EP2181461A1 - Module construction and connection technology by means of metal scrap web or bent stamping parts bent from a plane - Google Patents

Module construction and connection technology by means of metal scrap web or bent stamping parts bent from a plane

Info

Publication number
EP2181461A1
EP2181461A1 EP08786502A EP08786502A EP2181461A1 EP 2181461 A1 EP2181461 A1 EP 2181461A1 EP 08786502 A EP08786502 A EP 08786502A EP 08786502 A EP08786502 A EP 08786502A EP 2181461 A1 EP2181461 A1 EP 2181461A1
Authority
EP
European Patent Office
Prior art keywords
bent
stamped
plane
module
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08786502A
Other languages
German (de)
French (fr)
Inventor
Michael Kaspar
Gernot Schimetta
Karl Weidner
Jörg ZAPF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11002935A priority Critical patent/EP2341533A3/en
Publication of EP2181461A1 publication Critical patent/EP2181461A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • H01L23/49551Cross section geometry characterised by bent parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to a module according to the preamble of the main claim and a method according to the preamble of the independent claim.
  • the object is achieved by a module according to the main claim and a method according to the independent claim for producing such a module.
  • a three-dimensionally shaped leadframe is an electrically conductive, in particular metallic, three-dimensionally shaped structure, for example in the form of a grid, which is produced for example by low-cost stamping, etching and / or bending, for example on a roll or in strips.
  • Three-dimensional shaped means bent out of a plane.
  • materials are preferably suitable Cu alloys, for example tin bronze CuSn ⁇ or SB02, that is, Cu98Fe2. Typical thicknesses are in the range of 0.2 to 0.5 mm.
  • flat leadframes are also used.
  • Leadframes and planar leadframes are leadframes.
  • a three-dimensionally shaped leadframe is used as a stamped bent part or stamped grid.
  • planar leadframes can be used in addition to the three-dimensionally shaped leadframes. In this way, electronic components can be easily contacted and / or attached.
  • a three-dimensionally shaped leadframe is electrically contacted and / or fixed with connection surfaces on the upper side of the first component and on the underside of the second component.
  • a planar leadframe is in each case electrically contacted and / or fastened to connection surfaces of the other sides of the respective component, that is to say of the first and the second component.
  • At least one further three-dimensionally shaped leadframe is optionally electrically contacted and / or attached to further electrically contacted and / or fastened components in such a way that the components are generally surrounded on upper and lower side on three-dimensionally shaped leadframes.
  • a three-dimensional stacking is particularly easy executable.
  • a planar leadframe is in each case electrically contacted and / or fastened with connection surfaces of the components which are free of three-dimensionally shaped leadframes. In this way external contacts can be generated particularly easily.
  • the leadframes used have different thicknesses and / or materials.
  • bridges generated by three-dimensionally shaped leadframes are interrupted in order to avoid short circuits. Such bridges were required prior to contacting for mechanical stabilization of the three-dimensionally shaped leadframe.
  • At least one three-dimensionally shaped leadframe is designed as a heat sink and / or positively connected via a contact surface with at least one heat sink. In this way, there are effective cooling options through heat sinks that can be generated on both sides of the module.
  • free areas between the three-dimensionally shaped leadframes, if present planar leadframes and the components are filled with electrically insulating material.
  • electrically insulating material In this material, cooling channels or heat pipes can be generated.
  • the electrically insulating material is designed to be thermally conductive, eg by filling with aluminum oxide particles.
  • electrical connections of the module are provided to the outside by leadframes free of insulating material.
  • the expansion coefficient of the electrically insulating material is adapted to the material of the leadframes.
  • the coefficient of expansion of the electrically insulating material is selected such that a stress is built up, which mechanically relieves a connection layer, in particular a solder layer, between the component and the leadframe in order to produce a high cycle stability. In this way results in a particularly high thermomechanical and electrical Zykestesttechnik.
  • an electrical contacting and / or fastening takes place, in particular by means of soldering, reactive soldering to intermetallic phases, welding, in particular laser welding, conductive and / or non-conductive bonding.
  • a generation of bumps on the side of the component and / or on the side of the leadframe prior to the electrical contacting of small pads, for example, gate contacts and / or control contacts, a generation of bumps on the side of the component and / or on the side of the leadframe.
  • bumps are, for example, solder bumps, studbumps or conductor adhesive depots.
  • solder bumps these can either be generated by the soldering process itself or already before, for example on the wafer, i. A so-called wafer level processing can be carried out. In this case, it is sufficient to bring flux to the contact point before the actual soldering process.
  • noses or contact tongues in the leadframe are connected before the electrical contacting of small connection surfaces. generated punching and / or embossing. In this way, the contact of small pads is simplified.
  • the three-dimensionally shaped leadframe is brought into its three-dimensional shape only after the electrical contacting and / or fastening of the component and / or the metal body and / or the spacer.
  • bridges generated before contacting for the mechanical stabilization of the three-dimensional leadframe are separated, for example, by means of stamping, drilling or laser cutting.
  • the separation is carried out in a simple manner.
  • the electrically insulating material is, for example, an epoxide.
  • the introduction of the epoxy or the insulating material in the free areas is particularly advantageous by means of injection molding and in particular by means of a transfer molding process. In this way, a cost-effective package, based on established single processes with particular suitability for power electronics, is generated. Only a few cost-effective process steps, such as roll-to-roll processes, are necessary.
  • a multi-stage injection molding can be carried out, wherein after first partial encapsulation leadframes are for example cut free and / or drilled. It may follow an injection molding to fill the resulting separation points and / or holes.
  • first partial encapsulation leadframes are for example cut free and / or drilled. It may follow an injection molding to fill the resulting separation points and / or holes.
  • a high insulation resistance is also provided for humid or corrosive environments, for example salt mist.
  • FIG. 1 shows a first embodiment of a module according to the invention
  • FIG. 2 shows a second embodiment of a module according to the invention
  • FIG. 3 shows a first exemplary embodiment of a method according to the invention for producing a module.
  • FIG. 1 shows a first exemplary embodiment of a module 1 according to the invention.
  • a three-dimensionally shaped lead frame 9 is here produced, for example, with the material CuSn ⁇ , this being formed by stamping and forming.
  • a first electronic component 2a namely an IGBT (Insolated Gate Bipolar Transistor), and a diode were placed and electrically contacted by soldering and fixed or fixed.
  • a second planar leadframe 11 is placed adjusted and connected to the contacts of the IGBT and the diode by the same or a further soldering process.
  • the contacting of the small gatepads 25 is facilitated by an embossed contact tongue 29 of a further planar leadframe 11 and a solder strip 27 produced in advance on the IGBT.
  • a bridge 17 has been separated by means of a laser. By Transfermolden the free spaces were filled with epoxy as an electrically insulating and / or thermally conductive material 19, wherein for later cooling cooling channels 21 were kept free.
  • the module 1 has two electronic components 2, namely a first component 2a and a second component 2b. Both components 2 each have at least one contact surface 3 arranged on an upper side and / or lower side for electrical contacting and fastening, wherein the two components 2, 2a, 2b are respectively positioned between substrates 5 such that the contact surfaces 3 each with , the connecting surfaces 3 opposite, electrical conductors 7 and Befest Trentsflä- Chen are electrically contacted and fixed on the substrates 5.
  • FIG. 1 shows, in particular, three substrates 5, namely a three-dimensionally shaped leadframe 9 with connecting surfaces 3 on the upper side of the first component 2a and on the underside of the second component 2b.
  • FIG. 1 also shows a metal body 13 for an electrical function and / or for cooling on the three-dimensionally shaped leadframe 9 in heat-conducting fashion and electrically contacted.
  • a metal body 13 may also be attached to a component 2 thermally conductive and / or electrically contacted.
  • a metal body 13 may be formed, for example, as a copper block.
  • the metal body 13 in FIG. 1 also serves as a spacer 15 which, in order to produce a high insulation resistance, spaces the three-dimensionally shaped leadframe 9 from edges of the component 2 a.
  • the three-dimensionally shaped leadframe 9 is shaped accordingly to produce a high insulation strength. To avoid short circuits, the bridge generated by the three-dimensionally shaped leadframe 9 is interrupted.
  • Reference numeral 18 denotes heat sinks.
  • the three-dimensionally shaped leadframe 9 is positively connected via its contact surfaces with heat sinks 18 on both sides.
  • the electrically insulating and thermally conductive material 19 is filled in free areas between the three-dimensionally shaped leadframe 9, the planar leadframes 11 and the components 2, wherein space for cooling channels 21 is created.
  • Reference numeral 23 denotes solder layers which produce the electrical contact and attachment.
  • FIG. 2 shows a second exemplary embodiment of a module 1 according to the invention. In this case, the construction is similar to that of FIG. 1, wherein instead of a three-dimensionally shaped leadframe 9, two three-dimensionally shaped leadframes 9 are used. The remaining leadframes are flat
  • Leadframes 11 The same reference numerals are used according to Figure 1. According to FIG. 2, four electronic components 2 are used. On the left side of Figure 2, the electrical contacting of a small connection surface 25 by means of a solder bump 27 and a contact tongue 29 is also shown. According to FIG. 2, in contrast to FIG. 1, a second three-dimensionally shaped leadframe 9 is electrically contacted and fastened such that the four components 2 are surrounded by three-dimensionally shaped leadframes 9 except for two sides on their top and bottom sides. In each case, a planar leadframe 11 with which connection surfaces 3 of the components 2 that are free from the three-dimensionally shaped leadframes are electrically contacted and fastened.
  • the second three-dimensionally shaped leadframe 9 is electrically contacted and fixed with further electronic components 2. All leadframes 9, 11 serve as substrates 5 and provide electrical conductors 7.
  • FIG. 2 shows a metal body 13 for an electrical function, specifically for the electrical contacting of a planar leadframe 11 with a further planar leadframe 11 for making electrical contact with a small gate terminal surface 25 of an IGBT at the bottom right in FIG. 2.
  • FIG. 2 also shows a Further metal body 13, namely a copper block, to increase the thickness of the upper three-dimensionally shaped lead frame 9, so that an electrical contact and attachment with respect to the total thickness of the module 1 can be produced.
  • the electrically insulating material 19 is, for example, an injection-molded or transfer-moldable polymer filled with thermally conductive inorganic particles.
  • Reference numeral 21 denotes the space for cooling channels.
  • FIG. 3 shows an exemplary embodiment of a method for producing a module 1 according to the invention.
  • An essential step Sl is the electrical contacting and / or fastening of the component 2 and / or the metal body 13 and / or the spacer 15, in particular with the at least one three-dimensionally shaped leadframe 9 or with the at least one planar leadframe 11, in particular by means of soldering, Reaction soldering to intermetallic phases, laser welding, conductive and / or non-conductive bonding.
  • Metal body 13 may also be mounted on electronic components 2.
  • a metal body 13 is heat conductively attached and / or electrically contacted for an electrical function and / or for cooling and / or for increasing the thickness of a three-dimensionally shaped leadframe 9, on this and / or on a component 2.
  • An electrical function is, for example, that of an electrical resistance or a coil.
  • a further step S3 is a separation of bridges 17 of the three-dimensionally shaped leadframe 9, which is necessary, for example, by means of punching, drilling or laser cutting, which were necessary prior to contacting the mechanical stability of the three-dimensionally shaped leadframe 9.
  • a further essential step S3 is that the electrically insulating material 19 is, for example, an epoxy and / or injected by means of injection molding, in particular by means of a transfermold process, namely into free regions, between the three-dimensionally shaped leadframes 9, the planar leadframes 11 and the components 2 A space for cooling channels 21 can be created.
  • the electrically insulating material 19 is, for example, an epoxy and / or injected by means of injection molding, in particular by means of a transfermold process, namely into free regions, between the three-dimensionally shaped leadframes 9, the planar leadframes 11 and the components 2 A space for cooling channels 21 can be created.
  • the basis of the present invention is therefore the use of three-dimensionally shaped lead frames 9. These can also be referred to as metal stamped grid or stamped and bent parts.
  • the components 2 are now positioned and fixed in position on these punched grids.
  • the contacting can be done, for example, by soldering, as well as reactive soldering to intermetallic phases, laser welding and / or gluing, namely conductive and non-conductive.
  • copper blocks 13, which are necessary for electrical function and / or cooling can also be done after placement of the components 2.
  • a possibly also equipped second punched grid is placed so positioned that electronic components or chips are usually surrounded on the front and back of stamped grids.
  • the second stamped grid can differ in thickness and material from the first stamped grid.
  • connection pads 25 for example gate contacts and control contacts
  • bumps on the chip side or lead frame side can be, for example, solder bumps 27, studbumps or conductive adhesive depots.
  • solder bumps 27 these can either be generated by the soldering process itself or even before that, for example, on the wafer of the power semiconductors used. This is called wafer level processing. In this case, it is sufficient to bring flux to the contact point before the actual soldering process.
  • solder bumps 27 can be punched or stamped in the lead frame 9 or 11.
  • soldered spacers 15, which consist for example of copper, or correspondingly shaped lead frames 9 can be achieved that leadframe 9 and edges of the components 2 are sufficiently far away from each other, so that a high insulation resistance can be achieved.
  • soldered spacers 15 which consist for example of copper, or correspondingly shaped lead frames 9 can be achieved that leadframe 9 and edges of the components 2 are sufficiently far away from each other, so that a high insulation resistance can be achieved.
  • heat sinks can be placed on the leadframes 9, 11 or on the components 2 and fixed in a thermally conductive manner by soldering or gluing.
  • the leadframe 9, 11 can also be configured as a heat sink and can be contacted over a contact area with min. least one heat sink 18 are positively connected. Finally, the free areas between the two lead frames 9 and components 2 are filled by insulating material 19 by an injection molding process. In this case, channels 21 can also be kept free, through which a cooling medium can dissipate heat.
  • the electrical connection of the module 1 to the outside is effected by non-molded contacts of the leadframes 9, 11.
  • the injection molding process is preferably a transfer molding process.
  • the insulating mass 19 is, for example, a highly filled epoxy.
  • the electrically insulating compound 19 may, for example, have an expansion coefficient adapted to the leadframe material.
  • the expansion coefficient of the potting material 19 can be chosen such that a stress is built up, which mechanically relieves the connection layer - in particular the solder layer - between the electronic component 2 and the leadframe 9, 11 in such a way that a high cycle strength is provided.
  • three or more leadframes 9 with components 2 can also be stacked on one another and partially contacted as described above. The final one
  • injection molding process closes all free spaces between leadframes 9, 11 and components 2.
  • the injection molding process can also be multi-stage, whereby, for example, leadframes 9, 11 can be cut or drilled freely after the first partial encapsulants.
  • the subsequent injection molding process then fills the resulting separation points or holes.
  • the electrically insulating and thermally conductive material 19 ensures insulation resistance as well in humid and / or corrosive environment, for example salt mist.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

The present invention relates to modules (1) having at least one unhoused electronic component (2), particularly an unhoused semiconductor component or unhoused semiconductor power component, each having at least one connecting surface (3) disposed on a top side and/or bottom side for electrically contacting and/or mounting, the at least one component (2) being positioned between respective substrates (5) such that the contact surfaces (3) each electrically contact and/or are attached to opposing electrical conductors (7) and/or mounting surfaces on the substrates (5). The aim of the invention is to provide an inexpensive electrical contact, particularly having a high integration density, low-inductance behavior, high current capacity, good cooling, and high reliability under electrical and thermal cyclic loading. The invention is characterized in that at least one metal scrap web or bent stamping part (9) is bent out of a plane of the substrates (5) and can be combined with metal scrap webs or bent stamping parts (11) extending in a plane. The module (1) is particularly suitable for high-voltage applications greater than 1000 V, and corresponding electronic components (2).

Description

Aufbau- und Verbindungstechnik von Modulen mittels aus einer Ebene heraus gebogenen metallischen Stanzgitter oder StanzbiegeteilenAssembly and connection technology of modules by means of bent out of a plane metallic punched grid or stamped and bent parts
Die vorliegende Erfindung betrifft ein Modul gemäß dem Oberbegriff des Hauptanspruchs sowie ein Verfahren gemäß dem Oberbegriff des Nebenanspruchs.The present invention relates to a module according to the preamble of the main claim and a method according to the preamble of the independent claim.
Herkömmlicherweise werden zur kostengünstigen elektrischen Kontaktierung von einem oder mehreren ungehäusten elektronischen Bauelementen und/oder passiven Bauelementen, insbesondere in der Leistungselektronik Direct Copper Bonding- (DCB-) Keramiken als Substrat verwendet, wobei die elektronischen Bauelemente auf der Rückseite flächig aufgelötet sind und eine Kontaktierung der Bauelementeoberseite mittels Dickdrahtbonden oder alternativ mittels planaren Kontaktierens gemäß der WO 03030247 ausgeführt wird. Gemäß dem planaren Kontaktieren wird das Dickdrahtbonden durch Laminieren einer Isolationsfolie, Öffnen von Kontaktfenstern, anschließender Lase- rablation sowie durch die Erzeugung einer planaren Verbindung mittels galvanisch abgeschiedener Metallisierung ersetzt. Der Inhalt der WO 03030247 gehört hiermit vollständig zur Offenbarung dieser Anmeldung. Bei der Erzeugung einer DCB-Keramik werden auf Ober- und Unterseite einer Keramik Kupferplatten aufgewalzt und bei ca. 10800C mit dieser formschlüssig verbunden. Anschließend wird zumindest eine der beiden Kupferseiten nasschemisch strukturiert.Conventionally, for the cost-effective electrical contacting of one or more unhoused electronic components and / or passive components, in particular in the power electronics Direct Copper Bonding (DCB) ceramics used as a substrate, wherein the electronic components are soldered flat on the back and contacting the Component top by means of thick wire bonding or alternatively by means of planar contacting according to WO 03030247 is executed. According to the planar contacting, the thick-wire bonding is replaced by lamination of an insulating film, opening of contact windows, subsequent laser ablation and the creation of a planar connection by means of galvanically deposited metallization. The content of WO 03030247 hereby completely belongs to the disclosure of this application. During the production of a DCB ceramic, copper plates are rolled on the top and bottom of a ceramic and are connected in a form-fitting manner at approx. 1080 ° C. Subsequently, at least one of the two copper sides is structured wet-chemically.
Herkömmliche Kontaktierungen weisen die Nachteile einer niedrigen Integrationsdichte, sowie Nachteile hoher Streuinduktivitäten im Bereich der Drahtbondverbindungen, wie auch einer geringen Stromtragfähigkeit, einer schlechten Kühlung und eine niedrige Zuverlässigkeit bei elektrischer und thermischer Zykelbeanspruchung auf. Es ist Aufgabe der vorliegenden Erfindung bei ungehäusten elektronischen Bauelementen, insbesondere der Leistungselektronik, insbesondere für den Hochspannungsbereich größer 1000V, eine kostengünstige elektrische Kontaktierung insbe- sondere mit einer hohen Integrationsdichte, niederinduktivem Verhalten, hoher Stromtragfähigkeit, guter Kühlung und hoher Zuverlässigkeit bei elektrischer und thermischer Zykel- beanspruchung bereit zu stellen.Conventional contacts have the disadvantages of a low integration density, as well as disadvantages of high stray inductances in the field of wire bonds, as well as a low current carrying capacity, a poor cooling and a low reliability in electrical and thermal Zykelbeanspruchung. It is an object of the present invention in unhoused electronic components, in particular the power electronics, especially for the high voltage range greater than 1000V, cost electrical contacting in particular with a high integration density, low-inductance behavior, high current carrying capacity, good cooling and high reliability in electrical and thermal Zykel - to provide stress.
Die Aufgabe wird durch ein Modul gemäß dem Hauptanspruch sowie ein Verfahren gemäß dem Nebenanspruch zur Herstellung eines derartigen Moduls gelöst.The object is achieved by a module according to the main claim and a method according to the independent claim for producing such a module.
Ein dreidimensional geformter Leadframe ist eine elektrisch leitende, insbesondere metallische, dreidimensional geformte Struktur, beispielsweise in Form eines Gitters, das beispielsweise durch kostengünstiges Stanzen, Ätzen und/oder Biegen, beispielsweise auf einer Rolle oder in Streifen, hergestellt wird. Dreidimensional geformt bedeutet aus einer Ebene herausgebogen. Als Materialien eignen sich vorzugsweise Cu-Legierungen, beispielsweise Zinnbronze CuSnβ oder SB02, das heißt, Cu98Fe2. Typische Dicken liegen im Bereich von 0,2 bis 0,5 mm. Im Unterschied zu den hier definierten dreidimensional geformten Leadframes werden ebenso ebene Leadframes verwendet. Der Sammelbegriff für dreidimensional geformteA three-dimensionally shaped leadframe is an electrically conductive, in particular metallic, three-dimensionally shaped structure, for example in the form of a grid, which is produced for example by low-cost stamping, etching and / or bending, for example on a roll or in strips. Three-dimensional shaped means bent out of a plane. As materials are preferably suitable Cu alloys, for example tin bronze CuSnβ or SB02, that is, Cu98Fe2. Typical thicknesses are in the range of 0.2 to 0.5 mm. In contrast to the three-dimensionally shaped leadframes defined here, flat leadframes are also used. The collective term for three-dimensionally shaped
Leadframes und ebene Leadframes ist Leadframe. In den Ausführungsbeispielen ist ein dreidimensional geformter Leadframe als Stanzbiegeteil oder Stanzgitter verwendet.Leadframes and planar leadframes are leadframes. In the exemplary embodiments, a three-dimensionally shaped leadframe is used as a stamped bent part or stamped grid.
Die Kombination einer dreidimensionalen Formung von Leadframes, die Anordnung von elektronischen Bauelementen zwischen zwei Leadframes, sowie die Verwendung eines spritzgegossenen Kunststoffs als Isolationsmaterial bewirkt zahlreiche Vorteile. Besonders vorteilhaft können kostengünstige Materialien verwendet, eine hohe Stromtragfähigkeit durch dicke Leadframes aus elektrisch hochleitfähigem Material und eine niederinduktive Kontaktierung der Chips bereitgestellt werden. Weitere vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen .The combination of a three-dimensional shaping of leadframes, the arrangement of electronic components between two leadframes, and the use of an injection-molded plastic as insulation material brings numerous advantages. Particularly cost-effective materials can be used, a high current carrying capacity can be provided by thick leadframes of electrically highly conductive material and a low-inductive contacting of the chips. Further advantageous embodiments can be found in the subclaims.
Gemäß einer weiteren vorteilhaften Ausgestaltung können zu- sätzlich zu den dreidimensional geformten Leadframes ebene Leadframes verwendet werden. Auf diese Weise können elektronische Bauelemente einfach kontaktiert und/oder befestigt werden .According to a further advantageous embodiment, planar leadframes can be used in addition to the three-dimensionally shaped leadframes. In this way, electronic components can be easily contacted and / or attached.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist bei Verwendung von zwei Bauelementen ein dreidimensional geformter Leadframe mit Anschlussflächen auf der Oberseite des ersten Bauelements und auf der Unterseite des zweiten Bauelements elektrisch kontaktiert und/oder befestigt.According to a further advantageous embodiment, when using two components, a three-dimensionally shaped leadframe is electrically contacted and / or fixed with connection surfaces on the upper side of the first component and on the underside of the second component.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist jeweils ein ebener Leadframe mit Anschlussflächen der anderen Seiten des jeweiligen Bauelements, das heißt, des ersten und des zweiten Bauelements, elektrisch kontaktiert und/oder befes- tigt.According to a further advantageous embodiment, a planar leadframe is in each case electrically contacted and / or fastened to connection surfaces of the other sides of the respective component, that is to say of the first and the second component.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist mindestens ein weiterer dreidimensional geformter Leadframe optional mit weiteren elektrisch kontaktierten und/oder befestig- ten Bauelementen derart elektrisch kontaktiert und/oder befestigt, dass die Bauelemente in der Regel auf Ober- und Unterseite auf dreidimensional geformten Leadframes umgeben sind. Auf diese Weise ist besonders einfach eine dreidimensionale Stapelung ausführbar.According to a further advantageous embodiment, at least one further three-dimensionally shaped leadframe is optionally electrically contacted and / or attached to further electrically contacted and / or fastened components in such a way that the components are generally surrounded on upper and lower side on three-dimensionally shaped leadframes. In this way, a three-dimensional stacking is particularly easy executable.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist jeweils ein ebener Leadframe mit, von dreidimensional geformten Leadframes freien Anschlussflächen der Bauelemente elektrisch kontaktiert und/oder befestigt. Auf diese Weise können beson- ders einfach Außenkontakte erzeugt werden.In accordance with a further advantageous refinement, a planar leadframe is in each case electrically contacted and / or fastened with connection surfaces of the components which are free of three-dimensionally shaped leadframes. In this way external contacts can be generated particularly easily.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist ein Metallkörper für eine elektrische Funktion und/oder zur Kühlung und/oder zur Vergrößerung der Dicke eines dreidimensional geformten Leadframes, an diesem und/oder an einem Bauelement befestigt und/oder elektrisch kontaktiert.According to a further advantageous embodiment, a metal body for an electrical function and / or for cooling and / or for increasing the thickness of a three-dimensionally shaped leadframe, attached thereto and / or to a component and / or electrically contacted.
Gemäß einer weiteren vorteilhaften Ausgestaltung weisen die verwendeten Leadframes verschiedene Dicken und/oder Materialien auf.According to a further advantageous embodiment, the leadframes used have different thicknesses and / or materials.
Gemäß einer weiteren vorteilhaften Ausgestaltung beabstanden ein auf dem dreidimensional geformten Leadframe geformterAccording to a further advantageous embodiment, a space formed on the three-dimensionally shaped leadframe space
Distanzhalter und/oder ein entsprechend geformter dreidimensional geformter Leadframe, zur Erzeugung hoher Isolationsfestigkeit, den dreidimensional geformten Leadframe von Kanten des Bauelements.Spacer and / or a correspondingly shaped three-dimensionally shaped leadframe, for generating high insulation resistance, the three-dimensionally shaped leadframe of edges of the component.
Gemäß einer weiteren vorteilhaften Ausgestaltung sind zur Vermeidung von Kurzschlüssen durch dreidimensional geformte Leadframes erzeugte Brücken unterbrochen. Derartige Brücken waren vor der Kontaktierung zur mechanischen Stabilisierung des dreidimensional geformten Leadframes erforderlich.According to a further advantageous embodiment, bridges generated by three-dimensionally shaped leadframes are interrupted in order to avoid short circuits. Such bridges were required prior to contacting for mechanical stabilization of the three-dimensionally shaped leadframe.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist mindestens ein dreidimensional geformter Leadframe als Kühlkörper ausgebildet und/oder über eine Kontaktfläche mit mindestens einer Wärmesenke formschlüssig verbunden. Auf diese Weise ergeben sich wirksame Kühlungsmöglichkeiten durch Wärmesenken, die beidseitig am Modul erzeugt werden können.According to a further advantageous embodiment, at least one three-dimensionally shaped leadframe is designed as a heat sink and / or positively connected via a contact surface with at least one heat sink. In this way, there are effective cooling options through heat sinks that can be generated on both sides of the module.
Gemäß einer weiteren vorteilhaften Ausgestaltung sind freie Bereiche zwischen den dreidimensional geformten Leadframes, den falls vorhanden ebenen Leadframes und den Bauelementen mit elektrisch isolierendem Material gefüllt. In diesem Material können Kühlkanäle oder Heatpipes erzeugt sein. Ebenso auf diese Weise ergeben sich wirksame Kühlungsmöglichkeiten, wenn das elektrisch isolierende Material thermisch leitend ausgeführt ist, z.B. durch Füllung mit Aluminiumoxid- Partikel. Gemäß einer weiteren vorteilhaften Ausgestaltung sind elektrische Anschlüsse des Moduls nach außen durch von isolierendem Material freien Leadframes bereitgestellt.According to a further advantageous embodiment, free areas between the three-dimensionally shaped leadframes, if present planar leadframes and the components are filled with electrically insulating material. In this material, cooling channels or heat pipes can be generated. Likewise, in this way, effective cooling possibilities arise when the electrically insulating material is designed to be thermally conductive, eg by filling with aluminum oxide particles. According to a further advantageous embodiment electrical connections of the module are provided to the outside by leadframes free of insulating material.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist der Aus- dehnungskoeffizient des elektrisch isolierenden Materials an das Material der Leadframes angepasst.According to a further advantageous embodiment, the expansion coefficient of the electrically insulating material is adapted to the material of the leadframes.
Gemäß einer weiteren vorteilhaften Ausgestaltung wird zur Erzeugung einer hohen Zykelfestigkeit der Ausdehnungskoeffi- zient des elektrisch isolierenden Materials derart ausgewählt, dass eine Verspannung aufgebaut wird, die eine Verbindungsschicht - insbesondere eine Lotschicht - zwischen Bauelement und dem Leadframe mechanisch entlastet. Auf diese Weise ergibt sich eine besonders hohe thermomechanische und elektrische Zykelfestigkeit .According to a further advantageous embodiment, the coefficient of expansion of the electrically insulating material is selected such that a stress is built up, which mechanically relieves a connection layer, in particular a solder layer, between the component and the leadframe in order to produce a high cycle stability. In this way results in a particularly high thermomechanical and electrical Zykestestigkeit.
Gemäß dem erfindungsgemäßen Verfahren erfolgt ein elektrisches Kontaktieren und/oder Befestigen, insbesondere mittels Löten, Reaktionslöten zu intermetallischen Phasen, Schweißen, insbesondere Laserschweißen, leitendes und/oder nichtleitendes Kleben.According to the method according to the invention, an electrical contacting and / or fastening takes place, in particular by means of soldering, reactive soldering to intermetallic phases, welding, in particular laser welding, conductive and / or non-conductive bonding.
Gemäß einer weiteren vorteilhaften Ausgestaltung wird vor dem elektrischen Kontaktieren von kleinen Anschlussflächen, bei- spielsweise Gatekontakten und/oder Steuerkontakten ein Erzeugen von Bumps auf der Seite des Bauelements und/oder auf der Seite des Leadframes. Derartige Bumps sind beispielsweise Lotbumps, Studbumps oder Leiterkleberdepots. Im Falle von Lotbumps können diese entweder durch den Lötvorgang selbst erzeugt werden, oder bereits davor, beispielsweise am Wafer, d.h. es kann ein sog. Wafer Level Processing ausgeführt werden. In diesem Fall ist es ausreichend, vor dem eigentlichen Lötprozess Flussmittel an die Kontaktstelle zu bringen.According to a further advantageous embodiment, prior to the electrical contacting of small pads, for example, gate contacts and / or control contacts, a generation of bumps on the side of the component and / or on the side of the leadframe. Such bumps are, for example, solder bumps, studbumps or conductor adhesive depots. In the case of solder bumps, these can either be generated by the soldering process itself or already before, for example on the wafer, i. A so-called wafer level processing can be carried out. In this case, it is sufficient to bring flux to the contact point before the actual soldering process.
Gemäß einer weiteren vorteilhaften Ausgestaltung werden vor dem elektrischen Kontaktieren von kleinen Anschlussflächen Nasen oder Kontaktzungen in dem Leadframe, insbesondere mit- tels Stanzen und/oder Prägen erzeugt. Auf diese Weise wird die Kontaktierung von kleinen Anschlussflächen vereinfacht.According to a further advantageous embodiment, noses or contact tongues in the leadframe, in particular, are connected before the electrical contacting of small connection surfaces. generated punching and / or embossing. In this way, the contact of small pads is simplified.
Gemäß einer weiteren vorteilhaften Ausgestaltung wird der dreidimensional geformte Leadframe erst nach dem elektrischen Kontaktieren und/oder Befestigen des Bauelements und/oder des Metallkörpers und/oder des Distanzhalters in seine dreidimensionale Form gebracht.According to a further advantageous embodiment, the three-dimensionally shaped leadframe is brought into its three-dimensional shape only after the electrical contacting and / or fastening of the component and / or the metal body and / or the spacer.
Gemäß einer weiteren vorteilhaften Ausgestaltung werden vor der Kontaktierung zur mechanischen Stabilisierung des dreidimensionalen Leadframes erzeugte Brücken beispielsweise mittels Stanzen, Bohren oder Laserschneiden getrennt. Die Trennung ist dabei auf einfache Weise ausführbar.According to a further advantageous embodiment, bridges generated before contacting for the mechanical stabilization of the three-dimensional leadframe are separated, for example, by means of stamping, drilling or laser cutting. The separation is carried out in a simple manner.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist das elektrisch isolierende Material beispielsweise ein Epoxid. Das Einbringen des Epoxy bzw. des isolierenden Materials in die freien Bereiche erfolgt besonders vorteilhaft mittels Spritzguss und insbesondere mittels eines Transfermoldprozes- ses. Auf diese Weise wird ein kostengünstiges Package, beruhend auf etablierten Einzelprozessen mit besonderer Eignung für die Leistungselektronik, erzeugt. Lediglich wenige kostengünstige Prozess-Schritte, beispielsweise Roll-to-Roll- Prozesse sind notwendig.According to a further advantageous embodiment, the electrically insulating material is, for example, an epoxide. The introduction of the epoxy or the insulating material in the free areas is particularly advantageous by means of injection molding and in particular by means of a transfer molding process. In this way, a cost-effective package, based on established single processes with particular suitability for power electronics, is generated. Only a few cost-effective process steps, such as roll-to-roll processes, are necessary.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann ein mehrstufiges Spritzgießen ausgeführt werden, wobei nach ersten Teilvergüssen Leadframes beispielsweise frei geschnitten und/oder gebohrt werden. Es kann ein Spritzgießen zum Auffüllen der entstandenen Trennstellen und/oder Bohrungen nachfolgen. Auf diese Weise wird eine hohe Isolationsfestigkeit ebenso für feuchte oder korrosive Umgebungen, beispielsweise bei Salznebel, bereitgestellt.According to a further advantageous embodiment, a multi-stage injection molding can be carried out, wherein after first partial encapsulation leadframes are for example cut free and / or drilled. It may follow an injection molding to fill the resulting separation points and / or holes. In this way, a high insulation resistance is also provided for humid or corrosive environments, for example salt mist.
Die vorliegende Erfindung wird anhand von Ausführungsbeispielen in Verbindung mit den Figuren näher beschrieben. Es zeigen Figur 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Moduls;The present invention will be described in more detail by means of exemplary embodiments in conjunction with the figures. Show it Figure 1 shows a first embodiment of a module according to the invention;
Figur 2 ein zweites Ausführungsbeispiel eines erfindungsge- mäßen Moduls;2 shows a second embodiment of a module according to the invention;
Figur 3 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Verfahrens zur Herstellung eines Moduls.FIG. 3 shows a first exemplary embodiment of a method according to the invention for producing a module.
Figur 1 zeigt ein erstes Ausführungsbeispiel eines erfin- dungsgemäßen Moduls 1. Ein dreidimensional geformter Leadfra- me 9 ist hier beispielsweise mit dem Material CuSnβ erzeugt, wobei dieser durch Stanzen und Formen ausgebildet wurde. Auf diesen dreidimensional geformten Leadframe 9 wurden ein erstes elektronisches Bauelement 2a, und zwar ein IGBT (Insola- ted Gate Bipolar Transistor) , und eine Diode aufgesetzt und mittels Löten elektrisch kontaktiert und befestigt bzw. fixiert. Des Weiteren wird ein zweiter ebener Leadframe 11 justiert aufgesetzt und mit den Kontakten des IGBTs und der Diode durch den gleichen oder einen weiteren Lötprozess verbun- den. Die Kontaktierung des kleinen Gatepads 25 wird durch eine geprägte Kontaktzunge 29 eines weiteren ebenen Leadframes 11 und einem vorab auf dem IGBT erzeugten Lotband 27 erleichtert. An einer Stelle des dreidimensional geformten Leadframes 9 ist eine Brücke 17 mittels Laser getrennt worden. Durch Transfermolden wurden die Freiräume mit Epoxy als ein elektrisch isolierendes und/oder thermisch leitendes Material 19 gefüllt, wobei für eine spätere Kühlung Kühlkanäle 21 freigehalten wurden.FIG. 1 shows a first exemplary embodiment of a module 1 according to the invention. A three-dimensionally shaped lead frame 9 is here produced, for example, with the material CuSnβ, this being formed by stamping and forming. On this three-dimensionally shaped leadframe 9, a first electronic component 2a, namely an IGBT (Insolated Gate Bipolar Transistor), and a diode were placed and electrically contacted by soldering and fixed or fixed. Furthermore, a second planar leadframe 11 is placed adjusted and connected to the contacts of the IGBT and the diode by the same or a further soldering process. The contacting of the small gatepads 25 is facilitated by an embossed contact tongue 29 of a further planar leadframe 11 and a solder strip 27 produced in advance on the IGBT. At one point of the three-dimensionally shaped lead frame 9, a bridge 17 has been separated by means of a laser. By Transfermolden the free spaces were filled with epoxy as an electrically insulating and / or thermally conductive material 19, wherein for later cooling cooling channels 21 were kept free.
Das heißt das Modul 1 weist zwei elektronische Bauelemente 2, und zwar ein erstes Bauelement 2a und ein zweites Bauelement 2b auf. Beide Bauelemente 2 weisen jeweils mindestens eine auf einer Oberseite und/oder Unterseite angeordnete Anschlussfläche 3 zur elektrischen Kontaktierung und zur Befes- tigung auf, wobei die beiden Bauelemente 2, 2a, 2b jeweils zwischen Substraten 5 derart positioniert sind, dass die Anschlussflächen 3 jeweils mit, den Anschlussflächen 3 gegenüber liegenden, elektrischen Leitern 7 und Befestigungsflä- chen auf den Substraten 5 elektrisch kontaktiert und befestigt sind. Figur 1 zeigt insbesondere drei Substrate 5, und zwar einen dreidimensional geformten Leadframe 9 mit Anschlussflächen 3 auf der Oberseite des ersten Bauelements 2a und auf der Unterseite des zweiten Bauelements 2b. Des Weiteren sind jeweils zwei ebene Leadframes 11 an der Unterseite des IGBTs 2a und auf der Oberseite der Diode 2b erzeugt. Die Leadframes 9, 11 dienen als elektrische Leiter 7. Figur 1 zeigt zudem einen Metallkörper 13 für eine elektrische Funk- tion und/oder zur Kühlung an dem dreidimensional geformten Leadframe 9 wärmeleitend befestigt und elektrisch kontaktiert. Ein derartiger Metallkörper 13 kann ebenso an einem Bauelement 2 wärmeleitend befestigt und/oder elektrisch kontaktiert sein. Ein derartiger Metallkörper 13 kann beispiels- weise als Kupferblock ausgebildet sein. Zudem dient der Metallkörper 13 in Figur 1 ebenso als Distanzhalter 15, der zur Erzeugung einer hohen Isolationsfestigkeit den dreidimensional geformten Leadframe 9 von Kanten des Bauelements 2a beabstandet. Des Weiteren ist der dreidimensional geformte Leadframe 9 entsprechend zur Erzeugung einer hohen Isolationsfestigkeit geformt. Zur Vermeidung von Kurzschlüssen ist die durch den dreidimensional geformten Leadframe 9 erzeugte Brücke unterbrochen. Bezugszeichen 18 bezeichnet Wärmesenken. Der dreidimensional geformte Leadframe 9 ist über seine Kon- taktflächen mit beidseitigen Wärmesenken 18 formschlüssig verbunden. Das elektrisch isolierende und thermisch leitende Material 19 ist in freie Bereichen zwischen den dreidimensional geformten Leadframe 9, den ebenen Leadframes 11 und den Bauelementen 2 gefüllt, wobei Raum für Kühlkanäle 21 geschaf- fen ist. Bezugszeichen 23 bezeichnet Lotschichten, die die elektrische Kontaktierung und Befestigung erzeugen. Die kleine Gateanschlussfläche 25 des Bauelements 2a, und zwar des IGBTs, ist zur elektrischen Kontaktierung mittels auf der Bauelementeseite oder Leadframeseite erzeugten Lotbump 27 elektrisch kontaktiert worden. Zudem weist der ebene Leadframe 11 eine Kontaktzunge 29 zur Vereinfachung der elektrischen Kontaktierung auf. Figur 2 zeigt ein zweites Ausführungsbeispiel eines erfindungsgemäßen Moduls 1. Dabei gleicht der Aufbau dem der Figur 1, wobei anstelle von einem dreidimensional geformten Leadframe 9 zwei dreidimensional geformte Leadframes 9 ver- wendet werden. Die verbleibenden Leadframes sind ebeneThat is, the module 1 has two electronic components 2, namely a first component 2a and a second component 2b. Both components 2 each have at least one contact surface 3 arranged on an upper side and / or lower side for electrical contacting and fastening, wherein the two components 2, 2a, 2b are respectively positioned between substrates 5 such that the contact surfaces 3 each with , the connecting surfaces 3 opposite, electrical conductors 7 and Befestigungsflä- Chen are electrically contacted and fixed on the substrates 5. FIG. 1 shows, in particular, three substrates 5, namely a three-dimensionally shaped leadframe 9 with connecting surfaces 3 on the upper side of the first component 2a and on the underside of the second component 2b. Furthermore, two planar leadframes 11 are respectively produced on the underside of the IGBT 2a and on the upper side of the diode 2b. The leadframes 9, 11 serve as electrical conductors 7. FIG. 1 also shows a metal body 13 for an electrical function and / or for cooling on the three-dimensionally shaped leadframe 9 in heat-conducting fashion and electrically contacted. Such a metal body 13 may also be attached to a component 2 thermally conductive and / or electrically contacted. Such a metal body 13 may be formed, for example, as a copper block. In addition, the metal body 13 in FIG. 1 also serves as a spacer 15 which, in order to produce a high insulation resistance, spaces the three-dimensionally shaped leadframe 9 from edges of the component 2 a. Furthermore, the three-dimensionally shaped leadframe 9 is shaped accordingly to produce a high insulation strength. To avoid short circuits, the bridge generated by the three-dimensionally shaped leadframe 9 is interrupted. Reference numeral 18 denotes heat sinks. The three-dimensionally shaped leadframe 9 is positively connected via its contact surfaces with heat sinks 18 on both sides. The electrically insulating and thermally conductive material 19 is filled in free areas between the three-dimensionally shaped leadframe 9, the planar leadframes 11 and the components 2, wherein space for cooling channels 21 is created. Reference numeral 23 denotes solder layers which produce the electrical contact and attachment. The small gate pad 25 of the device 2 a, namely of the IGBT, has been electrically contacted for electrical contacting by means of solder bumps 27 generated on the component side or leadframe side. In addition, the flat leadframe 11 has a contact tongue 29 for simplifying the electrical contacting. FIG. 2 shows a second exemplary embodiment of a module 1 according to the invention. In this case, the construction is similar to that of FIG. 1, wherein instead of a three-dimensionally shaped leadframe 9, two three-dimensionally shaped leadframes 9 are used. The remaining leadframes are flat
Leadframes 11. Es werden gleiche Bezugszeichen entsprechend Figur 1 verwendet. Gemäß Figur 2 werden vier elektronische Bauelemente 2 verwendet. Auf der linken Seite der Figur 2 ist ebenso die elektrische Kontaktierung einer kleinen Anschluss- fläche 25 mittels eines Lotbump 27 und einer Kontaktzunge 29 dargestellt. Gemäß Figur 2 ist im Unterschied zur Figur 1 ein zweiter dreidimensional geformter Leadframe 9 derart elektrisch kontaktiert und befestigt, dass die vier Bauelemente 2 bis auf zwei Seiten auf deren Ober- und Unterseite von drei- dimensional geformten Leadframes 9 umgeben sind. Es ist jeweils ein ebener Leadframe 11 mit, von den dreidimensional geformten Leadframes freien Anschlussflächen 3 der Bauelemente 2 elektrisch kontaktiert und befestigt. Der zweite dreidimensional geformte Leadframe 9 ist mit weiteren elektroni- sehen Bauelementen 2 elektrisch kontaktiert und befestigt. Alle Leadframes 9, 11 dienen als Substrate 5 und stellen elektrische Leiter 7 bereit. Figur 2 zeigt einen Metallkörper 13 für eine elektrische Funktion, und zwar für die elektrische Kontaktierung eines ebenen Leadframes 11 mit einem wei- teren ebenen Leadframe 11 zur elektrischen Kontaktierung einer kleinen Gateanschlussfläche 25 eines IGBTs rechts unten in Figur 2. Des Weiteren zeigt Figur 2 einen weiteren Metallkörper 13, und zwar einen Kupferblock, zur Vergrößerung der Dicke des oberen dreidimensional geformten Leadframes 9, so dass eine elektrische Kontaktierung und Befestigung hinsichtlich der Gesamtdicke des Moduls 1 erzeugt werden kann. Das elektrisch isolierende Material 19, ist beispielsweise ein mit wärmeleitenden anorganischen Partikeln gefülltes, spritz- guss- oder transfermold-fähiges Polymer. Bezugszeichen 21 be- zeichnet den Raum für Kühlkanäle. Auf der Oberseite und der Unterseite des Moduls 1 sind Wärmesenken 18 erzeugbar. Figur 3 zeigt ein Ausführungsbeispiel eines Verfahrens zur Herstellung eines erfindungsgemäßen Moduls 1.Leadframes 11. The same reference numerals are used according to Figure 1. According to FIG. 2, four electronic components 2 are used. On the left side of Figure 2, the electrical contacting of a small connection surface 25 by means of a solder bump 27 and a contact tongue 29 is also shown. According to FIG. 2, in contrast to FIG. 1, a second three-dimensionally shaped leadframe 9 is electrically contacted and fastened such that the four components 2 are surrounded by three-dimensionally shaped leadframes 9 except for two sides on their top and bottom sides. In each case, a planar leadframe 11 with which connection surfaces 3 of the components 2 that are free from the three-dimensionally shaped leadframes are electrically contacted and fastened. The second three-dimensionally shaped leadframe 9 is electrically contacted and fixed with further electronic components 2. All leadframes 9, 11 serve as substrates 5 and provide electrical conductors 7. FIG. 2 shows a metal body 13 for an electrical function, specifically for the electrical contacting of a planar leadframe 11 with a further planar leadframe 11 for making electrical contact with a small gate terminal surface 25 of an IGBT at the bottom right in FIG. 2. FIG. 2 also shows a Further metal body 13, namely a copper block, to increase the thickness of the upper three-dimensionally shaped lead frame 9, so that an electrical contact and attachment with respect to the total thickness of the module 1 can be produced. The electrically insulating material 19 is, for example, an injection-molded or transfer-moldable polymer filled with thermally conductive inorganic particles. Reference numeral 21 denotes the space for cooling channels. On the top and the bottom of the module 1 heat sink 18 can be generated. FIG. 3 shows an exemplary embodiment of a method for producing a module 1 according to the invention.
Ein wesentlicher Schritt Sl ist das elektrische Kontaktieren und/oder Befestigen des Bauelements 2 und/oder des Metallkörpers 13 und/oder des Distanzhalters 15, insbesondere mit dem mindestens einen dreidimensional geformten Leadframe 9 oder mit dem mindestens einen ebenen Leadframe 11, insbesondere mittels Löten, Reaktionslöten zu intermetallischen Phasen, Laserschweißen, leitendes und/oder nicht leitendes Kleben.An essential step Sl is the electrical contacting and / or fastening of the component 2 and / or the metal body 13 and / or the spacer 15, in particular with the at least one three-dimensionally shaped leadframe 9 or with the at least one planar leadframe 11, in particular by means of soldering, Reaction soldering to intermetallic phases, laser welding, conductive and / or non-conductive bonding.
Metallkörper 13 können ebenso auf elektronische Bauelemente 2 befestigt sein. Ein Metallkörper 13 wird für eine elektrische Funktion und/oder zur Kühlung und/oder zur Vergrößerung der Dicke eines dreidimensional geformten Leadframes 9, an diesem und/oder an einem Bauelement 2 Wärme leitend befestigt und/oder elektrisch kontaktiert. Eine elektrische Funktion sind beispielsweise die eines elektrischen Widerstands oder einer Spule. Ein weiterer Schritt S3 ist ein mittels beispielsweise mittels Stanzen, Bohren oder Laserschneiden er- folgendes Trennen von Brücken 17 des dreidimensional geformten Leadframes 9, die vor der Kontaktierung zur mechanischen Stabilität des dreidimensional geformten Leadframes 9 notwendig waren. Ein weiterer wesentlicher Schritt S3 ist, dass das elektrisch isolierende Material 19 beispielsweise ein Epoxy ist und/oder mittels Spritzguss insbesondere mittels eines Transfermoldprozesses eingespritzt wird, und zwar in freie Bereiche, zwischen den dreidimensional geformten Leadframes 9, den ebenen Leadframes 11 und den Bauelementen 2. Es kann ein Raum für Kühlkanäle 21 geschaffen sein.Metal body 13 may also be mounted on electronic components 2. A metal body 13 is heat conductively attached and / or electrically contacted for an electrical function and / or for cooling and / or for increasing the thickness of a three-dimensionally shaped leadframe 9, on this and / or on a component 2. An electrical function is, for example, that of an electrical resistance or a coil. A further step S3 is a separation of bridges 17 of the three-dimensionally shaped leadframe 9, which is necessary, for example, by means of punching, drilling or laser cutting, which were necessary prior to contacting the mechanical stability of the three-dimensionally shaped leadframe 9. A further essential step S3 is that the electrically insulating material 19 is, for example, an epoxy and / or injected by means of injection molding, in particular by means of a transfermold process, namely into free regions, between the three-dimensionally shaped leadframes 9, the planar leadframes 11 and the components 2 A space for cooling channels 21 can be created.
Grundlage der vorliegenden Erfindung ist also die Verwendung von dreidimensional geformten Leadframes 9. Diese können ebenso als metallische Stanzgitter oder Stanzbiegeteile bezeichnet werden. Auf diese Stanzgitter werden nun die Bauele- mente 2 positioniert aufgesetzt und fixiert. Die Kontaktierung kann beispielsweise durch Löten, ebenso Reaktionslöten zu intermetallischen Phasen, Laserschweißen und/oder Kleben, und zwar leitfähig und nicht leitend, erfolgen. Auf die glei- che Weise können auch Kupferblöcke 13 kontaktiert werden, die zur elektrischen Funktion und/oder Kühlung notwendig sind. Die Formung des Stanzgitters kann ebenso nach dem Aufsetzen der Bauelemente 2 erfolgen. Nun wird ein möglicherweise eben- falls bestücktes zweites Stanzgitter so positioniert aufgesetzt, dass elektronische Bauelemente beziehungsweise Chips in der Regel auf deren Vorder- und Rückseite von Stanzgittern umgeben sind. Das zweite Stanzgitter kann in Dicke und Material von dem ersten Stanzgitter abweichen. Die Kontaktierung erfolgt durch die vorstehend genannten Verfahren. Zur Kontaktierung von kleineren Anschlusspads 25, beispielsweise Gatekontakten und Steuerkontakten kann es notwendig sein, vor der Kontaktierung Bumps auf der Chipseite oder Leadframeseite zu erzeugen. Dies können beispielsweise Lotbumps 27, Studbumps oder Leitkleberdepots sein. Im Falle von Lotbumps 27 können diese entweder durch den Lötvorgang selbst erzeugt werden oder bereits davor, beispielsweise am Wafer der verwendeten Leistungshalbleiter. Dies wird Wafer Level Processing genannt. In diesem Fall ist es ausreichend, vor dem eigentli- chen Lötprozess Flussmittel an die Kontaktstelle zu bringen. Zur leichteren Kontaktierung derartiger kleinerer Pads 25 können auch Nasen oder Kontaktzungen 29 in das Leadframe 9 oder 11 gestanzt oder geprägt werden. Durch aufgelötete Distanzhalter 15, die beispielsweise aus Kupfer bestehen, oder entsprechend geformten Leadframes 9 kann erreicht werden, dass Leadframe 9 und Kanten der Bauelemente 2 ausreichend weit voneinander entfernt sind, so dass eine hohe Isolationsfestigkeit erreichbar ist. Zur Vermeidung von Kurzschlüssen und Herstellung der letztendlichen Verdrahtung kann es nun notwendig sein, bestimmte Leadframebrücken 17 zu trennen, die vor der Kontaktierung zur mechanischen Stabilisierung des Stanzgitters notwendig waren. Eine derartige Trennung kann beispielsweise mittels Stanzen, Bohren oder Laserschneiden erfolgen. Zur besseren Wärmeabfuhr und Wärmespreizung können Kühlkörper auf die Leadframes 9, 11 oder auf die Bauelemente 2 gesetzt werden und wärmeleitend durch Löten oder Kleben fixiert werden. Auch der Leadframe 9, 11 kann zu einem Kühlkörper ausgestaltet werden und über eine Kontaktfläche mit min- destens einer Wärmesenke 18 formschlüssig verbunden werden. Abschließend werden die freien Bereiche zwischen den beiden Leadframes 9 und Bauelementen 2 durch einen Spritzgussprozess durch isolierendes Material 19 gefüllt. Dabei können auch Ka- näle 21 freigehalten werden, durch die ein Kühlmedium Wärme abführen kann. Der elektrische Anschluss des Moduls 1 nach außen erfolgt durch nicht umspritzte Kontakte der Leadframes 9, 11. Der Spritzgussprozess ist vorzugsweise ein Transfer- moldprozess. Die isolierende Masse 19 ist beispielsweise ein hochgefülltes Epoxy. Die elektrisch isolierende Masse 19 kann beispielsweise einen an das Leadframematerial angepassten Ausdehnungskoeffizienten aufweisen. Alternativ kann der Ausdehnungskoeffizient des Vergussmaterials 19 derartig gewählt werden, dass eine Verspannung aufgebaut wird, die die Verbin- dungsschicht - insbesondere Lotschicht - zwischen elektronischem Bauelement 2 und Leadframe 9, 11 mechanisch derart entlastet, dass eine hohe Zykelfestigkeit bereitgestellt wird. Des Weiteren können ebenso drei oder mehr Leadframes 9 mit Bauelementen 2 aufeinander gesetzt und partiell wie vorste- hend beschrieben kontaktiert werden. Der abschließendeThe basis of the present invention is therefore the use of three-dimensionally shaped lead frames 9. These can also be referred to as metal stamped grid or stamped and bent parts. The components 2 are now positioned and fixed in position on these punched grids. The contacting can be done, for example, by soldering, as well as reactive soldering to intermetallic phases, laser welding and / or gluing, namely conductive and non-conductive. On the same It is also possible to contact copper blocks 13, which are necessary for electrical function and / or cooling. The molding of the stamped grid can also be done after placement of the components 2. Now a possibly also equipped second punched grid is placed so positioned that electronic components or chips are usually surrounded on the front and back of stamped grids. The second stamped grid can differ in thickness and material from the first stamped grid. The contacting takes place by the above-mentioned methods. For contacting smaller connection pads 25, for example gate contacts and control contacts, it may be necessary to produce bumps on the chip side or lead frame side before contacting. These can be, for example, solder bumps 27, studbumps or conductive adhesive depots. In the case of solder bumps 27, these can either be generated by the soldering process itself or even before that, for example, on the wafer of the power semiconductors used. This is called wafer level processing. In this case, it is sufficient to bring flux to the contact point before the actual soldering process. For easier contacting of such smaller pads 25 and noses or contact tongues 29 can be punched or stamped in the lead frame 9 or 11. By soldered spacers 15, which consist for example of copper, or correspondingly shaped lead frames 9 can be achieved that leadframe 9 and edges of the components 2 are sufficiently far away from each other, so that a high insulation resistance can be achieved. To avoid short-circuiting and production of the final wiring, it may now be necessary to separate certain leadframe bridges 17, which were necessary before contacting for mechanical stabilization of the stamped grid. Such a separation can be done for example by means of stamping, drilling or laser cutting. For better heat dissipation and heat dissipation, heat sinks can be placed on the leadframes 9, 11 or on the components 2 and fixed in a thermally conductive manner by soldering or gluing. The leadframe 9, 11 can also be configured as a heat sink and can be contacted over a contact area with min. least one heat sink 18 are positively connected. Finally, the free areas between the two lead frames 9 and components 2 are filled by insulating material 19 by an injection molding process. In this case, channels 21 can also be kept free, through which a cooling medium can dissipate heat. The electrical connection of the module 1 to the outside is effected by non-molded contacts of the leadframes 9, 11. The injection molding process is preferably a transfer molding process. The insulating mass 19 is, for example, a highly filled epoxy. The electrically insulating compound 19 may, for example, have an expansion coefficient adapted to the leadframe material. Alternatively, the expansion coefficient of the potting material 19 can be chosen such that a stress is built up, which mechanically relieves the connection layer - in particular the solder layer - between the electronic component 2 and the leadframe 9, 11 in such a way that a high cycle strength is provided. Furthermore, three or more leadframes 9 with components 2 can also be stacked on one another and partially contacted as described above. The final one
Spritzgussprozess schließt auch hier bis auf mögliche Kühlkanäle 21 alle Freiräume zwischen Leadframes 9, 11 und Bauelementen 2. Der Spritzgussprozess kann auch mehrstufig erfolgen, wobei beispielsweise nach den ersten Teilvergüssen Leadframes 9, 11 frei geschnitten beziehungsweise gebohrt werden können. Der darauf folgende Spritzgussprozess füllt dann die entstandenen Trennstellen beziehungsweise Bohrungen auf. Das elektrisch isolierende und thermisch leitfähige Material 19 stellt eine Isolationsfestigkeit ebenso bei feuch- ter und/oder korrosiver Umgebung, beispielsweise bei Salznebel, sicher. Here as well, with the exception of possible cooling channels 21, injection molding process closes all free spaces between leadframes 9, 11 and components 2. The injection molding process can also be multi-stage, whereby, for example, leadframes 9, 11 can be cut or drilled freely after the first partial encapsulants. The subsequent injection molding process then fills the resulting separation points or holes. The electrically insulating and thermally conductive material 19 ensures insulation resistance as well in humid and / or corrosive environment, for example salt mist.

Claims

Patentansprüche claims
1. Modul (1) mit mindestens einem ungenausten elektronischen Bauelement (2), mit jeweils mindestens einer auf einer Oberseite und/oder Unterseite angeordneten Anschlussfläche1. module (1) with at least one inaccurate electronic component (2), each having at least one arranged on an upper side and / or underside pad
(3) zur elektrischen Kontaktierung, wobei das mindestens eine Bauelement (2) jeweils zwischen Substraten (5), derart positioniert ist, dass die Anschlussflächen (3) jeweils mit, den Anschlussflächen (3) gegenüberliegenden, elektrischen Leitern (7) auf den Substraten (5) elektrisch kontaktiert sind, dadurch gekennzeichnet, dass von den Substraten (5) mindestens eines ein aus einer Ebene heraus gebogenes metallisches Stanzgitter oder Stanzbiegeteil (9) ist.(3) for electrical contacting, wherein the at least one component (2) is respectively positioned between substrates (5) in such a way that the connection surfaces (3) each have electrical conductors (7) opposite the connection surfaces (3) on the substrates (5) are electrically contacted, characterized in that of the substrates (5) at least one of a plane out of a bent metal punched grid or stamped and bent part (9).
2. Modul (1) nach Anspruch 1, dadurch gekennzeichnet, dass von den Substraten (5) mindestens eines ein sich in einer Ebene erstreckendes metallisches Stanzgitter oder Stanzbiegeteil (11) ist.2. Module (1) according to claim 1, characterized in that of the substrates (5) at least one extending in a plane metallic stamped grid or stamped and bent part (11).
3. Modul (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das bei zwei Bauelementen (2) ein aus einer Ebene heraus gebogenes metallisches Stanzgitter oder Stanzbiegeteil (9) mit Anschlussflächen (3) auf der Oberseite des ersten Bauelements (2a) und auf der Unterseite des zweiten Bauelements (2b) e- lektrisch kontaktiert ist.3. Module (1) according to claim 1 or 2, characterized in that in two components (2) a bent out of a plane metallic punched grid or stamped and bent part (9) with connection surfaces (3) on the upper side of the first component (2a) and is electrically contacted on the underside of the second component (2b).
4. Modul (1) nach Anspruch 3, dadurch gekennzeichnet, dass jeweils ein sich in einer Ebene erstreckendes metallisches Stanzgitter oder Stanzbiegeteil (11) mit Anschlussflächen (3) an der anderen Seite des jeweiligen Bauelements (2a, 2b) elektrisch kontaktiert ist. 4. Module (1) according to claim 3, characterized in that in each case one extending in a plane metallic punched grid or stamped and bent part (11) with pads (3) on the other side of the respective component (2a, 2b) is electrically contacted.
5. Modul (1) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass mindestens ein weiteres aus einer Ebene heraus gebogenes metallisches Stanzgitter oder Stanzbiegeteil (9), mit weiteren elektrisch kontaktierten Bauelementen (2), derart elektrisch kontaktiert ist, dass die zwischen den aus einer Ebene heraus gebogenen metallischen Stanzgittern oder Stanzbiegeteilen (9) positionierten Bauelemente (2) auf Ober- und Unterseite von aus einer Ebene heraus gebogenen metallischen Stanzgittern oder Stanzbiegeteilen (9) umgeben sind.5. Module (1) according to any one of claims 1 or 2, characterized in that at least one further out of a plane bent metallic punched grid or stamped and bent part (9), with further electrically contacted components (2), is so electrically contacted that the between the outwardly of a plane bent metallic punched bars or stamped and bent parts (9) positioned components (2) on the top and bottom of out of a plane bent metallic punched bars or stamped and bent parts (9) are surrounded.
6. Modul (1) nach Anspruch 5, dadurch gekennzeichnet, dass jeweils ein sich in einer Ebene erstreckendes metallisches Stanzgitter oder Stanzbiegeteil (11) mit, von aus einer Ebene heraus gebogenen metallischen Stanzgittern oder Stanzbiegeteilen (9) freien, Anschlussflächen (3) der Bauelemente (2) elektrisch kontaktiert ist.6. Module (1) according to claim 5, characterized in that in each case extending in a plane metallic punched grid or stamped and bent part (11) with, of a plane out bent metallic punched bars or stamped and bent parts (9) free, pads (3) Components (2) is electrically contacted.
7. Modul (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Metallkörper (13) für eine elektrische Funktion und/oder zur Kühlung und/oder zur Vergrößerung der Dicke eines aus einer Ebene heraus gebogenen metallischen Stanzgitters oder Stanzbiegeteils (9), an diesem und/oder an einem Bauelement (2) Wärme leitend befestigt und/oder elektrisch kontaktiert ist .7. Module (1) according to one of claims 1 to 6, characterized in that a metal body (13) for an electrical function and / or for cooling and / or for increasing the thickness of a bent out of a plane metallic stamped grid or stamped bent part (13). 9), on this and / or on a component (2) heat conductively attached and / or electrically contacted.
8. Modul (1) nach einem der Ansprüche 5 bis 7, dadurch ge- kennzeichnet, dass die aus einer Ebene heraus gebogenen metallischen Stanzgitter oder Stanzbiegeteile (9) verschiedene Dicken und/oder Materialien aufweisen.8. Module (1) according to any one of claims 5 to 7, character- ized in that the out of a plane bent metallic punched grid or stamped and bent parts (9) have different thicknesses and / or materials.
9. Modul (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ein auf dem aus einer Ebene heraus gebogenen metallischen Stanzgitter oder Stanzbiegeteil (9) befestigter Distanzhalter (15) zur Erzeugung hoher Isolationsfestigkeit, das aus einer Ebene heraus gebogenes metallisches Stanzgitter oder Stanzbiegeteil (9) von Kanten des Bauelements (2) beabstandet.9. Module (1) according to any one of claims 1 to 8, characterized in that a on the out of a plane bent metallic punched grid or stamped and bent part (9) fixed spacers (15) for generating high insulation strength, the out of a plane bent metallic punched grid or stamped and bent part (9) of edges of the component (2) spaced.
10. Modul (1) nach Ansprüche 7, dadurch gekennzeichnet, dass mindestens ein aus einer Ebene heraus gebogenes metallisches Stanzgitter oder Stanzbiegeteil (9) als der Metallkörper (13) zur Kühlung und/oder zur Vergrößerung der Dicke ausgebildet ist .10. Module (1) according to claims 7, characterized in that at least one bent out of a plane metallic stamped grid or stamped and bent part (9) as the metal body (13) is designed for cooling and / or for increasing the thickness.
11. Modul (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass freie Bereiche, zwischen den aus einer Ebene heraus gebogenen metallischen Stanzgittern oder Stanzbiegeteilen (9), den sich in einer Ebene erstreckenden metallischen Stanzgittern oder Stanzbiegeteilen (11) und den Bauelementen (2), mit elektrisch isolierendem und thermisch leitfähigem Material (19) gefüllt sind, wobei darin insbesondere Kühlkanäle (21) und/oder Heatpipes erzeugt sind.11. Module (1) according to one of claims 1 to 10, characterized in that free areas, between the out of a plane bent metallic punched bars or stamped and bent parts (9), extending in a plane metallic punched bars or stamped and bent parts (11) the components (2) are filled with electrically insulating and thermally conductive material (19), wherein in particular cooling channels (21) and / or heat pipes are produced therein.
12. Modul (1) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass elektrische Anschlüsse des Moduls (1) nach außen durch von isolierendem Material (19) freien metallischen Stanzgittern oder Stanzbiegeteilen (9, 11) bereitgestellt sind.12. Module (1) according to any one of claims 1 to 11, characterized in that electrical connections of the module (1) to the outside by insulating material (19) free metallic punched bars or stamped and bent parts (9, 11) are provided.
13. Modul (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Ausdehnungskoeffizient des elektrisch isolierenden Mate- rials (19) an das Material der metallisches Stanzgitter oder Stanzbiegeteile (9, 11) angepasst ist.13. Module (1) according to one of claims 1 to 12, characterized in that the expansion coefficient of the electrically insulating material (19) is adapted to the material of the metallic punched grid or stamped and bent parts (9, 11).
14. Modul (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass zur Erzeugung einer hohen Zykelfestigkeit der Ausdehnungskoeffizient des elektrisch isolierenden Materials (19) derart ausgewählt wurde, dass eine Verspannung aufgebaut wird, die eine Verbindungsschicht, insbesondere Lotschicht (23), zwi- sehen Bauelement (2) und dem metallischen Stanzgitter oder Stanzbiegeteil (9, 11) mechanisch entlastet.14 module (1) according to one of claims 1 to 12, characterized in that for generating a high cyclic strength of the expansion coefficient of the electrically insulating material (19) has been selected such that a strain is built, a connection layer, in particular solder layer (23 ), between see component (2) and the metal stamped grid or stamped and bent part (9, 11) mechanically relieved.
15. Verfahren zur Erzeugung eines Moduls (1) nach einem der vorangehenden Ansprüche 1 bis 14, gekennzeichnet durch elektrisches Kontaktieren und/oder Befestigen des Bauelements (2), des Metallkörpers (13) und des Distanzhalters (15), mit dem mindestens einen aus einer Ebene heraus gebogenen metal- lischen Stanzgitter oder Stanzbiegeteil (9) oder dem mindestens einen sich in einer Ebene erstreckenden metallischen Stanzgitter oder Stanzbiegeteil (11), mittels Löten, Reaktionslöten zu intermetallischen Phasen, Schweißen, Laserschweißen, leitendes oder nichtleitendes Kleben.15. A method for producing a module (1) according to any one of the preceding claims 1 to 14, characterized by electrically contacting and / or attaching the component (2), the metal body (13) and the spacer (15), with the at least one of a metallic punched grid or punched bent part (9) bent out of the plane or the at least one metal stamped grid or stamped bent part (11) extending in one plane, by means of soldering, reactive soldering to intermetallic phases, welding, laser welding, conductive or non-conductive bonding.
16. Verfahren nach Anspruch 15, gekennzeichnet durch vor dem elektrisches Kontaktieren von kleinen Anschlussflächen (25) erfolgendes Erzeugen von Bumps auf Seite des Bau- elements (2) oder auf Seite des metallischen Stanzgitters oder Stanzbiegeteils (9, 11), beispielsweise Lotbumps (27), Studbumps oder Leiterkleberdepots.16. The method according to claim 15, characterized by before the electrical contacting of small pads (25) taking place generating bumps on the side of the component (2) or on the side of the metallic punched grid or stamped and bent part (9, 11), for example solder bumps (27 ), Studbumps or ladder glue depots.
17. Verfahren nach Anspruch 15 oder 16, gekennzeichnet durch vor dem elektrischen Kontaktieren von kleinen Anschlussflächen (25) erfolgendes Erzeugen von Leitervorsprüngen in dem metallischen Stanzgitter oder Stanzbiegeteil (9, 11) mittels Stanzen oder Prägen.17. The method according to claim 15 or 16, characterized by prior to the electrical contacting of small pads (25) takes place generating of conductor projections in the metallic punched grid or stamped and bent part (9, 11) by means of stamping or embossing.
18. Verfahren nach einem der Ansprüche 15 bis 17, gekennzeichnet durch18. The method according to any one of claims 15 to 17, characterized by
Ausformen des aus einer Ebene heraus gebogenen metallischen Stanzgitters oder Stanzbiegeteils (9) nach einem Kontaktieren des Bauelements (2), des Metallkörpers (13) oder des Distanzhalters (15) . Forming out of a plane bent out metallic punched grid or stamped and bent part (9) after contacting the device (2), the metal body (13) or the spacer (15).
19. Verfahren nach einem der Ansprüche 15 bis 18, gekennzeichnet durch19. The method according to any one of claims 15 to 18, characterized by
Trennen von Brücken (17) des aus einer Ebene heraus gebogenen metallischen Stanzgitters oder Stanzbiegeteils (9), die vor der Kontaktierung zur mechanischen Stabilität des aus einer Ebene heraus gebogenen metallischen Stanzgitters oder Stanzbiegeteils (9) notwendig waren.Separation of bridges (17) of the bent out of a plane metallic punched grid or stamped and bent part (9), which were necessary prior to contacting the mechanical stability of the bent out of a plane metallic punched grid or stamped and bent part (9).
20. Verfahren nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, dass das elektrisch isolierende Material (19) ein mit wärmeleitenden anorganischen Partikeln gefülltes Epoxid ist oder mittels Spritzguss eingespritzt wird.20. The method according to any one of claims 15 to 19, characterized in that the electrically insulating material (19) is filled with thermally conductive inorganic particles epoxy or injected by injection molding.
21. Verfahren nach einem der Ansprüche 15 bis 20, gekennzeichnet, durch mehrstufiges Spritzgießen, wobei nach ersten Teilvergüssen, metallische Stanzgitter oder Stanzbiegeteile (9, 11) beispielsweise frei geschnitten oder gebohrt werden, nachfolgendes Spritzgießen zum Auffüllen der entstandenen Trennstellen oder Bohrungen. 21. The method according to any one of claims 15 to 20, characterized by multi-stage injection molding, wherein after first Teilvergüssen, metallic punched grid or stamped and bent parts (9, 11), for example, cut or drilled freely, subsequent injection molding to fill the resulting separation points or holes.
EP08786502A 2007-08-23 2008-07-28 Module construction and connection technology by means of metal scrap web or bent stamping parts bent from a plane Withdrawn EP2181461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11002935A EP2341533A3 (en) 2007-08-23 2008-07-28 Module construction and connection technology by means of metal scrap web or bent stamping parts bent from a plane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710039916 DE102007039916A1 (en) 2007-08-23 2007-08-23 Assembly and connection technology of modules using three-dimensionally shaped leadframes
PCT/EP2008/059861 WO2009024432A1 (en) 2007-08-23 2008-07-28 Module construction and connection technology by means of metal scrap web or bent stamping parts bent from a plane

Publications (1)

Publication Number Publication Date
EP2181461A1 true EP2181461A1 (en) 2010-05-05

Family

ID=39884754

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11002935A Withdrawn EP2341533A3 (en) 2007-08-23 2008-07-28 Module construction and connection technology by means of metal scrap web or bent stamping parts bent from a plane
EP08786502A Withdrawn EP2181461A1 (en) 2007-08-23 2008-07-28 Module construction and connection technology by means of metal scrap web or bent stamping parts bent from a plane

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11002935A Withdrawn EP2341533A3 (en) 2007-08-23 2008-07-28 Module construction and connection technology by means of metal scrap web or bent stamping parts bent from a plane

Country Status (4)

Country Link
EP (2) EP2341533A3 (en)
CN (1) CN101785104A (en)
DE (1) DE102007039916A1 (en)
WO (1) WO2009024432A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414644B2 (en) * 2010-09-29 2014-02-12 三菱電機株式会社 Semiconductor device
US8686569B2 (en) 2010-12-14 2014-04-01 Infineon Technologies Ag Die arrangement and method of forming a die arrangement
DE102011089740B4 (en) * 2011-12-23 2017-01-19 Conti Temic Microelectronic Gmbh power module
US11189537B2 (en) 2012-03-21 2021-11-30 Infineon Technologies Ag Circuit package, an electronic circuit package, and methods for encapsulating an electronic circuit
US9362240B2 (en) 2013-12-06 2016-06-07 Infineon Technologies Austria Ag Electronic device
CN104289582B (en) * 2014-09-15 2017-02-08 广东良得光电科技有限公司 Flip-over type forming device for electronic device pins
DE102016226262A1 (en) 2016-12-28 2018-06-28 Robert Bosch Gmbh Electronic module, method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053988A1 (en) * 2002-12-12 2004-06-24 Robert Bosch Gmbh Single-phase power converter module
US20050224945A1 (en) * 2004-04-09 2005-10-13 Kabushiki Kaisha Toshiba Power semiconductor device package

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589349A (en) * 1981-07-10 1983-01-19 Hitachi Ltd Gto stack
JP3088193B2 (en) 1992-06-05 2000-09-18 三菱電機株式会社 Method for manufacturing semiconductor device having LOC structure and lead frame used therein
JPH06196596A (en) * 1992-12-25 1994-07-15 Sony Corp Semiconductor device
US5696405A (en) * 1995-10-13 1997-12-09 Lucent Technologies Inc. Microelectronic package with device cooling
TW450432U (en) 2000-06-15 2001-08-11 Siliconix Taiwan Ltd Connecting structure of power transistor
US6734536B2 (en) * 2001-01-12 2004-05-11 Rohm Co., Ltd. Surface-mounting semiconductor device and method of making the same
JP4731021B2 (en) 2001-01-25 2011-07-20 ローム株式会社 Semiconductor device manufacturing method and semiconductor device
US6429513B1 (en) * 2001-05-25 2002-08-06 Amkor Technology, Inc. Active heat sink for cooling a semiconductor chip
KR100896906B1 (en) 2001-09-28 2009-05-12 지멘스 악티엔게젤샤프트 Method for contacting electrical contact surfaces of a substrate and device consisting of a substrate having electrical contact surfaces
DE10258565B3 (en) * 2002-12-14 2004-08-12 Semikron Elektronik Gmbh Circuit arrangement for semiconductor components and method for the production
DE10301091B4 (en) 2003-01-14 2015-01-22 Infineon Technologies Ag Power semiconductor device and method for connecting semiconductor devices associated with a common substrate carrier
US7071553B2 (en) * 2003-02-26 2006-07-04 Advanced Semiconductor Engineering, Inc. Package structure compatible with cooling system
US7245493B2 (en) * 2003-08-06 2007-07-17 Denso Corporation Cooler for cooling electric part
US7298034B2 (en) 2004-06-28 2007-11-20 Semiconductor Components Industries, L.L.C. Multi-chip semiconductor connector assemblies
JP4498170B2 (en) * 2005-03-02 2010-07-07 三菱電機株式会社 Semiconductor device and manufacturing method thereof
DE102005039478B4 (en) * 2005-08-18 2007-05-24 Infineon Technologies Ag Power semiconductor device with semiconductor chip stack and method for producing the same
JP4450230B2 (en) * 2005-12-26 2010-04-14 株式会社デンソー Semiconductor device
US7271470B1 (en) * 2006-05-31 2007-09-18 Infineon Technologies Ag Electronic component having at least two semiconductor power devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053988A1 (en) * 2002-12-12 2004-06-24 Robert Bosch Gmbh Single-phase power converter module
US20050224945A1 (en) * 2004-04-09 2005-10-13 Kabushiki Kaisha Toshiba Power semiconductor device package

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2009024432A1 *

Also Published As

Publication number Publication date
EP2341533A3 (en) 2013-01-16
DE102007039916A1 (en) 2009-02-26
WO2009024432A1 (en) 2009-02-26
EP2341533A2 (en) 2011-07-06
CN101785104A (en) 2010-07-21

Similar Documents

Publication Publication Date Title
DE102009011233B4 (en) Method for producing a semiconductor device
EP2019429A1 (en) Module with an electronic component electrically connected between two substrates, in particular DCB ceramic substrates, and production method thereof
DE102007006447B4 (en) Electronic module and method for manufacturing the electronic module
DE102012206596B4 (en) Semiconductor device
DE102006031405B4 (en) Semiconductor module with switching functions and method of making the same
DE102016206865B4 (en) Semiconductor device
DE112006001663T5 (en) Semiconductor chip package and method of making the same
WO2009024432A1 (en) Module construction and connection technology by means of metal scrap web or bent stamping parts bent from a plane
DE102007009521B4 (en) Component and method for its production
DE10102621B4 (en) power module
DE102006008632A1 (en) Power semiconductor component, has vertical power semiconductor unit that is designed such that bottom surface of component of chip carrier provides mass contact surface of semiconductor component
DE102015122259B4 (en) Semiconductor devices having a porous insulating layer
DE102014118080B4 (en) Electronic module with a heat spreader and method of making it
DE102011088218B4 (en) Electronic power module with thermal coupling layers to a cooling element and method of manufacture
DE102015105575B4 (en) Electronic module and method of manufacturing same
DE102008035911A1 (en) Method for manufacturing an integrated circuit module
CN103972197A (en) Semiconductor device, method for fabricating the same, lead and method for producing the same
WO2014016165A1 (en) Opto-electronic semiconductor component comprising an electrically insulating element
DE112015004424T5 (en) Electronic device and method for manufacturing the electronic device
DE102014103215B4 (en) Packaged device with non-integer connection grids and process for their production
DE102016000264B4 (en) Semiconductor die package including laterally extending leads and methods of making the same
WO2009030562A1 (en) Method for the production and contacting of electronic components by means of a substrate plate, particularly a dcb ceramic substrate plate
DE102016214607B4 (en) Electronic module and method for its manufacture
DE102016103585B4 (en) Process for manufacturing a package with solderable electrical contact
DE102021125094A1 (en) SEMICONDUCTOR PACKAGE WITH A CHIP CARRIAGE WITH A PAD OFFSET FEATURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101129

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140201