EP2200947A2 - Materiau a proprietes photocatalytiques - Google Patents

Materiau a proprietes photocatalytiques

Info

Publication number
EP2200947A2
EP2200947A2 EP08835279A EP08835279A EP2200947A2 EP 2200947 A2 EP2200947 A2 EP 2200947A2 EP 08835279 A EP08835279 A EP 08835279A EP 08835279 A EP08835279 A EP 08835279A EP 2200947 A2 EP2200947 A2 EP 2200947A2
Authority
EP
European Patent Office
Prior art keywords
coating
material according
titanium oxide
substrate
wavelength converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08835279A
Other languages
German (de)
English (en)
Inventor
Sophie Besson
François-Julien VERMERSCH
Arnaud Huignard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2200947A2 publication Critical patent/EP2200947A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7756Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing neodynium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77744Aluminosilicates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • Y10T428/315Surface modified glass [e.g., tempered, strengthened, etc.]

Definitions

  • the present invention relates to the field of photocatalytic materials, in particular materials having photocatalytic activity when subjected to low energy radiation.
  • Titanium oxide in particular when it is crystallized in anatase form, has photocatalytic properties: excited by radiation whose wavelength is less than or equal to 380 nm, thus located in the ultraviolet range, it has the particularity of catalyzing radical oxidation reactions. Under the effect of the radiation, an electron-hole pair is created, which contributes to degrade the organic compounds possibly present on the surface of the titanium oxide.
  • a material comprising a coating based on photocatalytic titanium oxide thus has self-cleaning properties, antibacterial, or purification of liquid or gaseous effluents polluted particularly appreciable. Such materials are known from, for example, EP-A-0 850 204.
  • a disadvantage of titanium oxide is that its photocatalytic activity is mainly triggered by high energy radiation, in this case ultraviolet radiation.
  • This disadvantage is not detrimental when the material is exposed to solar radiation, since the latter comprises components in the ultraviolet, but becomes when the material is located in a place little subject to ultraviolet radiation (part of a dwelling, passenger compartment, tunnel ).
  • Most of the solar ultraviolet radiation is absorbed by the glazing, while artificial light sources emit only slightly in the ultraviolet. It is therefore desirable to develop photocatalytic layers whose activity can be high for wavelengths located in the visible range, or even the infrared. Solutions have been proposed to this problem, which consist in particular in doping the crystal lattice of titanium oxide with various atoms (for example nitrogen) in order to modify the gap between the valence and conduction bands of titanium oxide. Such solutions are for example described in application WO2005 / 102953.
  • the object of the invention is to propose a titanium oxide-based photocatalytic material whose photocatalytic activity can be high even in the absence of ultraviolet radiation while being free of the above-mentioned drawbacks.
  • the subject of the invention is a material comprising a substrate coated on at least a part of at least one of its faces with a coating comprising photocatalytic titanium oxide.
  • the material is characterized in that said substrate and / or a coating disposed between said substrate and said coating comprising photocatalytic titanium oxide comprises at least one compound capable of converting radiation whose wavelength is within the range visible or infrared radiation whose wavelength is in the field of ultraviolet.
  • the compound capable of converting a radiation whose wavelength is comprised in the visible or infrared range into a radiation whose wavelength is in the ultraviolet range will be called a "length converter compound". wave "throughout the text as well as in the claims. It is understood that this term can not be interpreted otherwise. In particular, it can not be interpreted as covering compounds that are not capable of emitting ultraviolet radiation, or as covering compounds capable of converting radiation included in the ultraviolet range into radiation included in the visible range or infrared.
  • the ultraviolet range comprises wavelengths of between 100 and 400 nm.
  • the visible domain includes wavelengths between 400 and 800 nm.
  • the infrared range includes wavelengths between 800 nm and 12 micrometers.
  • the fluorescent compounds have the particularity, when they are subjected to radiation of a given wavelength, to re-emit a second radiation of higher wavelength, and therefore of lower energy than that of the incident radiation.
  • such a compound is present under the photocatalytic coating based on titanium oxide, either within an underlayer or within the substrate itself.
  • the operating principle of the invention can be schematically presented in the following manner: the titanium oxide being transparent to most of the visible or infrared radiation, this radiation passes through the photocatalytic coating, then is partially absorbed by the converter compound of wavelengths. This compound then isotropically re-emits ultraviolet radiation, part of which is absorbed by the titanium oxide. Titanium oxide, excited by this ultraviolet radiation, then fully plays its role of photocatalyst. It is important that the wavelength converting compound is disposed under the coating photocatalytic and not above because the organic soils must be in contact with the titanium oxide.
  • the substrate is preferably of glass (in particular of silico-soda-lime or borosilicate glass), ceramic, glass-ceramic or polymeric material. It is advantageously flat or curved.
  • the substrate is preferably at least partially transparent.
  • the substrate may also be fibrous, for example a mineral wool mat (glass wool or rock wool), a felt or fiberglass or silica cloth.
  • the substrate is of polymeric material, it is preferably polycarbonate, polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyethylene, polypropylene.
  • the titanium oxide is preferably at least partially crystallized in the anatase form because it is the most active crystalline form.
  • the rutile form, alone or mixed with the anatase form, is also interesting.
  • the coating comprising titanium oxide may consist of titanium oxide: it may be for example a coating obtained by processes using organometallic precursors of titanium oxide in liquid, solid form. or gaseous, as sol-gel type processes or CVD (chemical vapor deposition, possibly assisted by plasma, preferably at atmospheric pressure). It may also be coatings obtained by physical vapor deposition (PVD) techniques such as cathode sputtering, in particular assisted by magnetic field (magnetron process), or evaporation. Techniques for deposition of titanium oxide by magnetron method are for example described in application WO 02/24971.
  • sublayers promoting the epitaxial growth of TiO 2 anatase in particular BaTiO 3 or SrTiO 3 , may be previously deposited, as described in application WO 2005/040058.
  • the coating comprising titanium oxide may also comprise particles of titanium oxide dispersed in an organic binder and / or mineral, especially a mineral binder obtained by sol-gel route.
  • the particles are preferably of nanometric size (nanoparticles), in particular of average diameter between 0.5 and 100 nm, especially between 1 and 80 nm. They generally consist of clusters of grains or elemental crystallites of diameter between 0.5 and 10 nm.
  • the particles are preferably at least partly crystallized in the anatase form.
  • the binder is preferably inorganic so as not to be degraded by the photocatalytic activity of the titanium oxide.
  • the coating comprising titanium oxide is advantageously obtained by sol-gel, for example by laminar coating, spin-coating, or cell-coating, solutions comprising a precursor of the binder (usually an organometallic compound) and particles. of titanium oxide.
  • the binder is preferably a silica binder (SiO 2 ), which can be easily obtained sol-gel from silicon alkoxides (for example TEOS, tetraethoxysilane).
  • This binder especially the silica binder, can advantageously be mesoporous, in the sense that it contains generally ordered pores whose size is between 2 and 50 nm.
  • a binder is for example known from the application WO 03/087002, and makes it possible to obtain particularly high photocatalytic activities.
  • the thickness of the photocatalytic coating is preferably greater than or equal to 5 nm, especially 10 nm and / or less than or equal to 1 micrometer, especially 50 nm when the coating is made of titanium oxide. Large thicknesses lead indeed to a reflection of the high visible radiation and therefore undesirable in some applications where the optical appearance is important (especially glazing). It is possible to insert under the photocatalytic coating at least one layer whose function is to reduce the luminous reflection of the material and / or to make the coloration in reflection more neutral. It may in particular be the layers or stacks of layers described in the application WO 02/24971. The photocatalytic coating may also itself be included in an antireflection stack, as described in application WO 2005/110937.
  • the coating comprising the titanium oxide is preferably in contact with the air, therefore the only layer deposited on the substrate or the last layer of the stack.
  • the coating comprising the titanium oxide may, however, itself be coated with a very thin, preferably non-covering, layer of an oxide comprising silicon, in particular and preferably based on silica (SiO 2 ). This layer makes it possible to confer photo hydrophilic properties. induced prolonged even in the dark and / or improve the abrasion resistance of the stack. Its thickness is preferably less than or equal to 5 nm.
  • the application WO 2005/040056 describes such overlays.
  • the coating comprising the titanium oxide may also be coated with a very thin metal layer, preferably non-covering (for example in the form of micro-grid), in particular based on metal chosen from silver, platinum, palladium.
  • This electroconductive layer makes it possible to avoid recombinations of the electron-hole pairs produced during the activation of the titanium oxide.
  • the or each wavelength converting compound preferably comprises at least one rare earth ion or a transition metal inserted in a mineral matrix. Mineral matrices have higher durability than organic matrices. Rare earth ions (lanthanides) are preferred because they have the highest conversion efficiencies.
  • the ions of a rare earth or of a transition metal are preferably chosen among the ions Yb 3+ , Tb 3+ , Tm 3+ , Eu 3+ , Eu 2+ , Er 3+ , Pr 3+ , Nd 3+ , Dy 3+ , Ho 3+ , Ti 2+ , Ni 2+ , Mo 3+ , Os 4+ , Re 4+ , Mn 2+ , Cr 3+ . It may be preferable to use two different ions, one absorbing visible or infrared radiation, the other retransmitting ultraviolet radiation after energy transfer.
  • the pairs formed by the Yb 3+ ion (which absorbs for wavelengths close to 980 nm) with Tb 3+ or Tm 3+ or Er 3+ make it possible, for example, to obtain high luminescence yields.
  • the pair of ions Pr 3 VNd 3+ is also interesting. In the case where an ion of a single nature is used, the Pr 3+ or Er 3+ ions are preferred. It may be advantageous in applications of the glazing type to choose wavelength converting compounds which absorb infrared radiation and not visible radiation, which is the case, for example, of compounds containing a Yb 3+ / Tb 3+ couple. or Tm 3+ or Er 3+ described previously.
  • the mineral matrix can be amorphous (it can for example be a glass), or crystallized.
  • the advantage of choosing an amorphous matrix is that it can contain large amounts of ions.
  • the crystallized matrices are however preferred because the environment of the ions (and therefore their emission / absorption spectrum) is perfectly controlled.
  • the amorphous matrices generally contain more structural defects, which can lead to the creation of intermediate energy levels and thus facilitate deexcitations by non-radiative (for example by phonon emission) or radiative transfer, but low energy transfers.
  • the active ion In the case where the matrix is crystallized, the active ion must be able to be inserted into the crystal lattice in place of an ion of the matrix.
  • matrices containing yttrium (Y), lanthanum (La), gadolinium (Gd) or lutetium (Lu) atoms are preferred because it has been observed that rare earth ions can easily be substitute for these ions within a crystal lattice.
  • the phonon frequency of the crystalline matrix is preferably at least four times lower than the emission frequency so as to avoid non-radiative transfer deexcitations.
  • the preferred crystalline matrices are chosen from halides (in particular fluorides, but also bromides or chlorides) or oxides.
  • the inorganic matrix is selected for example (non-limiting manner) from NaYF 4, Y 2 O 3, Y 2 SiO 5, LaPO 4, TeO 2, or Y 3 Al 5 O 2 (YAG).
  • the quantity of doping ions is generally between 0.01 and 50% (in moles relative to the ions to which they substitute), more particularly between 5 and 50% when it is about Yb 3+ and between 0, 01 and 10% for the other doping ions mentioned above.
  • wavelength-converting compounds proved to be particularly effective: doped TeO 2 Pr 3 VNd 3+ , doped Y 2 SiO 5 Pr 3+ , Y 3 Al 5 O 12 doped Er 3+ , CaF 2 doped Yb 3 VTb 3+ , Y 2 O 3 doped Yb 3 VTb 3+ , NaYF 4 doped Yb 3 VTb 3+ .
  • doped is meant that the matrix comprises the ions mentioned, without necessarily prejudging the amount of ions present, which can be relatively high, as indicated above.
  • the wavelength converter compound may be included in the substrate.
  • the latter can thus be a glass-ceramic comprising crystals and an amorphous binder, at least a portion of said crystals constituting wavelength converting compounds.
  • Vitro-ceramics based on SiO 2 / Al 2 O 3 / CaF 2 in which crystals of CaF 2 are formed, which crystals include in their crystal structure Yb 3+ and Tb 3+ ions are thus capable of absorbing radiation whose wavelength is 980 nm to re-emit radiation centered on the 380 nm wavelength.
  • the wavelength converting compound may alternatively or cumulatively be included in a coating disposed between the substrate and the coating comprising photocatalytic titanium oxide. This coating is called in the following text "coating wavelength converter”.
  • the wavelength converting compound can be included in the coating in the form of particles dispersed in a mineral or organic binder. These particles are preferably less than 500 nm in size, in particular 300 nm and even 200 nm or 100 nm so as not to generate spurious diffusions likely to affect the transparency of the material. Diffusion can also be avoided by choosing a binder whose refractive index is equal to that of the particles.
  • the amount of particles of the energy converting compound within the binder is at least 1% (by weight) and preferably greater than 5%.
  • the thickness of the coating is preferably at least equal to 100 nm, preferably greater than or equal to 500 nm and even greater than or equal to 1 ⁇ m and / or less than or equal to 10 ⁇ m, or even 5 ⁇ m.
  • the organic binder can be, for example, acrylic, epoxy, cellulosic or silicone type, the latter type being preferred because it is less sensitive to possible degradation by photocatalytic titanium oxide.
  • a barrier layer may be disposed between the wavelength converting coating and the photocatalytic coating to prevent degradation of the first coating by the second.
  • the inorganic binder can be, for example, a binder made of a material chosen from silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ) or a mixture thereof.
  • This binder may in particular be obtained by a decomposition method of organometallic precursors or halides, for example a sol-gel type process, or plasma-assisted chemical vapor deposition at atmospheric pressure (APPECVD).
  • the binder can also be an enamel or a glaze, obtained by melting a glass frit deposited for example by screen printing.
  • the wavelength converter coating may also consist of a wavelength converter compound. Unlike the mode of previously described embodiment, in which active particles were dispersed in a binder, the wavelength converting compound forms in itself the coating.
  • CVD chemical vapor deposition
  • sol-gel type techniques sol-gel type techniques
  • physical vapor deposition techniques by example by sputtering, in particular assisted by magnetic field (magnetron process), or by evaporation.
  • the coating when the wavelength converting compound comprises an amorphous mineral matrix, may also be an enamel or a glaze obtained by melting a glass frit deposited for example by screen printing.
  • An underlayer or a stack of sub-layers reflecting at least a portion of the ultraviolet radiation is advantageously disposed between the wavelength converting coating and the substrate.
  • the ultraviolet radiation emitted by the wavelength converting compound is indeed isotropic, so that a portion of this radiation is emitted towards the substrate and not towards the photocatalytic coating. Thanks to the underlayer reflecting at least a portion of the ultraviolet radiation, this portion of the emitted radiation is reflected to the photocatalytic coating, thereby increasing the activity of the latter.
  • Stacks of sub-layers containing at least three layers having alternately low and high refractive indexes are preferred because they exhibit very low reflection in the visible range, but strong reflection in the ultraviolet range.
  • a preferred embodiment consists of a transparent silica-soda-lime glass substrate coated with a silica layer obtained by a sol-gel type process comprising particle-length wavelength converting compounds, this layer being itself even surmounted by a silica layer also obtained by a sol-gel type process and comprising crystallized titanium oxide particles in anatase form.
  • the substrate contains alkaline ions (especially in the case of silico-soda-lime glass, which contains about 13% by weight of sodium oxide), these are likely to migrate, especially under the effect of temperature, in the layers that surmount the substrate. Since this migration is likely to cause a decrease in the luminescence efficiency of the wavelength converting compound, it is preferable to have an underlayer acting as a barrier to migration between the substrate and the wavelength converting coating. alkaline ions.
  • Such an underlayer which is otherwise known, may be, for example, SiO 2 , Al 2 O 3 , SiO x Cy, Si 3 N 4 , SnO 2 etc.
  • the invention also relates to different products incorporating the material according to the invention.
  • the material according to the invention can be incorporated into a glazing, for example single, multiple and / or laminated glazing, curved and / or tempered glazing, clear or tinted glazing.
  • the material according to the invention can also be incorporated in a display screen, an aquarium, a greenhouse, indoor furniture, tiles, a mirror.
  • the substrate may be a mirror comprising a transparent glass sheet on one side of which is deposited a layer of silver coated with a lacquer. The resulting mirror thus has self-cleaning and anti-fogging properties that are particularly appreciable, for example in a bathroom.
  • the material according to the invention can also be used in eyewear.
  • the material may also be used as tiling, in particular glass, for example as described in application FR-A-2868799.
  • the material according to the invention in particular when the substrate is fibrous, may be incorporated into a filtration and purification structure for liquid or gaseous effluents.
  • the material according to the invention can be used in a dwelling or vehicle interior to degrade organic soil deposited on its surface.
  • the invention will be better understood in the light of the embodiments described below, which illustrate the present invention without limiting it.
  • the wavelength converting compound is included in an enamel coating.
  • Micrometric particles of yttrium oxide (Y 2 O 3 ) doped with 18% (in mol) of ytterbium Yb 3+ and 2% of terbium Tb 3+ are dispersed in a glass frit with a low melting point ( 600 0 C) based on silica and bismuth oxide.
  • the paste obtained is deposited on a silico-soda-lime glass substrate by screen printing, then annealed for 6 minutes at a temperature of 680 ° C. After cooling, a layer of titanium oxide of 50 nm thick is deposited with known manner by chemical vapor deposition (CVD), using titanium tetraisopropylate as a precursor.
  • CVD chemical vapor deposition
  • the photocatalysis process is activated by excitation by a lamp emitting mainly between 900 and 1000 nm. Under these radiations, the wavelength converting material emits at 380 nm, wavelength which triggers the photocatalytic effect.
  • This example illustrates an embodiment in which the wavelength converting compound is included in a coating by being dispersed in a sol-gel silica binder.
  • sol-gel silica sol To 4 ml of a colloidal solution of nanoparticles of NaYF 4 : 20 mol% Yb 3+ , 2 mol% Er 3+ is added 1 ml of sol-gel silica sol.
  • the diameter of the nanoparticles is 30 nm ⁇ 10 nm, the mass concentration of the colloidal solution in nanoparticles being 10%.
  • the solution containing nanoparticles of NaYF 4 : 20% Yb, 2 mol% Er 3+ and silica sol-gel is then deposited by spin-coating on a sand-calcium-silicate glass substrate previously cleaned with the aid of a aqueous solution containing 2% by weight of RBS (surfactant).
  • the coating obtained is then dried at 100 ° C. for 1 hour, then annealed at 450 ° C. for 3 hours.
  • the thickness of the coating is 450 nm, its light transmission being greater than 80% over the entire visible spectrum.
  • a photocatalytic coating based on TiO 2 nanoparticles dispersed in a mesoporous silica sol-gel binder is deposited.
  • the photocatalysis process is activated by excitation by a lamp emitting mainly between 900 and 1000 nm. Under this radiation, the wavelength converting material emits at 380 nm, a wavelength that triggers the photocatalytic effect.
  • the wavelength converting compound is included in the substrate itself.
  • the substrate is a vitroceramic obtained by ceramizing a mother glass of molar composition SiO 2 (47%) / Al 2 O 3 (19%) / CaF 2 (28%) TbF 3 (2%) / YbF 3 (3%). It may be thought that the wavelength converting compound consists of a CaF 2 matrix doped with Tb 3+ and Yb 3+ ions.
  • TiO 2 coating On this glass-ceramic substrate is deposited a TiO 2 coating with a thickness of 50 nm. This coating is deposited by chemical vapor deposition (CVD) using titanium tetraisopropoxide (TiPt) at 500 ° C.
  • CVD chemical vapor deposition
  • TiPt titanium tetraisopropoxide
  • the photocatalysis process is activated by excitation by a lamp emitting mainly between 900 and 1000 nm. Under these radiations, the wavelength converting material emits at 380 nm, wavelength which triggers the photocatalytic effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

L'invention a pour objet un matériau comprenant un substrat revêtu sur au moins une partie d'au moins une de ses faces d'un revêtement comprenant de l'oxyde de titane photocatalytique, caractérisé en ce que ledit substrat et/ou un revêtement disposé entre ledit substrat et ledit revêtement comprenant de l'oxyde de titane photocatalytique comprend au moins un composé susceptible de convertir un rayonnement dont la longueur d'onde est comprise dans le domaine du visible ou de l'infrarouge en un rayonnement dont la longueur d'onde est comprise dans le domaine de l'ultraviolet.

Description

MATERIAU A PROPRIETES PHOTOCATALYTIQUES
La présente invention concerne le domaine des matériaux photocatalytiques, en particulier des matériaux présentant une activité photocatalytique lorsqu'ils sont soumis à des rayonnements de faible énergie.
L'oxyde de titane, en particulier lorsqu'il est cristallisé sous forme anatase, présente des propriétés photocatalytiques : excité par un rayonnement dont la longueur d'onde est inférieure ou égale à 380 nm, donc situé dans le domaine de l'ultraviolet, il a la particularité de catalyser des réactions d'oxydation radicalaire. Sous l'effet du rayonnement, une paire électron-trou est créée, qui contribue à dégrader les composés organiques éventuellement présents sur la surface de l'oxyde de titane. Un matériau comprenant un revêtement à base d'oxyde de titane photocatalytique présente ainsi des propriétés autonettoyantes, antibactériennes, ou encore d'épuration d'effluents liquides ou gazeux pollués particulièrement appréciables. De tels matériaux sont connus par exemple de la demande EP-A-O 850 204.
Un inconvénient de l'oxyde de titane est que son activité photocatalytique est principalement déclenchée par un rayonnement de forte énergie, en l'occurrence un rayonnement ultraviolet. Cet inconvénient n'est pas préjudiciable lorsque le matériau est exposé au rayonnement solaire, car ce dernier comprend des composantes dans l'ultraviolet, mais le devient lorsque le matériau est situé dans un lieu peu soumis aux rayonnements ultraviolets (pièce d'une habitation, habitacle de véhicule, tunnel...). La majeure partie du rayonnement ultraviolet solaire est en effet absorbée par les vitrages, tandis que les sources lumineuses artificielles n'émettent que faiblement dans l'ultraviolet. Il est donc souhaitable de développer des couches photocatalytiques dont l'activité peut être élevée pour des longueurs d'onde situées dans le domaine du visible, voire de l'infrarouge. Des solutions ont été proposées à ce problème, qui consistent en particulier à doper le réseau cristallin de l'oxyde de titane par divers atomes (par exemple l'azote) dans le but de modifier le gap entre les bandes de valence et de conduction de l'oxyde de titane. De telles solutions sont par exemple décrites dans la demande WO2005/102953.
Ces solutions ne sont toutefois pas dénuées d'inconvénients, car le matériau ainsi dopé présente une absorption dans le domaine du visible, donc une certaine coloration. Le dopage crée en outre des défauts dans la structure de l'oxyde de titane qui entraînent une diminution du rendement quantique. L'invention a pour but de proposer un matériau photocatalytique à base d'oxyde de titane dont l'activité photocatalytique peut être élevée même en l'absence de rayonnements ultraviolets tout en étant dépourvu des inconvénients susmentionnés.
A cet effet, l'invention a pour objet un matériau comprenant un substrat revêtu sur au moins une partie d'au moins une de ses faces d'un revêtement comprenant de l'oxyde de titane photocatalytique. Le matériau est caractérisé en ce que ledit substrat et/ou un revêtement disposé entre ledit substrat et ledit revêtement comprenant de l'oxyde de titane photocatalytique comprend au moins un composé susceptible de convertir un rayonnement dont la longueur d'onde est comprise dans le domaine du visible ou de l'infrarouge en un rayonnement dont la longueur d'onde est comprise dans le domaine de l'ultraviolet.
Le composé susceptible de convertir un rayonnement dont la longueur d'onde est comprise dans le domaine du visible ou de l'infrarouge en un rayonnement dont la longueur d'onde est comprise dans le domaine de l'ultraviolet sera appelé « composé convertisseur de longueurs d'onde » dans toute la suite du texte ainsi que dans les revendications. Il est entendu que ce terme ne peut pas être interprété autrement. Il ne peut en particulier pas être interprété comme couvrant des composés non susceptibles d'émettre des rayonnements ultraviolets, ou comme couvrant des composés capables de convertir un rayonnement compris dans le domaine de l'ultraviolet en un rayonnement compris dans le domaine du visible ou de l'infrarouge.
Au sens de la présente invention, le domaine de l'ultraviolet comprend les longueurs d'onde comprises entre 100 et 400 nm. Le domaine du visible comprend les longueurs d'onde comprises entre 400 et 800 nm. Le domaine de l'infrarouge comprend les longueurs d'onde comprises entre 800 nm et 12 micromètres.
Les composés fluorescents ont la particularité, lorsqu'ils sont soumis à un rayonnement d'une longueur d'onde donnée, de réémettre un second rayonnement de longueur d'onde plus élevée, donc d'énergie plus faible que celle du rayonnement incident.
Il a toutefois été récemment découvert des composés capables d'émettre un rayonnement d'énergie plus élevée que le rayonnement incident. Ce phénomène, qui s'explique par des absorptions successives de plusieurs photons par un même ion ou par des absorptions par des ions différents suivies de transferts d'énergie entre lesdits ions, est extrêmement rare. Il ne se produit en effet que pour quelques ions, en particulier des ions de terres rares ou de métaux de transition. En outre, le rendement de luminescence associé est généralement très faible car la probabilité d'occurrence du phénomène est elle-même très faible. Parmi ces composés, certains convertissent des rayonnements infrarouges en rayonnements visibles, et trouvent des applications dans le domaine de l'imagerie, du photovoltaïsme etc. D'autres, plus rares, et qui sont appelés « composés convertisseurs de longueurs d'onde » dans le cadre de l'invention, sont capables de convertir des rayonnements visibles ou infrarouges en rayonnements ultraviolets.
Dans le matériau selon l'invention, un tel composé est présent sous le revêtement photocatalytique à base d'oxyde de titane, soit au sein d'une sous- couche, soit au sein du substrat lui-même. Le principe de fonctionnement de l'invention peut être schématiquement présenté de la manière suivante : l'oxyde de titane étant transparent à la majeure partie du rayonnement visible ou infrarouge, ce rayonnement traverse le revêtement photocatalytique, puis est en partie absorbé par le composé convertisseur de longueurs d'onde. Ce composé réémet alors de manière isotrope un rayonnement ultraviolet, dont une partie est absorbée par l'oxyde de titane. L'oxyde de titane, excité par ce rayonnement ultraviolet, joue alors pleinement son rôle de photocatalyseur. Il est important que le composé convertisseur de longueurs d'onde soit disposé sous le revêtement photocatalytique et non au-dessus car les salissures organiques doivent être en contact avec l'oxyde de titane.
Le substrat est de préférence en verre (notamment en verre silico-sodo- calcique ou borosilicate), en céramique, en vitrocéramique ou en matière polymérique. Il est avantageusement plan ou bombé. Le substrat est de préférence au moins partiellement transparent. Le substrat peut également être fibreux, par exemple un matelas de laine minérale (laine de verre ou de roche), un feutre ou tissu de fibres de verre ou de silice. Lorsque le substrat est en matière polymérique, il est de préférence en polycarbonate, polyméthacrylate de méthyle (PMMA), polychlorure de vinyle (PVC), polyéthylène, polypropylène.
L'oxyde de titane est de préférence au moins partiellement cristallisé sous la forme anatase, car il s'agit de la forme cristalline la plus active. La forme rutile, seule ou en mélange avec la forme anatase, est également intéressante.
Le revêtement comprenant de l'oxyde de titane peut être constitué d'oxyde de titane : il peut s'agir par exemple d'un revêtement obtenu par des procédés mettant en œuvre des précurseurs organométalliques de l'oxyde de titane sous forme liquide, solide ou gazeuse, comme les procédés de type sol-gel ou CVD (dépôt chimique en phase vapeur, éventuellement assisté par plasma, de préférence sous pression atmosphérique). Il peut également s'agir de revêtements obtenus par des techniques de dépôt physique en phase vapeur (PVD) comme la pulvérisation cathodique, notamment assistée par champ magnétique (procédé magnétron), ou l'évaporation. Des techniques de dépôt de l'oxyde de titane par procédé magnétron sont par exemple décrites dans la demande WO 02/24971. Dans le cas d'un dépôt par procédé magnétron, des sous-couches favorisant la croissance épitaxiale de TiO2 anatase, notamment BaTiO3 ou SrTiO3, peuvent être préalablement déposées, tel que décrit dans la demande WO 2005/040058.
Le revêtement comprenant de l'oxyde de titane peut aussi comprendre des particules d'oxyde de titane dispersées dans un liant organique et/ou minéral, notamment un liant minéral obtenu par voie sol-gel. Les particules sont de préférence de taille nanométrique (nanoparticules), notamment de diamètre moyen compris entre 0,5 et 100 nm, notamment entre 1 et 80 nm. Elles sont généralement constituées d'amas de grains ou de cristallites élémentaires de diamètre compris entre 0,5 et 10 nm. Les particules sont de préférence au moins en partie cristallisées sous la forme anatase. Le liant est de préférence minéral de manière à ne pas être dégradé par l'activité photocatalytique de l'oxyde de titane. Il est de préférence à base de silice (SiO2), alumine (AI2O3), zircone (ZrO2), ou de l'un quelconque de leurs mélanges. Le revêtement comprenant de l'oxyde de titane est avantageusement obtenu par voie sol-gel, par exemple par enduction laminaire, spin-coating, ou encore cell-coating, de solutions comprenant un précurseur du liant (généralement un composé organométallique) et des particules d'oxyde de titane. Le liant est de préférence un liant de silice (SiO2), qui peut être aisément obtenu par voie sol-gel à partir d'alcoolates de silicium (par exemple le TEOS, tétraéthoxysilane). Ce liant, notamment le liant de silice, peut avantageusement être mésoporeux, au sens où il contient des pores généralement ordonnés dont la taille est comprise entre 2 et 50 nm. Un tel liant est par exemple connu de la demande WO 03/087002, et permet d'obtenir des activités photocatalytiques particulièrement élevées.
L'épaisseur du revêtement photocatalytique est de préférence supérieure ou égale à 5 nm, notamment 10 nm et/ou inférieure ou égale à 1 micromètre, notamment 50 nm lorsque le revêtement est constitué d'oxyde de titane. De fortes épaisseurs conduisent en effet à une réflexion du rayonnement visible élevée et par conséquent indésirable dans certaines applications où l'aspect optique est important (en particulier les vitrages). Il est possible d'insérer sous le revêtement photocatalytique au moins une couche dont la fonction est de diminuer la réflexion lumineuse du matériau et/ou de rendre la coloration en réflexion plus neutre. Il peut en particulier s'agir des couches ou empilements de couches décrits dans la demande WO 02/24971. Le revêtement photocatalytique peut également être lui-même compris dans un empilement anti-reflets, comme décrit dans la demande WO 2005/110937.
Le revêtement comprenant l'oxyde de titane est de préférence en contact avec l'air, donc la seule couche déposée sur le substrat ou la dernière couche de l'empilement. Le revêtement comprenant l'oxyde de titane peut toutefois être lui- même revêtu d'une très fine couche, de préférence non-couvrante, d'un oxyde comprenant du silicium, notamment et de manière préférée à base de silice (SiO2). Cette couche permet de conférer des propriétés d'hydrophilie photo- induites prolongées même dans l'obscurité et/ou d'améliorer la résistance à l'abrasion de l'empilement. Son épaisseur est de préférence inférieure ou égale à 5 nm. La demande WO 2005/040056 décrit de telles surcouches.
Le revêtement comprenant l'oxyde de titane peut aussi être revêtu d'une très fine couche métallique, de préférence non-couvrante (par exemple sous forme de micro-grille), notamment à base de métal choisi parmi l'argent, le platine, le palladium. Cette couche électro-conductrice permet d'éviter les recombinaisons des paires électron-trou produites lors de l'activation de l'oxyde de titane. Le ou chaque composé convertisseur de longueurs d'onde comprend de préférence au moins un ion d'une terre rare ou d'un métal de transition inséré dans une matrice minérale. Les matrices minérales présentent en effet des durabilités plus élevées que les matrices organiques. Les ions de terres rares (lanthanides) sont préférés car ils présentent les rendements de conversion les plus élevés.
Les ions d'une terre rare ou d'un métal de transition sont de préférence choisis parmi les ions Yb3+, Tb3+, Tm3+, Eu3+, Eu2+, Er3+, Pr3+, Nd3+, Dy3+, Ho3+, Ti2+, Ni2+, Mo3+, Os4+, Re4+, Mn2+, Cr3+. Il peut être préférable d'utiliser deux ions différents, l'un absorbant le rayonnement visible ou infrarouge, l'autre réémettant un rayonnement ultraviolet après transfert d'énergie. Les couples formés par l'ion Yb3+ (qui absorbe pour des longueurs d'onde proches de 980 nm) avec Tb3+ ou Tm3+ ou Er3+ permettent par exemple d'obtenir de forts rendements de luminescence. Le couple d'ions Pr3VNd3+ est également intéressant. Dans le cas où un ion d'une seule nature est utilisé, les ions Pr3+ ou Er3+ sont préférés. II peut être avantageux dans des applications du type vitrage de choisir de composés convertisseurs de longueur d'ondes qui absorbent le rayonnement infrarouge et non le rayonnement visible, ce qui est le cas par exemple de composés contenant un couple Yb3+ / Tb3+ ou Tm3+ ou Er3+ décrit précédemment.
La matrice minérale peut être amorphe (il peut par exemple s'agir d'un verre), ou cristallisée. L'avantage de choisir une matrice amorphe est qu'elle peut contenir de grandes quantités d'ions. Les matrices cristallisées sont toutefois préférées car l'environnement des ions (et donc leur spectre d'émission / absorption) est parfaitement contrôlé. En outre, les matrices amorphes contiennent généralement plus de défauts structuraux, ce qui peut entraîner la création de niveaux énergétiques intermédiaires et faciliter ainsi les désexcitations par transferts non radiatifs (par exemple par émission de phonons) ou par transferts radiatifs, mais de faible énergie. Dans le cas où la matrice est cristallisée, l'ion actif doit pouvoir s'insérer dans le réseau cristallin à la place d'un ion de la matrice. De ce fait, des matrices contenant des atomes d'yttrium (Y), de lanthane (La), de gadolinium (Gd) ou de lutétium (Lu) sont préférées, car il a été observé que les ions de terres rares pouvaient aisément se substituer à ces ions au sein d'un réseau cristallin. La fréquence de phonons de la matrice cristalline est de préférence au moins quatre fois inférieure à la fréquence d'émission de manière à éviter les désexcitations par transferts non radiatifs. De ce fait, les matrices cristallines préférées sont choisies parmi les halogénures (notamment les fluorures, mais aussi les bromures ou les chlorures) ou les oxydes. La matrice minérale est par exemple choisie (de manière non-limitative) parmi NaYF4, Y2O3, Y2SiO5, LaPO4, TeO2, ou Y3AI5Oi2 (YAG). La quantité d'ions dopants est généralement comprise entre 0,01 et 50% (en moles par rapport aux ions auxquels ils se substituent), plus particulièrement entre 5 et 50% lorsqu'il s'agit de Yb3+ et entre 0,01 et 10% pour les autres ions dopants précédemment cités.
Les composés convertisseurs de longueurs d'onde suivants se sont révélés particulièrement efficaces : TeO2 dopé Pr3VNd3+, Y2SiO5 dopé Pr3+, Y3AI5O12 dopé Er3+, CaF2 dopé Yb3VTb3+, Y2O3 dopé Yb3VTb3+, NaYF4 dopé Yb3VTb3+. Par « dopé », on entend que la matrice comprend les ions cités, sans nécessairement préjuger de la quantité d'ions présents, qui peut être relativement élevée, comme indiqué précédemment.
Le composé convertisseur de longueurs d'onde peut être compris dans le substrat. Ce dernier peut ainsi être une vitrocéramique comprenant des cristaux et un liant amorphe, au moins une partie desdits cristaux constituant des composés convertisseurs de longueurs d'onde. Des vitrocéramiques à base de SiO2/AI2O3/CaF2 dans lesquelles des cristaux de CaF2 se forment, lesquels cristaux insèrent dans leur structure cristalline des ions Yb3+ et Tb3+ sont ainsi capables d'absorber un rayonnement dont la longueur d'onde est de 980 nm pour réémettre un rayonnement centré sur la longueur d'onde de 380 nm.
Le composé convertisseur de longueurs d'onde peut alternativement ou cumulativement être compris dans un revêtement disposé entre le substrat et le revêtement comprenant de l'oxyde de titane photocatalytique. Ce revêtement est appelé dans la suite du texte « revêtement convertisseur de longueurs d'onde ».
Le composé convertisseur de longueurs d'onde peut être compris dans le revêtement sous forme de particules dispersées dans un liant minéral ou organique. Ces particules sont de préférence de taille inférieure à 500 nm, notamment 300 nm et même 200 nm ou 100 nm de manière à ne pas générer de diffusions parasites susceptibles d'affecter la transparence du matériau. La diffusion peut également être évitée en choisissant un liant dont l'indice de réfraction est égal à celui des particules. La quantité de particules du composé convertisseur d'énergie au sein du liant est au moins égale à 1 % (en masse) et de préférence supérieure à 5%. L'épaisseur du revêtement est de préférence au moins égale à 100 nm, de préférence supérieure ou égale à 500 nm et même supérieure ou égale à 1 μm et/ou inférieure ou égale à 10 μm, voire 5 μm.
Le liant organique peut être par exemple du type acrylique, époxy, cellulosique, ou encore silicone, ce dernier type étant préféré car moins sensible à une éventuelle dégradation par l'oxyde de titane photocatalytique. Si nécessaire, une couche barrière peut être disposée entre le revêtement convertisseur de longueurs d'onde et le revêtement photocatalytique pour éviter toute dégradation du premier revêtement par le second.
Le liant minéral peut être par exemple un liant en un matériau choisi parmi la silice (SiO2), l'alumine (AI2O3), la zircone (ZrO2) ou un de leurs mélanges. Ce liant peut notamment être obtenu par un procédé de décomposition de précurseurs organométalliques ou halogénures, par exemple procédé du type sol- gel, ou dépôt chimique en phase vapeur assisté par plasma et à pression atmosphérique (APPECVD). Le liant peut également être un émail ou une glaçure, obtenu par fusion d'une fritte de verre déposée par exemple par sérigraphie.
Le revêtement convertisseur de longueurs d'onde peut aussi être constitué d'un composé convertisseur de longueurs d'onde. Contrairement au mode de réalisation précédemment décrit, dans lequel des particules actives étaient dispersées dans un liant, le composé convertisseur de longueurs d'onde forme en lui-même le revêtement.
Diverses techniques sont possibles pour déposer ce revêtement : des techniques de dépôt chimique en phase vapeur (CVD), en particulier assistées par plasma et à pression atmosphérique, des techniques du type sol-gel, ou des techniques de dépôt physique en phase vapeur, par exemple par pulvérisation cathodique, notamment assistée par champ magnétique (procédé magnétron), ou par évaporation. Le revêtement, lorsque le composé convertisseur de longueurs d'onde comprend une matrice minérale amorphe, peut aussi être un émail ou une glaçure obtenu par fusion d'une fritte de verre déposée par exemple par sérigraphie.
Une sous-couche ou un empilement de sous-couches réfléchissant au moins une partie du rayonnement ultraviolet est avantageusement disposée entre le revêtement convertisseur de longueurs d'onde et le substrat. Le rayonnement ultraviolet émis par le composé convertisseur de longueurs d'onde est en effet isotrope, si bien qu'une partie de ce rayonnement est émis en direction du substrat et non en direction du revêtement photocatalytique. Grâce à la sous- couche réfléchissant au moins une partie du rayonnement ultraviolet, cette partie du rayonnement émis est réfléchie vers le revêtement photocatalytique, permettant ainsi d'augmenter l'activité de ce dernier. Des empilements de sous- couches contenant au moins trois couches ayant alternativement des indices de réfraction bas et élevés sont préférés car ils présentent une réflexion très faible dans le domaine du visible, mais une réflexion forte dans le domaine de l'ultraviolet.
Un mode de réalisation préféré consiste en un substrat en verre silico- sodo-calcique transparent revêtu par une couche de silice obtenue par un procédé du type sol-gel comprenant des composés convertisseurs de longueurs d'onde sous forme particulaire, cette couche étant elle-même surmontée par une couche de silice obtenue également par un procédé du type sol-gel et comprenant des particules d'oxyde de titane cristallisé sous forme anatase.
Lorsque le substrat contient des ions alcalins (cas notamment du verre silico-sodo-calcique, lequel contient environ 13% en poids d'oxyde de sodium), ces derniers sont susceptibles de migrer, notamment sous l'effet de la température, au sein des couches qui surmontent le substrat. Cette migration étant susceptible d'occasionner une diminution du rendement de luminescence du composé convertisseur de longueurs d'onde, il est préférable de disposer entre le substrat et le revêtement convertisseur de longueurs d'onde une sous-couche faisant office de barrière à la migration des ions alcalins. Une telle sous-couche, connue par ailleurs, peut être par exemple en SiO2, AI2O3, SiOxCy, Si3N4, SnO2 etc.
L'invention a également pour objet différents produits incorporant le matériau selon l'invention. Lorsque le substrat est transparent, notamment lorsqu'il est en verre silico-sodo-calcique, le matériau selon l'invention peut être incorporé dans un vitrage, par exemple vitrage simple, multiple et/ou feuilleté, vitrage bombé et/ou trempé, vitrage clair ou teinté. Le matériau selon l'invention peut également être incorporé dans un écran de visualisation, un aquarium, une serre, du mobilier d'intérieur, du carrelage, un miroir. Dans ce dernier cas, le substrat peut être un miroir comprenant une feuille de verre transparent sur une face duquel est déposée une couche d'argent revêtue par une laque. Le miroir obtenu présente ainsi des propriétés autonettoyantes et antibuée particulièrement appréciables par exemple dans une salle de bain. Le matériau selon l'invention peut également être utilisé en lunetterie. Le matériau peut encore être utilisé comme carrelage, notamment en verre, par exemple tel que décrit dans la demande FR-A-2868799.
Le matériau selon l'invention, en particulier lorsque le substrat est fibreux, peut être incorporé dans une structure de filtration et d'épuration d'effluents liquides ou gazeux.
Compte tenu de ses propriétés d'activation par le rayonnement visible ou infrarouge, le matériau selon l'invention peut être utilisé au sein d'une habitation ou d'un habitacle de véhicule pour dégrader les salissures organiques déposées sur sa surface. L'invention sera mieux comprise à la lumière des exemples de réalisation exposés ci-après, qui illustrent la présente invention sans toutefois la limiter. EXEMPLE 1
Dans cet exemple, le composé convertisseur de longueurs d'onde est compris dans un revêtement de type émail. Des particules micrométriques d'oxyde d'yttrium (Y2O3) dopé avec 18% (en mole) d'ytterbium Yb3+ et 2% de terbium Tb3+ sont dispersées dans une fritte de verre à bas point de fusion (6000C) à base de silice et d'oxyde de bismuth. La pâte obtenue est déposée sur un substrat de verre silico-sodo-calcique par sérigraphie, puis recuite pendant 6 minutes à une température de 6800C. Après refroidissement, une couche d'oxyde de titane de 50 nm d'épaisseur est déposée de manière connue par dépôt chimique en phase vapeur (CVD), en utilisant le tétraisopropylate de titane comme précurseur.
Le processus de photocatalyse est activé par excitation par une lampe émettant majoritairement entre 900 et 1000 nm. Sous ces rayonnements, le matériau convertisseur de longueurs d'onde émet à 380 nm, longueur d'onde qui déclenche l'effet photocatalytique.
EXEMPLE 2
Cet exemple illustre un mode de réalisation dans lequel le composé convertisseur de longueurs d'onde est compris dans un revêtement en étant dispersé dans un liant de silice sol-gel.
A 4 ml d'une solution colloïdale de nanoparticules de NaYF4 : 20 mol% Yb3+, 2 mol% Er3+ est ajouté 1 ml d'un sol de silice sol-gel. Le diamètre des nanoparticules est de 30 nm ± 10 nm, la concentration massique de la solution colloïdale en nanoparticules étant de 10%. Le sol de silice sol-gel est obtenu par hydrolyse (durée = 4 heures) d'un mélange de tétraéthoxysilane (TEOS), d'éthanol absolu et d'une solution aqueuse de pH = 2,5 acidifiée à l'aide d'acide chlorhydrique, les rapports molaires respectifs des différents constituants du mélange étant 1 :4 :4. La solution contenant les nanoparticules de NaYF4 : 20% Yb, 2 mol% Er3+ et de silice sol-gel est ensuite déposée par spin-coating sur un substrat de verre silico-sodo-calcique préalablement nettoyé à l'aide d'une solution aqueuse contenant 2% massique de RBS (tensioactif). Le revêtement obtenu est ensuite séché à 1000C pendant 1 heure, puis recuit à 4500C pendant 3 heures. L'épaisseur du revêtement est de 450 nm, sa transmission lumineuse étant supérieure à 80% sur l'ensemble du spectre visible. A l'issue de ces étapes, il est procédé au dépôt d'un revêtement photocatalytique à base de nanoparticules de TiO2 dispersées dans un liant mésoporeux de silice sol-gel. Pour ce faire, on mélange dans une première étape 22,3 ml de tétraéthoxysilane, 22,1 ml d'éthanol absolu, 9 ml de HCI dans de l'eau déminéralisée jusqu'à ce que la solution devienne limpide (pH de 1 ,25), puis on place la solution obtenue à 60°C pendant 1 h. Dans une deuxième étape, on ajoute au sol obtenu précédemment un agent structurant organique, sous la forme d'une solution d'un copolymère blocs polyoxyéthylène-polyoxypropylène commercialisé par la société BASF sous la marque enregistrée Pluronic PE6800 (masse molaire 8000), en proportions telles que le rapport molaire PE6800/Si = 0,01. Ceci est obtenu en mélangeant 3,78 g de PE6800, 50 ml d'éthanol et 25 ml du sol. Des nanoparticules de TiO2 cristallisées sous la forme anatase et de taille 50 nm environ sont ajoutées à la composition liquide ainsi obtenue avant le dépôt sur échantillon, dans une quantité telle que le rapport atomique Ti/Si est égal à 1 . Le dépôt se fait par spin-coating. Les échantillons subissent ensuite un traitement thermique à 250 0C pendant 2 heures afin de consolider le revêtement mésoporeux et d'évacuer le solvant et l'agent structurant organique. Les pores du revêtement ainsi formé ont une taille de 4-5 nm.
Le processus de photocatalyse est activé par excitation par une lampe émettant majoritairement entre 900 et 1000 nm. Sous ce rayonnement, le matériau convertisseur de longueurs d'onde émet à 380 nm, longueur d'onde qui déclenche l'effet photocatalytique.
EXEMPLE 3
Dans cet exemple, le composé convertisseur de longueurs d'onde est compris dans le substrat lui-même.
Le substrat est une vitrocéramique obtenue par céramisation d'un verre mère de composition molaire SiO2 (47%) / AI2O3 (19%) / CaF2 (28%) TbF3 (2%) / YbF3 (3%). On peut penser que le composé convertisseur de longueurs d'onde est constitué par une matrice de CaF2 dopée par des ions Tb3+ et Yb3+.
Sur ce substrat vitrocéramique est déposé un revêtement de TiO2 d'épaisseur égale à 50 nm. Ce revêtement est déposé par dépôt chimique en phase vapeur (CVD) à l'aide de tétraisopropylate de titane (TiPt) à 5000C.
Le processus de photocatalyse est activé par excitation par une lampe émettant majoritairement entre 900 et 1000 nm. Sous ces rayonnements, le matériau convertisseur de longueurs d'onde émet à 380 nm, longueur d'onde qui déclenche l'effet photocatalytique.

Claims

REVENDICATIONS
1. Matériau comprenant un substrat revêtu sur au moins une partie d'au moins une de ses faces d'un revêtement comprenant de l'oxyde de titane photocatalytique, caractérisé en ce que ledit substrat et/ou un revêtement disposé entre ledit substrat et ledit revêtement comprenant de l'oxyde de titane photocatalytique comprend au moins un composé susceptible de convertir un rayonnement dont la longueur d'onde est comprise dans le domaine du visible ou de l'infrarouge en un rayonnement dont la longueur d'onde est comprise dans le domaine de l'ultraviolet (composé convertisseur de longueurs d'onde).
2. Matériau selon la revendication 1 , tel que le substrat est en verre, céramique, vitrocéramique ou en matière polymérique.
3. Matériau selon l'une des revendications précédentes, tel que l'oxyde de titane est au moins partiellement cristallisé sous la forme anatase.
4. Matériau selon l'une des revendications précédentes, tel que le revêtement comprenant de l'oxyde de titane est constitué d'oxyde de titane.
5. Matériau selon l'une des revendications 1 à 3, tel que le revêtement comprenant de l'oxyde de titane comprend des particules d'oxyde de titane dispersées dans un liant organique et/ou minéral, notamment un liant minéral obtenu par voie sol-gel.
6. Matériau selon l'une des revendications précédentes, tel que le au moins un composé convertisseur de longueurs d'onde comprend au moins un ion d'une terre rare ou d'un métal de transition inséré dans une matrice minérale.
7. Matériau selon la revendication précédente, tel que le au moins un ion d'une terre rare ou d'un métal de transition est choisi parmi les ions Yb3+, Tb3+, Tm3+, Eu3+, Eu2+, Er3+, Pr3+, Nd3+, Dy3+, Ho3+, Ti2+, Ni2+, Mo3+, Os4+, Re4+, Mn2+, Cr3+.
8. Matériau selon l'une des revendications 6 ou 7, tel que la matrice minérale est cristallisée.
9. Matériau selon l'une des revendications 6 à 8, tel que la matrice minérale est un halogénure, notamment un fluorure, ou un oxyde.
10. Matériau selon la revendication précédente, tel que la matrice minérale est choisie parmi NaYF4, Y2O3, Y2SiO5, LaPO4, TeO2 ou Y3AI5Oi2.
11. Matériau selon l'une des revendications 6 à 10, tel que le composé convertisseur de longueurs d'onde est choisi parmi TeO2 dopé Pr3VNd3+, Y2SiO5 dopé Pr3+, Y3AI5O12 dopé Er3+, CaF2 dopé Yb3VTb3+, Y2O3 dopé Yb3VTb3+, NaYF4 dopé Yb3VTb3+
12. Matériau selon l'une des revendications précédentes, tel que le composé convertisseur de longueurs d'onde est compris dans le substrat.
13. Matériau selon la revendication précédente, tel que le substrat est une vitrocéramique comprenant des cristaux et un liant amorphe, au moins une partie desdits cristaux constituant des composés convertisseurs de longueurs d'onde.
14. Matériau selon l'une des revendications 1 à 11 , tel que le composé convertisseur de longueurs d'onde est compris dans un revêtement (revêtement convertisseur de longueurs d'onde).
15. Matériau selon la revendication précédente, tel que le composé convertisseur de longueurs d'onde est compris dans le revêtement sous forme de particules dispersées dans un liant minéral ou organique.
16. Matériau selon la revendication 14, tel que le revêtement convertisseur de longueurs d'onde est constitué d'un composé convertisseur de longueurs d'onde.
17. Matériau selon l'une des revendications 14 à 16, tel qu'une sous-couche ou un empilement de sous-couches réfléchissant au moins une partie du rayonnement ultraviolet est disposée entre le revêtement convertisseur de longueurs d'onde et le substrat.
18. Vitrage simple, multiple et/ou feuilleté, vitrage bombé et/ou trempé, vitrage clair ou teinté, écran de visualisation, aquarium, serre, mobilier d'intérieur, carrelage, miroir, article de lunetterie, incorporant le matériau selon l'une des revendications précédentes.
EP08835279A 2007-09-10 2008-09-09 Materiau a proprietes photocatalytiques Withdrawn EP2200947A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0757467A FR2920762B1 (fr) 2007-09-10 2007-09-10 Materiau a proprietes photocatalytiques
PCT/FR2008/051602 WO2009044066A2 (fr) 2007-09-10 2008-09-09 Materiau a proprietes photocatalytiques

Publications (1)

Publication Number Publication Date
EP2200947A2 true EP2200947A2 (fr) 2010-06-30

Family

ID=39294114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08835279A Withdrawn EP2200947A2 (fr) 2007-09-10 2008-09-09 Materiau a proprietes photocatalytiques

Country Status (7)

Country Link
US (1) US20100304059A1 (fr)
EP (1) EP2200947A2 (fr)
JP (1) JP2010538808A (fr)
KR (1) KR20100065322A (fr)
CN (1) CN101801868B (fr)
FR (1) FR2920762B1 (fr)
WO (1) WO2009044066A2 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126208A (ko) * 2009-05-21 2010-12-01 조지아 테크 리서치 코포레이션 항미생물성 자외선 역변환 조성물
US20130000719A1 (en) * 2010-03-15 2013-01-03 Ocean's King Lighting Science & Technology Co. Ltd Organic solar cell and method for manufacturing the same
CN102064209B (zh) * 2010-09-21 2013-04-10 南京工业大学 一种转光增强型光催化复合材料及其制备方法
CN102849946B (zh) * 2011-07-01 2015-05-06 何森 自体发射类地紫外光谱玻璃陶瓷材料抗菌的新方法
DE102011118057A1 (de) * 2011-11-09 2013-05-16 Giesecke & Devrient Gmbh Spektraler Lumineszenzstandard für den Nahinfrarotbereich
IN2013DE00202A (fr) * 2013-01-28 2015-06-05 Rosario Cosmetics Pvt Ltd
NL2011242C2 (nl) * 2013-07-31 2015-02-03 Valk Systemen Bvvd Flexibele folie, samenstel van een constructie en een dergelijke folie en werkwijze voor het vervaardigen van een dergelijke folie.
US9663400B2 (en) * 2013-11-08 2017-05-30 Corning Incorporated Scratch-resistant liquid based coatings for glass
US9465273B2 (en) * 2013-11-20 2016-10-11 The Board Of Trustees Of The Leland Stanford Junior University Photonic micro-structured vacuum-ultraviolet radiation source based on solid-state frequency conversion
CN103951219B (zh) * 2014-05-08 2016-02-10 宁波大学 稀土离子掺杂的K2LaI5微晶玻璃及其制备方法
CN104190455B (zh) * 2014-09-26 2016-09-07 福州大学 光催化剂磷酸镧及其制备方法和应用
CN104923210A (zh) * 2015-05-21 2015-09-23 南京理工大学 基于玻璃纤维滤膜载体的Pr3+:Y2SiO5/TiO2光催化复合薄膜、制备方法及其应用
JP6914927B2 (ja) * 2015-10-21 2021-08-04 トロノックス エルエルシー NOxを低減するコーティング及び当該コーティングによってNOxを低減するための方法
CN106495474B (zh) * 2016-10-11 2019-04-23 杭州电子科技大学 一种可用于温度探测的Eu2+/Eu3+双掺杂玻璃陶瓷复合材料及其制备方法和应用
BR112019023126A2 (pt) * 2017-05-04 2020-05-26 Agc Glass Europe Substrato revestido
CN108107490A (zh) * 2018-01-04 2018-06-01 中国电子科技集团公司第二十六研究所 一种钇铝石榴石晶体镜片及其加工方法
US11007507B2 (en) 2018-05-07 2021-05-18 GM Global Technology Operations LLC Self-cleaning film system
CN114351142A (zh) * 2021-11-26 2022-04-15 格力电器(武汉)有限公司 抗菌搪瓷内胆的制备方法、抗菌搪瓷内胆及含其的热水器
CN114315156B (zh) * 2021-11-30 2023-12-29 无锡极电光能科技有限公司 钙钛矿量子点釉料、光伏玻璃及其制备方法和光伏组件
US20230276775A1 (en) * 2022-03-04 2023-09-07 Bee Cups, LLC Bee cup

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550256A (en) * 1983-10-17 1985-10-29 At&T Bell Laboratories Visual display system utilizing high luminosity single crystal garnet material
DE69613772D1 (de) * 1995-07-28 2001-08-16 Nihon Yamamura Glass Co Ltd Dünner Kaliumniobatfilm, Verfahren zu dessen Herstellung sowie seine Anwendung in einer optischen Vorrichtung
US6154311A (en) * 1998-04-20 2000-11-28 Simtek Hardcoatings, Inc. UV reflective photocatalytic dielectric combiner having indices of refraction greater than 2.0
JP4454476B2 (ja) * 1998-11-20 2010-04-21 旭化成ケミカルズ株式会社 色素増感光触媒、及びそれを用いた光触媒組成物
JP2000189809A (ja) * 1999-01-01 2000-07-11 Toto Ltd 光触媒機能を有する部材
JP3959213B2 (ja) * 1999-06-30 2007-08-15 住友化学株式会社 酸化チタン、それを用いてなる光触媒体及び光触媒体コーティング剤
WO2001071055A1 (fr) * 2000-03-22 2001-09-27 Nippon Sheet Glass Co., Ltd. Substrat presentant un film photocatalytique et son procede de production
JP2003210998A (ja) * 2002-01-25 2003-07-29 Japan Science & Technology Corp 光触媒システム
TWI226357B (en) * 2002-05-06 2005-01-11 Osram Opto Semiconductors Gmbh Wavelength-converting reaction-resin, its production method, light-radiating optical component and light-radiating semiconductor-body
CN1184002C (zh) * 2002-05-21 2005-01-12 中国科学院化学研究所 具有可见光催化活性的二氧化钛催化剂的制备
FR2868770B1 (fr) * 2004-04-09 2006-06-02 Saint Gobain Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique modifiee pour pouvoir absorber des photons du visible
JP4762508B2 (ja) * 2004-07-02 2011-08-31 古河電気工業株式会社 物理量検知センサ及びセンシング装置
DE102006023115A1 (de) * 2006-05-16 2007-11-22 Schott Ag Backlightsystem mit IR-Absorptionseigenschaften

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009044066A3 *

Also Published As

Publication number Publication date
US20100304059A1 (en) 2010-12-02
FR2920762B1 (fr) 2009-10-23
FR2920762A1 (fr) 2009-03-13
CN101801868A (zh) 2010-08-11
JP2010538808A (ja) 2010-12-16
CN101801868B (zh) 2012-10-10
WO2009044066A3 (fr) 2009-05-28
KR20100065322A (ko) 2010-06-16
WO2009044066A2 (fr) 2009-04-09

Similar Documents

Publication Publication Date Title
EP2200947A2 (fr) Materiau a proprietes photocatalytiques
EP1390563B1 (fr) Substrat a revetement photocatalytique
EP1497234B1 (fr) Substrat a revetement auto-nettoyant
EP1132351B1 (fr) Substrat à revetement photocatalytique
EP1748965B1 (fr) Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique modifiee pour pouvoir absorber des photons du visible
EP1678093A2 (fr) Substrat, notamment substrat verrier, portant une couche a propriete photocatalytique revetue d une couche mince protectrice
EP1497236A1 (fr) Substrat a revetement auto-nettoyant
EP2720986B1 (fr) Procede de fabrication d'un vitrage comprenant une couche poreuse
EP1087916A1 (fr) Substrat a revetement photocatalytique
EP1737801A2 (fr) Substrat photocatalytique actif sous lumiere visible
WO2007045805A2 (fr) Materiau anti-salissures et son procede d'obtention
EP2523919B1 (fr) Materiau photocatalytique et vitrage ou cellule photovoltaique comprenant ce materiau
WO2011006905A1 (fr) Materiau photocatalytique
WO2006108985A1 (fr) Substrat microbicide
EP3997191A1 (fr) Structures luminescentes de vitrage de serres
EP2675938A1 (fr) Procede d'obtention d'un materiau photocatalytique
EP2227652B1 (fr) Dispositif pour batiment comprenant un materiau de conversion de lumiere, par exemple de l'ultra-violet a la lumiere visible
FR2892408A1 (fr) Utilisation d'un substrat anti-salissures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100412

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VERMERSCH, FRANCOIS-JULIEN

Inventor name: BESSON, SOPHIE

Inventor name: HUIGNARD, ARNAUD

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VERMERSCH, FRANCOIS-JULIEN

Inventor name: HUIGNARD, ARNAUD

Inventor name: BESSON, SOPHIE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110311

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170401