EP2190218B1 - Système d'ensemble de filtres avec atténuation de bande affaiblie spécifique pour un dispositif auditif - Google Patents

Système d'ensemble de filtres avec atténuation de bande affaiblie spécifique pour un dispositif auditif Download PDF

Info

Publication number
EP2190218B1
EP2190218B1 EP09175081.0A EP09175081A EP2190218B1 EP 2190218 B1 EP2190218 B1 EP 2190218B1 EP 09175081 A EP09175081 A EP 09175081A EP 2190218 B1 EP2190218 B1 EP 2190218B1
Authority
EP
European Patent Office
Prior art keywords
filter bank
attenuation
frequency
synthesis
dependent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09175081.0A
Other languages
German (de)
English (en)
Other versions
EP2190218A3 (fr
EP2190218A2 (fr
Inventor
Daniel Alfsmann
Heinz Goeckler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Siemens Medical Instruments Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Medical Instruments Pte Ltd filed Critical Siemens Medical Instruments Pte Ltd
Publication of EP2190218A2 publication Critical patent/EP2190218A2/fr
Publication of EP2190218A3 publication Critical patent/EP2190218A3/fr
Application granted granted Critical
Publication of EP2190218B1 publication Critical patent/EP2190218B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing

Definitions

  • the present invention relates to a filter bank system for a hearing apparatus having an analysis filter bank for decomposing an input signal into subband signals, processing means for manipulating at least one of the subband signals and a synthesis filter bank for composing the manipulated subband signal with at least one other of the subband signals.
  • the present invention relates to a hearing aid with such a filter bank system.
  • hearing device is understood to mean here any sound-emitting device that can be worn in or on the ear or on the head, in particular a hearing device, a headset, headphones and the like.
  • Hearing aids are portable hearing aids that are used to care for the hearing impaired.
  • different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (IDO), e.g. Concha hearing aids or canal hearing aids (ITE, CIC).
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external receiver
  • IDO in-the-ear hearing aids
  • ITE canal hearing aids
  • the hearing aids listed by way of example are worn on the outer ear or in the ear canal.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.
  • Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil.
  • the output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized.
  • the amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for carrying behind the ear, one or more microphones 2 for receiving the sound from the environment are installed.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5
  • Sound signals which are recorded by one or more microphones of a hearing device or another hearing device are usually decomposed into subband signals for further processing.
  • an analysis-synthesis filter bank system This has one or more frequency-selective digital analysis filter banks (AFB), with which the sound signal is decomposed into K> 1 subband signals.
  • AFB frequency-selective digital analysis filter banks
  • Subband-specific signal manipulation then takes place, in particular amplification or attenuation of the subband signals.
  • a re-synthesis of the manipulated subband signals is performed by means of one or more digital synthesis filter banks (SFB).
  • the filter bank system is usually oversampling and has an oversampling factor U ⁇ 1.
  • High-quality filter banks in hearing aids are subject to certain requirements. For example, in the bottommost bands, a channel width of at least about 250 Hz is needed. Otherwise, the band gap should be based on the Bark scale. A finer resolution, for example in the broader bands according to the Bark scale, is the application but not contrary. Furthermore, a channel number of at least 22 is desirable. Disturbance due to aliasing and imaging should be below about 40-60 dB, depending on the application (hearing impairment of the patient). Due to the intensive subband processing (especially the high gain required to compensate for hearing loss) in hearing aids, conventional methods for erasing aliasing and imaging are not effective. The filter banks are therefore fundamentally "non-critical" to scan.
  • the group delay (in each case for AFB and SFB) should be well below 5 ms and the group delay distortions should not exceed a certain range. Especially for high frequencies, the group delay is to be kept as low as possible, which represents a significant limiting factor for the filter bank.
  • the AFB and the SFB should be designed such that the signal / interference distance at the output of the filter bank system with arbitrary manipulation (amplification / attenuation) of the subband signals changed only within predeterminable limits. This also includes the case of the complete independence of the signal / interference distance at the output of the filter bank system from the manipulation of the subband signals.
  • the AFB and the SFB should be designed so that for a at the output of the filter bank system in response to the manipulation of the subband signals permissible variation of the signal / interference distance of the circuit complexity (corresponds to the filter orders) and / or the group delay (total delay ) of the filter bank system is reduced over the prior art.
  • the document 698 33 749 T2 describes a filter bank analysis structure for a hearing aid in which a buffer is connected to a multiplication unit so that the buffer values can be multiplied by a window function representing a prototype low-pass filter of a fast Fourier transform procedure.
  • a window function representing a prototype low-pass filter of a fast Fourier transform procedure.
  • filter banks AFB and SFB have been designed the same (in particular, equal magnitude specification of minimum phase AFB and maximum phase SFB).
  • the oversampling factor was not considered in detail.
  • the signal manipulation was not considered in the system specification of the filter bank system. This resulted in large fluctuations in the signal quality (signal / interference distance) as a function of the respective manipulation (amplification) of the subband signals.
  • the object of the present invention is thus to propose a filter bank system with reduced computational effort, with which nevertheless a high signal quality, in particular a specific signal / interference distance, can be achieved.
  • AZA analysis filter bank
  • SFB synthesis filter bank
  • all the attenuation components are configured on the basis of the signal / interference distance at the output of the filter bank system.
  • the expert is given a simple criterion in the design of the filter bank systems at hand.
  • the analysis baseline attenuation fraction depends on the downsampling factor of the analysis filter bank.
  • the basic attenuation can be set to a minimum value.
  • a masking effect of a human ear can be taken into account in the frequency-dependent analysis-attenuation component and / or synthesis-attenuation component. This makes use of the fact that, in the case of sound perception, two parts located close to one another in a spectrally obscure manner may be completely or partially obscured. Noise components which are obscured by other components would thus no longer have to be fully attenuated.
  • the frequency-dependent analysis-attenuation component may be periodically modified, the periodicity being determined by the oversampling factor of the analysis filter bank (AFB) and the maximum attenuation reduction by the passbands (transmission behavior) of the AFB and SFB.
  • the frequency-dependent synthesis damping component can be periodically modified, the periodicity also being determined by the upward-scaling factor or integration factor of the synthesis filter bank and the maximum attenuation reduction by the oversampling factor.
  • the periodicity of the attenuation components takes into account the fact that the artefacts also occur periodically through aliasing and imaging.
  • baseline synthesis fraction of synthesis may depend on the synthesis filter bank up-down factor.
  • the frequency-dependent first synthesis damping component depends on a gain of the processing device.
  • the attenuation of the interference components can just be chosen so that only then strongly attenuated if they are also high due to high amplification of the useful signal. This, too, can generally or temporarily reduce the filter effort.
  • the periodicity is determined by the oversampling factor of the synthesis filter bank (SFB) and the maximum attenuation reduction by the transmission range (transmission behavior) of the SFB.
  • FIG. 2 a filter bank system is shown schematically, as it is used for example in a device.
  • An input signal e eg, speech signal
  • AFB analysis filter bank
  • M1, M2, M3,..., M32 of the individual signals is followed by a subband-specific manipulation M1, M2, M3,..., M32 of the individual signals.
  • the individual subband signals are synthesized in an adjusted with respect to the amount of frequency response to the analysis filter bank AFB synthesis filter bank SFB again to an output signal a.
  • the individual filter functions are implemented by so-called prototype filters, from which the individual filters are derived, for example, by a complex-modulating transformation kernel in the filter bank.
  • prototype filters have, for example, low-pass characteristics. In the following, only the blocking area of the prototype filter is considered.
  • the notch attenuation specification of the transfer functions of the AFB is composed of a frequency-independent basic attenuation a AFB and frequency-dependent attenuation components.
  • the blocking attenuation specification of the transfer functions of the SFB is composed of a frequency-independent basic attenuation a SFB and first and second frequency-dependent attenuation components, wherein the first frequency-dependent attenuation component additionally depends on the signal manipulation between the two filter banks.
  • U oversampling factor
  • mutual masking effects of frequency closely adjacent signal components are to be used in order to reduce the circuit complexity or the filter order and / or the total group delay of the filter bank system.
  • the deterioration of the signal / interference distance at the output of the filter bank system should be approximately the same for any manipulation (amplification / attenuation of the subband signals by aliasing contributions of the AFB or by imaging contributions of the SFB.
  • the configuration of a concrete filter bank system will now be described on the basis of FIG. 3 and 4 explained in more detail.
  • the signal / interference distance SNR is generally used at the output of the filter bank system.
  • a frequency independent attenuation a basic AFB is first determined by the desired SNR AFB.
  • This signal / interference distance SNR AFB results from aliasing in the AFB.
  • M decimation factor
  • the basic attenuation in the stopband is now supplemented by a frequency-dependent additional stop attenuation.
  • a first part 10 of the frequency-dependent attenuation component of the AFB specification results from the fact that masking effects of the human ear are utilized. This reduces the stopband attenuation near the filter passband. In the example of FIG. 3 this second part 10 is reduced by 10 dB in the vicinity of the passband and then ramps up from the eighth subband to its final value.
  • a second part 11 of the frequency-dependent damping component of the AFB specification results from the fact that the interference components generated in the AFB by aliasing are evaluated differently in the SFB.
  • the second part 11 is periodic so that the total stopband attenuation over the frequency is periodically modified.
  • the number of periods depends on the oversampling factor U, and the depth of the allowable attenuation reduction is determined by the product of the passbands of the prototype filters in the AFB and SFB.
  • the total stop attenuation 12 results from the sum of all attenuation components including the fundamental attenuation, based on a logarithmic measure (decibel).
  • a logarithmic measure decibel
  • FIG. 3 the entire frequency-dependent stopband attenuation 12 is shown. Their absolute level results from the basic attenuation a AFB (in FIG. 3 not shown), which is added in the logarithmic measure to the frequency-dependent stopband attenuation.
  • the frequency-dependent stop attenuation thus increases over the 32 subbands selected here according to the ramp of the first part 10.
  • the basic attenuation a SFB of the synthesis filter bank is likewise defined by the desired signal / interference distance SNRS FB . It results from imaging in the SFB. Again, the fundamental attenuation a SFB is dependent on the interpolation factor M of the SFB, which is equal to the decimation factor M of the AFB.
  • This gain-dependent component is important because the imaging components in the SFB are also enhanced.
  • a first part 14 of the second frequency-dependent damping component of the SFB specification results, as in the AFB, in exploiting masking effects of the human ear.
  • the specification of the stop band attenuation of the transfer function of the SFB filters in the vicinity of the filter pass band is reduced exactly as in the AFB. This reduction can also contribute to a reduction of the filter order.
  • a second part 15 of the second frequency-dependent damping component of the SFB specification results from the fact that U • (M-1) spectral components (images of the SFB) of different strengths come to lie in each channel.
  • M-1 main components central region of a spectral distribution of signal and alias power
  • KM-1 differentially attenuated secondary components outer regions of the spectral distribution of signal and alias power.
  • the specification of the stopband attenuation is thus modified periodically over the frequency, the number of the periods is dependent on the oversampling factor U and the depth of the permissible attenuation reduction is determined by the passband of the prototype filter (in the SFB).
  • the total stop attenuation 16 of the prototype filter for the SFB again results from the sum of all attenuation components.
  • the fundamental attenuation a SFB determines the absolute position of the stopband attenuation by adding it for the specification of the prototype filter to the frequency-dependent attenuation parts in the logarithmic sense.
  • the frequency-dependent reduction of the stopband attenuation 12 and 16 in the optimized specifications is now used to reduce, for example, the circuit complexity and the filter order.
  • the frequency-dependent reduction of the stopband attenuation can also be used to reduce the group delay.
  • the frequency-independent basic attenuation of the filter banks can be increased if the stopband attenuation can be reduced in a frequency-dependent manner.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Networks Using Active Elements (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Claims (9)

  1. Système à batterie de filtres pour une prothèse auditive comprenant
    - une batterie (AFB) de filtres d'analyse pour la décomposition d'un signal (e) d'entrée en des signaux de bande partiels,
    - un dispositif de traitement pour la manipulation ( M1 à M32 ) d'au moins l'un des signaux de bande partiels, et
    - une batterie ( SFB ) de filtres de synthèse pour la combinaison du signal de bande partiel manipulé à au moins un autre des signaux de bande partiels,
    caractérisé en ce que
    - l'atténuation ( 12 ) de blocage d'au moins l'une des fonctions de transfert de la batterie ( AFB ) de filtres d'analyse se compose
    ○ d'une composante d'atténuation de base d'analyse configurable séparément et indépendante de la fréquence et
    ○ d'une composante ( 10 , 11 ) d'atténuation d'analyse configurable séparément et dépendante de la fréquence, et/ou
    - l'atténuation ( 16 ) de blocage d'au moins l'une des fonctions de transfert de la batterie ( SFB ) de filtres de synthèse se compose
    ○ d'une composante d'atténuation de base de synthèse configurable séparément et indépendante de la fréquence,
    ○ d'une première composante ( 13 ) d'atténuation de synthèse configurable séparément, dépendante de la fréquence et dépendante de la manipulation et
    ○ d'une deuxième composante ( 14 , 15 ) d'atténuation de synthèse configurable séparément et dépendante de la fréquence.
  2. Système à batterie de filtres suivant la revendication 1, dans lequel l'ensemble des composantes d'atténuation sont configurées au moyen de l'écart signal/bruit à la sortie du système à batterie de filtres.
  3. Système à batterie de filtres suivant la revendication 1 ou 2, dans lequel la composante d'atténuation de base d'analyse dépend du facteur de sous-échantillonnage de la batterie ( AFB ) de filtres d'analyse.
  4. Système à batterie de filtres suivant l'une des revendications précédentes, dans lequel il est tenu compte, dans la composante ( 10 , 11 ) d'atténuation d'analyse qui dépend de la fréquence et/ou dans la deuxième composante ( 14 , 15 ) d'atténuation de synthèse, d'un effet de masquage d'une ouie humaine.
  5. Système à batterie de filtres suivant l'une des revendications précédentes, dans lequel la composante ( 10 , 11 ) d'atténuation d'analyse qui dépend de la fréquence est modifiée périodiquement, la périodicité est déterminée par le facteur de sur-échantillonnage de la batterie ( AFB ) de filtres d'analyse et l'abaissement maximum d'atténuation par les bandes passantes de la batterie ( AFB ) de filtres d'analyse et de la batterie ( SFB ) de filtres de synthèse.
  6. Système à batterie de filtres suivant l'une des revendications précédentes, dans lequel la composante d'atténuation de base de synthèse dépend du facteur de sous échantillonnage de la batterie ( SFB ) de filtres de synthèse.
  7. Système à batterie de filtres suivant l'une des revendications précédentes, dans lequel la première composante ( 13 ) d'atténuation de synthèse, qui dépend de la fréquence, dépend d'une amplification du dispositif de traitement.
  8. Système à batterie de filtres suivant l'une des revendications précédentes, dans lequel la deuxième composante ( 14 , 15 ) d'atténuation de synthèse qui dépend de la fréquence, est modifiée périodiquement, la périodicité est déterminée par le facteur de sur-échantillonnage de la batterie ( SFB ) de filtres de synthèse et l'abaissement d'atténuation maximum est déterminé par la bande passante ( propriété de transmission ) du SFB.
  9. Prothèse auditive ayant un système à batterie de filtres suivant l'une des revendications précédentes.
EP09175081.0A 2008-11-21 2009-11-05 Système d'ensemble de filtres avec atténuation de bande affaiblie spécifique pour un dispositif auditif Active EP2190218B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008058496A DE102008058496B4 (de) 2008-11-21 2008-11-21 Filterbanksystem mit spezifischen Sperrdämpfungsanteilen für eine Hörvorrichtung

Publications (3)

Publication Number Publication Date
EP2190218A2 EP2190218A2 (fr) 2010-05-26
EP2190218A3 EP2190218A3 (fr) 2012-08-29
EP2190218B1 true EP2190218B1 (fr) 2014-06-04

Family

ID=41697832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09175081.0A Active EP2190218B1 (fr) 2008-11-21 2009-11-05 Système d'ensemble de filtres avec atténuation de bande affaiblie spécifique pour un dispositif auditif

Country Status (4)

Country Link
US (1) US8295518B2 (fr)
EP (1) EP2190218B1 (fr)
DE (1) DE102008058496B4 (fr)
DK (1) DK2190218T3 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349484B2 (en) * 2004-12-22 2008-03-25 Rambus Inc. Adjustable dual-band link
US8958510B1 (en) * 2010-06-10 2015-02-17 Fredric J. Harris Selectable bandwidth filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278912A (en) * 1991-06-28 1994-01-11 Resound Corporation Multiband programmable compression system
US6236731B1 (en) * 1997-04-16 2001-05-22 Dspfactory Ltd. Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids
EP0985328B1 (fr) * 1997-04-16 2006-03-08 Emma Mixed Signal C.V. Structure de banc de filtres et procede servant a filtrer et a separer un signal d'information en differentes bandes, en particulier pour des signaux sonores dans des protheses auditives
SE0202770D0 (sv) * 2002-09-18 2002-09-18 Coding Technologies Sweden Ab Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks
ATE413789T1 (de) * 2004-03-03 2008-11-15 Widex As Hörgerät mit adaptivem rückkopplungsunterdrückungssystem
CA2481631A1 (fr) * 2004-09-15 2006-03-15 Dspfactory Ltd. Methode et systeme de traitement des signaux physiologiques
CA2603246C (fr) * 2005-04-01 2012-07-17 Qualcomm Incorporated Systemes, procedes et appareil de filtrage anti-dispersion

Also Published As

Publication number Publication date
US8295518B2 (en) 2012-10-23
DE102008058496B4 (de) 2010-09-09
DE102008058496A1 (de) 2010-05-27
US20100128910A1 (en) 2010-05-27
EP2190218A3 (fr) 2012-08-29
DK2190218T3 (da) 2014-09-15
EP2190218A2 (fr) 2010-05-26

Similar Documents

Publication Publication Date Title
EP2124334B1 (fr) Système de banc de filtres pour appareils auditifs
DE102010026884B4 (de) Verfahren zum Betreiben einer Hörvorrichtung mit zweistufiger Transformation
EP2437258B1 (fr) Procédé et dispositif de compression de fréquence à décalage de fréquence sélectif
EP2645743B1 (fr) Appareil auditif pour un traitement binaural et procédé destiné à préparer un traitement binaural
EP2124335B1 (fr) Procédé d'optimisation d'un banc de filtres multi-étage ainsi que banc de filtres correspondant et dispositif auditif
DE102009036610B4 (de) Filterbankanordnung für eine Hörvorrichtung
DE102011006129B4 (de) Hörvorrichtung mit Rückkopplungsunterdrückungseinrichtung und Verfahren zum Betreiben der Hörvorrichtung
EP3926982A2 (fr) Procédé de réduction directionnelle du bruit pour un système auditif comprenant un dispositif auditif
DE102013207403B3 (de) Verfahren zur Steuerung einer Adaptionsschrittweite und Hörvorrichtung
EP2124482B1 (fr) Dispositif auditif avec filtre égaliseur dans un système de banc de filtres
EP2190218B1 (fr) Système d'ensemble de filtres avec atténuation de bande affaiblie spécifique pour un dispositif auditif
EP2584795B1 (fr) Procédé de détermination d'une ligne caractéristique de compression
EP2629550B1 (fr) Prothèse auditive avec un filtre adaptatif et procédé pour le filtrage d'un signal audio
EP1945000B1 (fr) Procédé destiné à la réduction de puissances d'interférence et système acoustique correspondant
EP2437521B1 (fr) Procédé de compression fréquentielle à l'aide d'une correction harmonique et dispositif correspondant
EP2373065B1 (fr) Dispositif auditif et procédé de production d'une caractéristique de direction omnidirectionnelle
EP3048813B1 (fr) Procédé et dispositif de suppression du bruit basée sur l'inter-corrélation de bandes secondaires
EP2622879B1 (fr) Procédé et dispositif de compression de fréquence
EP2418876A1 (fr) Procédé de réduction d'interférences et dispositif auditif
WO2012041372A1 (fr) Procédé de compression de fréquence, dispositif d'adaptation et prothèse auditive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20120726BHEP

17P Request for examination filed

Effective date: 20130225

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 671681

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009009462

Country of ref document: DE

Effective date: 20140710

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140911

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141004

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009462

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009009462

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009009462

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

26N No opposition filed

Effective date: 20150305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009462

Country of ref document: DE

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009009462

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009009462

Country of ref document: DE

Owner name: SIVANTOS PTE. LTD., SG

Free format text: FORMER OWNER: SIEMENS MEDICAL INSTRUMENTS PTE. LTD., SINGAPORE, SG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 671681

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 15

Ref country code: DK

Payment date: 20231122

Year of fee payment: 15

Ref country code: DE

Payment date: 20231120

Year of fee payment: 15

Ref country code: CH

Payment date: 20231201

Year of fee payment: 15