 2017-04-07 2017-12-26 深圳市景程信息科技有限公司 可重构的双极化宽频天线
DE202021003761U1 (de) 2020-03-24 2022-03-25 Commscope Technologies Llc Basisstationsantennen mit einem aktiven Antennenmodul und zugehörige Vorrichtungen
US11611143B2 (en) 2020-03-24 2023-03-21 Commscope Technologies Llc Base station antenna with high performance active antenna system (AAS) integrated therein
CN113748572B (zh) 2020-03-24 2022-11-01 康普技术有限责任公司 具有成角度馈电柄的辐射元件和包括该辐射元件的基站天线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122102A (ja) * 1990-09-12 1992-04-22 Omron Corp 平面アンテナ
KR100270888B1 (ko) 1998-04-08 2000-12-01 윤종용 노운 굿 다이 제조장치
US6323823B1 (en) * 2000-07-17 2001-11-27 Metawave Communications Corporation Base station clustered adaptive antenna array
US7173572B2 (en) * 2002-02-28 2007-02-06 Andrew Corporation Dual band, dual pole, 90 degree azimuth BW, variable downtilt antenna
US7038621B2 (en) * 2003-08-06 2006-05-02 Kathrein-Werke Kg Antenna arrangement with adjustable radiation pattern and method of operation
US7145515B1 (en) * 2004-01-02 2006-12-05 Duk-Yong Kim Antenna beam controlling system for cellular communication
FR2896705B1 (fr) 2006-01-30 2008-12-05 Commissariat Energie Atomique Procede de separation en milieu aqueux d'au moins un element actinide d'elements lanthanides par complexation et filtration membranaire
US7864130B2 (en) 2006-03-03 2011-01-04 Powerwave Technologies, Inc. Broadband single vertical polarized base station antenna
WO2008124027A1 (en) * 2007-04-06 2008-10-16 Powerwave Technologies, Inc. Dual stagger off settable azimuth beam width controlled antenna for wireless network
EP2165388B1 (de) 2007-06-13 2018-01-17 Intel Corporation Strahlbreitengesteuerte antenne mit dreifach-staffelungs-versetzbarem azimut für ein drahtloses netz

Also Published As

Publication number Publication date
EP2218119A1 (de) 2010-08-18
EP2218119A4 (de) 2011-05-25
WO2009061966A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US8643559B2 (en) Triple stagger offsetable azimuth beam width controlled antenna for wireless network
EP2135325B1 (de) Antenne mit veränderlichem azimutstrahlbreite für ein drahtloses netz
US8269687B2 (en) Dual band antenna arrangement
US9000998B2 (en) Tri-column adjustable azimuth beam width antenna for wireless network
EP2218119B1 (de) Variabel gestaffelter reflektor für eine azimutstrahlbreitengesteuerte antenne
US6943732B2 (en) Two-dimensional antenna array
US20170062952A1 (en) Dual band, multi column antenna array for wireless network
US9711853B2 (en) Broadband low-beam-coupling dual-beam phased array
AU683696B2 (en) Multipatch antenna
US20200411961A1 (en) Twin-beam base station antennas having thinned arrays with triangular sub-arrays
US8330668B2 (en) Dual stagger off settable azimuth beam width controlled antenna for wireless network
US20090021437A1 (en) Center panel movable three-column array antenna for wireless network
CA2506198C (en) Two-dimensional antenna array
US7710344B2 (en) Single pole vertically polarized variable azimuth beamwidth antenna for wireless network
EP2564469B1 (de) Planare gruppenantenne mit reduzierter strahlbreite
TW201803213A (zh) 多波束相位天線結構及其控制方法
US20240258715A1 (en) High performance folded dipole for multiband antennas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LINDMARK, BJOERN

Inventor name: DENG, GANG, YI

Inventor name: HUNTON, MATTHEW, J.

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20110427

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 35/00 20060101AFI20090604BHEP

Ipc: H01Q 3/01 20060101ALI20110419BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 3/01 20060101ALI20120125BHEP

Ipc: H01L 35/00 20060101AFI20120125BHEP

Ipc: H01Q 21/08 20060101ALI20120125BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 568016

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008017468

Country of ref document: DE

Effective date: 20120920

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 568016

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121025

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121126

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121105

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20130426

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121025

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008017468

Country of ref document: DE

Effective date: 20130426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008017468

Country of ref document: DE

Owner name: INTEL CORPORATION (A DELAWARE CORPORATION), SA, US

Free format text: FORMER OWNER: POWERWAVE TECHNOLOGIES, INC., SANTA ANA, CALIF., US

Effective date: 20150220

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: INTEL CORPORATION, US

Effective date: 20150323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161028

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20161111

Year of fee payment: 9

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171107

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200922

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008017468

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601